1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 
26 #include "../wifi.h"
27 #include "../efuse.h"
28 #include "../base.h"
29 #include "../regd.h"
30 #include "../cam.h"
31 #include "../ps.h"
32 #include "../pci.h"
33 #include "reg.h"
34 #include "def.h"
35 #include "phy.h"
36 #include "dm.h"
37 #include "fw.h"
38 #include "led.h"
39 #include "sw.h"
40 #include "hw.h"
41 
42 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
43 {
44 	struct rtl_priv *rtlpriv = rtl_priv(hw);
45 	u32 value;
46 
47 	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
48 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
49 	udelay(10);
50 	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
51 	return value;
52 }
53 
54 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
55 			     u16 offset, u32 value, u8 direct)
56 {
57 	struct rtl_priv *rtlpriv = rtl_priv(hw);
58 
59 	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
60 	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
61 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
62 }
63 
64 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
65 				      u8 set_bits, u8 clear_bits)
66 {
67 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
68 	struct rtl_priv *rtlpriv = rtl_priv(hw);
69 
70 	rtlpci->reg_bcn_ctrl_val |= set_bits;
71 	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
72 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
73 }
74 
75 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
76 {
77 	struct rtl_priv *rtlpriv = rtl_priv(hw);
78 	u8 tmp1byte;
79 
80 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
81 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
82 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
83 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
84 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
85 	tmp1byte &= ~(BIT(0));
86 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
87 }
88 
89 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
90 {
91 	struct rtl_priv *rtlpriv = rtl_priv(hw);
92 	u8 tmp1byte;
93 
94 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
95 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
96 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
97 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
98 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
99 	tmp1byte |= BIT(0);
100 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
101 }
102 
103 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
104 {
105 	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
106 }
107 
108 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
109 {
110 	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
111 }
112 
113 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
114 {
115 	struct rtl_priv *rtlpriv = rtl_priv(hw);
116 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
117 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
118 
119 	switch (variable) {
120 	case HW_VAR_RCR:
121 		*((u32 *) (val)) = rtlpci->receive_config;
122 		break;
123 	case HW_VAR_RF_STATE:
124 		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
125 		break;
126 	case HW_VAR_FWLPS_RF_ON:{
127 		enum rf_pwrstate rfState;
128 		u32 val_rcr;
129 
130 		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
131 					      (u8 *) (&rfState));
132 		if (rfState == ERFOFF) {
133 			*((bool *) (val)) = true;
134 		} else {
135 			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
136 			val_rcr &= 0x00070000;
137 			if (val_rcr)
138 				*((bool *) (val)) = false;
139 			else
140 				*((bool *) (val)) = true;
141 		}
142 		break;
143 	}
144 	case HW_VAR_FW_PSMODE_STATUS:
145 		*((bool *) (val)) = ppsc->fw_current_inpsmode;
146 		break;
147 	case HW_VAR_CORRECT_TSF:{
148 		u64 tsf;
149 		u32 *ptsf_low = (u32 *)&tsf;
150 		u32 *ptsf_high = ((u32 *)&tsf) + 1;
151 
152 		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
153 		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
154 		*((u64 *) (val)) = tsf;
155 		break;
156 	}
157 	case HW_VAR_INT_MIGRATION:
158 		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
159 		break;
160 	case HW_VAR_INT_AC:
161 		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
162 		break;
163 	case HAL_DEF_WOWLAN:
164 		break;
165 	default:
166 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
167 			 "switch case %#x not processed\n", variable);
168 		break;
169 	}
170 }
171 
172 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
173 {
174 	struct rtl_priv *rtlpriv = rtl_priv(hw);
175 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
176 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
177 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
178 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
179 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
180 	u8 idx;
181 
182 	switch (variable) {
183 	case HW_VAR_ETHER_ADDR:
184 		for (idx = 0; idx < ETH_ALEN; idx++) {
185 			rtl_write_byte(rtlpriv, (REG_MACID + idx),
186 				       val[idx]);
187 		}
188 		break;
189 	case HW_VAR_BASIC_RATE: {
190 		u16 rate_cfg = ((u16 *) val)[0];
191 		u8 rate_index = 0;
192 
193 		rate_cfg = rate_cfg & 0x15f;
194 		if (mac->vendor == PEER_CISCO &&
195 		    ((rate_cfg & 0x150) == 0))
196 			rate_cfg |= 0x01;
197 		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
198 		rtl_write_byte(rtlpriv, REG_RRSR + 1,
199 			       (rate_cfg >> 8) & 0xff);
200 		while (rate_cfg > 0x1) {
201 			rate_cfg = (rate_cfg >> 1);
202 			rate_index++;
203 		}
204 		if (rtlhal->fw_version > 0xe)
205 			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
206 				       rate_index);
207 		break;
208 	}
209 	case HW_VAR_BSSID:
210 		for (idx = 0; idx < ETH_ALEN; idx++) {
211 			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
212 				       val[idx]);
213 		}
214 		break;
215 	case HW_VAR_SIFS:
216 		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
217 		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
218 		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
219 		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
220 		if (!mac->ht_enable)
221 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
222 				       0x0e0e);
223 		else
224 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
225 				       *((u16 *) val));
226 		break;
227 	case HW_VAR_SLOT_TIME: {
228 		u8 e_aci;
229 
230 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
231 			 "HW_VAR_SLOT_TIME %x\n", val[0]);
232 		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
233 		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
234 			rtlpriv->cfg->ops->set_hw_reg(hw,
235 						      HW_VAR_AC_PARAM,
236 						      (&e_aci));
237 		break;
238 	}
239 	case HW_VAR_ACK_PREAMBLE: {
240 		u8 reg_tmp;
241 		u8 short_preamble = (bool) (*val);
242 
243 		reg_tmp = (mac->cur_40_prime_sc) << 5;
244 		if (short_preamble)
245 			reg_tmp |= 0x80;
246 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
247 		break;
248 	}
249 	case HW_VAR_AMPDU_MIN_SPACE: {
250 		u8 min_spacing_to_set;
251 		u8 sec_min_space;
252 
253 		min_spacing_to_set = *val;
254 		if (min_spacing_to_set <= 7) {
255 			sec_min_space = 0;
256 			if (min_spacing_to_set < sec_min_space)
257 				min_spacing_to_set = sec_min_space;
258 			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
259 					      min_spacing_to_set);
260 			*val = min_spacing_to_set;
