1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 
26 #include "../wifi.h"
27 #include "../efuse.h"
28 #include "../base.h"
29 #include "../regd.h"
30 #include "../cam.h"
31 #include "../ps.h"
32 #include "../pci.h"
33 #include "reg.h"
34 #include "def.h"
35 #include "phy.h"
36 #include "dm.h"
37 #include "fw.h"
38 #include "led.h"
39 #include "hw.h"
40 
41 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
42 {
43 	struct rtl_priv *rtlpriv = rtl_priv(hw);
44 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
45 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
46 
47 	switch (variable) {
48 	case HW_VAR_RCR: {
49 			*((u32 *) (val)) = rtlpci->receive_config;
50 			break;
51 		}
52 	case HW_VAR_RF_STATE: {
53 			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
54 			break;
55 		}
56 	case HW_VAR_FW_PSMODE_STATUS: {
57 			*((bool *) (val)) = ppsc->fw_current_inpsmode;
58 			break;
59 		}
60 	case HW_VAR_CORRECT_TSF: {
61 			u64 tsf;
62 			u32 *ptsf_low = (u32 *)&tsf;
63 			u32 *ptsf_high = ((u32 *)&tsf) + 1;
64 
65 			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
66 			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
67 
68 			*((u64 *) (val)) = tsf;
69 
70 			break;
71 		}
72 	case HW_VAR_MRC: {
73 			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
74 			break;
75 		}
76 	case HAL_DEF_WOWLAN:
77 		break;
78 	default: {
79 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
80 			 "switch case %#x not processed\n", variable);
81 			break;
82 		}
83 	}
84 }
85 
86 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
87 {
88 	struct rtl_priv *rtlpriv = rtl_priv(hw);
89 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
90 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
91 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
92 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
93 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
94 
95 	switch (variable) {
96 	case HW_VAR_ETHER_ADDR:{
97 			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
98 			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
99 			break;
100 		}
101 	case HW_VAR_BASIC_RATE:{
102 			u16 rate_cfg = ((u16 *) val)[0];
103 			u8 rate_index = 0;
104 
105 			if (rtlhal->version == VERSION_8192S_ACUT)
106 				rate_cfg = rate_cfg & 0x150;
107 			else
108 				rate_cfg = rate_cfg & 0x15f;
109 
110 			rate_cfg |= 0x01;
111 
112 			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
113 			rtl_write_byte(rtlpriv, RRSR + 1,
114 				       (rate_cfg >> 8) & 0xff);
115 
116 			while (rate_cfg > 0x1) {
117 				rate_cfg = (rate_cfg >> 1);
118 				rate_index++;
119 			}
120 			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
121 
122 			break;
123 		}
124 	case HW_VAR_BSSID:{
125 			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
126 			rtl_write_word(rtlpriv, BSSIDR + 4,
127 				       ((u16 *)(val + 4))[0]);
128 			break;
129 		}
130 	case HW_VAR_SIFS:{
131 			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
132 			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
133 			break;
134 		}
135 	case HW_VAR_SLOT_TIME:{
136 			u8 e_aci;
137 
138 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
139 				 "HW_VAR_SLOT_TIME %x\n", val[0]);
140 
141 			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
142 
143 			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
144 				rtlpriv->cfg->ops->set_hw_reg(hw,
145 						HW_VAR_AC_PARAM,
146 						(&e_aci));
147 			}
148 			break;
149 		}
150 	case HW_VAR_ACK_PREAMBLE:{
151 			u8 reg_tmp;
152 			u8 short_preamble = (bool) (*val);
153 			reg_tmp = (mac->cur_40_prime_sc) << 5;
154 			if (short_preamble)
155 				reg_tmp |= 0x80;
156 
157 			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
158 			break;
159 		}
160 	case HW_VAR_AMPDU_MIN_SPACE:{
161 			u8 min_spacing_to_set;
162 			u8 sec_min_space;
163 
164 			min_spacing_to_set = *val;
165 			if (min_spacing_to_set <= 7) {
166 				if (rtlpriv->sec.pairwise_enc_algorithm ==
167 				    NO_ENCRYPTION)
168 					sec_min_space = 0;
169 				else
170 					sec_min_space = 1;
171 
172 				if (min_spacing_to_set < sec_min_space)
173 					min_spacing_to_set = sec_min_space;
174 				if (min_spacing_to_set > 5)
175 					min_spacing_to_set = 5;
176 
177 				mac->min_space_cfg =
178 						((mac->min_space_cfg & 0xf8) |
179 						min_spacing_to_set);
180 
181 				*val = min_spacing_to_set;
182 
183 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
184 					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
185 					 mac->min_space_cfg);
186 
187 				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
188 					       mac->min_space_cfg);
189 			}
190 			break;
191 		}
192 	case HW_VAR_SHORTGI_DENSITY:{
193 			u8 density_to_set;
194 
195 			density_to_set = *val;
196 			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
197 			mac->min_space_cfg |= (density_to_set << 3);
198 
199 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
200 				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
201 				 mac->min_space_cfg);
202 
203 			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
204 				       mac->min_space_cfg);
205 
206 			break;
207 		}
208 	case HW_VAR_AMPDU_FACTOR:{
209 			u8 factor_toset;
210 			u8 regtoset;
211 			u8 factorlevel[18] = {
212 				2, 4, 4, 7, 7, 13, 13,
213 				13, 2, 7, 7, 13, 13,
214 				15, 15, 15, 15, 0};
215 			u8 index = 0;
216 
217 			factor_toset = *val;
218 			if (factor_toset <= 3) {
219 				factor_toset = (1 << (factor_toset + 2));
220 				if (factor_toset > 0xf)
221 					factor_toset = 0xf;
222 
223 				for (index = 0; index < 17; index++) {
224 					if (factorlevel[index] > factor_toset)
225 						factorlevel[index] =
226 								 factor_toset;
227 				}
228 
229 				for (index = 0; index < 8; index++) {
230 					regtoset = ((factorlevel[index * 2]) |
231 						    (factorlevel[index *
232 						    2 + 1] << 4));
233 					rtl_write_byte(rtlpriv,
234 						       AGGLEN_LMT_L + index,
235 						       regtoset);
236 				}
237 
238 				regtoset = ((factorlevel[16]) |
239 					    (factorlevel[17] << 4));
240 				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
241 
242 				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
243 					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
244 					 factor_toset);
245 			}
246 			break;
247 		}
248 	case HW_VAR_AC_PARAM:{
249 			u8 e_aci = *val;
250 			rtl92s_dm_init_edca_turbo(hw);
251 
252 			if (rtlpci->acm_method != EACMWAY2_SW)
253 				rtlpriv->cfg->ops->set_hw_reg(hw,
254 						 HW_VAR_ACM_CTRL,
255 						 &e_aci);
256 			break;
257 		}
258 	case HW_VAR_ACM_CTRL:{
259 			u8 e_aci = *val;
260 			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
261 							mac->ac[0].aifs));
262 			u8 acm = p_aci_aifsn->f.acm;
263 			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
264 
265 			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
266 				   0x0 : 0x1);
267 
268 			if (acm) {
269 				switch (e_aci) {
270 				case AC0_BE:
271 					acm_ctrl |= AcmHw_BeqEn;
272 					break;
273 				case AC2_VI:
274 					acm_ctrl |= AcmHw_ViqEn;
275 					break;
276 				case AC3_VO:
277 					acm_ctrl |= AcmHw_VoqEn;
278 					break;
279 				default:
280 					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
281 						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
282 						 acm);
283 					break;
284 				}
285 			} else {
286 				switch (e_aci) {
287 				case AC0_BE:
288 					acm_ctrl &= (~AcmHw_BeqEn);
289 					break;
290 				case AC2_VI:
291 					acm_ctrl &= (~AcmHw_ViqEn);
292 					break;
293 				case AC3_VO:
294 					acm_ctrl &= (~AcmHw_VoqEn);
295 					break;
296 				default:
297 					RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
298 						 "switch case %#x not processed\n",
299 						 e_aci);
300 					break;
301 				}
302 			}
303 
304 			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
305 				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
306 			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
307 			break;
308 		}
309 	case HW_VAR_RCR:{
310 			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
311 			rtlpci->receive_config = ((u32 *) (val))[0];
312 			break;
313 		}
314 	case HW_VAR_RETRY_LIMIT:{
315 			u8 retry_limit = val[0];
316 
317 			rtl_write_word(rtlpriv, RETRY_LIMIT,
318 				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
319 				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
320 			break;
321 		}
322 	case HW_VAR_DUAL_TSF_RST: {
323 			break;
324 		}
325 	case HW_VAR_EFUSE_BYTES: {
326 			rtlefuse->efuse_usedbytes = *((u16 *) val);
327 			break;
328 		}
329 	case HW_VAR_EFUSE_USAGE: {
330 			rtlefuse->efuse_usedpercentage = *val;
331 			break;
332 		}
333 	case HW_VAR_IO_CMD: {
334 			break;
335 		}
336 	case HW_VAR_WPA_CONFIG: {
337 			rtl_write_byte(rtlpriv, REG_SECR, *val);
338 			break;
339 		}
340 	case HW_VAR_SET_RPWM:{
341 			break;
342 		}
343 	case HW_VAR_H2C_FW_PWRMODE:{
344 			break;
345 		}
346 	case HW_VAR_FW_PSMODE_STATUS: {
347 			ppsc->fw_current_inpsmode = *((bool *) val);
348 			break;
349 		}
350 	case HW_VAR_H2C_FW_JOINBSSRPT:{
351 			break;
352 		}
353 	case HW_VAR_AID:{
354 			break;
355 		}
356 	case HW_VAR_CORRECT_TSF:{
357 			break;
358 		}
359 	case HW_VAR_MRC: {
360 			bool bmrc_toset = *((bool *)val);
361 			u8 u1bdata = 0;
362 
363 			if (bmrc_toset) {
364 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
365 					      MASKBYTE0, 0x33);
366 				u1bdata = (u8)rtl_get_bbreg(hw,
367 						ROFDM1_TRXPATHENABLE,
368 						MASKBYTE0);
369 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
370 					      MASKBYTE0,
371 					      ((u1bdata & 0xf0) | 0x03));
372 				u1bdata = (u8)rtl_get_bbreg(hw,
373 						ROFDM0_TRXPATHENABLE,
374 						MASKBYTE1);
375 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
376 					      MASKBYTE1,
377 					      (u1bdata | 0x04));
378 
379 				/* Update current settings. */
380 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
381 			} else {
382 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
383 					      MASKBYTE0, 0x13);
384 				u1bdata = (u8)rtl_get_bbreg(hw,
385 						 ROFDM1_TRXPATHENABLE,
