xref: /openbmc/linux/drivers/net/wireless/realtek/rtlwifi/rtl8192de/hw.c (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009-2012  Realtek Corporation.*/
3 
4 #include "../wifi.h"
5 #include "../efuse.h"
6 #include "../base.h"
7 #include "../regd.h"
8 #include "../cam.h"
9 #include "../ps.h"
10 #include "../pci.h"
11 #include "reg.h"
12 #include "def.h"
13 #include "phy.h"
14 #include "dm.h"
15 #include "fw.h"
16 #include "led.h"
17 #include "sw.h"
18 #include "hw.h"
19 
20 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
21 {
22 	struct rtl_priv *rtlpriv = rtl_priv(hw);
23 	u32 value;
24 
25 	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
26 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
27 	udelay(10);
28 	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
29 	return value;
30 }
31 
32 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
33 			     u16 offset, u32 value, u8 direct)
34 {
35 	struct rtl_priv *rtlpriv = rtl_priv(hw);
36 
37 	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
38 	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
39 	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
40 }
41 
42 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
43 				      u8 set_bits, u8 clear_bits)
44 {
45 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
46 	struct rtl_priv *rtlpriv = rtl_priv(hw);
47 
48 	rtlpci->reg_bcn_ctrl_val |= set_bits;
49 	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
50 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
51 }
52 
53 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
54 {
55 	struct rtl_priv *rtlpriv = rtl_priv(hw);
56 	u8 tmp1byte;
57 
58 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
59 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
60 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
61 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
62 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
63 	tmp1byte &= ~(BIT(0));
64 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
65 }
66 
67 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
68 {
69 	struct rtl_priv *rtlpriv = rtl_priv(hw);
70 	u8 tmp1byte;
71 
72 	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
73 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
74 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
75 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
76 	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
77 	tmp1byte |= BIT(0);
78 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
79 }
80 
81 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
82 {
83 	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
84 }
85 
86 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
87 {
88 	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
89 }
90 
91 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
92 {
93 	struct rtl_priv *rtlpriv = rtl_priv(hw);
94 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
95 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
96 
97 	switch (variable) {
98 	case HW_VAR_RCR:
99 		*((u32 *) (val)) = rtlpci->receive_config;
100 		break;
101 	case HW_VAR_RF_STATE:
102 		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
103 		break;
104 	case HW_VAR_FWLPS_RF_ON:{
105 		enum rf_pwrstate rfstate;
106 		u32 val_rcr;
107 
108 		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
109 					      (u8 *)(&rfstate));
110 		if (rfstate == ERFOFF) {
111 			*((bool *) (val)) = true;
112 		} else {
113 			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
114 			val_rcr &= 0x00070000;
115 			if (val_rcr)
116 				*((bool *) (val)) = false;
117 			else
118 				*((bool *) (val)) = true;
119 		}
120 		break;
121 	}
122 	case HW_VAR_FW_PSMODE_STATUS:
123 		*((bool *) (val)) = ppsc->fw_current_inpsmode;
124 		break;
125 	case HW_VAR_CORRECT_TSF:{
126 		u64 tsf;
127 		u32 *ptsf_low = (u32 *)&tsf;
128 		u32 *ptsf_high = ((u32 *)&tsf) + 1;
129 
130 		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
131 		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
132 		*((u64 *) (val)) = tsf;
133 		break;
134 	}
135 	case HW_VAR_INT_MIGRATION:
136 		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
137 		break;
138 	case HW_VAR_INT_AC:
139 		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
140 		break;
141 	case HAL_DEF_WOWLAN:
142 		break;
143 	default:
144 		pr_err("switch case %#x not processed\n", variable);
145 		break;
146 	}
147 }
148 
149 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
150 {
151 	struct rtl_priv *rtlpriv = rtl_priv(hw);
152 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
153 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
154 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
155 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
156 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
157 	u8 idx;
158 
159 	switch (variable) {
160 	case HW_VAR_ETHER_ADDR:
161 		for (idx = 0; idx < ETH_ALEN; idx++) {
162 			rtl_write_byte(rtlpriv, (REG_MACID + idx),
163 				       val[idx]);
164 		}
165 		break;
166 	case HW_VAR_BASIC_RATE: {
167 		u16 rate_cfg = ((u16 *) val)[0];
168 		u8 rate_index = 0;
169 
170 		rate_cfg = rate_cfg & 0x15f;
171 		if (mac->vendor == PEER_CISCO &&
172 		    ((rate_cfg & 0x150) == 0))
173 			rate_cfg |= 0x01;
174 		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
175 		rtl_write_byte(rtlpriv, REG_RRSR + 1,
176 			       (rate_cfg >> 8) & 0xff);
177 		while (rate_cfg > 0x1) {
178 			rate_cfg = (rate_cfg >> 1);
179 			rate_index++;
180 		}
181 		if (rtlhal->fw_version > 0xe)
182 			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
183 				       rate_index);
184 		break;
185 	}
186 	case HW_VAR_BSSID:
187 		for (idx = 0; idx < ETH_ALEN; idx++) {
188 			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
189 				       val[idx]);
190 		}
191 		break;
192 	case HW_VAR_SIFS:
193 		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
194 		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
195 		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
196 		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
197 		if (!mac->ht_enable)
198 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
199 				       0x0e0e);
200 		else
201 			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
202 				       *((u16 *) val));
203 		break;
204 	case HW_VAR_SLOT_TIME: {
205 		u8 e_aci;
206 
207 		rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
208 			"HW_VAR_SLOT_TIME %x\n", val[0]);
209 		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
210 		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
211 			rtlpriv->cfg->ops->set_hw_reg(hw,
212 						      HW_VAR_AC_PARAM,
213 						      (&e_aci));
214 		break;
215 	}
216 	case HW_VAR_ACK_PREAMBLE: {
217 		u8 reg_tmp;
218 		u8 short_preamble = (bool) (*val);
219 
220 		reg_tmp = (mac->cur_40_prime_sc) << 5;
221 		if (short_preamble)
222 			reg_tmp |= 0x80;
223 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
224 		break;
225 	}
226 	case HW_VAR_AMPDU_MIN_SPACE: {