261 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
262 				 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
263 				 mac->min_space_cfg);
264 			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
265 				       mac->min_space_cfg);
266 		}
267 		break;
268 	}
269 	case HW_VAR_SHORTGI_DENSITY: {
270 		u8 density_to_set;
271 
272 		density_to_set = *val;
273 		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
274 		mac->min_space_cfg |= (density_to_set << 3);
275 		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
276 			 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
277 			 mac->min_space_cfg);
278 		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
279 			       mac->min_space_cfg);
280 		break;
281 	}
282 	case HW_VAR_AMPDU_FACTOR: {
283 		u8 factor_toset;
284 		u32 regtoSet;
285 		u8 *ptmp_byte = NULL;
286 		u8 index;
287 
288 		if (rtlhal->macphymode == DUALMAC_DUALPHY)
289 			regtoSet = 0xb9726641;
290 		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
291 			regtoSet = 0x66626641;
292 		else
293 			regtoSet = 0xb972a841;
294 		factor_toset = *val;
295 		if (factor_toset <= 3) {
296 			factor_toset = (1 << (factor_toset + 2));
297 			if (factor_toset > 0xf)
298 				factor_toset = 0xf;
299 			for (index = 0; index < 4; index++) {
300 				ptmp_byte = (u8 *) (&regtoSet) + index;
301 				if ((*ptmp_byte & 0xf0) >
302 				    (factor_toset << 4))
303 					*ptmp_byte = (*ptmp_byte & 0x0f)
304 						 | (factor_toset << 4);
305 				if ((*ptmp_byte & 0x0f) > factor_toset)
306 					*ptmp_byte = (*ptmp_byte & 0xf0)
307 						     | (factor_toset);
308 			}
309 			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
310 			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
311 				 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
312 				 factor_toset);
313 		}
314 		break;
315 	}
316 	case HW_VAR_AC_PARAM: {
317 		u8 e_aci = *val;
318 		rtl92d_dm_init_edca_turbo(hw);
319 		if (rtlpci->acm_method != EACMWAY2_SW)
320 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
321 						      &e_aci);
322 		break;
323 	}
324 	case HW_VAR_ACM_CTRL: {
325 		u8 e_aci = *val;
326 		union aci_aifsn *p_aci_aifsn =
327 		    (union aci_aifsn *)(&(mac->ac[0].aifs));
328 		u8 acm = p_aci_aifsn->f.acm;
329 		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
330 
331 		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
332 		if (acm) {
333 			switch (e_aci) {
334 			case AC0_BE:
335 				acm_ctrl |= ACMHW_BEQEN;
336 				break;
337 			case AC2_VI:
338 				acm_ctrl |= ACMHW_VIQEN;
339 				break;
340 			case AC3_VO:
341 				acm_ctrl |= ACMHW_VOQEN;
342 				break;
343 			default:
344 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
345 					 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
346 					 acm);
347 				break;
348 			}
349 		} else {
350 			switch (e_aci) {
351 			case AC0_BE:
352 				acm_ctrl &= (~ACMHW_BEQEN);
353 				break;
354 			case AC2_VI:
355 				acm_ctrl &= (~ACMHW_VIQEN);
356 				break;
357 			case AC3_VO:
358 				acm_ctrl &= (~ACMHW_VOQEN);
359 				break;
360 			default:
361 				RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
362 					 "switch case %#x not processed\n",
363 					 e_aci);
364 				break;
365 			}
366 		}
367 		RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
368 			 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
369 			 acm_ctrl);
370 		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
371 		break;
372 	}
373 	case HW_VAR_RCR:
374 		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
375 		rtlpci->receive_config = ((u32 *) (val))[0];
376 		break;
377 	case HW_VAR_RETRY_LIMIT: {
378 		u8 retry_limit = val[0];
379 
380 		rtl_write_word(rtlpriv, REG_RL,
381 			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
382 			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
383 		break;
384 	}
385 	case HW_VAR_DUAL_TSF_RST:
386 		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
387 		break;
388 	case HW_VAR_EFUSE_BYTES:
389 		rtlefuse->efuse_usedbytes = *((u16 *) val);
390 		break;
391 	case HW_VAR_EFUSE_USAGE:
392 		rtlefuse->efuse_usedpercentage = *val;
393 		break;
394 	case HW_VAR_IO_CMD:
395 		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
396 		break;
397 	case HW_VAR_WPA_CONFIG:
398 		rtl_write_byte(rtlpriv, REG_SECCFG, *val);
399 		break;
400 	case HW_VAR_SET_RPWM:
401 		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
402 		break;
403 	case HW_VAR_H2C_FW_PWRMODE:
404 		break;
405 	case HW_VAR_FW_PSMODE_STATUS:
406 		ppsc->fw_current_inpsmode = *((bool *) val);
407 		break;
408 	case HW_VAR_H2C_FW_JOINBSSRPT: {
409 		u8 mstatus = (*val);
410 		u8 tmp_regcr, tmp_reg422;
411 		bool recover = false;
412 
413 		if (mstatus == RT_MEDIA_CONNECT) {
414 			rtlpriv->cfg->ops->set_hw_reg(hw,
415 						      HW_VAR_AID, NULL);
416 			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
417 			rtl_write_byte(rtlpriv, REG_CR + 1,
418 				       (tmp_regcr | BIT(0)));
419 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
420 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
421 			tmp_reg422 = rtl_read_byte(rtlpriv,
422 						 REG_FWHW_TXQ_CTRL + 2);
423 			if (tmp_reg422 & BIT(6))
424 				recover = true;
425 			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
426 				       tmp_reg422 & (~BIT(6)));
427 			rtl92d_set_fw_rsvdpagepkt(hw, 0);
428 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
429 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
430 			if (recover)
431 				rtl_write_byte(rtlpriv,
432 					       REG_FWHW_TXQ_CTRL + 2,
433 					       tmp_reg422);
434 			rtl_write_byte(rtlpriv, REG_CR + 1,
435 				       (tmp_regcr & ~(BIT(0))));
436 		}
437 		rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
438 		break;
439 	}
440 	case HW_VAR_AID: {
441 		u16 u2btmp;
442 		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
443 		u2btmp &= 0xC000;
444 		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
445 			       mac->assoc_id));
446 		break;
447 	}
448 	case HW_VAR_CORRECT_TSF: {
449 		u8 btype_ibss = val[0];
450 
451 		if (btype_ibss)
452 			_rtl92de_stop_tx_beacon(hw);
453 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
454 		rtl_write_dword(rtlpriv, REG_TSFTR,
455 				(u32) (mac->tsf & 0xffffffff));
456 		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
457 				(u32) ((mac->tsf >> 32) & 0xffffffff));
458 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
459 		if (btype_ibss)
460 			_rtl92de_resume_tx_beacon(hw);
461 
462 		break;
463 	}
464 	case HW_VAR_INT_MIGRATION: {
465 		bool int_migration = *(bool *) (val);
466 
467 		if (int_migration) {
468 			/* Set interrupt migration timer and
469 			 * corresponding Tx/Rx counter.
470 			 * timer 25ns*0xfa0=100us for 0xf packets.
471 			 * 0x306:Rx, 0x307:Tx */
472 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
473 			rtlpriv->dm.interrupt_migration = int_migration;
474 		} else {
475 			/* Reset all interrupt migration settings. */
476 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
477 			rtlpriv->dm.interrupt_migration = int_migration;
478 		}
479 		break;
480 	}
481 	case HW_VAR_INT_AC: {
482 		bool disable_ac_int = *((bool *) val);
483 
484 		/* Disable four ACs interrupts. */
485 		if (disable_ac_int) {
486 			/* Disable VO, VI, BE and BK four AC interrupts
487 			 * to gain more efficient CPU utilization.
488 			 * When extremely highly Rx OK occurs,
489 			 * we will disable Tx interrupts.