386 						 MASKBYTE0);
387 				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
388 					      MASKBYTE0,
389 					      ((u1bdata & 0xf0) | 0x01));
390 				u1bdata = (u8)rtl_get_bbreg(hw,
391 						ROFDM0_TRXPATHENABLE,
392 						MASKBYTE1);
393 				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
394 					      MASKBYTE1, (u1bdata & 0xfb));
395 
396 				/* Update current settings. */
397 				rtlpriv->dm.current_mrc_switch = bmrc_toset;
398 			}
399 
400 			break;
401 		}
402 	case HW_VAR_FW_LPS_ACTION: {
403 		bool enter_fwlps = *((bool *)val);
404 		u8 rpwm_val, fw_pwrmode;
405 		bool fw_current_inps;
406 
407 		if (enter_fwlps) {
408 			rpwm_val = 0x02;	/* RF off */
409 			fw_current_inps = true;
410 			rtlpriv->cfg->ops->set_hw_reg(hw,
411 					HW_VAR_FW_PSMODE_STATUS,
412 					(u8 *)(&fw_current_inps));
413 			rtlpriv->cfg->ops->set_hw_reg(hw,
414 					HW_VAR_H2C_FW_PWRMODE,
415 					&ppsc->fwctrl_psmode);
416 
417 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
418 						      &rpwm_val);
419 		} else {
420 			rpwm_val = 0x0C;	/* RF on */
421 			fw_pwrmode = FW_PS_ACTIVE_MODE;
422 			fw_current_inps = false;
423 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
424 						      &rpwm_val);
425 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
426 						      &fw_pwrmode);
427 
428 			rtlpriv->cfg->ops->set_hw_reg(hw,
429 					HW_VAR_FW_PSMODE_STATUS,
430 					(u8 *)(&fw_current_inps));
431 		}
432 		break; }
433 	default:
434 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
435 			 "switch case %#x not processed\n", variable);
436 		break;
437 	}
438 
439 }
440 
441 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
442 {
443 	struct rtl_priv *rtlpriv = rtl_priv(hw);
444 	u8 sec_reg_value = 0x0;
445 
446 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
447 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
448 		 rtlpriv->sec.pairwise_enc_algorithm,
449 		 rtlpriv->sec.group_enc_algorithm);
450 
451 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
452 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
453 			 "not open hw encryption\n");
454 		return;
455 	}
456 
457 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
458 
459 	if (rtlpriv->sec.use_defaultkey) {
460 		sec_reg_value |= SCR_TXUSEDK;
461 		sec_reg_value |= SCR_RXUSEDK;
462 	}
463 
464 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
465 		 sec_reg_value);
466 
467 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
468 
469 }
470 
471 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
472 {
473 	struct rtl_priv *rtlpriv = rtl_priv(hw);
474 	u8 waitcount = 100;
475 	bool bresult = false;
476 	u8 tmpvalue;
477 
478 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
479 
480 	/* Wait the MAC synchronized. */
481 	udelay(400);
482 
483 	/* Check if it is set ready. */
484 	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
485 	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
486 
487 	if ((data & (BIT(6) | BIT(7))) == false) {
488 		waitcount = 100;
489 		tmpvalue = 0;
490 
491 		while (1) {
492 			waitcount--;
493 
494 			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
495 			if ((tmpvalue & BIT(6)))
496 				break;
497 
498 			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
499 			if (waitcount == 0)
500 				break;
501 
502 			udelay(10);
503 		}
504 
505 		if (waitcount == 0)
506 			bresult = false;
507 		else
508 			bresult = true;
509 	}
510 
511 	return bresult;
512 }
513 
514 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
515 {
516 	struct rtl_priv *rtlpriv = rtl_priv(hw);
517 	u8 u1tmp;
518 
519 	/* The following config GPIO function */
520 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
521 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
522 
523 	/* config GPIO3 to input */
524 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
525 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
526 
527 }
528 
529 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
530 {
531 	struct rtl_priv *rtlpriv = rtl_priv(hw);
532 	u8 u1tmp;
533 	u8 retval = ERFON;
534 
535 	/* The following config GPIO function */
536 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
537 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
538 
539 	/* config GPIO3 to input */
540 	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
541 	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
542 
543 	/* On some of the platform, driver cannot read correct
544 	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
545 	mdelay(10);
546 
547 	/* check GPIO3 */
548 	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
549 	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
550 
551 	return retval;
552 }
553 
554 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
555 {
556 	struct rtl_priv *rtlpriv = rtl_priv(hw);
557 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
558 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
559 
560 	u8 i;
561 	u8 tmpu1b;
562 	u16 tmpu2b;
563 	u8 pollingcnt = 20;
564 
565 	if (rtlpci->first_init) {
566 		/* Reset PCIE Digital */
567 		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
568 		tmpu1b &= 0xFE;
569 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
570 		udelay(1);
571 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
572 	}
573 
574 	/* Switch to SW IO control */
575 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
576 	if (tmpu1b & BIT(7)) {
577 		tmpu1b &= ~(BIT(6) | BIT(7));
578 
579 		/* Set failed, return to prevent hang. */
580 		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
581 			return;
582 	}
583 
584 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
585 	udelay(50);
586 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
587 	udelay(50);
588 
589 	/* Clear FW RPWM for FW control LPS.*/
590 	rtl_write_byte(rtlpriv, RPWM, 0x0);
591 
592 	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
593 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
594 	tmpu1b &= 0x73;
595 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
596 	/* wait for BIT 10/11/15 to pull high automatically!! */
597 	mdelay(1);
598 
599 	rtl_write_byte(rtlpriv, CMDR, 0);
600 	rtl_write_byte(rtlpriv, TCR, 0);
601 
602 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
603 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
604 	tmpu1b |= 0x08;
605 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
606 	tmpu1b &= ~(BIT(3));
607 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
608 
609 	/* Enable AFE clock source */
610 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
611 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
612 	/* Delay 1.5ms */
613 	mdelay(2);
614 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
615 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
616 
617 	/* Enable AFE Macro Block's Bandgap */
618 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
619 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
620 	mdelay(1);
621 
622 	/* Enable AFE Mbias */
623 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
624 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
625 	mdelay(1);
626 
627 	/* Enable LDOA15 block	*/
628 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
629 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
630 
631 	/* Set Digital Vdd to Retention isolation Path. */
632 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
633 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
634 
635 	/* For warm reboot NIC disappera bug. */
636 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
637 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
638 
639 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
640 
641 	/* Enable AFE PLL Macro Block */
642 	/* We need to delay 100u before enabling PLL. */
643 	udelay(200);
644 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
645 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
646 
647 	/* for divider reset  */
648 	udelay(100);
649 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
650 		       BIT(4) | BIT(6)));
651 	udelay(10);
652 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
653 	udelay(10);
654 
655 	/* Enable MAC 80MHZ clock  */
656 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
657 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
658 	mdelay(1);
659 
660 	/* Release isolation AFE PLL & MD */
661 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
662 
663 	/* Enable MAC clock */
664 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
665 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
666 
667 	/* Enable Core digital and enable IOREG R/W */
668 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
669 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
670 
671 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
672 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
673 
674 	/* enable REG_EN */
675 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
676 
677 	/* Switch the control path. */
678 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
679 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
680 
681 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
682 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
683 	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
684 		return; /* Set failed, return to prevent hang. */
685 
686 	rtl_write_word(rtlpriv, CMDR, 0x07FC);
687 
688 	/* MH We must enable the section of code to prevent load IMEM fail. */
689 	/* Load MAC register from WMAc temporarily We simulate macreg. */
690 	/* txt HW will provide MAC txt later  */
691 	rtl_write_byte(rtlpriv, 0x6, 0x30);
692 	rtl_write_byte(rtlpriv, 0x49, 0xf0);
693 
694 	rtl_write_byte(rtlpriv, 0x4b, 0x81);
695 
696 	rtl_write_byte(rtlpriv, 0xb5, 0x21);
697 
698 	rtl_write_byte(rtlpriv, 0xdc, 0xff);
699 	rtl_write_byte(rtlpriv, 0xdd, 0xff);
700 	rtl_write_byte(rtlpriv, 0xde, 0xff);
701 	rtl_write_byte(rtlpriv, 0xdf, 0xff);
702 
703 	rtl_write_byte(rtlpriv, 0x11a, 0x00);
704 	rtl_write_byte(rtlpriv, 0x11b, 0x00);
705 
706 	for (i = 0; i < 32; i++)
707 		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