227 		u8 min_spacing_to_set;
228 		u8 sec_min_space;
229 
230 		min_spacing_to_set = *val;
231 		if (min_spacing_to_set <= 7) {
232 			sec_min_space = 0;
233 			if (min_spacing_to_set < sec_min_space)
234 				min_spacing_to_set = sec_min_space;
235 			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
236 					      min_spacing_to_set);
237 			*val = min_spacing_to_set;
238 			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
239 				"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
240 				mac->min_space_cfg);
241 			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
242 				       mac->min_space_cfg);
243 		}
244 		break;
245 	}
246 	case HW_VAR_SHORTGI_DENSITY: {
247 		u8 density_to_set;
248 
249 		density_to_set = *val;
250 		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
251 		mac->min_space_cfg |= (density_to_set << 3);
252 		rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
253 			"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
254 			mac->min_space_cfg);
255 		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
256 			       mac->min_space_cfg);
257 		break;
258 	}
259 	case HW_VAR_AMPDU_FACTOR: {
260 		u8 factor_toset;
261 		u32 regtoset;
262 		u8 *ptmp_byte = NULL;
263 		u8 index;
264 
265 		if (rtlhal->macphymode == DUALMAC_DUALPHY)
266 			regtoset = 0xb9726641;
267 		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
268 			regtoset = 0x66626641;
269 		else
270 			regtoset = 0xb972a841;
271 		factor_toset = *val;
272 		if (factor_toset <= 3) {
273 			factor_toset = (1 << (factor_toset + 2));
274 			if (factor_toset > 0xf)
275 				factor_toset = 0xf;
276 			for (index = 0; index < 4; index++) {
277 				ptmp_byte = (u8 *)(&regtoset) + index;
278 				if ((*ptmp_byte & 0xf0) >
279 				    (factor_toset << 4))
280 					*ptmp_byte = (*ptmp_byte & 0x0f)
281 						 | (factor_toset << 4);
282 				if ((*ptmp_byte & 0x0f) > factor_toset)
283 					*ptmp_byte = (*ptmp_byte & 0xf0)
284 						     | (factor_toset);
285 			}
286 			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoset);
287 			rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
288 				"Set HW_VAR_AMPDU_FACTOR: %#x\n",
289 				factor_toset);
290 		}
291 		break;
292 	}
293 	case HW_VAR_AC_PARAM: {
294 		u8 e_aci = *val;
295 		rtl92d_dm_init_edca_turbo(hw);
296 		if (rtlpci->acm_method != EACMWAY2_SW)
297 			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
298 						      &e_aci);
299 		break;
300 	}
301 	case HW_VAR_ACM_CTRL: {
302 		u8 e_aci = *val;
303 		union aci_aifsn *p_aci_aifsn =
304 		    (union aci_aifsn *)(&(mac->ac[0].aifs));
305 		u8 acm = p_aci_aifsn->f.acm;
306 		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
307 
308 		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
309 		if (acm) {
310 			switch (e_aci) {
311 			case AC0_BE:
312 				acm_ctrl |= ACMHW_BEQEN;
313 				break;
314 			case AC2_VI:
315 				acm_ctrl |= ACMHW_VIQEN;
316 				break;
317 			case AC3_VO:
318 				acm_ctrl |= ACMHW_VOQEN;
319 				break;
320 			default:
321 				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
322 					"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
323 					acm);
324 				break;
325 			}
326 		} else {
327 			switch (e_aci) {
328 			case AC0_BE:
329 				acm_ctrl &= (~ACMHW_BEQEN);
330 				break;
331 			case AC2_VI:
332 				acm_ctrl &= (~ACMHW_VIQEN);
333 				break;
334 			case AC3_VO:
335 				acm_ctrl &= (~ACMHW_VOQEN);
336 				break;
337 			default:
338 				pr_err("switch case %#x not processed\n",
339 				       e_aci);
340 				break;
341 			}
342 		}
343 		rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
344 			"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
345 			acm_ctrl);
346 		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
347 		break;
348 	}
349 	case HW_VAR_RCR:
350 		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
351 		rtlpci->receive_config = ((u32 *) (val))[0];
352 		break;
353 	case HW_VAR_RETRY_LIMIT: {
354 		u8 retry_limit = val[0];
355 
356 		rtl_write_word(rtlpriv, REG_RL,
357 			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
358 			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
359 		break;
360 	}
361 	case HW_VAR_DUAL_TSF_RST:
362 		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
363 		break;
364 	case HW_VAR_EFUSE_BYTES:
365 		rtlefuse->efuse_usedbytes = *((u16 *) val);
366 		break;
367 	case HW_VAR_EFUSE_USAGE:
368 		rtlefuse->efuse_usedpercentage = *val;
369 		break;
370 	case HW_VAR_IO_CMD:
371 		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
372 		break;
373 	case HW_VAR_WPA_CONFIG:
374 		rtl_write_byte(rtlpriv, REG_SECCFG, *val);
375 		break;
376 	case HW_VAR_SET_RPWM:
377 		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
378 		break;
379 	case HW_VAR_H2C_FW_PWRMODE:
380 		break;
381 	case HW_VAR_FW_PSMODE_STATUS:
382 		ppsc->fw_current_inpsmode = *((bool *) val);
383 		break;
384 	case HW_VAR_H2C_FW_JOINBSSRPT: {
385 		u8 mstatus = (*val);
386 		u8 tmp_regcr, tmp_reg422;
387 		bool recover = false;
388 
389 		if (mstatus == RT_MEDIA_CONNECT) {
390 			rtlpriv->cfg->ops->set_hw_reg(hw,
391 						      HW_VAR_AID, NULL);
392 			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
393 			rtl_write_byte(rtlpriv, REG_CR + 1,
394 				       (tmp_regcr | BIT(0)));
395 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
396 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
397 			tmp_reg422 = rtl_read_byte(rtlpriv,
398 						 REG_FWHW_TXQ_CTRL + 2);
399 			if (tmp_reg422 & BIT(6))
400 				recover = true;
401 			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
402 				       tmp_reg422 & (~BIT(6)));
403 			rtl92d_set_fw_rsvdpagepkt(hw, 0);
404 			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
405 			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
406 			if (recover)
407 				rtl_write_byte(rtlpriv,
408 					       REG_FWHW_TXQ_CTRL + 2,
409 					       tmp_reg422);
410 			rtl_write_byte(rtlpriv, REG_CR + 1,
411 				       (tmp_regcr & ~(BIT(0))));
412 		}
413 		rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
414 		break;
415 	}
416 	case HW_VAR_AID: {
417 		u16 u2btmp;
418 		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
419 		u2btmp &= 0xC000;
420 		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
421 			       mac->assoc_id));
422 		break;
423 	}
424 	case HW_VAR_CORRECT_TSF: {
425 		u8 btype_ibss = val[0];
426 
427 		if (btype_ibss)
428 			_rtl92de_stop_tx_beacon(hw);
429 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
430 		rtl_write_dword(rtlpriv, REG_TSFTR,
431 				(u32) (mac->tsf & 0xffffffff));
432 		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
433 				(u32) ((mac->tsf >> 32) & 0xffffffff));
434 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
435 		if (btype_ibss)
436 			_rtl92de_resume_tx_beacon(hw);
437 
438 		break;
439 	}
440 	case HW_VAR_INT_MIGRATION: {
441 		bool int_migration = *(bool *) (val);
442 
443 		if (int_migration) {
444 			/* Set interrupt migration timer and
445 			 * corresponding Tx/Rx counter.
