1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29 
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "sw.h"
44 #include "hw.h"
45 
46 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
47 {
48 	struct rtl_priv *rtlpriv = rtl_priv(hw);
49 	u32 value;
50 
51 	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
52 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
53 	udelay(10);
54 	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
55 	return value;
56 }
57 
58 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
59 			     u16 offset, u32 value, u8 direct)
60 {
61 	struct rtl_priv *rtlpriv = rtl_priv(hw);
62 
63 	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
64 	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
65 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
66 }
67 
68 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
69 				      u8 set_bits, u8 clear_bits)
70 {
71 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
72 	struct rtl_priv *rtlpriv = rtl_priv(hw);
73 
74 	rtlpci->reg_bcn_ctrl_val |= set_bits;
75 	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
76 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
77 }
78 
79 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
80 {
81 	struct rtl_priv *rtlpriv = rtl_priv(hw);
82 	u8 tmp1byte;
83 
84 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
85 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
86 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
87 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
88 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
89 	tmp1byte &= ~(BIT(0));
90 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
91 }
92 
93 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
94 {
95 	struct rtl_priv *rtlpriv = rtl_priv(hw);
96 	u8 tmp1byte;
97 
98 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
99 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
100 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
101 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
102 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
103 	tmp1byte |= BIT(0);
104 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
105 }
106 
107 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
108 {
109 	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
110 }
111 
112 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
113 {
114 	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
115 }
116 
117 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
118 {
119 	struct rtl_priv *rtlpriv = rtl_priv(hw);
120 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
121 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
122 
123 	switch (variable) {
124 	case HW_VAR_RCR:
125 		*((u32 *) (val)) = rtlpci->receive_config;
126 		break;
127 	case HW_VAR_RF_STATE:
128 		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
129 		break;
130 	case HW_VAR_FWLPS_RF_ON:{
131 		enum rf_pwrstate rfState;
132 		u32 val_rcr;
133 
134 		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
135 					      (u8 *) (&rfState));
136 		if (rfState == ERFOFF) {
137 			*((bool *) (val)) = true;
138 		} else {
139 			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
140 			val_rcr &= 0x00070000;
141 			if (val_rcr)
142 				*((bool *) (val)) = false;
143 			else
144 				*((bool *) (val)) = true;
145 		}
146 		break;
147 	}
148 	case HW_VAR_FW_PSMODE_STATUS:
149 		*((bool *) (val)) = ppsc->fw_current_inpsmode;
150 		break;
151 	case HW_VAR_CORRECT_TSF:{
152 		u64 tsf;
153 		u32 *ptsf_low = (u32 *)&tsf;
154 		u32 *ptsf_high = ((u32 *)&tsf) + 1;
155 
156 		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
157 		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
158 		*((u64 *) (val)) = tsf;
159 		break;
160 	}
161 	case HW_VAR_INT_MIGRATION:
162 		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
163 		break;
164 	case HW_VAR_INT_AC:
165 		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
166 		break;
167 	case HAL_DEF_WOWLAN:
168 		break;
169 	default:
170 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
171 			 "switch case %#x not processed\n", variable);
172 		break;
173 	}
174 }
175 
176 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
177 {
178 	struct rtl_priv *rtlpriv = rtl_priv(hw);
179 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
180 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
181 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
182 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
183 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
184 	u8 idx;
185 
186 	switch (variable) {
187 	case HW_VAR_ETHER_ADDR:
188 		for (idx = 0; idx < ETH_ALEN; idx++) {
189 			rtl_write_byte(rtlpriv, (REG_MACID + idx),
190 				       val[idx]);
191 		}
192 		break;
193 	case HW_VAR_BASIC_RATE: {
194 		u16 rate_cfg = ((u16 *) val)[0];
195 		u8 rate_index = 0;
196 
197 		rate_cfg = rate_cfg & 0x15f;
198 		if (mac->vendor == PEER_CISCO &&
199 		    ((rate_cfg & 0x150) == 0))
200 			rate_cfg |= 0x01;
201 		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
202 		rtl_write_byte(rtlpriv, REG_RRSR + 1,
203 			       (rate_cfg >> 8) & 0xff);
204 		while (rate_cfg > 0x1) {
205 			rate_cfg = (rate_cfg >> 1);
206 			rate_index++;
207 		}
208 		if (rtlhal->fw_version > 0xe)
209 			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
210 				       rate_index);
211 		break;
212 	}
213 	case HW_VAR_BSSID:
214 		for (idx = 0; idx < ETH_ALEN; idx++) {
215 			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
216 				       val[idx]);
217 		}
218 		break;
219 	case HW_VAR_SIFS:
220 		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
221 		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
222 		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
223 		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
224 		if (!mac->ht_enable)
225 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
226 				       0x0e0e);
227 		else
228 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
229 				       *((u16 *) val));
230 		break;
231 	case HW_VAR_SLOT_TIME: {
232 		u8 e_aci;
233 
234 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
235 			 "HW_VAR_SLOT_TIME %x\n", val[0]);
236 		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
237 		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
238 			rtlpriv->cfg->ops->set_hw_reg(hw,
239 						      HW_VAR_AC_PARAM,
240 						      (&e_aci));
241 		break;
242 	}
243 	case HW_VAR_ACK_PREAMBLE: {
244 		u8 reg_tmp;
245 		u8 short_preamble = (bool) (*val);
246 
247 		reg_tmp = (mac->cur_40_prime_sc) << 5;
248 		if (short_preamble)
249 			reg_tmp |= 0x80;
250 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
251 		break;
252 	}
253 	case HW_VAR_AMPDU_MIN_SPACE: {
254 		u8 min_spacing_to_set;
255 		u8 sec_min_space;
256 
257 		min_spacing_to_set = *val;
258 		if (min_spacing_to_set <= 7) {
259 			sec_min_space = 0;
260 			if (min_spacing_to_set < sec_min_space)
261 				min_spacing_to_set = sec_min_space;
262 			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
263 					      min_spacing_to_set);
264 			*val = min_spacing_to_set;
265 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
266 				 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
267 				 mac->min_space_cfg);
268 			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
269 				       mac->min_space_cfg);
270 		}
271 		break;
272 	}
273 	case HW_VAR_SHORTGI_DENSITY: {
274 		u8 density_to_set;
275 
276 		density_to_set = *val;
277 		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
278 		mac->min_space_cfg |= (density_to_set << 3);
279 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
280 			 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
281 			 mac->min_space_cfg);
282 		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
283 			       mac->min_space_cfg);
284 		break;
285 	}
286 	case HW_VAR_AMPDU_FACTOR: {
287 		u8 factor_toset;
288 		u32 regtoSet;
289 		u8 *ptmp_byte = NULL;
290 		u8 index;
291 
292 		if (rtlhal->macphymode == DUALMAC_DUALPHY)
293 			regtoSet = 0xb9726641;
294 		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
295 			regtoSet = 0x66626641;
296 		else
297 			regtoSet = 0xb972a841;
298 		factor_toset = *val;
299 		if (factor_toset <= 3) {
300 			factor_toset = (1 << (factor_toset + 2));
301 			if (factor_toset > 0xf)
302 				factor_toset = 0xf;
303 			for (index = 0; index < 4; index++) {
304 				ptmp_byte = (u8 *) (&regtoSet) + index;
305 				if ((*ptmp_byte & 0xf0) >
306 				    (factor_toset << 4))
307 					*ptmp_byte = (*ptmp_byte & 0x0f)
308 						 | (factor_toset << 4);
309 				if ((*ptmp_byte & 0x0f) > factor_toset)
310 					*ptmp_byte = (*ptmp_byte & 0xf0)
311 						     | (factor_toset);
312 			}
313 			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
314 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
315 				 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
316 				 factor_toset);
317 		}
318 		break;
319 	}
320 	case HW_VAR_AC_PARAM: {
321 		u8 e_aci = *val;
322 		rtl92d_dm_init_edca_turbo(hw);
323 		if (rtlpci->acm_method != EACMWAY2_SW)
324 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
325 						      &e_aci);
326 		break;
327 	}
328 	case HW_VAR_ACM_CTRL: {
329 		u8 e_aci = *val;
330 		union aci_aifsn *p_aci_aifsn =
331 		    (union aci_aifsn *)(&(mac->ac[0].aifs));
332 		u8 acm = p_aci_aifsn->f.acm;
333 		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
334 
335 		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
336 		if (acm) {
337 			switch (e_aci) {
338 			case AC0_BE:
339 				acm_ctrl |= ACMHW_BEQEN;
340 				break;
341 			case AC2_VI:
342 				acm_ctrl |= ACMHW_VIQEN;
343 				break;
344 			case AC3_VO:
345 				acm_ctrl |= ACMHW_VOQEN;
346 				break;
347 			default:
348 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
349 					 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
350 					 acm);
351 				break;
352 			}
353 		} else {
354 			switch (e_aci) {
355 			case AC0_BE:
356 				acm_ctrl &= (~ACMHW_BEQEN);
357 				break;
358 			case AC2_VI:
359 				acm_ctrl &= (~ACMHW_VIQEN);