708 
709 	rtl_write_byte(rtlpriv, 0x236, 0xff);
710 
711 	rtl_write_byte(rtlpriv, 0x503, 0x22);
712 
713 	if (ppsc->support_aspm && !ppsc->support_backdoor)
714 		rtl_write_byte(rtlpriv, 0x560, 0x40);
715 	else
716 		rtl_write_byte(rtlpriv, 0x560, 0x00);
717 
718 	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
719 
720 	/* Set RX Desc Address */
721 	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
722 	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
723 
724 	/* Set TX Desc Address */
725 	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
726 	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
727 	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
728 	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
729 	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
730 	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
731 	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
732 	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
733 	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
734 
735 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
736 
737 	/* To make sure that TxDMA can ready to download FW. */
738 	/* We should reset TxDMA if IMEM RPT was not ready. */
739 	do {
740 		tmpu1b = rtl_read_byte(rtlpriv, TCR);
741 		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
742 			break;
743 
744 		udelay(5);
745 	} while (pollingcnt--);
746 
747 	if (pollingcnt <= 0) {
748 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
749 			 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
750 			 tmpu1b);
751 		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
752 		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
753 		udelay(2);
754 		/* Reset TxDMA */
755 		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
756 	}
757 
758 	/* After MACIO reset,we must refresh LED state. */
759 	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
760 	   (ppsc->rfoff_reason == 0)) {
761 		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
762 		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
763 		enum rf_pwrstate rfpwr_state_toset;
764 		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
765 
766 		if (rfpwr_state_toset == ERFON)
767 			rtl92se_sw_led_on(hw, pLed0);
768 	}
769 }
770 
771 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
772 {
773 	struct rtl_priv *rtlpriv = rtl_priv(hw);
774 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
775 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
776 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
777 	u8 i;
778 	u16 tmpu2b;
779 
780 	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
781 
782 	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
783 	/* Turn on 0x40 Command register */
784 	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
785 			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
786 			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
787 
788 	/* Set TCR TX DMA pre 2 FULL enable bit	*/
789 	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
790 			TXDMAPRE2FULL);
791 
792 	/* Set RCR	*/
793 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
794 
795 	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
796 
797 	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
798 	/* Set CCK/OFDM SIFS */
799 	/* CCK SIFS shall always be 10us. */
800 	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
801 	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
802 
803 	/* Set AckTimeout */
804 	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
805 
806 	/* Beacon related */
807 	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
808 	rtl_write_word(rtlpriv, ATIMWND, 2);
809 
810 	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
811 	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
812 	/* Firmware allocate now, associate with FW internal setting.!!! */
813 
814 	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
815 	/* 5.3 Set driver info, we only accept PHY status now. */
816 	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
817 	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
818 
819 	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
820 	/* Set RRSR to all legacy rate and HT rate
821 	 * CCK rate is supported by default.
822 	 * CCK rate will be filtered out only when associated
823 	 * AP does not support it.
824 	 * Only enable ACK rate to OFDM 24M
825 	 * Disable RRSR for CCK rate in A-Cut	*/
826 
827 	if (rtlhal->version == VERSION_8192S_ACUT)
828 		rtl_write_byte(rtlpriv, RRSR, 0xf0);
829 	else if (rtlhal->version == VERSION_8192S_BCUT)
830 		rtl_write_byte(rtlpriv, RRSR, 0xff);
831 	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
832 	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
833 
834 	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
835 	/* fallback to CCK rate */
836 	for (i = 0; i < 8; i++) {
837 		/*Disable RRSR for CCK rate in A-Cut */
838 		if (rtlhal->version == VERSION_8192S_ACUT)
839 			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
840 	}
841 
842 	/* Different rate use different AMPDU size */
843 	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
844 	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
845 	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
846 	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
847 	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
848 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
849 	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
850 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
851 	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
852 	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
853 
854 	/* Set Data / Response auto rate fallack retry count */
855 	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
856 	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
857 	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
858 	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
859 
860 	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
861 	/* Set all rate to support SG */
862 	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
863 
864 	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
865 	/* Set NAV protection length */
866 	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
867 	/* CF-END Threshold */
868 	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
869 	/* Set AMPDU minimum space */
870 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
871 	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
872 	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
873 
874 	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
875 	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
876 	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
877 	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
878 	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
879 
880 	/* 14. Set driver info, we only accept PHY status now. */
881 	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
882 
883 	/* 15. For EEPROM R/W Workaround */
884 	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
885 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
886 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
887 	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
888 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
889 
890 	/* 17. For EFUSE */
891 	/* We may R/W EFUSE in EEPROM mode */
892 	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
893 		u8	tempval;
894 
895 		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
896 		tempval &= 0xFE;
897 		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
898 
899 		/* Change Program timing */
900 		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
901 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
902 	}
903 
904 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
905 
906 }
907 
908 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
909 {
910 	struct rtl_priv *rtlpriv = rtl_priv(hw);
911 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
912 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
913 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
914 
915 	u8 reg_bw_opmode = 0;
916 	u32 reg_rrsr = 0;
917 	u8 regtmp = 0;
918 
919 	reg_bw_opmode = BW_OPMODE_20MHZ;
920 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
921 
922 	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
923 	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
924 	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
925 	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
926 
927 	/* Set Retry Limit here */
928 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
929 			(u8 *)(&rtlpci->shortretry_limit));
930 
931 	rtl_write_byte(rtlpriv, MLT, 0x8f);
932 
933 	/* For Min Spacing configuration. */
934 	switch (rtlphy->rf_type) {
935 	case RF_1T2R:
936 	case RF_1T1R:
937 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
938 		break;
939 	case RF_2T2R:
940 	case RF_2T2R_GREEN:
941 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
942 		break;
943 	}
944 	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
945 }
946 
947 int rtl92se_hw_init(struct ieee80211_hw *hw)
948 {
949 	struct rtl_priv *rtlpriv = rtl_priv(hw);
950 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
951 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
952 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
953 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
954 	u8 tmp_byte = 0;
955 	unsigned long flags;
956 	bool rtstatus = true;
957 	u8 tmp_u1b;
958 	int err = false;
959 	u8 i;
960 	int wdcapra_add[] = {
961 		EDCAPARA_BE, EDCAPARA_BK,
962 		EDCAPARA_VI, EDCAPARA_VO};
963 	u8 secr_value = 0x0;
964 
965 	rtlpci->being_init_adapter = true;
966 
967 	/* As this function can take a very long time (up to 350 ms)
968 	 * and can be called with irqs disabled, reenable the irqs
969 	 * to let the other devices continue being serviced.
970 	 *
971 	 * It is safe doing so since our own interrupts will only be enabled
972 	 * in a subsequent step.