490 			 */
491 			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
492 						 RT_AC_INT_MASKS);
493 			rtlpriv->dm.disable_tx_int = disable_ac_int;
494 		/* Enable four ACs interrupts. */
495 		} else {
496 			rtlpriv->cfg->ops->update_interrupt_mask(hw,
497 						 RT_AC_INT_MASKS, 0);
498 			rtlpriv->dm.disable_tx_int = disable_ac_int;
499 		}
500 		break;
501 	}
502 	default:
503 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
504 			 "switch case %#x not processed\n", variable);
505 		break;
506 	}
507 }
508 
509 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
510 {
511 	struct rtl_priv *rtlpriv = rtl_priv(hw);
512 	bool status = true;
513 	long count = 0;
514 	u32 value = _LLT_INIT_ADDR(address) |
515 	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
516 
517 	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
518 	do {
519 		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
520 		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
521 			break;
522 		if (count > POLLING_LLT_THRESHOLD) {
523 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
524 				 "Failed to polling write LLT done at address %d!\n",
525 				 address);
526 			status = false;
527 			break;
528 		}
529 	} while (++count);
530 	return status;
531 }
532 
533 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
534 {
535 	struct rtl_priv *rtlpriv = rtl_priv(hw);
536 	unsigned short i;
537 	u8 txpktbuf_bndy;
538 	u8 maxPage;
539 	bool status;
540 	u32 value32; /* High+low page number */
541 	u8 value8;	 /* normal page number */
542 
543 	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
544 		maxPage = 255;
545 		txpktbuf_bndy = 246;
546 		value8 = 0;
547 		value32 = 0x80bf0d29;
548 	} else {
549 		maxPage = 127;
550 		txpktbuf_bndy = 123;
551 		value8 = 0;
552 		value32 = 0x80750005;
553 	}
554 
555 	/* Set reserved page for each queue */
556 	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
557 	/* load RQPN */
558 	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
559 	rtl_write_dword(rtlpriv, REG_RQPN, value32);
560 
561 	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
562 	/* TXRKTBUG_PG_BNDY */
563 	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
564 			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
565 			txpktbuf_bndy));
566 
567 	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
568 	/* Beacon Head for TXDMA */
569 	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
570 
571 	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
572 	/* BCNQ_PGBNDY */
573 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
574 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
575 
576 	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
577 	/* WMAC_LBK_BF_HD */
578 	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
579 
580 	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
581 	/* Rx can be 64,128,256,512,1024 bytes) */
582 	/* 16.  PBP [7:0] = 0x11 */
583 	/* TRX page size */
584 	rtl_write_byte(rtlpriv, REG_PBP, 0x11);
585 
586 	/* 17.  DRV_INFO_SZ = 0x04 */
587 	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
588 
589 	/* 18.  LLT_table_init(Adapter);  */
590 	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
591 		status = _rtl92de_llt_write(hw, i, i + 1);
592 		if (true != status)
593 			return status;
594 	}
595 
596 	/* end of list */
597 	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
598 	if (true != status)
599 		return status;
600 
601 	/* Make the other pages as ring buffer */
602 	/* This ring buffer is used as beacon buffer if we */
603 	/* config this MAC as two MAC transfer. */
604 	/* Otherwise used as local loopback buffer.  */
605 	for (i = txpktbuf_bndy; i < maxPage; i++) {
606 		status = _rtl92de_llt_write(hw, i, (i + 1));
607 		if (true != status)
608 			return status;
609 	}
610 
611 	/* Let last entry point to the start entry of ring buffer */
612 	status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
613 	if (true != status)
614 		return status;
615 
616 	return true;
617 }
618 
619 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
620 {
621 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
622 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
623 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
624 	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
625 
626 	if (rtlpci->up_first_time)
627 		return;
628 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
629 		rtl92de_sw_led_on(hw, pLed0);
630 	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
631 		rtl92de_sw_led_on(hw, pLed0);
632 	else
633 		rtl92de_sw_led_off(hw, pLed0);
634 }
635 
636 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
637 {
638 	struct rtl_priv *rtlpriv = rtl_priv(hw);
639 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
640 	unsigned char bytetmp;
641 	unsigned short wordtmp;
642 	u16 retry;
643 
644 	rtl92d_phy_set_poweron(hw);
645 	/* Add for resume sequence of power domain according
646 	 * to power document V11. Chapter V.11....  */
647 	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
648 	/* unlock ISO/CLK/Power control register */
649 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
650 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
651 
652 	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
653 	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
654 	/* 3.   delay (1ms) this is not necessary when initially power on */
655 
656 	/* C.   Resume Sequence */
657 	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
658 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
659 
660 	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
661 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
662 
663 	/* c.   DRV runs power on init flow */
664 
665 	/* auto enable WLAN */
666 	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
667 	/* Power On Reset for MAC Block */
668 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
669 	udelay(2);
670 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
671 	udelay(2);
672 
673 	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
674 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
675 	udelay(50);
676 	retry = 0;
677 	while ((bytetmp & BIT(0)) && retry < 1000) {
678 		retry++;
679 		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
680 		udelay(50);
681 	}
682 
683 	/* Enable Radio off, GPIO, and LED function */
684 	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
685 	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
686 
687 	/* release RF digital isolation  */
688 	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
689 	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
690 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
691 	udelay(2);
692 
693 	/* make sure that BB reset OK. */
694 	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
695 
696 	/* Disable REG_CR before enable it to assure reset */
697 	rtl_write_word(rtlpriv, REG_CR, 0x0);
698 
699 	/* Release MAC IO register reset */
700 	rtl_write_word(rtlpriv, REG_CR, 0x2ff);
701 
702 	/* clear stopping tx/rx dma   */
703 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
704 
705 	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
706 
707 	/* System init */
708 	/* 18.  LLT_table_init(Adapter);  */
709 	if (!_rtl92de_llt_table_init(hw))
710 		return false;
711 
712 	/* Clear interrupt and enable interrupt */
713 	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
714 	/*      HISRE 0x12C[7:0] = 0xFF */
715 	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
716 	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
717 
718 	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
719 	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
720 	/* The IMR should be enabled later after all init sequence
721 	 * is finished. */
722 
723 	/* 22.  PCIE configuration space configuration */
724 	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
725 	/*      and PCIe gated clock function is enabled.    */
726 	/* PCIE configuration space will be written after
727 	 * all init sequence.(Or by BIOS) */
728 
729 	rtl92d_phy_config_maccoexist_rfpage(hw);
730 
731 	/* THe below section is not related to power document Vxx . */
732 	/* This is only useful for driver and OS setting. */
733 	/* -------------------Software Relative Setting---------------------- */
734 	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
735 	wordtmp &= 0xf;
736 	wordtmp |= 0xF771;
737 	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
738 
739 	/* Reported Tx status from HW for rate adaptive. */
740 	/* This should be realtive to power on step 14. But in document V11  */
741 	/* still not contain the description.!!! */
742 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
743 
744 	/* Set Tx/Rx page size (Tx must be 128 Bytes,
745 	 * Rx can be 64,128,256,512,1024 bytes) */
746 	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
747 
748 	/* Set RCR register */
749 	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
750 	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
751 
752 	/*  Set TCR register */
753 	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
754 
755 	/* disable earlymode */
756 	rtl_write_byte(rtlpriv, 0x4d0, 0x0);
757 
758 	/* Set TX/RX descriptor physical address(from OS API). */
759 	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
760 			rtlpci->tx_ring[BEACON_QUEUE].dma);
761 	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
762 	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
763 	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
764 	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
765 	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
766 	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
767 	/* Set RX Desc Address */
768 	rtl_write_dword(rtlpriv, REG_RX_DESA,
769 			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
770 
771 	/* if we want to support 64 bit DMA, we should set it here,
772 	 * but now we do not support 64 bit DMA*/
773 
774 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
775 
776 	/* Reset interrupt migration setting when initialization */
777 	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
778 
779 	/* Reconsider when to do this operation after asking HWSD. */
780 	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
781 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
782 	do {
783 		retry++;
784 		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
785 	} while ((retry < 200) && !(bytetmp & BIT(7)));
786 
787 	/* After MACIO reset,we must refresh LED state. */
788 	_rtl92de_gen_refresh_led_state(hw);
789 
790 	/* Reset H2C protection register */
791 	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
792 
793 	return true;
794 }
795 
796 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
797 {
798 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
799 	struct rtl_priv *rtlpriv = rtl_priv(hw);
800 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
801 	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
802 	u32 reg_rrsr;
803 
804 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
805 	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
806 	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
807 	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
808 	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
809 	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
810 	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
811 	rtl_write_word(rtlpriv, REG_RL, 0x0707);
812 	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
813 	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
814 	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
815 	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
816 	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
817 	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
818 	/* Aggregation threshold */
819 	if (rtlhal->macphymode == DUALMAC_DUALPHY)