360 				break;
361 			case AC3_VO:
362 				acm_ctrl &= (~ACMHW_VOQEN);
363 				break;
364 			default:
365 				RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
366 					 "switch case %#x not processed\n",
367 					 e_aci);
368 				break;
369 			}
370 		}
371 		RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
372 			 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
373 			 acm_ctrl);
374 		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
375 		break;
376 	}
377 	case HW_VAR_RCR:
378 		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
379 		rtlpci->receive_config = ((u32 *) (val))[0];
380 		break;
381 	case HW_VAR_RETRY_LIMIT: {
382 		u8 retry_limit = val[0];
383 
384 		rtl_write_word(rtlpriv, REG_RL,
385 			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
386 			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
387 		break;
388 	}
389 	case HW_VAR_DUAL_TSF_RST:
390 		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
391 		break;
392 	case HW_VAR_EFUSE_BYTES:
393 		rtlefuse->efuse_usedbytes = *((u16 *) val);
394 		break;
395 	case HW_VAR_EFUSE_USAGE:
396 		rtlefuse->efuse_usedpercentage = *val;
397 		break;
398 	case HW_VAR_IO_CMD:
399 		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
400 		break;
401 	case HW_VAR_WPA_CONFIG:
402 		rtl_write_byte(rtlpriv, REG_SECCFG, *val);
403 		break;
404 	case HW_VAR_SET_RPWM:
405 		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
406 		break;
407 	case HW_VAR_H2C_FW_PWRMODE:
408 		break;
409 	case HW_VAR_FW_PSMODE_STATUS:
410 		ppsc->fw_current_inpsmode = *((bool *) val);
411 		break;
412 	case HW_VAR_H2C_FW_JOINBSSRPT: {
413 		u8 mstatus = (*val);
414 		u8 tmp_regcr, tmp_reg422;
415 		bool recover = false;
416 
417 		if (mstatus == RT_MEDIA_CONNECT) {
418 			rtlpriv->cfg->ops->set_hw_reg(hw,
419 						      HW_VAR_AID, NULL);
420 			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
421 			rtl_write_byte(rtlpriv, REG_CR + 1,
422 				       (tmp_regcr | BIT(0)));
423 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
424 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
425 			tmp_reg422 = rtl_read_byte(rtlpriv,
426 						 REG_FWHW_TXQ_CTRL + 2);
427 			if (tmp_reg422 & BIT(6))
428 				recover = true;
429 			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
430 				       tmp_reg422 & (~BIT(6)));
431 			rtl92d_set_fw_rsvdpagepkt(hw, 0);
432 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
433 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
434 			if (recover)
435 				rtl_write_byte(rtlpriv,
436 					       REG_FWHW_TXQ_CTRL + 2,
437 					       tmp_reg422);
438 			rtl_write_byte(rtlpriv, REG_CR + 1,
439 				       (tmp_regcr & ~(BIT(0))));
440 		}
441 		rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
442 		break;
443 	}
444 	case HW_VAR_AID: {
445 		u16 u2btmp;
446 		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
447 		u2btmp &= 0xC000;
448 		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
449 			       mac->assoc_id));
450 		break;
451 	}
452 	case HW_VAR_CORRECT_TSF: {
453 		u8 btype_ibss = val[0];
454 
455 		if (btype_ibss)
456 			_rtl92de_stop_tx_beacon(hw);
457 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
458 		rtl_write_dword(rtlpriv, REG_TSFTR,
459 				(u32) (mac->tsf & 0xffffffff));
460 		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
461 				(u32) ((mac->tsf >> 32) & 0xffffffff));
462 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
463 		if (btype_ibss)
464 			_rtl92de_resume_tx_beacon(hw);
465 
466 		break;
467 	}
468 	case HW_VAR_INT_MIGRATION: {
469 		bool int_migration = *(bool *) (val);
470 
471 		if (int_migration) {
472 			/* Set interrupt migration timer and
473 			 * corresponding Tx/Rx counter.
474 			 * timer 25ns*0xfa0=100us for 0xf packets.
475 			 * 0x306:Rx, 0x307:Tx */
476 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
477 			rtlpriv->dm.interrupt_migration = int_migration;
478 		} else {
479 			/* Reset all interrupt migration settings. */
480 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
481 			rtlpriv->dm.interrupt_migration = int_migration;
482 		}
483 		break;
484 	}
485 	case HW_VAR_INT_AC: {
486 		bool disable_ac_int = *((bool *) val);
487 
488 		/* Disable four ACs interrupts. */
489 		if (disable_ac_int) {
490 			/* Disable VO, VI, BE and BK four AC interrupts
491 			 * to gain more efficient CPU utilization.
492 			 * When extremely highly Rx OK occurs,
493 			 * we will disable Tx interrupts.
494 			 */
495 			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
496 						 RT_AC_INT_MASKS);
497 			rtlpriv->dm.disable_tx_int = disable_ac_int;
498 		/* Enable four ACs interrupts. */
499 		} else {
500 			rtlpriv->cfg->ops->update_interrupt_mask(hw,
501 						 RT_AC_INT_MASKS, 0);
502 			rtlpriv->dm.disable_tx_int = disable_ac_int;
503 		}
504 		break;
505 	}
506 	default:
507 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
508 			 "switch case %#x not processed\n", variable);
509 		break;
510 	}
511 }
512 
513 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
514 {
515 	struct rtl_priv *rtlpriv = rtl_priv(hw);
516 	bool status = true;
517 	long count = 0;
518 	u32 value = _LLT_INIT_ADDR(address) |
519 	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
520 
521 	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
522 	do {
523 		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
524 		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
525 			break;
526 		if (count > POLLING_LLT_THRESHOLD) {
527 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
528 				 "Failed to polling write LLT done at address %d!\n",
529 				 address);
530 			status = false;
531 			break;
532 		}
533 	} while (++count);
534 	return status;
535 }
536 
537 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
538 {
539 	struct rtl_priv *rtlpriv = rtl_priv(hw);
540 	unsigned short i;
541 	u8 txpktbuf_bndy;
542 	u8 maxPage;
543 	bool status;
544 	u32 value32; /* High+low page number */
545 	u8 value8;	 /* normal page number */
546 
547 	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
548 		maxPage = 255;
549 		txpktbuf_bndy = 246;
550 		value8 = 0;
551 		value32 = 0x80bf0d29;
552 	} else {
553 		maxPage = 127;
554 		txpktbuf_bndy = 123;
555 		value8 = 0;
556 		value32 = 0x80750005;
557 	}
558 
559 	/* Set reserved page for each queue */
560 	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
561 	/* load RQPN */
562 	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
563 	rtl_write_dword(rtlpriv, REG_RQPN, value32);
564 
565 	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
566 	/* TXRKTBUG_PG_BNDY */
567 	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
568 			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
569 			txpktbuf_bndy));
570 
571 	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
572 	/* Beacon Head for TXDMA */
573 	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
574 
575 	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
576 	/* BCNQ_PGBNDY */
577 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
578 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
579 
580 	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
581 	/* WMAC_LBK_BF_HD */
582 	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
583 
584 	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
585 	/* Rx can be 64,128,256,512,1024 bytes) */
586 	/* 16.  PBP [7:0] = 0x11 */
587 	/* TRX page size */
588 	rtl_write_byte(rtlpriv, REG_PBP, 0x11);
589 
590 	/* 17.  DRV_INFO_SZ = 0x04 */
591 	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
592 
593 	/* 18.  LLT_table_init(Adapter);  */
594 	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
595 		status = _rtl92de_llt_write(hw, i, i + 1);
596 		if (true != status)
597 			return status;
598 	}
599 
600 	/* end of list */
601 	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
602 	if (true != status)
603 		return status;
604 
605 	/* Make the other pages as ring buffer */
606 	/* This ring buffer is used as beacon buffer if we */
607 	/* config this MAC as two MAC transfer. */
608 	/* Otherwise used as local loopback buffer.  */
609 	for (i = txpktbuf_bndy; i < maxPage; i++) {
610 		status = _rtl92de_llt_write(hw, i, (i + 1));
611 		if (true != status)
612 			return status;
613 	}
614 
615 	/* Let last entry point to the start entry of ring buffer */
616 	status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
617 	if (true != status)
618 		return status;
619 
620 	return true;
621 }
622 
623 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
624 {
625 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
626 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
627 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
628 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
629 
630 	if (rtlpci->up_first_time)
631 		return;
632 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
633 		rtl92de_sw_led_on(hw, pLed0);
634 	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
635 		rtl92de_sw_led_on(hw, pLed0);
636 	else
637 		rtl92de_sw_led_off(hw, pLed0);
638 }
639 
640 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
641 {
642 	struct rtl_priv *rtlpriv = rtl_priv(hw);
643 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
644 	unsigned char bytetmp;
645 	unsigned short wordtmp;
646 	u16 retry;
647 
648 	rtl92d_phy_set_poweron(hw);
649 	/* Add for resume sequence of power domain according
650 	 * to power document V11. Chapter V.11....  */
651 	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
652 	/* unlock ISO/CLK/Power control register */
653 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
654 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
655 
656 	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
657 	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
658 	/* 3.   delay (1ms) this is not necessary when initially power on */
659 
660 	/* C.   Resume Sequence */
661 	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
662 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
663 
664 	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