446 			 * timer 25ns*0xfa0=100us for 0xf packets.
447 			 * 0x306:Rx, 0x307:Tx */
448 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
449 			rtlpriv->dm.interrupt_migration = int_migration;
450 		} else {
451 			/* Reset all interrupt migration settings. */
452 			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
453 			rtlpriv->dm.interrupt_migration = int_migration;
454 		}
455 		break;
456 	}
457 	case HW_VAR_INT_AC: {
458 		bool disable_ac_int = *((bool *) val);
459 
460 		/* Disable four ACs interrupts. */
461 		if (disable_ac_int) {
462 			/* Disable VO, VI, BE and BK four AC interrupts
463 			 * to gain more efficient CPU utilization.
464 			 * When extremely highly Rx OK occurs,
465 			 * we will disable Tx interrupts.
466 			 */
467 			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
468 						 RT_AC_INT_MASKS);
469 			rtlpriv->dm.disable_tx_int = disable_ac_int;
470 		/* Enable four ACs interrupts. */
471 		} else {
472 			rtlpriv->cfg->ops->update_interrupt_mask(hw,
473 						 RT_AC_INT_MASKS, 0);
474 			rtlpriv->dm.disable_tx_int = disable_ac_int;
475 		}
476 		break;
477 	}
478 	default:
479 		pr_err("switch case %#x not processed\n", variable);
480 		break;
481 	}
482 }
483 
484 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
485 {
486 	struct rtl_priv *rtlpriv = rtl_priv(hw);
487 	bool status = true;
488 	long count = 0;
489 	u32 value = _LLT_INIT_ADDR(address) |
490 	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
491 
492 	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
493 	do {
494 		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
495 		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
496 			break;
497 		if (count > POLLING_LLT_THRESHOLD) {
498 			pr_err("Failed to polling write LLT done at address %d!\n",
499 			       address);
500 			status = false;
501 			break;
502 		}
503 	} while (++count);
504 	return status;
505 }
506 
507 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
508 {
509 	struct rtl_priv *rtlpriv = rtl_priv(hw);
510 	unsigned short i;
511 	u8 txpktbuf_bndy;
512 	u8 maxpage;
513 	bool status;
514 	u32 value32; /* High+low page number */
515 	u8 value8;	 /* normal page number */
516 
517 	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
518 		maxpage = 255;
519 		txpktbuf_bndy = 246;
520 		value8 = 0;
521 		value32 = 0x80bf0d29;
522 	} else {
523 		maxpage = 127;
524 		txpktbuf_bndy = 123;
525 		value8 = 0;
526 		value32 = 0x80750005;
527 	}
528 
529 	/* Set reserved page for each queue */
530 	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
531 	/* load RQPN */
532 	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
533 	rtl_write_dword(rtlpriv, REG_RQPN, value32);
534 
535 	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
536 	/* TXRKTBUG_PG_BNDY */
537 	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
538 			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
539 			txpktbuf_bndy));
540 
541 	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
542 	/* Beacon Head for TXDMA */
543 	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
544 
545 	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
546 	/* BCNQ_PGBNDY */
547 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
548 	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
549 
550 	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
551 	/* WMAC_LBK_BF_HD */
552 	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
553 
554 	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
555 	/* Rx can be 64,128,256,512,1024 bytes) */
556 	/* 16.  PBP [7:0] = 0x11 */
557 	/* TRX page size */
558 	rtl_write_byte(rtlpriv, REG_PBP, 0x11);
559 
560 	/* 17.  DRV_INFO_SZ = 0x04 */
561 	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
562 
563 	/* 18.  LLT_table_init(Adapter);  */
564 	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
565 		status = _rtl92de_llt_write(hw, i, i + 1);
566 		if (!status)
567 			return status;
568 	}
569 
570 	/* end of list */
571 	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
572 	if (!status)
573 		return status;
574 
575 	/* Make the other pages as ring buffer */
576 	/* This ring buffer is used as beacon buffer if we */
577 	/* config this MAC as two MAC transfer. */
578 	/* Otherwise used as local loopback buffer.  */
579 	for (i = txpktbuf_bndy; i < maxpage; i++) {
580 		status = _rtl92de_llt_write(hw, i, (i + 1));
581 		if (!status)
582 			return status;
583 	}
584 
585 	/* Let last entry point to the start entry of ring buffer */
586 	status = _rtl92de_llt_write(hw, maxpage, txpktbuf_bndy);
587 	if (!status)
588 		return status;
589 
590 	return true;
591 }
592 
593 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
594 {
595 	struct rtl_priv *rtlpriv = rtl_priv(hw);
596 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
597 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
598 	struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
599 
600 	if (rtlpci->up_first_time)
601 		return;
602 	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
603 		rtl92de_sw_led_on(hw, pled0);
604 	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
605 		rtl92de_sw_led_on(hw, pled0);
606 	else
607 		rtl92de_sw_led_off(hw, pled0);
608 }
609 
610 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
611 {
612 	struct rtl_priv *rtlpriv = rtl_priv(hw);
613 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
614 	unsigned char bytetmp;
615 	unsigned short wordtmp;
616 	u16 retry;
617 
618 	rtl92d_phy_set_poweron(hw);
619 	/* Add for resume sequence of power domain according
620 	 * to power document V11. Chapter V.11....  */
621 	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
622 	/* unlock ISO/CLK/Power control register */
623 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
624 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
625 
626 	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
627 	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
628 	/* 3.   delay (1ms) this is not necessary when initially power on */
629 
630 	/* C.   Resume Sequence */
631 	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
632 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
633 
634 	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
635 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
636 
637 	/* c.   DRV runs power on init flow */
638 
639 	/* auto enable WLAN */
640 	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
641 	/* Power On Reset for MAC Block */
642 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
643 	udelay(2);
644 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
645 	udelay(2);
646 
647 	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
648 	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
649 	udelay(50);
650 	retry = 0;
651 	while ((bytetmp & BIT(0)) && retry < 1000) {
652 		retry++;
653 		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
654 		udelay(50);
655 	}
656 
657 	/* Enable Radio off, GPIO, and LED function */
658 	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
659 	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
660 
661 	/* release RF digital isolation  */
662 	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