820 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
821 	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
822 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
823 	else
824 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
825 	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
826 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
827 	rtlpci->reg_bcn_ctrl_val = 0x1f;
828 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
829 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
830 	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
831 	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
832 	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
833 	/* For throughput */
834 	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
835 	/* ACKTO for IOT issue. */
836 	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
837 	/* Set Spec SIFS (used in NAV) */
838 	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
839 	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
840 	/* Set SIFS for CCK */
841 	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
842 	/* Set SIFS for OFDM */
843 	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
844 	/* Set Multicast Address. */
845 	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
846 	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
847 	switch (rtlpriv->phy.rf_type) {
848 	case RF_1T2R:
849 	case RF_1T1R:
850 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
851 		break;
852 	case RF_2T2R:
853 	case RF_2T2R_GREEN:
854 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
855 		break;
856 	}
857 }
858 
859 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
860 {
861 	struct rtl_priv *rtlpriv = rtl_priv(hw);
862 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
863 
864 	rtl_write_byte(rtlpriv, 0x34b, 0x93);
865 	rtl_write_word(rtlpriv, 0x350, 0x870c);
866 	rtl_write_byte(rtlpriv, 0x352, 0x1);
867 	if (ppsc->support_backdoor)
868 		rtl_write_byte(rtlpriv, 0x349, 0x1b);
869 	else
870 		rtl_write_byte(rtlpriv, 0x349, 0x03);
871 	rtl_write_word(rtlpriv, 0x350, 0x2718);
872 	rtl_write_byte(rtlpriv, 0x352, 0x1);
873 }
874 
875 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
876 {
877 	struct rtl_priv *rtlpriv = rtl_priv(hw);
878 	u8 sec_reg_value;
879 
880 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
881 		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
882 		 rtlpriv->sec.pairwise_enc_algorithm,
883 		 rtlpriv->sec.group_enc_algorithm);
884 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
885 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
886 			 "not open hw encryption\n");
887 		return;
888 	}
889 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
890 	if (rtlpriv->sec.use_defaultkey) {
891 		sec_reg_value |= SCR_TXUSEDK;
892 		sec_reg_value |= SCR_RXUSEDK;
893 	}
894 	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
895 	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
896 	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
897 		 "The SECR-value %x\n", sec_reg_value);
898 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
899 }
900 
901 int rtl92de_hw_init(struct ieee80211_hw *hw)
902 {
903 	struct rtl_priv *rtlpriv = rtl_priv(hw);
904 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
905 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
906 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
907 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
908 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
909 	bool rtstatus = true;
910 	u8 tmp_u1b;
911 	int i;
912 	int err;
913 	unsigned long flags;
914 
915 	rtlpci->being_init_adapter = true;
916 	rtlpci->init_ready = false;
917 	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
918 	/* we should do iqk after disable/enable */
919 	rtl92d_phy_reset_iqk_result(hw);
920 	/* rtlpriv->intf_ops->disable_aspm(hw); */
921 	rtstatus = _rtl92de_init_mac(hw);
922 	if (!rtstatus) {
923 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
924 		err = 1;
925 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
926 		return err;
927 	}
928 	err = rtl92d_download_fw(hw);
929 	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
930 	if (err) {
931 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
932 			 "Failed to download FW. Init HW without FW..\n");
933 		return 1;
934 	}
935 	rtlhal->last_hmeboxnum = 0;
936 	rtlpriv->psc.fw_current_inpsmode = false;
937 
938 	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
939 	tmp_u1b = tmp_u1b | 0x30;
940 	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
941 
942 	if (rtlhal->earlymode_enable) {
943 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
944 			 "EarlyMode Enabled!!!\n");
945 
946 		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
947 		tmp_u1b = tmp_u1b | 0x1f;
948 		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
949 
950 		rtl_write_byte(rtlpriv, 0x4d3, 0x80);
951 
952 		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
953 		tmp_u1b = tmp_u1b | 0x40;
954 		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
955 	}
956 
957 	if (mac->rdg_en) {
958 		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
959 		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
960 		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
961 	}
962 
963 	rtl92d_phy_mac_config(hw);
964 	/* because last function modify RCR, so we update
965 	 * rcr var here, or TP will unstable for receive_config
966 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
967 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
968 	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
969 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
970 
971 	rtl92d_phy_bb_config(hw);
972 
973 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
974 	/* set before initialize RF */
975 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
976 
977 	/* config RF */
978 	rtl92d_phy_rf_config(hw);
979 
980 	/* After read predefined TXT, we must set BB/MAC/RF
981 	 * register as our requirement */
982 	/* After load BB,RF params,we need do more for 92D. */
983 	rtl92d_update_bbrf_configuration(hw);
984 	/* set default value after initialize RF,  */
985 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
986 	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
987 			RF_CHNLBW, RFREG_OFFSET_MASK);
988 	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
989 			RF_CHNLBW, RFREG_OFFSET_MASK);
990 
991 	/*---- Set CCK and OFDM Block "ON"----*/
992 	if (rtlhal->current_bandtype == BAND_ON_2_4G)
993 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
994 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
995 	if (rtlhal->interfaceindex == 0) {
996 		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
997 		 *  set to 20MHz by default */
998 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
999 			      BIT(11), 3);
1000 	} else {
1001 		/* Mac1 */
1002 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
1003 			      BIT(10), 3);
1004 	}
1005 
1006 	_rtl92de_hw_configure(hw);
1007 
1008 	/* reset hw sec */
1009 	rtl_cam_reset_all_entry(hw);
1010 	rtl92de_enable_hw_security_config(hw);
1011 
1012 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1013 	/* TX power index for different rate set. */
1014 	rtl92d_phy_get_hw_reg_originalvalue(hw);
1015 	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
1016 
1017 	ppsc->rfpwr_state = ERFON;
1018 
1019 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
1020 
1021 	_rtl92de_enable_aspm_back_door(hw);
1022 	/* rtlpriv->intf_ops->enable_aspm(hw); */
1023 
1024 	rtl92d_dm_init(hw);
1025 	rtlpci->being_init_adapter = false;
1026 
1027 	if (ppsc->rfpwr_state == ERFON) {
1028 		rtl92d_phy_lc_calibrate(hw);
1029 		/* 5G and 2.4G must wait sometime to let RF LO ready */
1030 		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1031 			u32 tmp_rega;
1032 			for (i = 0; i < 10000; i++) {
1033 				udelay(MAX_STALL_TIME);
1034 
1035 				tmp_rega = rtl_get_rfreg(hw,
1036 						  (enum radio_path)RF90_PATH_A,
1037 						  0x2a, MASKDWORD);
1038 
1039 				if (((tmp_rega & BIT(11)) == BIT(11)))
1040 					break;
1041 			}
1042 			/* check that loop was successful. If not, exit now */
1043 			if (i == 10000) {
1044 				rtlpci->init_ready = false;
1045 				return 1;
1046 			}
1047 		}
1048 	}
1049 	rtlpci->init_ready = true;
1050 	return err;
1051 }
1052 
1053 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1054 {
1055 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1056 	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1057 	u32 value32;
1058 
1059 	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1060 	if (!(value32 & 0x000f0000)) {
1061 		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1062 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1063 	} else {
1064 		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1065 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1066 	}
1067 	return version;
1068 }
1069 
1070 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1071 				     enum nl80211_iftype type)
1072 {
1073 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1074 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1075 	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1076 	u8 bcnfunc_enable;
1077 
1078 	bt_msr &= 0xfc;
1079 
1080 	if (type == NL80211_IFTYPE_UNSPECIFIED ||
1081 	    type == NL80211_IFTYPE_STATION) {
1082 		_rtl92de_stop_tx_beacon(hw);
1083 		_rtl92de_enable_bcn_sub_func(hw);
1084 	} else if (type == NL80211_IFTYPE_ADHOC ||
1085 		type == NL80211_IFTYPE_AP) {
1086 		_rtl92de_resume_tx_beacon(hw);
1087 		_rtl92de_disable_bcn_sub_func(hw);
1088 	} else {
1089 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1090 			 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1091 			 type);
1092 	}
1093 	bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
1094 	switch (type) {
1095 	case NL80211_IFTYPE_UNSPECIFIED:
1096 		bt_msr |= MSR_NOLINK;
1097 		ledaction = LED_CTL_LINK;
1098 		bcnfunc_enable &= 0xF7;
1099 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1100 			 "Set Network type to NO LINK!\n");
1101 		break;
1102 	case NL80211_IFTYPE_ADHOC:
1103 		bt_msr |= MSR_ADHOC;
1104 		bcnfunc_enable |= 0x08;
1105 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1106 			 "Set Network type to Ad Hoc!\n");
1107 		break;
1108 	case NL80211_IFTYPE_STATION:
1109 		bt_msr |= MSR_INFRA;
1110 		ledaction = LED_CTL_LINK;
1111 		bcnfunc_enable &= 0xF7;
1112 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1113 			 "Set Network type to STA!\n");
1114 		break;
1115 	case NL80211_IFTYPE_AP:
1116 		bt_msr |= MSR_AP;
1117 		bcnfunc_enable |= 0x08;
1118 		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1119 			 "Set Network type to AP!\n");
1120 		break;
1121 	default:
1122 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1123 			 "Network type %d not supported!\n", type);
1124 		return 1;
1125 		break;
1126 
1127 	}
1128 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1129 	rtlpriv->cfg->ops->led_control(hw, ledaction);
1130 	if ((bt_msr & MSR_MASK) == MSR_AP)
1131 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1132 	else
1133 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1134 	return 0;
1135 }
1136 
1137 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1138 {
1139 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1140 	u32 reg_rcr;
1141 
1142 	if (rtlpriv->psc.rfpwr_state != ERFON)
1143 		return;
1144 
1145 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1146 
1147 	if (check_bssid) {
1148 		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1149 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1150 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1151 	} else if (!check_bssid) {
1152 		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1153 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1154 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1155 	}
1156 }
1157 