665 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
666 
667 	/* c.   DRV runs power on init flow */
668 
669 	/* auto enable WLAN */
670 	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
671 	/* Power On Reset for MAC Block */
672 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
673 	udelay(2);
674 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
675 	udelay(2);
676 
677 	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
678 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
679 	udelay(50);
680 	retry = 0;
681 	while ((bytetmp & BIT(0)) && retry < 1000) {
682 		retry++;
683 		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
684 		udelay(50);
685 	}
686 
687 	/* Enable Radio off, GPIO, and LED function */
688 	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
689 	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
690 
691 	/* release RF digital isolation  */
692 	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
693 	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
694 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
695 	udelay(2);
696 
697 	/* make sure that BB reset OK. */
698 	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
699 
700 	/* Disable REG_CR before enable it to assure reset */
701 	rtl_write_word(rtlpriv, REG_CR, 0x0);
702 
703 	/* Release MAC IO register reset */
704 	rtl_write_word(rtlpriv, REG_CR, 0x2ff);
705 
706 	/* clear stopping tx/rx dma   */
707 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
708 
709 	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
710 
711 	/* System init */
712 	/* 18.  LLT_table_init(Adapter);  */
713 	if (!_rtl92de_llt_table_init(hw))
714 		return false;
715 
716 	/* Clear interrupt and enable interrupt */
717 	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
718 	/*      HISRE 0x12C[7:0] = 0xFF */
719 	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
720 	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
721 
722 	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
723 	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
724 	/* The IMR should be enabled later after all init sequence
725 	 * is finished. */
726 
727 	/* 22.  PCIE configuration space configuration */
728 	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
729 	/*      and PCIe gated clock function is enabled.    */
730 	/* PCIE configuration space will be written after
731 	 * all init sequence.(Or by BIOS) */
732 
733 	rtl92d_phy_config_maccoexist_rfpage(hw);
734 
735 	/* THe below section is not related to power document Vxx . */
736 	/* This is only useful for driver and OS setting. */
737 	/* -------------------Software Relative Setting---------------------- */
738 	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
739 	wordtmp &= 0xf;
740 	wordtmp |= 0xF771;
741 	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
742 
743 	/* Reported Tx status from HW for rate adaptive. */
744 	/* This should be realtive to power on step 14. But in document V11  */
745 	/* still not contain the description.!!! */
746 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
747 
748 	/* Set Tx/Rx page size (Tx must be 128 Bytes,
749 	 * Rx can be 64,128,256,512,1024 bytes) */
750 	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
751 
752 	/* Set RCR register */
753 	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
754 	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
755 
756 	/*  Set TCR register */
757 	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
758 
759 	/* disable earlymode */
760 	rtl_write_byte(rtlpriv, 0x4d0, 0x0);
761 
762 	/* Set TX/RX descriptor physical address(from OS API). */
763 	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
764 			rtlpci->tx_ring[BEACON_QUEUE].dma);
765 	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
766 	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
767 	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
768 	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
769 	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
770 	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
771 	/* Set RX Desc Address */
772 	rtl_write_dword(rtlpriv, REG_RX_DESA,
773 			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
774 
775 	/* if we want to support 64 bit DMA, we should set it here,
776 	 * but now we do not support 64 bit DMA*/
777 
778 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
779 
780 	/* Reset interrupt migration setting when initialization */
781 	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
782 
783 	/* Reconsider when to do this operation after asking HWSD. */
784 	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
785 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
786 	do {
787 		retry++;
788 		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
789 	} while ((retry < 200) && !(bytetmp & BIT(7)));
790 
791 	/* After MACIO reset,we must refresh LED state. */
792 	_rtl92de_gen_refresh_led_state(hw);
793 
794 	/* Reset H2C protection register */
795 	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
796 
797 	return true;
798 }
799 
800 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
801 {
802 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
803 	struct rtl_priv *rtlpriv = rtl_priv(hw);
804 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
805 	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
806 	u32 reg_rrsr;
807 
808 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
809 	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
810 	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
811 	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
812 	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
813 	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
814 	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
815 	rtl_write_word(rtlpriv, REG_RL, 0x0707);
816 	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
817 	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
818 	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
819 	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
820 	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
821 	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
822 	/* Aggregation threshold */
823 	if (rtlhal->macphymode == DUALMAC_DUALPHY)
824 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
825 	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
826 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
827 	else
828 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
829 	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
830 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
831 	rtlpci->reg_bcn_ctrl_val = 0x1f;
832 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
833 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
834 	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
835 	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
836 	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
837 	/* For throughput */
838 	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
839 	/* ACKTO for IOT issue. */
840 	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
841 	/* Set Spec SIFS (used in NAV) */
842 	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
843 	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
844 	/* Set SIFS for CCK */
845 	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
846 	/* Set SIFS for OFDM */
847 	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
848 	/* Set Multicast Address. */
849 	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
850 	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
851 	switch (rtlpriv->phy.rf_type) {
852 	case RF_1T2R:
853 	case RF_1T1R:
854 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
855 		break;
856 	case RF_2T2R:
857 	case RF_2T2R_GREEN:
858 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
859 		break;
860 	}
861 }
862 
863 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
864 {
865 	struct rtl_priv *rtlpriv = rtl_priv(hw);
866 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
867 
868 	rtl_write_byte(rtlpriv, 0x34b, 0x93);
869 	rtl_write_word(rtlpriv, 0x350, 0x870c);
870 	rtl_write_byte(rtlpriv, 0x352, 0x1);
871 	if (ppsc->support_backdoor)
872 		rtl_write_byte(rtlpriv, 0x349, 0x1b);
873 	else
874 		rtl_write_byte(rtlpriv, 0x349, 0x03);
875 	rtl_write_word(rtlpriv, 0x350, 0x2718);
876 	rtl_write_byte(rtlpriv, 0x352, 0x1);
877 }
878 
879 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
880 {
881 	struct rtl_priv *rtlpriv = rtl_priv(hw);
882 	u8 sec_reg_value;
883 
884 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
885 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
886 		 rtlpriv->sec.pairwise_enc_algorithm,
887 		 rtlpriv->sec.group_enc_algorithm);
888 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
889 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
890 			 "not open hw encryption\n");
891 		return;
892 	}
893 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
894 	if (rtlpriv->sec.use_defaultkey) {
895 		sec_reg_value |= SCR_TXUSEDK;
896 		sec_reg_value |= SCR_RXUSEDK;
897 	}
898 	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
899 	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
900 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
901 		 "The SECR-value %x\n", sec_reg_value);
902 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
903 }
904 
905 int rtl92de_hw_init(struct ieee80211_hw *hw)
906 {
907 	struct rtl_priv *rtlpriv = rtl_priv(hw);
908 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
909 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
910 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
911 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
912 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
913 	bool rtstatus = true;
914 	u8 tmp_u1b;
915 	int i;
916 	int err;
917 	unsigned long flags;
918 
919 	rtlpci->being_init_adapter = true;
920 	rtlpci->init_ready = false;
921 	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