973 	 */
974 	local_save_flags(flags);
975 	local_irq_enable();
976 
977 	rtlpriv->intf_ops->disable_aspm(hw);
978 
979 	/* 1. MAC Initialize */
980 	/* Before FW download, we have to set some MAC register */
981 	_rtl92se_macconfig_before_fwdownload(hw);
982 
983 	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
984 			PMC_FSM) >> 16) & 0xF);
985 
986 	rtl8192se_gpiobit3_cfg_inputmode(hw);
987 
988 	/* 2. download firmware */
989 	rtstatus = rtl92s_download_fw(hw);
990 	if (!rtstatus) {
991 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
992 			 "Failed to download FW. Init HW without FW now... "
993 			 "Please copy FW into /lib/firmware/rtlwifi\n");
994 		err = 1;
995 		goto exit;
996 	}
997 
998 	/* After FW download, we have to reset MAC register */
999 	_rtl92se_macconfig_after_fwdownload(hw);
1000 
1001 	/*Retrieve default FW Cmd IO map. */
1002 	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
1003 	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
1004 
1005 	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1006 	if (!rtl92s_phy_mac_config(hw)) {
1007 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
1008 		err = rtstatus;
1009 		goto exit;
1010 	}
1011 
1012 	/* because last function modify RCR, so we update
1013 	 * rcr var here, or TP will unstable for receive_config
1014 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1015 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1016 	 */
1017 	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1018 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1019 	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1020 
1021 	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1022 	/* We must set flag avoid BB/RF config period later!! */
1023 	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1024 
1025 	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1026 	if (!rtl92s_phy_bb_config(hw)) {
1027 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
1028 		err = rtstatus;
1029 		goto exit;
1030 	}
1031 
1032 	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1033 	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1034 
1035 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1036 
1037 	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1038 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1039 	if (rtlhal->version == VERSION_8192S_ACUT)
1040 		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1041 	else
1042 		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1043 
1044 	if (!rtl92s_phy_rf_config(hw)) {
1045 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1046 		err = rtstatus;
1047 		goto exit;
1048 	}
1049 
1050 	/* After read predefined TXT, we must set BB/MAC/RF
1051 	 * register as our requirement */
1052 
1053 	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1054 							   (enum radio_path)0,
1055 							   RF_CHNLBW,
1056 							   RFREG_OFFSET_MASK);
1057 	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1058 							   (enum radio_path)1,
1059 							   RF_CHNLBW,
1060 							   RFREG_OFFSET_MASK);
1061 
1062 	/*---- Set CCK and OFDM Block "ON"----*/
1063 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1064 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1065 
1066 	/*3 Set Hardware(Do nothing now) */
1067 	_rtl92se_hw_configure(hw);
1068 
1069 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1070 	/* TX power index for different rate set. */
1071 	/* Get original hw reg values */
1072 	rtl92s_phy_get_hw_reg_originalvalue(hw);
1073 	/* Write correct tx power index */
1074 	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1075 
1076 	/* We must set MAC address after firmware download. */
1077 	for (i = 0; i < 6; i++)
1078 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1079 
1080 	/* EEPROM R/W workaround */
1081 	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1082 	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1083 
1084 	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1085 
1086 	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1087 		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1088 		tmp_byte = tmp_byte | BIT(5);
1089 		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1090 		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1091 	}
1092 
1093 	/* We enable high power and RA related mechanism after NIC
1094 	 * initialized. */
1095 	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1096 		/* Fw v.53 and later. */
1097 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1098 	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1099 		/* Fw v.52. */
1100 		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1101 		rtl92s_phy_chk_fwcmd_iodone(hw);
1102 	} else {
1103 		/* Compatible earlier FW version. */
1104 		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1105 		rtl92s_phy_chk_fwcmd_iodone(hw);
1106 		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1107 		rtl92s_phy_chk_fwcmd_iodone(hw);
1108 		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1109 		rtl92s_phy_chk_fwcmd_iodone(hw);
1110 	}
1111 
1112 	/* Add to prevent ASPM bug. */
1113 	/* Always enable hst and NIC clock request. */
1114 	rtl92s_phy_switch_ephy_parameter(hw);
1115 
1116 	/* Security related
1117 	 * 1. Clear all H/W keys.
1118 	 * 2. Enable H/W encryption/decryption. */
1119 	rtl_cam_reset_all_entry(hw);
1120 	secr_value |= SCR_TXENCENABLE;
1121 	secr_value |= SCR_RXENCENABLE;
1122 	secr_value |= SCR_NOSKMC;
1123 	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1124 
1125 	for (i = 0; i < 4; i++)
1126 		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1127 
1128 	if (rtlphy->rf_type == RF_1T2R) {
1129 		bool mrc2set = true;
1130 		/* Turn on B-Path */
1131 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1132 	}
1133 
1134 	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1135 	rtl92s_dm_init(hw);
1136 exit:
1137 	local_irq_restore(flags);
1138 	rtlpci->being_init_adapter = false;
1139 	return err;
1140 }
1141 
1142 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1143 {
1144 	/* This is a stub. */
1145 }
1146 
1147 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1148 {
1149 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1150 	u32 reg_rcr;
1151 
1152 	if (rtlpriv->psc.rfpwr_state != ERFON)
1153 		return;
1154 
1155 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1156 
1157 	if (check_bssid) {
1158 		reg_rcr |= (RCR_CBSSID);
1159 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1160 	} else if (!check_bssid) {
1161 		reg_rcr &= (~RCR_CBSSID);
1162 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1163 	}
1164 
1165 }
1166 
1167 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1168 				     enum nl80211_iftype type)
1169 {
1170 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1171 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1172 	u32 temp;
1173 	bt_msr &= ~MSR_LINK_MASK;
1174 
1175 	switch (type) {
1176 	case NL80211_IFTYPE_UNSPECIFIED:
1177 		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1178 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1179 			 "Set Network type to NO LINK!\n");
1180 		break;
1181 	case NL80211_IFTYPE_ADHOC:
1182 		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1183 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1184 			 "Set Network type to Ad Hoc!\n");
1185 		break;
1186 	case NL80211_IFTYPE_STATION:
1187 		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1188 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1189 			 "Set Network type to STA!\n");
1190 		break;
1191 	case NL80211_IFTYPE_AP:
1192 		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1193 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1194 			 "Set Network type to AP!\n");
1195 		break;
1196 	default:
1197 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1198 			 "Network type %d not supported!\n", type);
1199 		return 1;
1200 
1201 	}
1202 
1203 	if (type != NL80211_IFTYPE_AP &&
1204 	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1205 		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1206 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1207 
1208 	temp = rtl_read_dword(rtlpriv, TCR);
1209 	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1210 	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1211 
1212 
1213 	return 0;
1214 }
1215 
1216 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1217 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1218 {
1219 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1220 
1221 	if (_rtl92se_set_media_status(hw, type))
1222 		return -EOPNOTSUPP;
1223 
1224 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1225 		if (type != NL80211_IFTYPE_AP)
1226 			rtl92se_set_check_bssid(hw, true);
1227 	} else {
1228 		rtl92se_set_check_bssid(hw, false);
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1235 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1236 {
1237 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1238 	rtl92s_dm_init_edca_turbo(hw);
1239 
1240 	switch (aci) {
1241 	case AC1_BK:
1242 		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1243 		break;
1244 	case AC0_BE:
1245 		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1246 		break;
1247 	case AC2_VI:
1248 		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1249 		break;
1250 	case AC3_VO:
1251 		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1252 		break;
1253 	default:
1254 		RT_ASSERT(false, "invalid aci: %d !\n", aci);
1255 		break;
1256 	}
1257 }
1258 
1259 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1260 {
1261 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1262 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1263 
1264 	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1265 	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1266 	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1267 	rtlpci->irq_enabled = true;
1268 }
1269 
1270 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1271 {
1272 	struct rtl_priv *rtlpriv;
1273 	struct rtl_pci *rtlpci;
1274 
1275 	rtlpriv = rtl_priv(hw);
1276 	/* if firmware not available, no interrupts */
1277 	if (!rtlpriv || !rtlpriv->max_fw_size)
1278 		return;
1279 	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1280 	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1281 	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1282 	rtlpci->irq_enabled = false;
1283 }
1284 
1285 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1286 {
1287 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1288 	u8 waitcnt = 100;
1289 	bool result = false;
1290 	u8 tmp;
1291 
1292 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1293 
1294 	/* Wait the MAC synchronized. */
1295 	udelay(400);
1296 
1297 	/* Check if it is set ready. */
1298 	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1299 	result = ((tmp & BIT(7)) == (data & BIT(7)));
1300 
1301 	if ((data & (BIT(6) | BIT(7))) == false) {
1302 		waitcnt = 100;
1303 		tmp = 0;
1304 
1305 		while (1) {
1306 			waitcnt--;
1307 			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1308 
1309 			if ((tmp & BIT(6)))
1310 				break;
1311 
1312 			pr_err("wait for BIT(6) return value %x\n", tmp);
1313 
1314 			if (waitcnt == 0)
1315 				break;
1316 			udelay(10);
1317 		}
1318 
1319 		if (waitcnt == 0)
1320 			result = false;
1321 		else
1322 			result = true;
1323 	}
1324 
1325 	return result;
1326 }
1327 
1328 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1329 {