1158 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1159 {
1160 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1161 
1162 	if (_rtl92de_set_media_status(hw, type))
1163 		return -EOPNOTSUPP;
1164 
1165 	/* check bssid */
1166 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1167 		if (type != NL80211_IFTYPE_AP)
1168 			rtl92de_set_check_bssid(hw, true);
1169 	} else {
1170 		rtl92de_set_check_bssid(hw, false);
1171 	}
1172 	return 0;
1173 }
1174 
1175 /* do iqk or reload iqk */
1176 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1177  * but it's very strict for time sequence so we add
1178  * rtl92d_phy_reload_iqk_setting here */
1179 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1180 {
1181 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1182 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1183 	u8 indexforchannel;
1184 	u8 channel = rtlphy->current_channel;
1185 
1186 	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1187 	if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1188 		RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1189 			 "Do IQK for channel:%d\n", channel);
1190 		rtl92d_phy_iq_calibrate(hw);
1191 	}
1192 }
1193 
1194 /* don't set REG_EDCA_BE_PARAM here because
1195  * mac80211 will send pkt when scan */
1196 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1197 {
1198 	rtl92d_dm_init_edca_turbo(hw);
1199 }
1200 
1201 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1202 {
1203 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1204 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1205 
1206 	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1207 	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1208 }
1209 
1210 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1211 {
1212 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1213 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1214 
1215 	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1216 	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1217 	synchronize_irq(rtlpci->pdev->irq);
1218 }
1219 
1220 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1221 {
1222 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1223 	u8 u1b_tmp;
1224 	unsigned long flags;
1225 
1226 	rtlpriv->intf_ops->enable_aspm(hw);
1227 	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1228 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1229 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1230 
1231 	/* 0x20:value 05-->04 */
1232 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1233 
1234 	/*  ==== Reset digital sequence   ====== */
1235 	rtl92d_firmware_selfreset(hw);
1236 
1237 	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1238 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1239 
1240 	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1241 	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1242 
1243 	/*  ==== Pull GPIO PIN to balance level and LED control ====== */
1244 
1245 	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
1246 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1247 
1248 	/* i.    Value = GPIO_PIN_CTRL[7:0] */
1249 	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1250 
1251 	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1252 	/* write external PIN level  */
1253 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1254 			0x00FF0000 | (u1b_tmp << 8));
1255 
1256 	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1257 	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1258 
1259 	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
1260 	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1261 
1262 	/*  ==== Disable analog sequence === */
1263 
1264 	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
1265 	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1266 
1267 	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
1268 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1269 
1270 	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
1271 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1272 
1273 	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1274 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1275 
1276 	/*  ==== interface into suspend === */
1277 
1278 	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1279 	/* According to power document V11, we need to set this */
1280 	/* value as 0x18. Otherwise, we may not L0s sometimes. */
1281 	/* This indluences power consumption. Bases on SD1's test, */
1282 	/* set as 0x00 do not affect power current. And if it */
1283 	/* is set as 0x18, they had ever met auto load fail problem. */
1284 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1285 
1286 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1287 		 "In PowerOff,reg0x%x=%X\n",
1288 		 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1289 	/* r.   Note: for PCIe interface, PON will not turn */
1290 	/* off m-bias and BandGap in PCIe suspend mode.  */
1291 
1292 	/* 0x17[7] 1b': power off in process  0b' : power off over */
1293 	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1294 		spin_lock_irqsave(&globalmutex_power, flags);
1295 		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1296 		u1b_tmp &= (~BIT(7));
1297 		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1298 		spin_unlock_irqrestore(&globalmutex_power, flags);
1299 	}
1300 
1301 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1302 }
1303 
1304 void rtl92de_card_disable(struct ieee80211_hw *hw)
1305 {
1306 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1307 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1308 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1309 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1310 	enum nl80211_iftype opmode;
1311 
1312 	mac->link_state = MAC80211_NOLINK;
1313 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1314 	_rtl92de_set_media_status(hw, opmode);
1315 
1316 	if (rtlpci->driver_is_goingto_unload ||
1317 	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1318 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1319 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1320 	/* Power sequence for each MAC. */
1321 	/* a. stop tx DMA  */
1322 	/* b. close RF */
1323 	/* c. clear rx buf */
1324 	/* d. stop rx DMA */
1325 	/* e.  reset MAC */
1326 
1327 	/* a. stop tx DMA */
1328 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1329 	udelay(50);
1330 
1331 	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1332 
1333 	/* c. ========RF OFF sequence==========  */
1334 	/* 0x88c[23:20] = 0xf. */
1335 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1336 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1337 
1338 	/* APSD_CTRL 0x600[7:0] = 0x40 */
1339 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1340 
1341 	/* Close antenna 0,0xc04,0xd04 */
1342 	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1343 	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1344 
1345 	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
1346 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1347 
1348 	/* Mac0 can not do Global reset. Mac1 can do. */
1349 	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
1350 	if (rtlpriv->rtlhal.interfaceindex == 1)
1351 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1352 	udelay(50);
1353 
1354 	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
1355 	/* dma hang issue when disable/enable device.  */
1356 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1357 	udelay(50);
1358 	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1359 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1360 	if (rtl92d_phy_check_poweroff(hw))
1361 		_rtl92de_poweroff_adapter(hw);
1362 	return;
1363 }
1364 
1365 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1366 				  u32 *p_inta, u32 *p_intb)
1367 {
1368 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1369 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1370 
1371 	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1372 	rtl_write_dword(rtlpriv, ISR, *p_inta);
1373 
1374 	/*
1375 	 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
1376 	 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1377 	 */
1378 }
1379 
1380 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1381 {
1382 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1383 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1384 	u16 bcn_interval, atim_window;
1385 
1386 	bcn_interval = mac->beacon_interval;
1387 	atim_window = 2;
1388 	/*rtl92de_disable_interrupt(hw);  */
1389 	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1390 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1391 	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1392 	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1393 	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1394 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1395 	else
1396 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1397 	rtl_write_byte(rtlpriv, 0x606, 0x30);
1398 }
1399 
1400 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1401 {
1402 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1403 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1404 	u16 bcn_interval = mac->beacon_interval;
1405 
1406 	RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1407 		 "beacon_interval:%d\n", bcn_interval);
1408 	/* rtl92de_disable_interrupt(hw); */
1409 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1410 	/* rtl92de_enable_interrupt(hw); */
1411 }
1412 
1413 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1414 				   u32 add_msr, u32 rm_msr)
1415 {
1416 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1417 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1418 
1419 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1420 		 add_msr, rm_msr);
1421 	if (add_msr)
1422 		rtlpci->irq_mask[0] |= add_msr;
1423 	if (rm_msr)
1424 		rtlpci->irq_mask[0] &= (~rm_msr);
1425 	rtl92de_disable_interrupt(hw);
1426 	rtl92de_enable_interrupt(hw);
1427 }
1428 
1429 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1430 				 u8 *rom_content, bool autoLoadfail)
1431 {
1432 	u32 rfpath, eeaddr, group, offset1, offset2;
1433 	u8 i;
1434 
1435 	memset(pwrinfo, 0, sizeof(struct txpower_info));
1436 	if (autoLoadfail) {
1437 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1438 			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1439 				if (group < CHANNEL_GROUP_MAX_2G) {
1440 					pwrinfo->cck_index[rfpath][group] =
1441 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1442 					pwrinfo->ht40_1sindex[rfpath][group] =
1443 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1444 				} else {
1445 					pwrinfo->ht40_1sindex[rfpath][group] =
1446 					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1447 				}
1448 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1449 				    EEPROM_DEFAULT_HT40_2SDIFF;
1450 				pwrinfo->ht20indexdiff[rfpath][group] =
1451 				    EEPROM_DEFAULT_HT20_DIFF;
1452 				pwrinfo->ofdmindexdiff[rfpath][group] =
1453 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1454 				pwrinfo->ht40maxoffset[rfpath][group] =
1455 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1456 				pwrinfo->ht20maxoffset[rfpath][group] =
1457 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1458 			}
1459 		}
1460 		for (i = 0; i < 3; i++) {
1461 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1462 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1463 		}
1464 		return;
1465 	}
1466 
1467 	/* Maybe autoload OK,buf the tx power index value is not filled.
1468 	 * If we find it, we set it to default value. */
1469 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1470 		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1471 			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1472 				 + group;
1473 			pwrinfo->cck_index[rfpath][group] =
1474 					(rom_content[eeaddr] == 0xFF) ?
1475 					     (eeaddr > 0x7B ?