922 	/* we should do iqk after disable/enable */
923 	rtl92d_phy_reset_iqk_result(hw);
924 	/* rtlpriv->intf_ops->disable_aspm(hw); */
925 	rtstatus = _rtl92de_init_mac(hw);
926 	if (!rtstatus) {
927 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
928 		err = 1;
929 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
930 		return err;
931 	}
932 	err = rtl92d_download_fw(hw);
933 	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
934 	if (err) {
935 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
936 			 "Failed to download FW. Init HW without FW..\n");
937 		return 1;
938 	}
939 	rtlhal->last_hmeboxnum = 0;
940 	rtlpriv->psc.fw_current_inpsmode = false;
941 
942 	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
943 	tmp_u1b = tmp_u1b | 0x30;
944 	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
945 
946 	if (rtlhal->earlymode_enable) {
947 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
948 			 "EarlyMode Enabled!!!\n");
949 
950 		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
951 		tmp_u1b = tmp_u1b | 0x1f;
952 		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
953 
954 		rtl_write_byte(rtlpriv, 0x4d3, 0x80);
955 
956 		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
957 		tmp_u1b = tmp_u1b | 0x40;
958 		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
959 	}
960 
961 	if (mac->rdg_en) {
962 		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
963 		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
964 		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
965 	}
966 
967 	rtl92d_phy_mac_config(hw);
968 	/* because last function modify RCR, so we update
969 	 * rcr var here, or TP will unstable for receive_config
970 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
971 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
972 	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
973 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
974 
975 	rtl92d_phy_bb_config(hw);
976 
977 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
978 	/* set before initialize RF */
979 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
980 
981 	/* config RF */
982 	rtl92d_phy_rf_config(hw);
983 
984 	/* After read predefined TXT, we must set BB/MAC/RF
985 	 * register as our requirement */
986 	/* After load BB,RF params,we need do more for 92D. */
987 	rtl92d_update_bbrf_configuration(hw);
988 	/* set default value after initialize RF,  */
989 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
990 	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
991 			RF_CHNLBW, RFREG_OFFSET_MASK);
992 	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
993 			RF_CHNLBW, RFREG_OFFSET_MASK);
994 
995 	/*---- Set CCK and OFDM Block "ON"----*/
996 	if (rtlhal->current_bandtype == BAND_ON_2_4G)
997 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
998 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
999 	if (rtlhal->interfaceindex == 0) {
1000 		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
1001 		 *  set to 20MHz by default */
1002 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
1003 			      BIT(11), 3);
1004 	} else {
1005 		/* Mac1 */
1006 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
1007 			      BIT(10), 3);
1008 	}
1009 
1010 	_rtl92de_hw_configure(hw);
1011 
1012 	/* reset hw sec */
1013 	rtl_cam_reset_all_entry(hw);
1014 	rtl92de_enable_hw_security_config(hw);
1015 
1016 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1017 	/* TX power index for different rate set. */
1018 	rtl92d_phy_get_hw_reg_originalvalue(hw);
1019 	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
1020 
1021 	ppsc->rfpwr_state = ERFON;
1022 
1023 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
1024 
1025 	_rtl92de_enable_aspm_back_door(hw);
1026 	/* rtlpriv->intf_ops->enable_aspm(hw); */
1027 
1028 	rtl92d_dm_init(hw);
1029 	rtlpci->being_init_adapter = false;
1030 
1031 	if (ppsc->rfpwr_state == ERFON) {
1032 		rtl92d_phy_lc_calibrate(hw);
1033 		/* 5G and 2.4G must wait sometime to let RF LO ready */
1034 		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1035 			u32 tmp_rega;
1036 			for (i = 0; i < 10000; i++) {
1037 				udelay(MAX_STALL_TIME);
1038 
1039 				tmp_rega = rtl_get_rfreg(hw,
1040 						  (enum radio_path)RF90_PATH_A,
1041 						  0x2a, MASKDWORD);
1042 
1043 				if (((tmp_rega & BIT(11)) == BIT(11)))
1044 					break;
1045 			}
1046 			/* check that loop was successful. If not, exit now */
1047 			if (i == 10000) {
1048 				rtlpci->init_ready = false;
1049 				return 1;
1050 			}
1051 		}
1052 	}
1053 	rtlpci->init_ready = true;
1054 	return err;
1055 }
1056 
1057 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1058 {
1059 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1060 	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1061 	u32 value32;
1062 
1063 	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1064 	if (!(value32 & 0x000f0000)) {
1065 		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1066 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1067 	} else {
1068 		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1069 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1070 	}
1071 	return version;
1072 }
1073 
1074 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1075 				     enum nl80211_iftype type)
1076 {
1077 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1078 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1079 	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1080 	u8 bcnfunc_enable;
1081 
1082 	bt_msr &= 0xfc;
1083 
1084 	if (type == NL80211_IFTYPE_UNSPECIFIED ||
1085 	    type == NL80211_IFTYPE_STATION) {
1086 		_rtl92de_stop_tx_beacon(hw);
1087 		_rtl92de_enable_bcn_sub_func(hw);
1088 	} else if (type == NL80211_IFTYPE_ADHOC ||
1089 		type == NL80211_IFTYPE_AP) {
1090 		_rtl92de_resume_tx_beacon(hw);
1091 		_rtl92de_disable_bcn_sub_func(hw);
1092 	} else {
1093 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1094 			 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1095 			 type);
1096 	}
1097 	bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
1098 	switch (type) {
1099 	case NL80211_IFTYPE_UNSPECIFIED:
1100 		bt_msr |= MSR_NOLINK;
1101 		ledaction = LED_CTL_LINK;
1102 		bcnfunc_enable &= 0xF7;
1103 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1104 			 "Set Network type to NO LINK!\n");
1105 		break;
1106 	case NL80211_IFTYPE_ADHOC:
1107 		bt_msr |= MSR_ADHOC;
1108 		bcnfunc_enable |= 0x08;
1109 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1110 			 "Set Network type to Ad Hoc!\n");
1111 		break;
1112 	case NL80211_IFTYPE_STATION:
1113 		bt_msr |= MSR_INFRA;
1114 		ledaction = LED_CTL_LINK;
1115 		bcnfunc_enable &= 0xF7;
1116 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1117 			 "Set Network type to STA!\n");
1118 		break;
1119 	case NL80211_IFTYPE_AP:
1120 		bt_msr |= MSR_AP;
1121 		bcnfunc_enable |= 0x08;
1122 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1123 			 "Set Network type to AP!\n");
1124 		break;
1125 	default:
1126 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1127 			 "Network type %d not supported!\n", type);
1128 		return 1;
1129 		break;
1130 
1131 	}
1132 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1133 	rtlpriv->cfg->ops->led_control(hw, ledaction);
1134 	if ((bt_msr & MSR_MASK) == MSR_AP)
1135 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1136 	else
1137 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1138 	return 0;
1139 }
1140 
1141 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1142 {
1143 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1144 	u32 reg_rcr;
1145 
1146 	if (rtlpriv->psc.rfpwr_state != ERFON)
1147 		return;
1148 
1149 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1150 
1151 	if (check_bssid) {
1152 		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1153 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1154 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1155 	} else if (!check_bssid) {
1156 		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1157 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1158 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1159 	}
1160 }
1161 
1162 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1163 {
1164 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1165 
1166 	if (_rtl92de_set_media_status(hw, type))
1167 		return -EOPNOTSUPP;
1168 
1169 	/* check bssid */
1170 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1171 		if (type != NL80211_IFTYPE_AP)
1172 			rtl92de_set_check_bssid(hw, true);
1173 	} else {
1174 		rtl92de_set_check_bssid(hw, false);
1175 	}
1176 	return 0;
1177 }
1178 
1179 /* do iqk or reload iqk */
1180 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1181  * but it's very strict for time sequence so we add
1182  * rtl92d_phy_reload_iqk_setting here */
1183 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1184 {
1185 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1186 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1187 	u8 indexforchannel;
1188 	u8 channel = rtlphy->current_channel;
1189 
1190 	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1191 	if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1192 		RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1193 			 "Do IQK for channel:%d\n", channel);
1194 		rtl92d_phy_iq_calibrate(hw);
1195 	}
1196 }
1197 
1198 /* don't set REG_EDCA_BE_PARAM here because
1199  * mac80211 will send pkt when scan */
1200 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1201 {
1202 	rtl92d_dm_init_edca_turbo(hw);
1203 }
1204 
1205 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1206 {
1207 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1208 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1209 
1210 	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1211 	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1212 }
1213 
1214 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1215 {
1216 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1217 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1218 