1330 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1331 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1332 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1333 	u8 u1btmp;
1334 
1335 	if (rtlhal->driver_going2unload)
1336 		rtl_write_byte(rtlpriv, 0x560, 0x0);
1337 
1338 	/* Power save for BB/RF */
1339 	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1340 	u1btmp |= BIT(0);
1341 	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1342 	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1343 	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1344 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1345 	udelay(100);
1346 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1347 	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1348 	udelay(10);
1349 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1350 	udelay(10);
1351 	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1352 	udelay(10);
1353 	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1354 	rtl_write_word(rtlpriv, CMDR, 0x0000);
1355 
1356 	if (rtlhal->driver_going2unload) {
1357 		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1358 		u1btmp &= ~(BIT(0));
1359 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1360 	}
1361 
1362 	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1363 
1364 	/* Add description. After switch control path. register
1365 	 * after page1 will be invisible. We can not do any IO
1366 	 * for register>0x40. After resume&MACIO reset, we need
1367 	 * to remember previous reg content. */
1368 	if (u1btmp & BIT(7)) {
1369 		u1btmp &= ~(BIT(6) | BIT(7));
1370 		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1371 			pr_err("Switch ctrl path fail\n");
1372 			return;
1373 		}
1374 	}
1375 
1376 	/* Power save for MAC */
1377 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1378 		!rtlhal->driver_going2unload) {
1379 		/* enable LED function */
1380 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1381 	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1382 	} else {
1383 		/* LED function disable. Power range is about 8mA now. */
1384 		/* if write 0xF1 disconnet_pci power
1385 		 *	 ifconfig wlan0 down power are both high 35:70 */
1386 		/* if write oxF9 disconnet_pci power
1387 		 * ifconfig wlan0 down power are both low  12:45*/
1388 		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1389 	}
1390 
1391 	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1392 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1393 	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1394 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1395 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1396 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1397 
1398 }
1399 
1400 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1401 {
1402 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1403 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1404 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1405 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1406 
1407 	if (rtlpci->up_first_time == 1)
1408 		return;
1409 
1410 	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1411 		rtl92se_sw_led_on(hw, pLed0);
1412 	else
1413 		rtl92se_sw_led_off(hw, pLed0);
1414 }
1415 
1416 
1417 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1418 {
1419 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1420 	u16 tmpu2b;
1421 	u8 tmpu1b;
1422 
1423 	rtlpriv->psc.pwrdomain_protect = true;
1424 
1425 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1426 	if (tmpu1b & BIT(7)) {
1427 		tmpu1b &= ~(BIT(6) | BIT(7));
1428 		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1429 			rtlpriv->psc.pwrdomain_protect = false;
1430 			return;
1431 		}
1432 	}
1433 
1434 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1435 	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1436 
1437 	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1438 	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1439 
1440 	/* If IPS we need to turn LED on. So we not
1441 	 * not disable BIT 3/7 of reg3. */
1442 	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1443 		tmpu1b &= 0xFB;
1444 	else
1445 		tmpu1b &= 0x73;
1446 
1447 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1448 	/* wait for BIT 10/11/15 to pull high automatically!! */
1449 	mdelay(1);
1450 
1451 	rtl_write_byte(rtlpriv, CMDR, 0);
1452 	rtl_write_byte(rtlpriv, TCR, 0);
1453 
1454 	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1455 	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1456 	tmpu1b |= 0x08;
1457 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1458 	tmpu1b &= ~(BIT(3));
1459 	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1460 
1461 	/* Enable AFE clock source */
1462 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1463 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1464 	/* Delay 1.5ms */
1465 	udelay(1500);
1466 	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1467 	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1468 
1469 	/* Enable AFE Macro Block's Bandgap */
1470 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1471 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1472 	mdelay(1);
1473 
1474 	/* Enable AFE Mbias */
1475 	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1476 	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1477 	mdelay(1);
1478 
1479 	/* Enable LDOA15 block */
1480 	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1481 	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1482 
1483 	/* Set Digital Vdd to Retention isolation Path. */
1484 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1485 	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1486 
1487 
1488 	/* For warm reboot NIC disappera bug. */
1489 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1490 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1491 
1492 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1493 
1494 	/* Enable AFE PLL Macro Block */
1495 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1496 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1497 	/* Enable MAC 80MHZ clock */
1498 	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1499 	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1500 	mdelay(1);
1501 
1502 	/* Release isolation AFE PLL & MD */
1503 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1504 
1505 	/* Enable MAC clock */
1506 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1507 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1508 
1509 	/* Enable Core digital and enable IOREG R/W */
1510 	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1511 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1512 	/* enable REG_EN */
1513 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1514 
1515 	/* Switch the control path. */
1516 	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1517 	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1518 
1519 	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1520 	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1521 	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1522 		rtlpriv->psc.pwrdomain_protect = false;
1523 		return;
1524 	}
1525 
1526 	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1527 
1528 	/* After MACIO reset,we must refresh LED state. */
1529 	_rtl92se_gen_refreshledstate(hw);
1530 
1531 	rtlpriv->psc.pwrdomain_protect = false;
1532 }
1533 
1534 void rtl92se_card_disable(struct ieee80211_hw *hw)
1535 {
1536 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1537 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1538 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1539 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1540 	enum nl80211_iftype opmode;
1541 	u8 wait = 30;
1542 
1543 	rtlpriv->intf_ops->enable_aspm(hw);
1544 
1545 	if (rtlpci->driver_is_goingto_unload ||
1546 		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1547 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1548 
1549 	/* we should chnge GPIO to input mode
1550 	 * this will drop away current about 25mA*/
1551 	rtl8192se_gpiobit3_cfg_inputmode(hw);
1552 
1553 	/* this is very important for ips power save */
1554 	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1555 		if (rtlpriv->psc.pwrdomain_protect)
1556 			mdelay(20);
1557 		else
1558 			break;
1559 	}
1560 
1561 	mac->link_state = MAC80211_NOLINK;
1562 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1563 	_rtl92se_set_media_status(hw, opmode);
1564 
1565 	_rtl92s_phy_set_rfhalt(hw);
1566 	udelay(100);
1567 }
1568 
1569 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1570 			     u32 *p_intb)
1571 {
1572 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1573 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1574 
1575 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1576 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1577 
1578 	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1579 	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1580 }
1581 
1582 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1583 {
1584 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1585 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1586 	u16 bcntime_cfg = 0;
1587 	u16 bcn_cw = 6, bcn_ifs = 0xf;
1588 	u16 atim_window = 2;
1589 
1590 	/* ATIM Window (in unit of TU). */
1591 	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1592 
1593 	/* Beacon interval (in unit of TU). */
1594 	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1595 
1596 	/* DrvErlyInt (in unit of TU). (Time to send
1597 	 * interrupt to notify driver to change
1598 	 * beacon content) */
1599 	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1600 
1601 	/* BcnDMATIM(in unit of us). Indicates the
1602 	 * time before TBTT to perform beacon queue DMA  */
1603 	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1604 
1605 	/* Force beacon frame transmission even
1606 	 * after receiving beacon frame from
1607 	 * other ad hoc STA */
1608 	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1609 
1610 	/* Beacon Time Configuration */
1611 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1612 		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1613 
1614 	/* TODO: bcn_ifs may required to be changed on ASIC */
1615 	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1616 
1617 	/*for beacon changed */
1618 	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1619 }
1620 
1621 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1622 {
1623 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1624 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1625 	u16 bcn_interval = mac->beacon_interval;
1626 
1627 	/* Beacon interval (in unit of TU). */
1628 	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1629 	/* 2008.10.24 added by tynli for beacon changed. */
1630 	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1631 }
1632 
1633 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1634 		u32 add_msr, u32 rm_msr)
1635 {
1636 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1637 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1638 
1639 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1640 		 add_msr, rm_msr);
1641 
1642 	if (add_msr)
1643 		rtlpci->irq_mask[0] |= add_msr;
1644 
1645 	if (rm_msr)
1646 		rtlpci->irq_mask[0] &= (~rm_msr);
1647 
1648 	rtl92se_disable_interrupt(hw);
1649 	rtl92se_enable_interrupt(hw);
1650 }
1651 
1652 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1653 {