1476 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1477 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1478 					     rom_content[eeaddr];
1479 		}
1480 	}
1481 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1482 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1483 			offset1 = group / 3;
1484 			offset2 = group % 3;
1485 			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1486 			    offset2 + offset1 * 21;
1487 			pwrinfo->ht40_1sindex[rfpath][group] =
1488 			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1489 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1490 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1491 						 rom_content[eeaddr];
1492 		}
1493 	}
1494 	/* These just for 92D efuse offset. */
1495 	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1496 		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1497 			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1498 
1499 			offset1 = group / 3;
1500 			offset2 = group % 3;
1501 
1502 			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1503 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1504 				    (rom_content[base1 +
1505 				     offset2 + offset1 * 21] >> (rfpath * 4))
1506 				     & 0xF;
1507 			else
1508 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1509 				    EEPROM_DEFAULT_HT40_2SDIFF;
1510 			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1511 			    + offset1 * 21] != 0xFF)
1512 				pwrinfo->ht20indexdiff[rfpath][group] =
1513 				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1514 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1515 				    & 0xF;
1516 			else
1517 				pwrinfo->ht20indexdiff[rfpath][group] =
1518 				    EEPROM_DEFAULT_HT20_DIFF;
1519 			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1520 			    + offset1 * 21] != 0xFF)
1521 				pwrinfo->ofdmindexdiff[rfpath][group] =
1522 				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1523 				     + offset2 + offset1 * 21] >> (rfpath * 4))
1524 				     & 0xF;
1525 			else
1526 				pwrinfo->ofdmindexdiff[rfpath][group] =
1527 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1528 			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1529 			    + offset1 * 21] != 0xFF)
1530 				pwrinfo->ht40maxoffset[rfpath][group] =
1531 				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1532 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1533 				    & 0xF;
1534 			else
1535 				pwrinfo->ht40maxoffset[rfpath][group] =
1536 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1537 			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1538 			    + offset1 * 21] != 0xFF)
1539 				pwrinfo->ht20maxoffset[rfpath][group] =
1540 				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1541 				     offset2 + offset1 * 21] >> (rfpath * 4)) &
1542 				     0xF;
1543 			else
1544 				pwrinfo->ht20maxoffset[rfpath][group] =
1545 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1546 		}
1547 	}
1548 	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1549 		/* 5GL */
1550 		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1551 		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1552 		/* 5GM */
1553 		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1554 		pwrinfo->tssi_b[1] =
1555 		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1556 		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1557 		/* 5GH */
1558 		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1559 				      0xF0) >> 4 |
1560 		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1561 		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1562 				      0xFC) >> 2;
1563 	} else {
1564 		for (i = 0; i < 3; i++) {
1565 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1566 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1567 		}
1568 	}
1569 }
1570 
1571 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1572 				       bool autoload_fail, u8 *hwinfo)
1573 {
1574 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1575 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1576 	struct txpower_info pwrinfo;
1577 	u8 tempval[2], i, pwr, diff;
1578 	u32 ch, rfPath, group;
1579 
1580 	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1581 	if (!autoload_fail) {
1582 		/* bit0~2 */
1583 		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1584 		rtlefuse->eeprom_thermalmeter =
1585 			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1586 		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1587 		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1588 		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1589 		rtlefuse->txpwr_fromeprom = true;
1590 		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1591 		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1592 			rtlefuse->internal_pa_5g[0] =
1593 				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1594 			rtlefuse->internal_pa_5g[1] =
1595 				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1596 			RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1597 				 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1598 				 rtlefuse->internal_pa_5g[0],
1599 				 rtlefuse->internal_pa_5g[1]);
1600 		}
1601 		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1602 		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1603 	} else {
1604 		rtlefuse->eeprom_regulatory = 0;
1605 		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1606 		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1607 		tempval[0] = tempval[1] = 3;
1608 	}
1609 
1610 	/* Use default value to fill parameters if
1611 	 * efuse is not filled on some place. */
1612 
1613 	/* ThermalMeter from EEPROM */
1614 	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1615 	    rtlefuse->eeprom_thermalmeter > 0x1c)
1616 		rtlefuse->eeprom_thermalmeter = 0x12;
1617 	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1618 
1619 	/* check XTAL_K */
1620 	if (rtlefuse->crystalcap == 0xFF)
1621 		rtlefuse->crystalcap = 0;
1622 	if (rtlefuse->eeprom_regulatory > 3)
1623 		rtlefuse->eeprom_regulatory = 0;
1624 
1625 	for (i = 0; i < 2; i++) {
1626 		switch (tempval[i]) {
1627 		case 0:
1628 			tempval[i] = 5;
1629 			break;
1630 		case 1:
1631 			tempval[i] = 4;
1632 			break;
1633 		case 2:
1634 			tempval[i] = 3;
1635 			break;
1636 		case 3:
1637 		default:
1638 			tempval[i] = 0;
1639 			break;
1640 		}
1641 	}
1642 
1643 	rtlefuse->delta_iqk = tempval[0];
1644 	if (tempval[1] > 0)
1645 		rtlefuse->delta_lck = tempval[1] - 1;
1646 	if (rtlefuse->eeprom_c9 == 0xFF)
1647 		rtlefuse->eeprom_c9 = 0x00;
1648 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1649 		 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1650 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1651 		 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1652 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1653 		 "CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1654 	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1655 		 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1656 		 rtlefuse->delta_iqk, rtlefuse->delta_lck);
1657 
1658 	for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
1659 		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1660 			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1661 			if (ch < CHANNEL_MAX_NUMBER_2G)
1662 				rtlefuse->txpwrlevel_cck[rfPath][ch] =
1663 				    pwrinfo.cck_index[rfPath][group];
1664 			rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
1665 				    pwrinfo.ht40_1sindex[rfPath][group];
1666 			rtlefuse->txpwr_ht20diff[rfPath][ch] =
1667 				    pwrinfo.ht20indexdiff[rfPath][group];
1668 			rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
1669 				    pwrinfo.ofdmindexdiff[rfPath][group];
1670 			rtlefuse->pwrgroup_ht20[rfPath][ch] =
1671 				    pwrinfo.ht20maxoffset[rfPath][group];
1672 			rtlefuse->pwrgroup_ht40[rfPath][ch] =
1673 				    pwrinfo.ht40maxoffset[rfPath][group];
1674 			pwr = pwrinfo.ht40_1sindex[rfPath][group];
1675 			diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
1676 			rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
1677 				    (pwr > diff) ? (pwr - diff) : 0;
1678 		}
1679 	}
1680 }
1681 
1682 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1683 					       u8 *content)
1684 {
1685 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1686 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1687 	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1688 
1689 	if (macphy_crvalue & BIT(3)) {
1690 		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1691 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1692 			 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1693 	} else {
1694 		rtlhal->macphymode = DUALMAC_DUALPHY;
1695 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1696 			 "MacPhyMode DUALMAC_DUALPHY\n");
1697 	}
1698 }
1699 
1700 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1701 						  u8 *content)
1702 {
1703 	_rtl92de_read_macphymode_from_prom(hw, content);
1704 	rtl92d_phy_config_macphymode(hw);
1705 	rtl92d_phy_config_macphymode_info(hw);
1706 }
1707 
1708 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1709 {
1710 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1711 	enum version_8192d chipver = rtlpriv->rtlhal.version;