1219 	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1220 	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1221 	synchronize_irq(rtlpci->pdev->irq);
1222 }
1223 
1224 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1225 {
1226 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1227 	u8 u1b_tmp;
1228 	unsigned long flags;
1229 
1230 	rtlpriv->intf_ops->enable_aspm(hw);
1231 	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1232 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1233 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1234 
1235 	/* 0x20:value 05-->04 */
1236 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1237 
1238 	/*  ==== Reset digital sequence   ====== */
1239 	rtl92d_firmware_selfreset(hw);
1240 
1241 	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1242 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1243 
1244 	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1245 	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1246 
1247 	/*  ==== Pull GPIO PIN to balance level and LED control ====== */
1248 
1249 	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
1250 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1251 
1252 	/* i.    Value = GPIO_PIN_CTRL[7:0] */
1253 	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1254 
1255 	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1256 	/* write external PIN level  */
1257 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1258 			0x00FF0000 | (u1b_tmp << 8));
1259 
1260 	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1261 	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1262 
1263 	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
1264 	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1265 
1266 	/*  ==== Disable analog sequence === */
1267 
1268 	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
1269 	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1270 
1271 	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
1272 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1273 
1274 	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
1275 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1276 
1277 	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1278 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1279 
1280 	/*  ==== interface into suspend === */
1281 
1282 	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1283 	/* According to power document V11, we need to set this */
1284 	/* value as 0x18. Otherwise, we may not L0s sometimes. */
1285 	/* This indluences power consumption. Bases on SD1's test, */
1286 	/* set as 0x00 do not affect power current. And if it */
1287 	/* is set as 0x18, they had ever met auto load fail problem. */
1288 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1289 
1290 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1291 		 "In PowerOff,reg0x%x=%X\n",
1292 		 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1293 	/* r.   Note: for PCIe interface, PON will not turn */
1294 	/* off m-bias and BandGap in PCIe suspend mode.  */
1295 
1296 	/* 0x17[7] 1b': power off in process  0b' : power off over */
1297 	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1298 		spin_lock_irqsave(&globalmutex_power, flags);
1299 		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1300 		u1b_tmp &= (~BIT(7));
1301 		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1302 		spin_unlock_irqrestore(&globalmutex_power, flags);
1303 	}
1304 
1305 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1306 }
1307 
1308 void rtl92de_card_disable(struct ieee80211_hw *hw)
1309 {
1310 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1311 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1312 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1313 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1314 	enum nl80211_iftype opmode;
1315 
1316 	mac->link_state = MAC80211_NOLINK;
1317 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1318 	_rtl92de_set_media_status(hw, opmode);
1319 
1320 	if (rtlpci->driver_is_goingto_unload ||
1321 	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1322 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1323 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1324 	/* Power sequence for each MAC. */
1325 	/* a. stop tx DMA  */
1326 	/* b. close RF */
1327 	/* c. clear rx buf */
1328 	/* d. stop rx DMA */
1329 	/* e.  reset MAC */
1330 
1331 	/* a. stop tx DMA */
1332 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1333 	udelay(50);
1334 
1335 	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1336 
1337 	/* c. ========RF OFF sequence==========  */
1338 	/* 0x88c[23:20] = 0xf. */
1339 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1340 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1341 
1342 	/* APSD_CTRL 0x600[7:0] = 0x40 */
1343 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1344 
1345 	/* Close antenna 0,0xc04,0xd04 */
1346 	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1347 	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1348 
1349 	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
1350 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1351 
1352 	/* Mac0 can not do Global reset. Mac1 can do. */
1353 	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
1354 	if (rtlpriv->rtlhal.interfaceindex == 1)
1355 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1356 	udelay(50);
1357 
1358 	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
1359 	/* dma hang issue when disable/enable device.  */
1360 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1361 	udelay(50);
1362 	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1363 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1364 	if (rtl92d_phy_check_poweroff(hw))
1365 		_rtl92de_poweroff_adapter(hw);
1366 	return;
1367 }
1368 
1369 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1370 				  u32 *p_inta, u32 *p_intb)
1371 {
1372 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1373 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1374 
1375 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1376 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1377 
1378 	/*
1379 	 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
1380 	 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1381 	 */
1382 }
1383 
1384 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1385 {
1386 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1387 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1388 	u16 bcn_interval, atim_window;
1389 
1390 	bcn_interval = mac->beacon_interval;
1391 	atim_window = 2;
1392 	/*rtl92de_disable_interrupt(hw);  */
1393 	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1394 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1395 	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1396 	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1397 	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1398 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1399 	else
1400 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1401 	rtl_write_byte(rtlpriv, 0x606, 0x30);
1402 }
1403 
1404 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1405 {
1406 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1407 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1408 	u16 bcn_interval = mac->beacon_interval;
1409 
1410 	RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1411 		 "beacon_interval:%d\n", bcn_interval);
1412 	/* rtl92de_disable_interrupt(hw); */
1413 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1414 	/* rtl92de_enable_interrupt(hw); */
1415 }
1416 
1417 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1418 				   u32 add_msr, u32 rm_msr)
1419 {
1420 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1421 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1422 
1423 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1424 		 add_msr, rm_msr);
1425 	if (add_msr)
1426 		rtlpci->irq_mask[0] |= add_msr;
1427 	if (rm_msr)
1428 		rtlpci->irq_mask[0] &= (~rm_msr);
1429 	rtl92de_disable_interrupt(hw);
1430 	rtl92de_enable_interrupt(hw);
1431 }
1432 
1433 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1434 				 u8 *rom_content, bool autoLoadfail)
1435 {
1436 	u32 rfpath, eeaddr, group, offset1, offset2;
1437 	u8 i;
1438 
1439 	memset(pwrinfo, 0, sizeof(struct txpower_info));
1440 	if (autoLoadfail) {
1441 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1442 			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1443 				if (group < CHANNEL_GROUP_MAX_2G) {
1444 					pwrinfo->cck_index[rfpath][group] =
1445 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1446 					pwrinfo->ht40_1sindex[rfpath][group] =
1447 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1448 				} else {
1449 					pwrinfo->ht40_1sindex[rfpath][group] =
1450 					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1451 				}
1452 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1453 				    EEPROM_DEFAULT_HT40_2SDIFF;
1454 				pwrinfo->ht20indexdiff[rfpath][group] =
1455 				    EEPROM_DEFAULT_HT20_DIFF;
1456 				pwrinfo->ofdmindexdiff[rfpath][group] =
1457 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1458 				pwrinfo->ht40maxoffset[rfpath][group] =
1459 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1460 				pwrinfo->ht20maxoffset[rfpath][group] =
1461 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1462 			}
1463 		}
1464 		for (i = 0; i < 3; i++) {
1465 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1466 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1467 		}
1468 		return;
1469 	}
1470 
1471 	/* Maybe autoload OK,buf the tx power index value is not filled.
1472 	 * If we find it, we set it to default value. */
1473 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1474 		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1475 			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1476 				 + group;
1477 			pwrinfo->cck_index[rfpath][group] =
1478 					(rom_content[eeaddr] == 0xFF) ?
1479 					     (eeaddr > 0x7B ?