1654 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1655 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1656 	u8 efuse_id;
1657 
1658 	rtlhal->ic_class = IC_INFERIORITY_A;
1659 
1660 	/* Only retrieving while using EFUSE. */
1661 	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1662 		!rtlefuse->autoload_failflag) {
1663 		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1664 
1665 		if (efuse_id == 0xfe)
1666 			rtlhal->ic_class = IC_INFERIORITY_B;
1667 	}
1668 }
1669 
1670 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1671 {
1672 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1673 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1674 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1675 	struct device *dev = &rtl_pcipriv(hw)->dev.pdev->dev;
1676 	u16 i, usvalue;
1677 	u16	eeprom_id;
1678 	u8 tempval;
1679 	u8 hwinfo[HWSET_MAX_SIZE_92S];
1680 	u8 rf_path, index;
1681 
1682 	switch (rtlefuse->epromtype) {
1683 	case EEPROM_BOOT_EFUSE:
1684 		rtl_efuse_shadow_map_update(hw);
1685 		break;
1686 
1687 	case EEPROM_93C46:
1688 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1689 			 "RTL819X Not boot from eeprom, check it !!\n");
1690 		return;
1691 
1692 	default:
1693 		dev_warn(dev, "no efuse data\n");
1694 		return;
1695 	}
1696 
1697 	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1698 	       HWSET_MAX_SIZE_92S);
1699 
1700 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1701 		      hwinfo, HWSET_MAX_SIZE_92S);
1702 
1703 	eeprom_id = *((u16 *)&hwinfo[0]);
1704 	if (eeprom_id != RTL8190_EEPROM_ID) {
1705 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1706 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1707 		rtlefuse->autoload_failflag = true;
1708 	} else {
1709 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1710 		rtlefuse->autoload_failflag = false;
1711 	}
1712 
1713 	if (rtlefuse->autoload_failflag)
1714 		return;
1715 
1716 	_rtl8192se_get_IC_Inferiority(hw);
1717 
1718 	/* Read IC Version && Channel Plan */
1719 	/* VID, DID	 SE	0xA-D */
1720 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1721 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1722 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1723 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1724 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1725 
1726 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1727 		 "EEPROMId = 0x%4x\n", eeprom_id);
1728 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1729 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1730 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1731 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1732 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1733 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1734 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1735 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1736 
1737 	for (i = 0; i < 6; i += 2) {
1738 		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1739 		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1740 	}
1741 
1742 	for (i = 0; i < 6; i++)
1743 		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1744 
1745 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1746 
1747 	/* Get Tx Power Level by Channel */
1748 	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1749 	/* 92S suupport RF A & B */
1750 	for (rf_path = 0; rf_path < 2; rf_path++) {
1751 		for (i = 0; i < 3; i++) {
1752 			/* Read CCK RF A & B Tx power  */
1753 			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1754 			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1755 
1756 			/* Read OFDM RF A & B Tx power for 1T */
1757 			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1758 			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1759 
1760 			/* Read OFDM RF A & B Tx power for 2T */
1761 			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1762 				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1763 				   rf_path * 3 + i];
1764 		}
1765 	}
1766 
1767 	for (rf_path = 0; rf_path < 2; rf_path++)
1768 		for (i = 0; i < 3; i++)
1769 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1770 				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1771 				rf_path, i,
1772 				rtlefuse->eeprom_chnlarea_txpwr_cck
1773 				[rf_path][i]);
1774 	for (rf_path = 0; rf_path < 2; rf_path++)
1775 		for (i = 0; i < 3; i++)
1776 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1777 				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1778 				rf_path, i,
1779 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1780 				[rf_path][i]);
1781 	for (rf_path = 0; rf_path < 2; rf_path++)
1782 		for (i = 0; i < 3; i++)
1783 			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1784 				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1785 				rf_path, i,
1786 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1787 				[rf_path][i]);
1788 
1789 	for (rf_path = 0; rf_path < 2; rf_path++) {
1790 
1791 		/* Assign dedicated channel tx power */
1792 		for (i = 0; i < 14; i++)	{
1793 			/* channel 1~3 use the same Tx Power Level. */
1794 			if (i < 3)
1795 				index = 0;
1796 			/* Channel 4-8 */
1797 			else if (i < 8)
1798 				index = 1;
1799 			/* Channel 9-14 */
1800 			else
1801 				index = 2;
1802 
1803 			/* Record A & B CCK /OFDM - 1T/2T Channel area
1804 			 * tx power */
1805 			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1806 				rtlefuse->eeprom_chnlarea_txpwr_cck
1807 							[rf_path][index];
1808 			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1809 				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1810 							[rf_path][index];
1811 			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1812 				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1813 							[rf_path][index];
1814 		}
1815 
1816 		for (i = 0; i < 14; i++) {
1817 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1818 				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1819 				rf_path, i,
1820 				rtlefuse->txpwrlevel_cck[rf_path][i],
1821 				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1822 				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1823 		}
1824 	}
1825 
1826 	for (rf_path = 0; rf_path < 2; rf_path++) {
1827 		for (i = 0; i < 3; i++) {
1828 			/* Read Power diff limit. */
1829 			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1830 				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1831 		}
1832 	}
1833 
1834 	for (rf_path = 0; rf_path < 2; rf_path++) {
1835 		/* Fill Pwr group */
1836 		for (i = 0; i < 14; i++) {
1837 			/* Chanel 1-3 */
1838 			if (i < 3)
1839 				index = 0;
1840 			/* Channel 4-8 */
1841 			else if (i < 8)
1842 				index = 1;
1843 			/* Channel 9-13 */
1844 			else
1845 				index = 2;
1846 
1847 			rtlefuse->pwrgroup_ht20[rf_path][i] =
1848 				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1849 				0xf);
1850 			rtlefuse->pwrgroup_ht40[rf_path][i] =
1851 				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1852 				0xf0) >> 4);
1853 
1854 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1855 				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1856 				rf_path, i,
1857 				rtlefuse->pwrgroup_ht20[rf_path][i]);
1858 			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1859 				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1860 				rf_path, i,
1861 				rtlefuse->pwrgroup_ht40[rf_path][i]);
1862 			}
1863 	}
1864 
1865 	for (i = 0; i < 14; i++) {
1866 		/* Read tx power difference between HT OFDM 20/40 MHZ */
1867 		/* channel 1-3 */
1868 		if (i < 3)
1869 			index = 0;
1870 		/* Channel 4-8 */
1871 		else if (i < 8)
1872 			index = 1;
1873 		/* Channel 9-14 */
1874 		else
1875 			index = 2;
1876 
1877 		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1878 		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1879 		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1880 						 ((tempval >> 4) & 0xF);
1881 
1882 		/* Read OFDM<->HT tx power diff */
1883 		/* Channel 1-3 */
1884 		if (i < 3)
1885 			index = 0;
1886 		/* Channel 4-8 */
1887 		else if (i < 8)
1888 			index = 0x11;
1889 		/* Channel 9-14 */
1890 		else
1891 			index = 1;
1892 
1893 		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1894 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1895 				 (tempval & 0xF);
1896 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1897 				 ((tempval >> 4) & 0xF);
1898 
1899 		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1900 		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1901 	}
1902 
1903 	rtlefuse->eeprom_regulatory = 0;
1904 	if (rtlefuse->eeprom_version >= 2) {
1905 		/* BIT(0)~2 */
1906 		if (rtlefuse->eeprom_version >= 4)
1907 			rtlefuse->eeprom_regulatory =
1908 				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1909 		else /* BIT(0) */
1910 			rtlefuse->eeprom_regulatory =
1911 				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1912 	}
1913 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1914 		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1915 
1916 	for (i = 0; i < 14; i++)
1917 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1918 			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1919 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1920 	for (i = 0; i < 14; i++)
1921 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1922 			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1923 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1924 	for (i = 0; i < 14; i++)
1925 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1926 			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1927 			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1928 	for (i = 0; i < 14; i++)
1929 		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1930 			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1931 			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1932 
1933 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1934 		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1935 
1936 	/* Read RF-indication and Tx Power gain
1937 	 * index diff of legacy to HT OFDM rate. */
1938 	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1939 	rtlefuse->eeprom_txpowerdiff = tempval;
1940 	rtlefuse->legacy_httxpowerdiff =
1941 		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1942 
1943 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1944 		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1945 
1946 	/* Get TSSI value for each path. */
1947 	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1948 	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1949 	usvalue = hwinfo[EEPROM_TSSI_B];
1950 	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1951 
1952 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1953 		rtlefuse->eeprom_tssi[RF90_PATH_A],
1954 		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1955 
1956 	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1957 	/* and read ThermalMeter from EEPROM */
1958 	tempval = hwinfo[EEPROM_THERMALMETER];
1959 	rtlefuse->eeprom_thermalmeter = tempval;
1960 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1961 		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1962 
1963 	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1964 	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1965 	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1966 
1967 	/* Read CrystalCap from EEPROM */
1968 	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1969 	rtlefuse->eeprom_crystalcap = tempval;