1712 	u8 cutvalue[2];
1713 	u16 chipvalue;
1714 
1715 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1716 					   &cutvalue[1]);
1717 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1718 					   &cutvalue[0]);
1719 	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1720 	switch (chipvalue) {
1721 	case 0xAA55:
1722 		chipver |= CHIP_92D_C_CUT;
1723 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1724 		break;
1725 	case 0x9966:
1726 		chipver |= CHIP_92D_D_CUT;
1727 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1728 		break;
1729 	case 0xCC33:
1730 		chipver |= CHIP_92D_E_CUT;
1731 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1732 		break;
1733 	default:
1734 		chipver |= CHIP_92D_D_CUT;
1735 		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unknown CUT!\n");
1736 		break;
1737 	}
1738 	rtlpriv->rtlhal.version = chipver;
1739 }
1740 
1741 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1742 {
1743 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1744 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1745 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1746 	int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
1747 			EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
1748 			EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
1749 			COUNTRY_CODE_WORLD_WIDE_13};
1750 	int i;
1751 	u16 usvalue;
1752 	u8 *hwinfo;
1753 
1754 	hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
1755 	if (!hwinfo)
1756 		return;
1757 
1758 	if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
1759 		goto exit;
1760 
1761 	_rtl92de_efuse_update_chip_version(hw);
1762 	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1763 
1764 	/* Read Permanent MAC address for 2nd interface */
1765 	if (rtlhal->interfaceindex != 0) {
1766 		for (i = 0; i < 6; i += 2) {
1767 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1768 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1769 		}
1770 	}
1771 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1772 				      rtlefuse->dev_addr);
1773 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1774 	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1775 
1776 	/* Read Channel Plan */
1777 	switch (rtlhal->bandset) {
1778 	case BAND_ON_2_4G:
1779 		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1780 		break;
1781 	case BAND_ON_5G:
1782 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1783 		break;
1784 	case BAND_ON_BOTH:
1785 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1786 		break;
1787 	default:
1788 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1789 		break;
1790 	}
1791 	rtlefuse->txpwr_fromeprom = true;
1792 exit:
1793 	kfree(hwinfo);
1794 }
1795 
1796 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1797 {
1798 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1799 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1800 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1801 	u8 tmp_u1b;
1802 
1803 	rtlhal->version = _rtl92de_read_chip_version(hw);
1804 	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1805 	rtlefuse->autoload_status = tmp_u1b;
1806 	if (tmp_u1b & BIT(4)) {
1807 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1808 		rtlefuse->epromtype = EEPROM_93C46;
1809 	} else {
1810 		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1811 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1812 	}
1813 	if (tmp_u1b & BIT(5)) {
1814 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1815 
1816 		rtlefuse->autoload_failflag = false;
1817 		_rtl92de_read_adapter_info(hw);
1818 	} else {
1819 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
1820 	}
1821 	return;
1822 }
1823 
1824 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1825 					  struct ieee80211_sta *sta)
1826 {
1827 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1828 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1829 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1830 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1831 	u32 ratr_value;
1832 	u8 ratr_index = 0;
1833 	u8 nmode = mac->ht_enable;
1834 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1835 	u16 shortgi_rate;
1836 	u32 tmp_ratr_value;
1837 	u8 curtxbw_40mhz = mac->bw_40;
1838 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1839 							1 : 0;
1840 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1841 							1 : 0;
1842 	enum wireless_mode wirelessmode = mac->mode;
1843 
1844 	if (rtlhal->current_bandtype == BAND_ON_5G)
1845 		ratr_value = sta->supp_rates[1] << 4;
1846 	else
1847 		ratr_value = sta->supp_rates[0];
1848 	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1849 		       sta->ht_cap.mcs.rx_mask[0] << 12);
1850 	switch (wirelessmode) {
1851 	case WIRELESS_MODE_A:
1852 		ratr_value &= 0x00000FF0;
1853 		break;
1854 	case WIRELESS_MODE_B:
1855 		if (ratr_value & 0x0000000c)
1856 			ratr_value &= 0x0000000d;
1857 		else
1858 			ratr_value &= 0x0000000f;
1859 		break;
1860 	case WIRELESS_MODE_G:
1861 		ratr_value &= 0x00000FF5;
1862 		break;
1863 	case WIRELESS_MODE_N_24G:
1864 	case WIRELESS_MODE_N_5G:
1865 		nmode = 1;
1866 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1867 			ratr_value &= 0x0007F005;
1868 		} else {
1869 			u32 ratr_mask;
1870 
1871 			if (get_rf_type(rtlphy) == RF_1T2R ||
1872 			    get_rf_type(rtlphy) == RF_1T1R) {
1873 				ratr_mask = 0x000ff005;
1874 			} else {
1875 				ratr_mask = 0x0f0ff005;
1876 			}
1877 
1878 			ratr_value &= ratr_mask;
1879 		}
1880 		break;
1881 	default:
1882 		if (rtlphy->rf_type == RF_1T2R)
1883 			ratr_value &= 0x000ff0ff;
1884 		else
1885 			ratr_value &= 0x0f0ff0ff;
1886 
1887 		break;
1888 	}
1889 	ratr_value &= 0x0FFFFFFF;
1890 	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1891 	    (!curtxbw_40mhz && curshortgi_20mhz))) {
1892 		ratr_value |= 0x10000000;
1893 		tmp_ratr_value = (ratr_value >> 12);
1894 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1895 			if ((1 << shortgi_rate) & tmp_ratr_value)
1896 				break;
1897 		}
1898 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1899 		    (shortgi_rate << 4) | (shortgi_rate);
1900 	}
1901 	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1902 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1903 		 rtl_read_dword(rtlpriv, REG_ARFR0));
1904 }
1905 
1906 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1907 		struct ieee80211_sta *sta, u8 rssi_level)
1908 {
1909 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1910 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1911 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1912 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1913 	struct rtl_sta_info *sta_entry = NULL;
1914 	u32 ratr_bitmap;
1915 	u8 ratr_index;
1916 	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1917 	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1918 							1 : 0;
1919 	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1920 							1 : 0;
1921 	enum wireless_mode wirelessmode = 0;
1922 	bool shortgi = false;
1923 	u32 value[2];
1924 	u8 macid = 0;
1925 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1926 
1927 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1928 	mimo_ps = sta_entry->mimo_ps;
1929 	wirelessmode = sta_entry->wireless_mode;
1930 	if (mac->opmode == NL80211_IFTYPE_STATION)
1931 		curtxbw_40mhz = mac->bw_40;
1932 	else if (mac->opmode == NL80211_IFTYPE_AP ||
1933 		mac->opmode == NL80211_IFTYPE_ADHOC)
1934 		macid = sta->aid + 1;
1935 
1936 	if (rtlhal->current_bandtype == BAND_ON_5G)
1937 		ratr_bitmap = sta->supp_rates[1] << 4;
1938 	else
1939 		ratr_bitmap = sta->supp_rates[0];
1940 	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1941 			sta->ht_cap.mcs.rx_mask[0] << 12);
1942 	switch (wirelessmode) {
1943 	case WIRELESS_MODE_B:
1944 		ratr_index = RATR_INX_WIRELESS_B;
1945 		if (ratr_bitmap & 0x0000000c)
1946 			ratr_bitmap &= 0x0000000d;
1947 		else
1948 			ratr_bitmap &= 0x0000000f;
1949 		break;
1950 	case WIRELESS_MODE_G:
1951 		ratr_index = RATR_INX_WIRELESS_GB;
1952 
1953 		if (rssi_level == 1)
1954 			ratr_bitmap &= 0x00000f00;
1955 		else if (rssi_level == 2)
1956 			ratr_bitmap &= 0x00000ff0;
1957 		else
1958 			ratr_bitmap &= 0x00000ff5;
1959 		break;
1960 	case WIRELESS_MODE_A:
1961 		ratr_index = RATR_INX_WIRELESS_G;
1962 		ratr_bitmap &= 0x00000ff0;
1963 		break;
1964 	case WIRELESS_MODE_N_24G:
1965 	case WIRELESS_MODE_N_5G:
1966 		if (wirelessmode == WIRELESS_MODE_N_24G)
1967 			ratr_index = RATR_INX_WIRELESS_NGB;
1968 		else
1969 			ratr_index = RATR_INX_WIRELESS_NG;
1970 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1971 			if (rssi_level == 1)
1972 				ratr_bitmap &= 0x00070000;
1973 			else if (rssi_level == 2)
1974 				ratr_bitmap &= 0x0007f000;
1975 			else
1976 				ratr_bitmap &= 0x0007f005;
1977 		} else {
1978 			if (rtlphy->rf_type == RF_1T2R ||
1979 			    rtlphy->rf_type == RF_1T1R) {
1980 				if (curtxbw_40mhz) {
1981 					if (rssi_level == 1)
1982 						ratr_bitmap &= 0x000f0000;
1983 					else if (rssi_level == 2)
1984 						ratr_bitmap &= 0x000ff000;
1985 					else
1986 						ratr_bitmap &= 0x000ff015;
1987 				} else {
1988 					if (rssi_level == 1)
1989 						ratr_bitmap &= 0x000f0000;
1990 					else if (rssi_level == 2)
1991 						ratr_bitmap &= 0x000ff000;