1480 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1481 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1482 					     rom_content[eeaddr];
1483 		}
1484 	}
1485 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1486 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1487 			offset1 = group / 3;
1488 			offset2 = group % 3;
1489 			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1490 			    offset2 + offset1 * 21;
1491 			pwrinfo->ht40_1sindex[rfpath][group] =
1492 			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1493 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1494 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1495 						 rom_content[eeaddr];
1496 		}
1497 	}
1498 	/* These just for 92D efuse offset. */
1499 	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1500 		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1501 			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1502 
1503 			offset1 = group / 3;
1504 			offset2 = group % 3;
1505 
1506 			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1507 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1508 				    (rom_content[base1 +
1509 				     offset2 + offset1 * 21] >> (rfpath * 4))
1510 				     & 0xF;
1511 			else
1512 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1513 				    EEPROM_DEFAULT_HT40_2SDIFF;
1514 			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1515 			    + offset1 * 21] != 0xFF)
1516 				pwrinfo->ht20indexdiff[rfpath][group] =
1517 				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1518 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1519 				    & 0xF;
1520 			else
1521 				pwrinfo->ht20indexdiff[rfpath][group] =
1522 				    EEPROM_DEFAULT_HT20_DIFF;
1523 			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1524 			    + offset1 * 21] != 0xFF)
1525 				pwrinfo->ofdmindexdiff[rfpath][group] =
1526 				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1527 				     + offset2 + offset1 * 21] >> (rfpath * 4))
1528 				     & 0xF;
1529 			else
1530 				pwrinfo->ofdmindexdiff[rfpath][group] =
1531 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1532 			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1533 			    + offset1 * 21] != 0xFF)
1534 				pwrinfo->ht40maxoffset[rfpath][group] =
1535 				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1536 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1537 				    & 0xF;
1538 			else
1539 				pwrinfo->ht40maxoffset[rfpath][group] =
1540 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1541 			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1542 			    + offset1 * 21] != 0xFF)
1543 				pwrinfo->ht20maxoffset[rfpath][group] =
1544 				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1545 				     offset2 + offset1 * 21] >> (rfpath * 4)) &
1546 				     0xF;
1547 			else
1548 				pwrinfo->ht20maxoffset[rfpath][group] =
1549 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1550 		}
1551 	}
1552 	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1553 		/* 5GL */
1554 		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1555 		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1556 		/* 5GM */
1557 		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1558 		pwrinfo->tssi_b[1] =
1559 		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1560 		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1561 		/* 5GH */
1562 		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1563 				      0xF0) >> 4 |
1564 		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1565 		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1566 				      0xFC) >> 2;
1567 	} else {
1568 		for (i = 0; i < 3; i++) {
1569 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1570 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1571 		}
1572 	}
1573 }
1574 
1575 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1576 				       bool autoload_fail, u8 *hwinfo)
1577 {
1578 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1579 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1580 	struct txpower_info pwrinfo;
1581 	u8 tempval[2], i, pwr, diff;
1582 	u32 ch, rfPath, group;
1583 
1584 	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1585 	if (!autoload_fail) {
1586 		/* bit0~2 */
1587 		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1588 		rtlefuse->eeprom_thermalmeter =
1589 			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1590 		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1591 		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1592 		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1593 		rtlefuse->txpwr_fromeprom = true;
1594 		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1595 		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1596 			rtlefuse->internal_pa_5g[0] =
1597 				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1598 			rtlefuse->internal_pa_5g[1] =
1599 				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1600 			RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1601 				 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1602 				 rtlefuse->internal_pa_5g[0],
1603 				 rtlefuse->internal_pa_5g[1]);
1604 		}
1605 		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1606 		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1607 	} else {
1608 		rtlefuse->eeprom_regulatory = 0;
1609 		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1610 		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1611 		tempval[0] = tempval[1] = 3;
1612 	}
1613 
1614 	/* Use default value to fill parameters if
1615 	 * efuse is not filled on some place. */
1616 
1617 	/* ThermalMeter from EEPROM */
1618 	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1619 	    rtlefuse->eeprom_thermalmeter > 0x1c)
1620 		rtlefuse->eeprom_thermalmeter = 0x12;
1621 	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1622 
1623 	/* check XTAL_K */
1624 	if (rtlefuse->crystalcap == 0xFF)
1625 		rtlefuse->crystalcap = 0;
1626 	if (rtlefuse->eeprom_regulatory > 3)
1627 		rtlefuse->eeprom_regulatory = 0;
1628 
1629 	for (i = 0; i < 2; i++) {
1630 		switch (tempval[i]) {
1631 		case 0:
1632 			tempval[i] = 5;
1633 			break;
1634 		case 1:
1635 			tempval[i] = 4;
1636 			break;
1637 		case 2:
1638 			tempval[i] = 3;
1639 			break;
1640 		case 3:
1641 		default:
1642 			tempval[i] = 0;
1643 			break;
1644 		}
1645 	}
1646 
1647 	rtlefuse->delta_iqk = tempval[0];
1648 	if (tempval[1] > 0)
1649 		rtlefuse->delta_lck = tempval[1] - 1;
1650 	if (rtlefuse->eeprom_c9 == 0xFF)
1651 		rtlefuse->eeprom_c9 = 0x00;
1652 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1653 		 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1654 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1655 		 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1656 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1657 		 "CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1658 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1659 		 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1660 		 rtlefuse->delta_iqk, rtlefuse->delta_lck);
1661 
1662 	for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
1663 		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1664 			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1665 			if (ch < CHANNEL_MAX_NUMBER_2G)
1666 				rtlefuse->txpwrlevel_cck[rfPath][ch] =
1667 				    pwrinfo.cck_index[rfPath][group];
1668 			rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
1669 				    pwrinfo.ht40_1sindex[rfPath][group];
1670 			rtlefuse->txpwr_ht20diff[rfPath][ch] =
1671 				    pwrinfo.ht20indexdiff[rfPath][group];
1672 			rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
1673 				    pwrinfo.ofdmindexdiff[rfPath][group];
1674 			rtlefuse->pwrgroup_ht20[rfPath][ch] =
1675 				    pwrinfo.ht20maxoffset[rfPath][group];
1676 			rtlefuse->pwrgroup_ht40[rfPath][ch] =
1677 				    pwrinfo.ht40maxoffset[rfPath][group];
1678 			pwr = pwrinfo.ht40_1sindex[rfPath][group];
1679 			diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
1680 			rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
1681 				    (pwr > diff) ? (pwr - diff) : 0;
1682 		}
1683 	}
1684 }
1685 
1686 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1687 					       u8 *content)
1688 {
1689 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1690 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1691 	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1692 
1693 	if (macphy_crvalue & BIT(3)) {
1694 		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1695 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1696 			 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1697 	} else {
1698 		rtlhal->macphymode = DUALMAC_DUALPHY;
1699 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1700 			 "MacPhyMode DUALMAC_DUALPHY\n");
1701 	}
1702 }
1703 
1704 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1705 						  u8 *content)
1706 {
1707 	_rtl92de_read_macphymode_from_prom(hw, content);
1708 	rtl92d_phy_config_macphymode(hw);
1709 	rtl92d_phy_config_macphymode_info(hw);
1710 }
1711 
1712 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1713 {
1714 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1715 	enum version_8192d chipver = rtlpriv->rtlhal.version;