1970 	/* CrystalCap, BIT(12)~15 */
1971 	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1972 
1973 	/* Read IC Version && Channel Plan */
1974 	/* Version ID, Channel plan */
1975 	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1976 	rtlefuse->txpwr_fromeprom = true;
1977 	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1978 		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1979 
1980 	/* Read Customer ID or Board Type!!! */
1981 	tempval = hwinfo[EEPROM_BOARDTYPE];
1982 	/* Change RF type definition */
1983 	if (tempval == 0)
1984 		rtlphy->rf_type = RF_2T2R;
1985 	else if (tempval == 1)
1986 		rtlphy->rf_type = RF_1T2R;
1987 	else if (tempval == 2)
1988 		rtlphy->rf_type = RF_1T2R;
1989 	else if (tempval == 3)
1990 		rtlphy->rf_type = RF_1T1R;
1991 
1992 	/* 1T2R but 1SS (1x1 receive combining) */
1993 	rtlefuse->b1x1_recvcombine = false;
1994 	if (rtlphy->rf_type == RF_1T2R) {
1995 		tempval = rtl_read_byte(rtlpriv, 0x07);
1996 		if (!(tempval & BIT(0))) {
1997 			rtlefuse->b1x1_recvcombine = true;
1998 			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1999 				 "RF_TYPE=1T2R but only 1SS\n");
2000 		}
2001 	}
2002 	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
2003 	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
2004 
2005 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n",
2006 		 rtlefuse->eeprom_oemid);
2007 
2008 	/* set channel paln to world wide 13 */
2009 	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2010 }
2011 
2012 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2013 {
2014 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2015 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2016 	u8 tmp_u1b = 0;
2017 
2018 	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2019 
2020 	if (tmp_u1b & BIT(4)) {
2021 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2022 		rtlefuse->epromtype = EEPROM_93C46;
2023 	} else {
2024 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2025 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2026 	}
2027 
2028 	if (tmp_u1b & BIT(5)) {
2029 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2030 		rtlefuse->autoload_failflag = false;
2031 		_rtl92se_read_adapter_info(hw);
2032 	} else {
2033 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
2034 		rtlefuse->autoload_failflag = true;
2035 	}
2036 }
2037 
2038 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2039 					  struct ieee80211_sta *sta)
2040 {
2041 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2042 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2043 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2044 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2045 	u32 ratr_value;
2046 	u8 ratr_index = 0;
2047 	u8 nmode = mac->ht_enable;
2048 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2049 	u16 shortgi_rate = 0;
2050 	u32 tmp_ratr_value = 0;
2051 	u8 curtxbw_40mhz = mac->bw_40;
2052 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2053 				1 : 0;
2054 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2055 				1 : 0;
2056 	enum wireless_mode wirelessmode = mac->mode;
2057 
2058 	if (rtlhal->current_bandtype == BAND_ON_5G)
2059 		ratr_value = sta->supp_rates[1] << 4;
2060 	else
2061 		ratr_value = sta->supp_rates[0];
2062 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2063 		ratr_value = 0xfff;
2064 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2065 			sta->ht_cap.mcs.rx_mask[0] << 12);
2066 	switch (wirelessmode) {
2067 	case WIRELESS_MODE_B:
2068 		ratr_value &= 0x0000000D;
2069 		break;
2070 	case WIRELESS_MODE_G:
2071 		ratr_value &= 0x00000FF5;
2072 		break;
2073 	case WIRELESS_MODE_N_24G:
2074 	case WIRELESS_MODE_N_5G:
2075 		nmode = 1;
2076 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2077 			ratr_value &= 0x0007F005;
2078 		} else {
2079 			u32 ratr_mask;
2080 
2081 			if (get_rf_type(rtlphy) == RF_1T2R ||
2082 			    get_rf_type(rtlphy) == RF_1T1R) {
2083 				if (curtxbw_40mhz)
2084 					ratr_mask = 0x000ff015;
2085 				else
2086 					ratr_mask = 0x000ff005;
2087 			} else {
2088 				if (curtxbw_40mhz)
2089 					ratr_mask = 0x0f0ff015;
2090 				else
2091 					ratr_mask = 0x0f0ff005;
2092 			}
2093 
2094 			ratr_value &= ratr_mask;
2095 		}
2096 		break;
2097 	default:
2098 		if (rtlphy->rf_type == RF_1T2R)
2099 			ratr_value &= 0x000ff0ff;
2100 		else
2101 			ratr_value &= 0x0f0ff0ff;
2102 
2103 		break;
2104 	}
2105 
2106 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2107 		ratr_value &= 0x0FFFFFFF;
2108 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2109 		ratr_value &= 0x0FFFFFF0;
2110 
2111 	if (nmode && ((curtxbw_40mhz &&
2112 			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2113 						 curshortgi_20mhz))) {
2114 
2115 		ratr_value |= 0x10000000;
2116 		tmp_ratr_value = (ratr_value >> 12);
2117 
2118 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2119 			if ((1 << shortgi_rate) & tmp_ratr_value)
2120 				break;
2121 		}
2122 
2123 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2124 		    (shortgi_rate << 4) | (shortgi_rate);
2125 
2126 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2127 	}
2128 
2129 	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2130 	if (ratr_value & 0xfffff000)
2131 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2132 	else
2133 		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2134 
2135 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2136 		 rtl_read_dword(rtlpriv, ARFR0));
2137 }
2138 
2139 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2140 					 struct ieee80211_sta *sta,
2141 					 u8 rssi_level)
2142 {
2143 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2144 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2145 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2146 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2147 	struct rtl_sta_info *sta_entry = NULL;
2148 	u32 ratr_bitmap;
2149 	u8 ratr_index = 0;
2150 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2151 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2152 				1 : 0;
2153 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2154 				1 : 0;
2155 	enum wireless_mode wirelessmode = 0;
2156 	bool shortgi = false;
2157 	u32 ratr_value = 0;
2158 	u8 shortgi_rate = 0;
2159 	u32 mask = 0;
2160 	u32 band = 0;
2161 	bool bmulticast = false;
2162 	u8 macid = 0;
2163 	u8 mimo_ps = IEEE80211_SMPS_OFF;
2164 
2165 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2166 	wirelessmode = sta_entry->wireless_mode;
2167 	if (mac->opmode == NL80211_IFTYPE_STATION)
2168 		curtxbw_40mhz = mac->bw_40;
2169 	else if (mac->opmode == NL80211_IFTYPE_AP ||
2170 		mac->opmode == NL80211_IFTYPE_ADHOC)
2171 		macid = sta->aid + 1;
2172 
2173 	if (rtlhal->current_bandtype == BAND_ON_5G)
2174 		ratr_bitmap = sta->supp_rates[1] << 4;
2175 	else
2176 		ratr_bitmap = sta->supp_rates[0];
2177 	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2178 		ratr_bitmap = 0xfff;
2179 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2180 			sta->ht_cap.mcs.rx_mask[0] << 12);
2181 	switch (wirelessmode) {
2182 	case WIRELESS_MODE_B:
2183 		band |= WIRELESS_11B;
2184 		ratr_index = RATR_INX_WIRELESS_B;
2185 		if (ratr_bitmap & 0x0000000c)
2186 			ratr_bitmap &= 0x0000000d;
2187 		else
2188 			ratr_bitmap &= 0x0000000f;
2189 		break;
2190 	case WIRELESS_MODE_G:
2191 		band |= (WIRELESS_11G | WIRELESS_11B);
2192 		ratr_index = RATR_INX_WIRELESS_GB;
2193 
2194 		if (rssi_level == 1)
2195 			ratr_bitmap &= 0x00000f00;
2196 		else if (rssi_level == 2)
2197 			ratr_bitmap &= 0x00000ff0;
2198 		else
2199 			ratr_bitmap &= 0x00000ff5;
2200 		break;
2201 	case WIRELESS_MODE_A:
2202 		band |= WIRELESS_11A;
2203 		ratr_index = RATR_INX_WIRELESS_A;
2204 		ratr_bitmap &= 0x00000ff0;
2205 		break;
2206 	case WIRELESS_MODE_N_24G:
2207 	case WIRELESS_MODE_N_5G:
2208 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2209 		ratr_index = RATR_INX_WIRELESS_NGB;
2210 
2211 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2212 			if (rssi_level == 1)
2213 				ratr_bitmap &= 0x00070000;
2214 			else if (rssi_level == 2)
2215 				ratr_bitmap &= 0x0007f000;
2216 			else
2217 				ratr_bitmap &= 0x0007f005;
2218 		} else {
2219 			if (rtlphy->rf_type == RF_1T2R ||
2220 				rtlphy->rf_type == RF_1T1R) {
2221 				if (rssi_level == 1) {
2222 						ratr_bitmap &= 0x000f0000;
2223 				} else if (rssi_level == 3) {
2224 					ratr_bitmap &= 0x000fc000;
2225 				} else if (rssi_level == 5) {
2226 						ratr_bitmap &= 0x000ff000;
2227 				} else {
2228 					if (curtxbw_40mhz)
2229 						ratr_bitmap &= 0x000ff015;
2230 					else
2231 						ratr_bitmap &= 0x000ff005;
2232 				}
2233 			} else {
2234 				if (rssi_level == 1) {
2235 					ratr_bitmap &= 0x0f8f0000;
2236 				} else if (rssi_level == 3) {
2237 					ratr_bitmap &= 0x0f8fc000;
2238 				} else if (rssi_level == 5) {
2239 					ratr_bitmap &= 0x0f8ff000;
2240 				} else {
2241 					if (curtxbw_40mhz)
2242 						ratr_bitmap &= 0x0f8ff015;
2243 					else
2244 						ratr_bitmap &= 0x0f8ff005;
2245 				}
2246 			}
2247 		}
2248 
2249 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2250 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2251 			if (macid == 0)
2252 				shortgi = true;
2253 			else if (macid == 1)
2254 				shortgi = false;
2255 		}
2256 		break;
2257 	default:
2258 		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2259 		ratr_index = RATR_INX_WIRELESS_NGB;
2260 
2261 		if (rtlphy->rf_type == RF_1T2R)
2262 			ratr_bitmap &= 0x000ff0ff;
2263 		else
2264 			ratr_bitmap &= 0x0f8ff0ff;
2265 		break;
2266 	}
2267 	sta_entry->ratr_index = ratr_index;
2268 
2269 	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2270 		ratr_bitmap &= 0x0FFFFFFF;
2271 	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2272 		ratr_bitmap &= 0x0FFFFFF0;
2273 
2274 	if (shortgi) {
2275 		ratr_bitmap |= 0x10000000;
2276 		/* Get MAX MCS available. */
2277 		ratr_value = (ratr_bitmap >> 12);
2278 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2279 			if ((1 << shortgi_rate) & ratr_value)
2280 				break;
2281 		}
2282 
2283 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2284 			(shortgi_rate << 4) | (shortgi_rate);
2285 		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2286 	}
2287 
2288 	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2289 
2290 	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2291 		 mask, ratr_bitmap);
2292 	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2293 	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2294 
2295 	if (macid != 0)
2296 		sta_entry->ratr_index = ratr_index;
2297 }
2298 
2299 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2300 		struct ieee80211_sta *sta, u8 rssi_level)
2301 {
2302 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2303 
2304 	if (rtlpriv->dm.useramask)
2305 		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2306 	else
2307 		rtl92se_update_hal_rate_table(hw, sta);
2308 }
2309 
2310 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2311 {
2312 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2313 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2314 	u16 sifs_timer;
2315 
2316 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2317 				      &mac->slot_time);
2318 	sifs_timer = 0x0e0e;
2319 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2320 
2321 }
2322 
2323 /* this ifunction is for RFKILL, it's different with windows,
2324  * because UI will disable wireless when GPIO Radio Off.