663 	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
664 	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
665 	udelay(2);
666 
667 	/* make sure that BB reset OK. */
668 	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
669 
670 	/* Disable REG_CR before enable it to assure reset */
671 	rtl_write_word(rtlpriv, REG_CR, 0x0);
672 
673 	/* Release MAC IO register reset */
674 	rtl_write_word(rtlpriv, REG_CR, 0x2ff);
675 
676 	/* clear stopping tx/rx dma   */
677 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
678 
679 	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
680 
681 	/* System init */
682 	/* 18.  LLT_table_init(Adapter);  */
683 	if (!_rtl92de_llt_table_init(hw))
684 		return false;
685 
686 	/* Clear interrupt and enable interrupt */
687 	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
688 	/*      HISRE 0x12C[7:0] = 0xFF */
689 	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
690 	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
691 
692 	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
693 	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
694 	/* The IMR should be enabled later after all init sequence
695 	 * is finished. */
696 
697 	/* 22.  PCIE configuration space configuration */
698 	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
699 	/*      and PCIe gated clock function is enabled.    */
700 	/* PCIE configuration space will be written after
701 	 * all init sequence.(Or by BIOS) */
702 
703 	rtl92d_phy_config_maccoexist_rfpage(hw);
704 
705 	/* THe below section is not related to power document Vxx . */
706 	/* This is only useful for driver and OS setting. */
707 	/* -------------------Software Relative Setting---------------------- */
708 	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
709 	wordtmp &= 0xf;
710 	wordtmp |= 0xF771;
711 	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
712 
713 	/* Reported Tx status from HW for rate adaptive. */
714 	/* This should be realtive to power on step 14. But in document V11  */
715 	/* still not contain the description.!!! */
716 	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
717 
718 	/* Set Tx/Rx page size (Tx must be 128 Bytes,
719 	 * Rx can be 64,128,256,512,1024 bytes) */
720 	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
721 
722 	/* Set RCR register */
723 	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
724 	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
725 
726 	/*  Set TCR register */
727 	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
728 
729 	/* disable earlymode */
730 	rtl_write_byte(rtlpriv, 0x4d0, 0x0);
731 
732 	/* Set TX/RX descriptor physical address(from OS API). */
733 	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
734 			rtlpci->tx_ring[BEACON_QUEUE].dma);
735 	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
736 	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
737 	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
738 	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
739 	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
740 	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
741 	/* Set RX Desc Address */
742 	rtl_write_dword(rtlpriv, REG_RX_DESA,
743 			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
744 
745 	/* if we want to support 64 bit DMA, we should set it here,
746 	 * but now we do not support 64 bit DMA*/
747 
748 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
749 
750 	/* Reset interrupt migration setting when initialization */
751 	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
752 
753 	/* Reconsider when to do this operation after asking HWSD. */
754 	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
755 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
756 	do {
757 		retry++;
758 		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
759 	} while ((retry < 200) && !(bytetmp & BIT(7)));
760 
761 	/* After MACIO reset,we must refresh LED state. */
762 	_rtl92de_gen_refresh_led_state(hw);
763 
764 	/* Reset H2C protection register */
765 	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
766 
767 	return true;
768 }
769 
770 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
771 {
772 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
773 	struct rtl_priv *rtlpriv = rtl_priv(hw);
774 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
775 	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
776 	u32 reg_rrsr;
777 
778 	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
779 	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
780 	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
781 	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
782 	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
783 	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
784 	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
785 	rtl_write_word(rtlpriv, REG_RL, 0x0707);
786 	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
787 	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
788 	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
789 	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
790 	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
791 	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
792 	/* Aggregation threshold */
793 	if (rtlhal->macphymode == DUALMAC_DUALPHY)
794 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
795 	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
796 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
797 	else
798 		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
799 	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
800 	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
801 	rtlpci->reg_bcn_ctrl_val = 0x1f;
802 	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
803 	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
804 	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
805 	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
806 	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
807 	/* For throughput */
808 	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
809 	/* ACKTO for IOT issue. */
810 	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
811 	/* Set Spec SIFS (used in NAV) */
812 	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
813 	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
814 	/* Set SIFS for CCK */
815 	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
816 	/* Set SIFS for OFDM */
817 	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
818 	/* Set Multicast Address. */
819 	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
820 	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
821 	switch (rtlpriv->phy.rf_type) {
822 	case RF_1T2R:
823 	case RF_1T1R:
824 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
825 		break;
826 	case RF_2T2R:
827 	case RF_2T2R_GREEN:
828 		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
829 		break;
830 	}
831 }
832 
833 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
834 {
835 	struct rtl_priv *rtlpriv = rtl_priv(hw);
836 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
837 
838 	rtl_write_byte(rtlpriv, 0x34b, 0x93);