1992 					else
1993 						ratr_bitmap &= 0x000ff005;
1994 				}
1995 			} else {
1996 				if (curtxbw_40mhz) {
1997 					if (rssi_level == 1)
1998 						ratr_bitmap &= 0x0f0f0000;
1999 					else if (rssi_level == 2)
2000 						ratr_bitmap &= 0x0f0ff000;
2001 					else
2002 						ratr_bitmap &= 0x0f0ff015;
2003 				} else {
2004 					if (rssi_level == 1)
2005 						ratr_bitmap &= 0x0f0f0000;
2006 					else if (rssi_level == 2)
2007 						ratr_bitmap &= 0x0f0ff000;
2008 					else
2009 						ratr_bitmap &= 0x0f0ff005;
2010 				}
2011 			}
2012 		}
2013 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2014 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2015 
2016 			if (macid == 0)
2017 				shortgi = true;
2018 			else if (macid == 1)
2019 				shortgi = false;
2020 		}
2021 		break;
2022 	default:
2023 		ratr_index = RATR_INX_WIRELESS_NGB;
2024 
2025 		if (rtlphy->rf_type == RF_1T2R)
2026 			ratr_bitmap &= 0x000ff0ff;
2027 		else
2028 			ratr_bitmap &= 0x0f0ff0ff;
2029 		break;
2030 	}
2031 
2032 	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
2033 	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
2034 	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2035 		 "ratr_bitmap :%x value0:%x value1:%x\n",
2036 		 ratr_bitmap, value[0], value[1]);
2037 	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
2038 	if (macid != 0)
2039 		sta_entry->ratr_index = ratr_index;
2040 }
2041 
2042 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2043 		struct ieee80211_sta *sta, u8 rssi_level)
2044 {
2045 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2046 
2047 	if (rtlpriv->dm.useramask)
2048 		rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
2049 	else
2050 		rtl92de_update_hal_rate_table(hw, sta);
2051 }
2052 
2053 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2054 {
2055 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2056 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2057 	u16 sifs_timer;
2058 
2059 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2060 				      &mac->slot_time);
2061 	if (!mac->ht_enable)
2062 		sifs_timer = 0x0a0a;
2063 	else
2064 		sifs_timer = 0x1010;
2065 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2066 }
2067 
2068 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2069 {
2070 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2071 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2072 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2073 	enum rf_pwrstate e_rfpowerstate_toset;
2074 	u8 u1tmp;
2075 	bool actuallyset = false;
2076 	unsigned long flag;
2077 
2078 	if (rtlpci->being_init_adapter)
2079 		return false;
2080 	if (ppsc->swrf_processing)
2081 		return false;
2082 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2083 	if (ppsc->rfchange_inprogress) {
2084 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2085 		return false;
2086 	} else {
2087 		ppsc->rfchange_inprogress = true;
2088 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2089 	}
2090 	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2091 			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2092 	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2093 	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2094 	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2095 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2096 			 "GPIOChangeRF  - HW Radio ON, RF ON\n");
2097 		e_rfpowerstate_toset = ERFON;
2098 		ppsc->hwradiooff = false;
2099 		actuallyset = true;
2100 	} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2101 		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2102 			 "GPIOChangeRF  - HW Radio OFF, RF OFF\n");
2103 		e_rfpowerstate_toset = ERFOFF;
2104 		ppsc->hwradiooff = true;
2105 		actuallyset = true;
2106 	}
2107 	if (actuallyset) {
2108 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2109 		ppsc->rfchange_inprogress = false;
2110 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2111 	} else {
2112 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2113 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2114 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2115 		ppsc->rfchange_inprogress = false;
2116 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2117 	}
2118 	*valid = 1;
2119 	return !ppsc->hwradiooff;
2120 }
2121 
2122 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2123 		     u8 *p_macaddr, bool is_group, u8 enc_algo,
2124 		     bool is_wepkey, bool clear_all)
2125 {
2126 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2127 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2128 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2129 	u8 *macaddr = p_macaddr;
2130 	u32 entry_id;
2131 	bool is_pairwise = false;
2132 	static u8 cam_const_addr[4][6] = {
2133 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2134 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2135 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2136 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2137 	};
2138 	static u8 cam_const_broad[] = {
2139 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2140 	};
2141 
2142 	if (clear_all) {
2143 		u8 idx;
2144 		u8 cam_offset = 0;
2145 		u8 clear_number = 5;
2146 		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2147 		for (idx = 0; idx < clear_number; idx++) {
2148 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2149 			rtl_cam_empty_entry(hw, cam_offset + idx);
2150 
2151 			if (idx < 5) {
2152 				memset(rtlpriv->sec.key_buf[idx], 0,
2153 				       MAX_KEY_LEN);
2154 				rtlpriv->sec.key_len[idx] = 0;
2155 			}
2156 		}
2157 	} else {
2158 		switch (enc_algo) {
2159 		case WEP40_ENCRYPTION:
2160 			enc_algo = CAM_WEP40;
2161 			break;
2162 		case WEP104_ENCRYPTION:
2163 			enc_algo = CAM_WEP104;
2164 			break;
2165 		case TKIP_ENCRYPTION:
2166 			enc_algo = CAM_TKIP;
2167 			break;
2168 		case AESCCMP_ENCRYPTION:
2169 			enc_algo = CAM_AES;
2170 			break;
2171 		default:
2172 			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2173 				 "switch case %#x not processed\n", enc_algo);
2174 			enc_algo = CAM_TKIP;
2175 			break;
2176 		}
2177 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2178 			macaddr = cam_const_addr[key_index];
2179 			entry_id = key_index;
2180 		} else {
2181 			if (is_group) {
2182 				macaddr = cam_const_broad;
2183 				entry_id = key_index;
2184 			} else {
2185 				if (mac->opmode == NL80211_IFTYPE_AP) {
2186 					entry_id = rtl_cam_get_free_entry(hw,
2187 								 p_macaddr);
2188 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2189 						RT_TRACE(rtlpriv, COMP_SEC,
2190 							 DBG_EMERG,
2191 							 "Can not find free hw security cam entry\n");
2192 						return;
2193 					}
2194 				} else {
2195 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2196 				}
2197 				key_index = PAIRWISE_KEYIDX;
2198 				is_pairwise = true;
2199 			}
2200 		}
2201 		if (rtlpriv->sec.key_len[key_index] == 0) {
2202 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2203 				 "delete one entry, entry_id is %d\n",
2204 				 entry_id);
2205 			if (mac->opmode == NL80211_IFTYPE_AP)
2206 				rtl_cam_del_entry(hw, p_macaddr);
2207 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2208 		} else {
2209 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2210 				 "The insert KEY length is %d\n",
2211 				 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2212 			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2213 				 "The insert KEY is %x %x\n",
2214 				 rtlpriv->sec.key_buf[0][0],
2215 				 rtlpriv->sec.key_buf[0][1]);
2216 			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2217 				 "add one entry\n");
2218 			if (is_pairwise) {
2219 				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2220 					      "Pairwise Key content",
2221 					      rtlpriv->sec.pairwise_key,
2222 					      rtlpriv->
2223 					      sec.key_len[PAIRWISE_KEYIDX]);
2224 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2225 					 "set Pairwise key\n");
2226 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2227 						      entry_id, enc_algo,
2228 						      CAM_CONFIG_NO_USEDK,
2229 						      rtlpriv->
2230 						      sec.key_buf[key_index]);
2231 			} else {
2232 				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2233 					 "set group key\n");
2234 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2235 					rtl_cam_add_one_entry(hw,
2236 						rtlefuse->dev_addr,
2237 						PAIRWISE_KEYIDX,
2238 						CAM_PAIRWISE_KEY_POSITION,
2239 						enc_algo, CAM_CONFIG_NO_USEDK,
2240 						rtlpriv->sec.key_buf[entry_id]);
2241 				}
2242 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2243 						entry_id, enc_algo,
2244 						CAM_CONFIG_NO_USEDK,
2245 						rtlpriv->sec.key_buf
2246 						[entry_id]);
2247 			}
2248 		}
2249 	}
2250 }
2251 
2252 void rtl92de_suspend(struct ieee80211_hw *hw)
2253 {
2254 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2255 
2256 	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2257 		REG_MAC_PHY_CTRL_NORMAL);
2258 }
2259 
2260 void rtl92de_resume(struct ieee80211_hw *hw)
2261 {
2262 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2263 
2264 	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2265 		       rtlpriv->rtlhal.macphyctl_reg);
2266 }
2267