2325  * And here we not check or Disable/Enable ASPM like windows*/
2326 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2327 {
2328 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2329 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2330 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2331 	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2332 	unsigned long flag = 0;
2333 	bool actuallyset = false;
2334 	bool turnonbypowerdomain = false;
2335 
2336 	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2337 	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2338 		return false;
2339 
2340 	if (ppsc->swrf_processing)
2341 		return false;
2342 
2343 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2344 	if (ppsc->rfchange_inprogress) {
2345 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2346 		return false;
2347 	} else {
2348 		ppsc->rfchange_inprogress = true;
2349 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2350 	}
2351 
2352 	/* cur_rfstate = ppsc->rfpwr_state;*/
2353 
2354 	/* because after _rtl92s_phy_set_rfhalt, all power
2355 	 * closed, so we must open some power for GPIO check,
2356 	 * or we will always check GPIO RFOFF here,
2357 	 * And we should close power after GPIO check */
2358 	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2359 		_rtl92se_power_domain_init(hw);
2360 		turnonbypowerdomain = true;
2361 	}
2362 
2363 	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2364 
2365 	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2366 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2367 			 "RFKILL-HW Radio ON, RF ON\n");
2368 
2369 		rfpwr_toset = ERFON;
2370 		ppsc->hwradiooff = false;
2371 		actuallyset = true;
2372 	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2373 		RT_TRACE(rtlpriv, COMP_RF,
2374 			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2375 
2376 		rfpwr_toset = ERFOFF;
2377 		ppsc->hwradiooff = true;
2378 		actuallyset = true;
2379 	}
2380 
2381 	if (actuallyset) {
2382 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2383 		ppsc->rfchange_inprogress = false;
2384 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2385 
2386 	/* this not include ifconfig wlan0 down case */
2387 	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2388 	} else {
2389 		/* because power_domain_init may be happen when
2390 		 * _rtl92s_phy_set_rfhalt, this will open some powers
2391 		 * and cause current increasing about 40 mA for ips,
2392 		 * rfoff and ifconfig down, so we set
2393 		 * _rtl92s_phy_set_rfhalt again here */
2394 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2395 			turnonbypowerdomain) {
2396 			_rtl92s_phy_set_rfhalt(hw);
2397 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2398 		}
2399 
2400 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2401 		ppsc->rfchange_inprogress = false;
2402 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2403 	}
2404 
2405 	*valid = 1;
2406 	return !ppsc->hwradiooff;
2407 
2408 }
2409 
2410 /* Is_wepkey just used for WEP used as group & pairwise key
2411  * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2412 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2413 	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2414 {
2415 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2416 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2417 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2418 	u8 *macaddr = p_macaddr;
2419 
2420 	u32 entry_id = 0;
2421 	bool is_pairwise = false;
2422 
2423 	static u8 cam_const_addr[4][6] = {
2424 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2425 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2426 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2427 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2428 	};
2429 	static u8 cam_const_broad[] = {
2430 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2431 	};
2432 
2433 	if (clear_all) {
2434 		u8 idx = 0;
2435 		u8 cam_offset = 0;
2436 		u8 clear_number = 5;
2437 
2438 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2439 
2440 		for (idx = 0; idx < clear_number; idx++) {
2441 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2442 			rtl_cam_empty_entry(hw, cam_offset + idx);
2443 
2444 			if (idx < 5) {
2445 				memset(rtlpriv->sec.key_buf[idx], 0,
2446 				       MAX_KEY_LEN);
2447 				rtlpriv->sec.key_len[idx] = 0;
2448 			}
2449 		}
2450 
2451 	} else {
2452 		switch (enc_algo) {
2453 		case WEP40_ENCRYPTION:
2454 			enc_algo = CAM_WEP40;
2455 			break;
2456 		case WEP104_ENCRYPTION:
2457 			enc_algo = CAM_WEP104;
2458 			break;
2459 		case TKIP_ENCRYPTION:
2460 			enc_algo = CAM_TKIP;
2461 			break;
2462 		case AESCCMP_ENCRYPTION:
2463 			enc_algo = CAM_AES;
2464 			break;
2465 		default:
2466 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2467 				 "switch case %#x not processed\n", enc_algo);
2468 			enc_algo = CAM_TKIP;
2469 			break;
2470 		}
2471 
2472 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2473 			macaddr = cam_const_addr[key_index];
2474 			entry_id = key_index;
2475 		} else {
2476 			if (is_group) {
2477 				macaddr = cam_const_broad;
2478 				entry_id = key_index;
2479 			} else {
2480 				if (mac->opmode == NL80211_IFTYPE_AP) {
2481 					entry_id = rtl_cam_get_free_entry(hw,
2482 								 p_macaddr);
2483 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2484 						RT_TRACE(rtlpriv,
2485 							 COMP_SEC, DBG_EMERG,
2486 							 "Can not find free hw security cam entry\n");
2487 						return;
2488 					}
2489 				} else {
2490 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2491 				}
2492 
2493 				key_index = PAIRWISE_KEYIDX;
2494 				is_pairwise = true;
2495 			}
2496 		}
2497 
2498 		if (rtlpriv->sec.key_len[key_index] == 0) {
2499 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2500 				 "delete one entry, entry_id is %d\n",
2501 				 entry_id);
2502 			if (mac->opmode == NL80211_IFTYPE_AP)
2503 				rtl_cam_del_entry(hw, p_macaddr);
2504 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2505 		} else {
2506 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2507 				 "add one entry\n");
2508 			if (is_pairwise) {
2509 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2510 					 "set Pairwise key\n");
2511 
2512 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2513 					entry_id, enc_algo,
2514 					CAM_CONFIG_NO_USEDK,
2515 					rtlpriv->sec.key_buf[key_index]);
2516 			} else {
2517 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2518 					 "set group key\n");
2519 
2520 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2521 					rtl_cam_add_one_entry(hw,
2522 						rtlefuse->dev_addr,
2523 						PAIRWISE_KEYIDX,
2524 						CAM_PAIRWISE_KEY_POSITION,
2525 						enc_algo, CAM_CONFIG_NO_USEDK,
2526 						rtlpriv->sec.key_buf[entry_id]);
2527 				}
2528 
2529 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2530 					      entry_id, enc_algo,
2531 					      CAM_CONFIG_NO_USEDK,
2532 					      rtlpriv->sec.key_buf[entry_id]);
2533 			}
2534 
2535 		}
2536 	}
2537 }
2538 
2539 void rtl92se_suspend(struct ieee80211_hw *hw)
2540 {
2541 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2542 
2543 	rtlpci->up_first_time = true;
2544 }
2545 
2546 void rtl92se_resume(struct ieee80211_hw *hw)
2547 {
2548 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2549 	u32 val;
2550 
2551 	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2552 	if ((val & 0x0000ff00) != 0)
2553 		pci_write_config_dword(rtlpci->pdev, 0x40,
2554 			val & 0xffff00ff);
2555 }
2556