839 	rtl_write_word(rtlpriv, 0x350, 0x870c);
840 	rtl_write_byte(rtlpriv, 0x352, 0x1);
841 	if (ppsc->support_backdoor)
842 		rtl_write_byte(rtlpriv, 0x349, 0x1b);
843 	else
844 		rtl_write_byte(rtlpriv, 0x349, 0x03);
845 	rtl_write_word(rtlpriv, 0x350, 0x2718);
846 	rtl_write_byte(rtlpriv, 0x352, 0x1);
847 }
848 
849 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
850 {
851 	struct rtl_priv *rtlpriv = rtl_priv(hw);
852 	u8 sec_reg_value;
853 
854 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
855 		"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
856 		rtlpriv->sec.pairwise_enc_algorithm,
857 		rtlpriv->sec.group_enc_algorithm);
858 	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
859 		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
860 			"not open hw encryption\n");
861 		return;
862 	}
863 	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
864 	if (rtlpriv->sec.use_defaultkey) {
865 		sec_reg_value |= SCR_TXUSEDK;
866 		sec_reg_value |= SCR_RXUSEDK;
867 	}
868 	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
869 	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
870 	rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
871 		"The SECR-value %x\n", sec_reg_value);
872 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
873 }
874 
875 int rtl92de_hw_init(struct ieee80211_hw *hw)
876 {
877 	struct rtl_priv *rtlpriv = rtl_priv(hw);
878 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
879 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
880 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
881 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
882 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
883 	bool rtstatus = true;
884 	u8 tmp_u1b;
885 	int i;
886 	int err;
887 	unsigned long flags;
888 
889 	rtlpci->being_init_adapter = true;
890 	rtlpci->init_ready = false;
891 	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
892 	/* we should do iqk after disable/enable */
893 	rtl92d_phy_reset_iqk_result(hw);
894 	/* rtlpriv->intf_ops->disable_aspm(hw); */
895 	rtstatus = _rtl92de_init_mac(hw);
896 	if (!rtstatus) {
897 		pr_err("Init MAC failed\n");
898 		err = 1;
899 		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
900 		return err;
901 	}
902 	err = rtl92d_download_fw(hw);
903 	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
904 	if (err) {
905 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
906 			"Failed to download FW. Init HW without FW..\n");
907 		return 1;
908 	}
909 	rtlhal->last_hmeboxnum = 0;
910 	rtlpriv->psc.fw_current_inpsmode = false;
911 
912 	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
913 	tmp_u1b = tmp_u1b | 0x30;
914 	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
915 
916 	if (rtlhal->earlymode_enable) {
917 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
918 			"EarlyMode Enabled!!!\n");
919 
920 		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
921 		tmp_u1b = tmp_u1b | 0x1f;
922 		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
923 
924 		rtl_write_byte(rtlpriv, 0x4d3, 0x80);
925 
926 		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
927 		tmp_u1b = tmp_u1b | 0x40;
928 		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
929 	}
930 
931 	if (mac->rdg_en) {
932 		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
933 		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
934 		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
935 	}
936 
937 	rtl92d_phy_mac_config(hw);
938 	/* because last function modify RCR, so we update
939 	 * rcr var here, or TP will unstable for receive_config
940 	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
941 	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
942 	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
943 	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
944 
945 	rtl92d_phy_bb_config(hw);
946 
947 	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
948 	/* set before initialize RF */
949 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
950 
951 	/* config RF */
952 	rtl92d_phy_rf_config(hw);
953 
954 	/* After read predefined TXT, we must set BB/MAC/RF
955 	 * register as our requirement */
956 	/* After load BB,RF params,we need do more for 92D. */
957 	rtl92d_update_bbrf_configuration(hw);
958 	/* set default value after initialize RF,  */
959 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
960 	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
961 			RF_CHNLBW, RFREG_OFFSET_MASK);
962 	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
963 			RF_CHNLBW, RFREG_OFFSET_MASK);
964 
965 	/*---- Set CCK and OFDM Block "ON"----*/
966 	if (rtlhal->current_bandtype == BAND_ON_2_4G)
967 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
968 	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
969 	if (rtlhal->interfaceindex == 0) {
970 		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
971 		 *  set to 20MHz by default */
972 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
973 			      BIT(11), 3);
974 	} else {
975 		/* Mac1 */
976 		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
977 			      BIT(10), 3);
978 	}
979 
980 	_rtl92de_hw_configure(hw);
981 
982 	/* reset hw sec */
983 	rtl_cam_reset_all_entry(hw);
984 	rtl92de_enable_hw_security_config(hw);
985 
986 	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
987 	/* TX power index for different rate set. */
988 	rtl92d_phy_get_hw_reg_originalvalue(hw);
989 	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
990 
991 	ppsc->rfpwr_state = ERFON;
992 
993 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
994 
995 	_rtl92de_enable_aspm_back_door(hw);
996 	/* rtlpriv->intf_ops->enable_aspm(hw); */
997 
998 	rtl92d_dm_init(hw);
999 	rtlpci->being_init_adapter = false;
1000 
1001 	if (ppsc->rfpwr_state == ERFON) {
1002 		rtl92d_phy_lc_calibrate(hw);
1003 		/* 5G and 2.4G must wait sometime to let RF LO ready */
1004 		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1005 			u32 tmp_rega;
1006 			for (i = 0; i < 10000; i++) {
1007 				udelay(MAX_STALL_TIME);
1008 
1009 				tmp_rega = rtl_get_rfreg(hw,
1010 						  (enum radio_path)RF90_PATH_A,
1011 						  0x2a, MASKDWORD);
1012 
1013 				if (((tmp_rega & BIT(11)) == BIT(11)))
1014 					break;
1015 			}
1016 			/* check that loop was successful. If not, exit now */
1017 			if (i == 10000) {
1018 				rtlpci->init_ready = false;
1019 				return 1;
1020 			}
1021 		}
1022 	}
1023 	rtlpci->init_ready = true;
1024 	return err;
1025 }
1026 
1027 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1028 {
1029 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1030 	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1031 	u32 value32;
1032 
1033 	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1034 	if (!(value32 & 0x000f0000)) {
1035 		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1036 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1037 	} else {
1038 		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1039 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1040 	}
1041 	return version;
1042 }
1043 
1044 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1045 				     enum nl80211_iftype type)
1046 {