1716 	u8 cutvalue[2];
1717 	u16 chipvalue;
1718 
1719 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1720 					   &cutvalue[1]);
1721 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1722 					   &cutvalue[0]);
1723 	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1724 	switch (chipvalue) {
1725 	case 0xAA55:
1726 		chipver |= CHIP_92D_C_CUT;
1727 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1728 		break;
1729 	case 0x9966:
1730 		chipver |= CHIP_92D_D_CUT;
1731 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1732 		break;
1733 	case 0xCC33:
1734 		chipver |= CHIP_92D_E_CUT;
1735 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1736 		break;
1737 	default:
1738 		chipver |= CHIP_92D_D_CUT;
1739 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unknown CUT!\n");
1740 		break;
1741 	}
1742 	rtlpriv->rtlhal.version = chipver;
1743 }
1744 
1745 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1746 {
1747 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1748 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1749 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1750 	int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
1751 			EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
1752 			EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
1753 			COUNTRY_CODE_WORLD_WIDE_13};
1754 	int i;
1755 	u16 usvalue;
1756 	u8 *hwinfo;
1757 
1758 	hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
1759 	if (!hwinfo)
1760 		return;
1761 
1762 	if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
1763 		goto exit;
1764 
1765 	_rtl92de_efuse_update_chip_version(hw);
1766 	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1767 
1768 	/* Read Permanent MAC address for 2nd interface */
1769 	if (rtlhal->interfaceindex != 0) {
1770 		for (i = 0; i < 6; i += 2) {
1771 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1772 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1773 		}
1774 	}
1775 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1776 				      rtlefuse->dev_addr);
1777 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1778 	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1779 
1780 	/* Read Channel Plan */
1781 	switch (rtlhal->bandset) {
1782 	case BAND_ON_2_4G:
1783 		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1784 		break;
1785 	case BAND_ON_5G:
1786 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1787 		break;
1788 	case BAND_ON_BOTH:
1789 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1790 		break;
1791 	default:
1792 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1793 		break;
1794 	}
1795 	rtlefuse->txpwr_fromeprom = true;
1796 exit:
1797 	kfree(hwinfo);
1798 }
1799 
1800 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1801 {
1802 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1803 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1804 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1805 	u8 tmp_u1b;
1806 
1807 	rtlhal->version = _rtl92de_read_chip_version(hw);
1808 	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1809 	rtlefuse->autoload_status = tmp_u1b;
1810 	if (tmp_u1b & BIT(4)) {
1811 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1812 		rtlefuse->epromtype = EEPROM_93C46;
1813 	} else {
1814 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1815 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1816 	}
1817 	if (tmp_u1b & BIT(5)) {
1818 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1819 
1820 		rtlefuse->autoload_failflag = false;
1821 		_rtl92de_read_adapter_info(hw);
1822 	} else {
1823 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
1824 	}
1825 	return;
1826 }
1827 
1828 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1829 					  struct ieee80211_sta *sta)
1830 {
1831 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1832 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1833 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1834 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1835 	u32 ratr_value;
1836 	u8 ratr_index = 0;
1837 	u8 nmode = mac->ht_enable;
1838 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1839 	u16 shortgi_rate;
1840 	u32 tmp_ratr_value;
1841 	u8 curtxbw_40mhz = mac->bw_40;
1842 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1843 							1 : 0;
1844 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1845 							1 : 0;
1846 	enum wireless_mode wirelessmode = mac->mode;
1847 
1848 	if (rtlhal->current_bandtype == BAND_ON_5G)
1849 		ratr_value = sta->supp_rates[1] << 4;
1850 	else
1851 		ratr_value = sta->supp_rates[0];
1852 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1853 		       sta->ht_cap.mcs.rx_mask[0] << 12);
1854 	switch (wirelessmode) {
1855 	case WIRELESS_MODE_A:
1856 		ratr_value &= 0x00000FF0;
1857 		break;
1858 	case WIRELESS_MODE_B:
1859 		if (ratr_value & 0x0000000c)
1860 			ratr_value &= 0x0000000d;
1861 		else
1862 			ratr_value &= 0x0000000f;
1863 		break;
1864 	case WIRELESS_MODE_G:
1865 		ratr_value &= 0x00000FF5;
1866 		break;
1867 	case WIRELESS_MODE_N_24G:
1868 	case WIRELESS_MODE_N_5G:
1869 		nmode = 1;
1870 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1871 			ratr_value &= 0x0007F005;
1872 		} else {
1873 			u32 ratr_mask;
1874 
1875 			if (get_rf_type(rtlphy) == RF_1T2R ||
1876 			    get_rf_type(rtlphy) == RF_1T1R) {
1877 				ratr_mask = 0x000ff005;
1878 			} else {
1879 				ratr_mask = 0x0f0ff005;
1880 			}
1881 
1882 			ratr_value &= ratr_mask;
1883 		}
1884 		break;
1885 	default:
1886 		if (rtlphy->rf_type == RF_1T2R)
1887 			ratr_value &= 0x000ff0ff;
1888 		else
1889 			ratr_value &= 0x0f0ff0ff;
1890 
1891 		break;
1892 	}
1893 	ratr_value &= 0x0FFFFFFF;
1894 	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1895 	    (!curtxbw_40mhz && curshortgi_20mhz))) {
1896 		ratr_value |= 0x10000000;
1897 		tmp_ratr_value = (ratr_value >> 12);
1898 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1899 			if ((1 << shortgi_rate) & tmp_ratr_value)
1900 				break;
1901 		}
1902 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1903 		    (shortgi_rate << 4) | (shortgi_rate);
1904 	}
1905 	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1906 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1907 		 rtl_read_dword(rtlpriv, REG_ARFR0));
1908 }
1909 
1910 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1911 		struct ieee80211_sta *sta, u8 rssi_level)
1912 {
1913 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1914 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1915 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1916 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1917 	struct rtl_sta_info *sta_entry = NULL;
1918 	u32 ratr_bitmap;
1919 	u8 ratr_index;
1920 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1921 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1922 							1 : 0;
1923 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1924 							1 : 0;
1925 	enum wireless_mode wirelessmode = 0;
1926 	bool shortgi = false;
1927 	u32 value[2];
1928 	u8 macid = 0;
1929 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1930 
1931 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1932 	mimo_ps = sta_entry->mimo_ps;
1933 	wirelessmode = sta_entry->wireless_mode;
1934 	if (mac->opmode == NL80211_IFTYPE_STATION)
1935 		curtxbw_40mhz = mac->bw_40;
1936 	else if (mac->opmode == NL80211_IFTYPE_AP ||
1937 		mac->opmode == NL80211_IFTYPE_ADHOC)
1938 		macid = sta->aid + 1;
1939 
1940 	if (rtlhal->current_bandtype == BAND_ON_5G)
1941 		ratr_bitmap = sta->supp_rates[1] << 4;
1942 	else
1943 		ratr_bitmap = sta->supp_rates[0];
1944 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1945 			sta->ht_cap.mcs.rx_mask[0] << 12);
1946 	switch (wirelessmode) {
1947 	case WIRELESS_MODE_B:
1948 		ratr_index = RATR_INX_WIRELESS_B;
1949 		if (ratr_bitmap & 0x0000000c)
1950 			ratr_bitmap &= 0x0000000d;
1951 		else
1952 			ratr_bitmap &= 0x0000000f;
1953 		break;
1954 	case WIRELESS_MODE_G:
1955 		ratr_index = RATR_INX_WIRELESS_GB;
1956 
1957 		if (rssi_level == 1)
1958 			ratr_bitmap &= 0x00000f00;
1959 		else if (rssi_level == 2)
1960 			ratr_bitmap &= 0x00000ff0;
1961 		else
1962 			ratr_bitmap &= 0x00000ff5;
1963 		break;
1964 	case WIRELESS_MODE_A:
1965 		ratr_index = RATR_INX_WIRELESS_G;
1966 		ratr_bitmap &= 0x00000ff0;
1967 		break;
1968 	case WIRELESS_MODE_N_24G:
1969 	case WIRELESS_MODE_N_5G:
1970 		if (wirelessmode == WIRELESS_MODE_N_24G)
1971 			ratr_index = RATR_INX_WIRELESS_NGB;
1972 		else
1973 			ratr_index = RATR_INX_WIRELESS_NG;
1974 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1975 			if (rssi_level == 1)
1976 				ratr_bitmap &= 0x00070000;
1977 			else if (rssi_level == 2)
1978 				ratr_bitmap &= 0x0007f000;
1979 			else
1980 				ratr_bitmap &= 0x0007f005;
1981 		} else {
1982 			if (rtlphy->rf_type == RF_1T2R ||
1983 			    rtlphy->rf_type == RF_1T1R) {
1984 				if (curtxbw_40mhz) {
1985 					if (rssi_level == 1)
1986 						ratr_bitmap &= 0x000f0000;
1987 					else if (rssi_level == 2)
1988 						ratr_bitmap &= 0x000ff000;
1989 					else
1990 						ratr_bitmap &= 0x000ff015;
1991 				} else {
1992 					if (rssi_level == 1)
1993 						ratr_bitmap &= 0x000f0000;
1994 					else if (rssi_level == 2)