1047 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1048 	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1049 	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1050 
1051 	bt_msr &= 0xfc;
1052 
1053 	if (type == NL80211_IFTYPE_UNSPECIFIED ||
1054 	    type == NL80211_IFTYPE_STATION) {
1055 		_rtl92de_stop_tx_beacon(hw);
1056 		_rtl92de_enable_bcn_sub_func(hw);
1057 	} else if (type == NL80211_IFTYPE_ADHOC ||
1058 		type == NL80211_IFTYPE_AP) {
1059 		_rtl92de_resume_tx_beacon(hw);
1060 		_rtl92de_disable_bcn_sub_func(hw);
1061 	} else {
1062 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1063 			"Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1064 			type);
1065 	}
1066 	switch (type) {
1067 	case NL80211_IFTYPE_UNSPECIFIED:
1068 		bt_msr |= MSR_NOLINK;
1069 		ledaction = LED_CTL_LINK;
1070 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1071 			"Set Network type to NO LINK!\n");
1072 		break;
1073 	case NL80211_IFTYPE_ADHOC:
1074 		bt_msr |= MSR_ADHOC;
1075 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1076 			"Set Network type to Ad Hoc!\n");
1077 		break;
1078 	case NL80211_IFTYPE_STATION:
1079 		bt_msr |= MSR_INFRA;
1080 		ledaction = LED_CTL_LINK;
1081 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1082 			"Set Network type to STA!\n");
1083 		break;
1084 	case NL80211_IFTYPE_AP:
1085 		bt_msr |= MSR_AP;
1086 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
1087 			"Set Network type to AP!\n");
1088 		break;
1089 	default:
1090 		pr_err("Network type %d not supported!\n", type);
1091 		return 1;
1092 	}
1093 	rtl_write_byte(rtlpriv, MSR, bt_msr);
1094 	rtlpriv->cfg->ops->led_control(hw, ledaction);
1095 	if ((bt_msr & MSR_MASK) == MSR_AP)
1096 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1097 	else
1098 		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1099 	return 0;
1100 }
1101 
1102 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1103 {
1104 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1105 	u32 reg_rcr;
1106 
1107 	if (rtlpriv->psc.rfpwr_state != ERFON)
1108 		return;
1109 
1110 	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1111 
1112 	if (check_bssid) {
1113 		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1114 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1115 		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1116 	} else if (!check_bssid) {
1117 		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1118 		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1119 		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1120 	}
1121 }
1122 
1123 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1124 {
1125 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1126 
1127 	if (_rtl92de_set_media_status(hw, type))
1128 		return -EOPNOTSUPP;
1129 
1130 	/* check bssid */
1131 	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1132 		if (type != NL80211_IFTYPE_AP)
1133 			rtl92de_set_check_bssid(hw, true);
1134 	} else {
1135 		rtl92de_set_check_bssid(hw, false);
1136 	}
1137 	return 0;
1138 }
1139 
1140 /* do iqk or reload iqk */
1141 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1142  * but it's very strict for time sequence so we add
1143  * rtl92d_phy_reload_iqk_setting here */
1144 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1145 {
1146 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1147 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1148 	u8 indexforchannel;
1149 	u8 channel = rtlphy->current_channel;
1150 
1151 	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1152 	if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1153 		rtl_dbg(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1154 			"Do IQK for channel:%d\n", channel);
1155 		rtl92d_phy_iq_calibrate(hw);
1156 	}
1157 }
1158 
1159 /* don't set REG_EDCA_BE_PARAM here because
1160  * mac80211 will send pkt when scan */
1161 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1162 {
1163 	rtl92d_dm_init_edca_turbo(hw);
1164 }
1165 
1166 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1167 {
1168 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1169 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1170 
1171 	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1172 	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1173 	rtlpci->irq_enabled = true;
1174 }
1175 
1176 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1177 {
1178 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1179 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1180 
1181 	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1182 	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1183 	rtlpci->irq_enabled = false;
1184 }
1185 
1186 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1187 {
1188 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1189 	u8 u1b_tmp;
1190 	unsigned long flags;
1191 
1192 	rtlpriv->intf_ops->enable_aspm(hw);
1193 	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1194 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1195 	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1196 
1197 	/* 0x20:value 05-->04 */
1198 	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1199 
1200 	/*  ==== Reset digital sequence   ====== */
1201 	rtl92d_firmware_selfreset(hw);
1202 
1203 	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1204 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1205 
1206 	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1207 	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1208 
1209 	/*  ==== Pull GPIO PIN to balance level and LED control ====== */
1210 
1211 	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
1212 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1213 
1214 	/* i.    Value = GPIO_PIN_CTRL[7:0] */
1215 	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1216 
1217 	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1218 	/* write external PIN level  */
1219 	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1220 			0x00FF0000 | (u1b_tmp << 8));
1221 
1222 	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1223 	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1224 
1225 	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
1226 	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1227 
1228 	/*  ==== Disable analog sequence === */
1229 
1230 	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
1231 	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1232 
1233 	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
1234 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1235 
1236 	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
1237 	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1238 
1239 	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1240 	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1241 
1242 	/*  ==== interface into suspend === */
1243 
1244 	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1245 	/* According to power document V11, we need to set this */
1246 	/* value as 0x18. Otherwise, we may not L0s sometimes. */
1247 	/* This indluences power consumption. Bases on SD1's test, */
1248 	/* set as 0x00 do not affect power current. And if it */
1249 	/* is set as 0x18, they had ever met auto load fail problem. */
1250 	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1251 
1252 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1253 		"In PowerOff,reg0x%x=%X\n",
1254 		REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1255 	/* r.   Note: for PCIe interface, PON will not turn */
1256 	/* off m-bias and BandGap in PCIe suspend mode.  */
1257 
1258 	/* 0x17[7] 1b': power off in process  0b' : power off over */
1259 	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1260 		spin_lock_irqsave(&globalmutex_power, flags);
1261 		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1262 		u1b_tmp &= (~BIT(7));
1263 		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1264 		spin_unlock_irqrestore(&globalmutex_power, flags);
1265 	}
1266 
1267 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1268 }
1269 
1270 void rtl92de_card_disable(struct ieee80211_hw *hw)
1271 {
1272 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1273 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1274 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1275 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1276 	enum nl80211_iftype opmode;
1277 
1278 	mac->link_state = MAC80211_NOLINK;
1279 	opmode = NL80211_IFTYPE_UNSPECIFIED;
1280 	_rtl92de_set_media_status(hw, opmode);
1281 
1282 	if (rtlpci->driver_is_goingto_unload ||
1283 	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1284 		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1285 	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1286 	/* Power sequence for each MAC. */
1287 	/* a. stop tx DMA  */
1288 	/* b. close RF */
1289 	/* c. clear rx buf */
1290 	/* d. stop rx DMA */
1291 	/* e.  reset MAC */
1292 
1293 	/* a. stop tx DMA */
1294 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1295 	udelay(50);
1296 
1297 	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1298 
1299 	/* c. ========RF OFF sequence==========  */
1300 	/* 0x88c[23:20] = 0xf. */
1301 	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1302 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1303 
1304 	/* APSD_CTRL 0x600[7:0] = 0x40 */
1305 	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1306 
1307 	/* Close antenna 0,0xc04,0xd04 */
1308 	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1309 	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1310 
1311 	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
1312 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1313 
1314 	/* Mac0 can not do Global reset. Mac1 can do. */
1315 	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
1316 	if (rtlpriv->rtlhal.interfaceindex == 1)
1317 		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1318 	udelay(50);
1319 
1320 	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
1321 	/* dma hang issue when disable/enable device.  */
1322 	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1323 	udelay(50);
1324 	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1325 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1326 	if (rtl92d_phy_check_poweroff(hw))
1327 		_rtl92de_poweroff_adapter(hw);
1328 	return;
1329 }
1330 
1331 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1332 				  struct rtl_int *intvec)
1333 {
1334 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1335 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1336 
1337 	intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1338 	rtl_write_dword(rtlpriv, ISR, intvec->inta);
1339 }
1340 
1341 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1342 {
1343 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1344 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1345 	u16 bcn_interval, atim_window;
1346 
1347 	bcn_interval = mac->beacon_interval;
1348 	atim_window = 2;
1349 	rtl92de_disable_interrupt(hw);
1350 	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1351 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1352 	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1353 	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1354 	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1355 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1356 	else
1357 		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1358 	rtl_write_byte(rtlpriv, 0x606, 0x30);
1359 }
1360 
1361 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1362 {
1363 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1364 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1365 	u16 bcn_interval = mac->beacon_interval;
1366 
1367 	rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG,
1368 		"beacon_interval:%d\n", bcn_interval);
1369 	rtl92de_disable_interrupt(hw);
1370 	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1371 	rtl92de_enable_interrupt(hw);
1372 }
1373 
1374 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1375 				   u32 add_msr, u32 rm_msr)
1376 {
1377 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1378 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1379 
1380 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1381 		add_msr, rm_msr);
1382 	if (add_msr)
1383 		rtlpci->irq_mask[0] |= add_msr;
1384 	if (rm_msr)
1385 		rtlpci->irq_mask[0] &= (~rm_msr);
1386 	rtl92de_disable_interrupt(hw);
1387 	rtl92de_enable_interrupt(hw);
1388 }
1389 
1390 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1391 				 u8 *rom_content, bool autoloadfail)
1392 {
1393 	u32 rfpath, eeaddr, group, offset1, offset2;
1394 	u8 i;
1395 
1396 	memset(pwrinfo, 0, sizeof(struct txpower_info));
1397 	if (autoloadfail) {
1398 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1399 			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1400 				if (group < CHANNEL_GROUP_MAX_2G) {
1401 					pwrinfo->cck_index[rfpath][group] =
1402 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1403 					pwrinfo->ht40_1sindex[rfpath][group] =
1404 					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1405 				} else {
1406 					pwrinfo->ht40_1sindex[rfpath][group] =
1407 					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1408 				}
1409 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1410 				    EEPROM_DEFAULT_HT40_2SDIFF;
1411 				pwrinfo->ht20indexdiff[rfpath][group] =
1412 				    EEPROM_DEFAULT_HT20_DIFF;
1413 				pwrinfo->ofdmindexdiff[rfpath][group] =
1414 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1415 				pwrinfo->ht40maxoffset[rfpath][group] =
1416 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1417 				pwrinfo->ht20maxoffset[rfpath][group] =
1418 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1419 			}
1420 		}
1421 		for (i = 0; i < 3; i++) {
1422 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1423 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1424 		}
1425 		return;
1426 	}
1427 
1428 	/* Maybe autoload OK,buf the tx power index value is not filled.
1429 	 * If we find it, we set it to default value. */
1430 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1431 		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1432 			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1433 				 + group;
1434 			pwrinfo->cck_index[rfpath][group] =
1435 					(rom_content[eeaddr] == 0xFF) ?
1436 					     (eeaddr > 0x7B ?