1995 						ratr_bitmap &= 0x000ff000;
1996 					else
1997 						ratr_bitmap &= 0x000ff005;
1998 				}
1999 			} else {
2000 				if (curtxbw_40mhz) {
2001 					if (rssi_level == 1)
2002 						ratr_bitmap &= 0x0f0f0000;
2003 					else if (rssi_level == 2)
2004 						ratr_bitmap &= 0x0f0ff000;
2005 					else
2006 						ratr_bitmap &= 0x0f0ff015;
2007 				} else {
2008 					if (rssi_level == 1)
2009 						ratr_bitmap &= 0x0f0f0000;
2010 					else if (rssi_level == 2)
2011 						ratr_bitmap &= 0x0f0ff000;
2012 					else
2013 						ratr_bitmap &= 0x0f0ff005;
2014 				}
2015 			}
2016 		}
2017 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2018 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2019 
2020 			if (macid == 0)
2021 				shortgi = true;
2022 			else if (macid == 1)
2023 				shortgi = false;
2024 		}
2025 		break;
2026 	default:
2027 		ratr_index = RATR_INX_WIRELESS_NGB;
2028 
2029 		if (rtlphy->rf_type == RF_1T2R)
2030 			ratr_bitmap &= 0x000ff0ff;
2031 		else
2032 			ratr_bitmap &= 0x0f0ff0ff;
2033 		break;
2034 	}
2035 
2036 	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
2037 	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
2038 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2039 		 "ratr_bitmap :%x value0:%x value1:%x\n",
2040 		 ratr_bitmap, value[0], value[1]);
2041 	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
2042 	if (macid != 0)
2043 		sta_entry->ratr_index = ratr_index;
2044 }
2045 
2046 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2047 		struct ieee80211_sta *sta, u8 rssi_level)
2048 {
2049 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2050 
2051 	if (rtlpriv->dm.useramask)
2052 		rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
2053 	else
2054 		rtl92de_update_hal_rate_table(hw, sta);
2055 }
2056 
2057 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2058 {
2059 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2060 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2061 	u16 sifs_timer;
2062 
2063 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2064 				      &mac->slot_time);
2065 	if (!mac->ht_enable)
2066 		sifs_timer = 0x0a0a;
2067 	else
2068 		sifs_timer = 0x1010;
2069 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2070 }
2071 
2072 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2073 {
2074 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2075 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2076 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2077 	enum rf_pwrstate e_rfpowerstate_toset;
2078 	u8 u1tmp;
2079 	bool actuallyset = false;
2080 	unsigned long flag;
2081 
2082 	if (rtlpci->being_init_adapter)
2083 		return false;
2084 	if (ppsc->swrf_processing)
2085 		return false;
2086 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2087 	if (ppsc->rfchange_inprogress) {
2088 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2089 		return false;
2090 	} else {
2091 		ppsc->rfchange_inprogress = true;
2092 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2093 	}
2094 	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2095 			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2096 	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2097 	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2098 	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2099 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2100 			 "GPIOChangeRF  - HW Radio ON, RF ON\n");
2101 		e_rfpowerstate_toset = ERFON;
2102 		ppsc->hwradiooff = false;
2103 		actuallyset = true;
2104 	} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2105 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2106 			 "GPIOChangeRF  - HW Radio OFF, RF OFF\n");
2107 		e_rfpowerstate_toset = ERFOFF;
2108 		ppsc->hwradiooff = true;
2109 		actuallyset = true;
2110 	}
2111 	if (actuallyset) {
2112 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2113 		ppsc->rfchange_inprogress = false;
2114 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2115 	} else {
2116 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2117 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2118 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2119 		ppsc->rfchange_inprogress = false;
2120 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2121 	}
2122 	*valid = 1;
2123 	return !ppsc->hwradiooff;
2124 }
2125 
2126 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2127 		     u8 *p_macaddr, bool is_group, u8 enc_algo,
2128 		     bool is_wepkey, bool clear_all)
2129 {
2130 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2131 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2132 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2133 	u8 *macaddr = p_macaddr;
2134 	u32 entry_id;
2135 	bool is_pairwise = false;
2136 	static u8 cam_const_addr[4][6] = {
2137 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2138 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2139 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2140 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2141 	};
2142 	static u8 cam_const_broad[] = {
2143 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2144 	};
2145 
2146 	if (clear_all) {
2147 		u8 idx;
2148 		u8 cam_offset = 0;
2149 		u8 clear_number = 5;
2150 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2151 		for (idx = 0; idx < clear_number; idx++) {
2152 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2153 			rtl_cam_empty_entry(hw, cam_offset + idx);
2154 
2155 			if (idx < 5) {
2156 				memset(rtlpriv->sec.key_buf[idx], 0,
2157 				       MAX_KEY_LEN);
2158 				rtlpriv->sec.key_len[idx] = 0;
2159 			}
2160 		}
2161 	} else {
2162 		switch (enc_algo) {
2163 		case WEP40_ENCRYPTION:
2164 			enc_algo = CAM_WEP40;
2165 			break;
2166 		case WEP104_ENCRYPTION:
2167 			enc_algo = CAM_WEP104;
2168 			break;
2169 		case TKIP_ENCRYPTION:
2170 			enc_algo = CAM_TKIP;
2171 			break;
2172 		case AESCCMP_ENCRYPTION:
2173 			enc_algo = CAM_AES;
2174 			break;
2175 		default:
2176 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2177 				 "switch case %#x not processed\n", enc_algo);
2178 			enc_algo = CAM_TKIP;
2179 			break;
2180 		}
2181 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2182 			macaddr = cam_const_addr[key_index];
2183 			entry_id = key_index;
2184 		} else {
2185 			if (is_group) {
2186 				macaddr = cam_const_broad;
2187 				entry_id = key_index;
2188 			} else {
2189 				if (mac->opmode == NL80211_IFTYPE_AP) {
2190 					entry_id = rtl_cam_get_free_entry(hw,
2191 								 p_macaddr);
2192 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2193 						RT_TRACE(rtlpriv, COMP_SEC,
2194 							 DBG_EMERG,
2195 							 "Can not find free hw security cam entry\n");
2196 						return;
2197 					}
2198 				} else {
2199 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2200 				}
2201 				key_index = PAIRWISE_KEYIDX;
2202 				is_pairwise = true;
2203 			}
2204 		}
2205 		if (rtlpriv->sec.key_len[key_index] == 0) {
2206 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2207 				 "delete one entry, entry_id is %d\n",
2208 				 entry_id);
2209 			if (mac->opmode == NL80211_IFTYPE_AP)
2210 				rtl_cam_del_entry(hw, p_macaddr);
2211 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2212 		} else {
2213 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2214 				 "The insert KEY length is %d\n",
2215 				 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2216 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2217 				 "The insert KEY is %x %x\n",
2218 				 rtlpriv->sec.key_buf[0][0],
2219 				 rtlpriv->sec.key_buf[0][1]);
2220 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2221 				 "add one entry\n");
2222 			if (is_pairwise) {
2223 				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2224 					      "Pairwise Key content",
2225 					      rtlpriv->sec.pairwise_key,
2226 					      rtlpriv->
2227 					      sec.key_len[PAIRWISE_KEYIDX]);
2228 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2229 					 "set Pairwise key\n");
2230 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2231 						      entry_id, enc_algo,
2232 						      CAM_CONFIG_NO_USEDK,
2233 						      rtlpriv->
2234 						      sec.key_buf[key_index]);
2235 			} else {
2236 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2237 					 "set group key\n");
2238 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2239 					rtl_cam_add_one_entry(hw,
2240 						rtlefuse->dev_addr,
2241 						PAIRWISE_KEYIDX,
2242 						CAM_PAIRWISE_KEY_POSITION,
2243 						enc_algo, CAM_CONFIG_NO_USEDK,
2244 						rtlpriv->sec.key_buf[entry_id]);
2245 				}
2246 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2247 						entry_id, enc_algo,
2248 						CAM_CONFIG_NO_USEDK,
2249 						rtlpriv->sec.key_buf
2250 						[entry_id]);
2251 			}
2252 		}
2253 	}
2254 }
2255 
2256 void rtl92de_suspend(struct ieee80211_hw *hw)
2257 {
2258 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2259 
2260 	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2261 		REG_MAC_PHY_CTRL_NORMAL);
2262 }
2263 
2264 void rtl92de_resume(struct ieee80211_hw *hw)
2265 {
2266 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2267 
2268 	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2269 		       rtlpriv->rtlhal.macphyctl_reg);
2270 }
2271