1437 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1438 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1439 					     rom_content[eeaddr];
1440 		}
1441 	}
1442 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1443 		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1444 			offset1 = group / 3;
1445 			offset2 = group % 3;
1446 			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1447 			    offset2 + offset1 * 21;
1448 			pwrinfo->ht40_1sindex[rfpath][group] =
1449 			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1450 					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1451 					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1452 						 rom_content[eeaddr];
1453 		}
1454 	}
1455 	/* These just for 92D efuse offset. */
1456 	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1457 		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1458 			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1459 
1460 			offset1 = group / 3;
1461 			offset2 = group % 3;
1462 
1463 			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1464 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1465 				    (rom_content[base1 +
1466 				     offset2 + offset1 * 21] >> (rfpath * 4))
1467 				     & 0xF;
1468 			else
1469 				pwrinfo->ht40_2sindexdiff[rfpath][group] =
1470 				    EEPROM_DEFAULT_HT40_2SDIFF;
1471 			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1472 			    + offset1 * 21] != 0xFF)
1473 				pwrinfo->ht20indexdiff[rfpath][group] =
1474 				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1475 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1476 				    & 0xF;
1477 			else
1478 				pwrinfo->ht20indexdiff[rfpath][group] =
1479 				    EEPROM_DEFAULT_HT20_DIFF;
1480 			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1481 			    + offset1 * 21] != 0xFF)
1482 				pwrinfo->ofdmindexdiff[rfpath][group] =
1483 				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1484 				     + offset2 + offset1 * 21] >> (rfpath * 4))
1485 				     & 0xF;
1486 			else
1487 				pwrinfo->ofdmindexdiff[rfpath][group] =
1488 				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1489 			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1490 			    + offset1 * 21] != 0xFF)
1491 				pwrinfo->ht40maxoffset[rfpath][group] =
1492 				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1493 				    + offset2 + offset1 * 21] >> (rfpath * 4))
1494 				    & 0xF;
1495 			else
1496 				pwrinfo->ht40maxoffset[rfpath][group] =
1497 				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1498 			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1499 			    + offset1 * 21] != 0xFF)
1500 				pwrinfo->ht20maxoffset[rfpath][group] =
1501 				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1502 				     offset2 + offset1 * 21] >> (rfpath * 4)) &
1503 				     0xF;
1504 			else
1505 				pwrinfo->ht20maxoffset[rfpath][group] =
1506 				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1507 		}
1508 	}
1509 	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1510 		/* 5GL */
1511 		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1512 		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1513 		/* 5GM */
1514 		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1515 		pwrinfo->tssi_b[1] =
1516 		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1517 		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1518 		/* 5GH */
1519 		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1520 				      0xF0) >> 4 |
1521 		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1522 		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1523 				      0xFC) >> 2;
1524 	} else {
1525 		for (i = 0; i < 3; i++) {
1526 			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1527 			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1528 		}
1529 	}
1530 }
1531 
1532 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1533 				       bool autoload_fail, u8 *hwinfo)
1534 {
1535 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1536 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1537 	struct txpower_info pwrinfo;
1538 	u8 tempval[2], i, pwr, diff;
1539 	u32 ch, rfpath, group;
1540 
1541 	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1542 	if (!autoload_fail) {
1543 		/* bit0~2 */
1544 		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1545 		rtlefuse->eeprom_thermalmeter =
1546 			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1547 		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1548 		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1549 		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1550 		rtlefuse->txpwr_fromeprom = true;
1551 		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1552 		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1553 			rtlefuse->internal_pa_5g[0] =
1554 				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1555 			rtlefuse->internal_pa_5g[1] =
1556 				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1557 			rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
1558 				"Is D cut,Internal PA0 %d Internal PA1 %d\n",
1559 				rtlefuse->internal_pa_5g[0],
1560 				rtlefuse->internal_pa_5g[1]);
1561 		}
1562 		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1563 		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1564 	} else {
1565 		rtlefuse->eeprom_regulatory = 0;
1566 		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1567 		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1568 		tempval[0] = tempval[1] = 3;
1569 	}
1570 
1571 	/* Use default value to fill parameters if
1572 	 * efuse is not filled on some place. */
1573 
1574 	/* ThermalMeter from EEPROM */
1575 	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1576 	    rtlefuse->eeprom_thermalmeter > 0x1c)
1577 		rtlefuse->eeprom_thermalmeter = 0x12;
1578 	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1579 
1580 	/* check XTAL_K */
1581 	if (rtlefuse->crystalcap == 0xFF)
1582 		rtlefuse->crystalcap = 0;
1583 	if (rtlefuse->eeprom_regulatory > 3)
1584 		rtlefuse->eeprom_regulatory = 0;
1585 
1586 	for (i = 0; i < 2; i++) {
1587 		switch (tempval[i]) {
1588 		case 0:
1589 			tempval[i] = 5;
1590 			break;
1591 		case 1:
1592 			tempval[i] = 4;
1593 			break;
1594 		case 2:
1595 			tempval[i] = 3;
1596 			break;
1597 		case 3:
1598 		default:
1599 			tempval[i] = 0;
1600 			break;
1601 		}
1602 	}
1603 
1604 	rtlefuse->delta_iqk = tempval[0];
1605 	if (tempval[1] > 0)
1606 		rtlefuse->delta_lck = tempval[1] - 1;
1607 	if (rtlefuse->eeprom_c9 == 0xFF)
1608 		rtlefuse->eeprom_c9 = 0x00;
1609 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1610 		"EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1611 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1612 		"ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1613 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1614 		"CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1615 	rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
1616 		"Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1617 		rtlefuse->delta_iqk, rtlefuse->delta_lck);
1618 
1619 	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1620 		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1621 			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1622 			if (ch < CHANNEL_MAX_NUMBER_2G)
1623 				rtlefuse->txpwrlevel_cck[rfpath][ch] =
1624 				    pwrinfo.cck_index[rfpath][group];
1625 			rtlefuse->txpwrlevel_ht40_1s[rfpath][ch] =
1626 				    pwrinfo.ht40_1sindex[rfpath][group];
1627 			rtlefuse->txpwr_ht20diff[rfpath][ch] =
1628 				    pwrinfo.ht20indexdiff[rfpath][group];
1629 			rtlefuse->txpwr_legacyhtdiff[rfpath][ch] =
1630 				    pwrinfo.ofdmindexdiff[rfpath][group];
1631 			rtlefuse->pwrgroup_ht20[rfpath][ch] =
1632 				    pwrinfo.ht20maxoffset[rfpath][group];
1633 			rtlefuse->pwrgroup_ht40[rfpath][ch] =
1634 				    pwrinfo.ht40maxoffset[rfpath][group];
1635 			pwr = pwrinfo.ht40_1sindex[rfpath][group];
1636 			diff = pwrinfo.ht40_2sindexdiff[rfpath][group];
1637 			rtlefuse->txpwrlevel_ht40_2s[rfpath][ch] =
1638 				    (pwr > diff) ? (pwr - diff) : 0;
1639 		}
1640 	}
1641 }
1642 
1643 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1644 					       u8 *content)
1645 {
1646 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1647 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1648 	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1649 
1650 	if (macphy_crvalue & BIT(3)) {
1651 		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1652 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1653 			"MacPhyMode SINGLEMAC_SINGLEPHY\n");
1654 	} else {
1655 		rtlhal->macphymode = DUALMAC_DUALPHY;
1656 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1657 			"MacPhyMode DUALMAC_DUALPHY\n");
1658 	}
1659 }
1660 
1661 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1662 						  u8 *content)
1663 {
1664 	_rtl92de_read_macphymode_from_prom(hw, content);
1665 	rtl92d_phy_config_macphymode(hw);
1666 	rtl92d_phy_config_macphymode_info(hw);
1667 }
1668 
1669 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1670 {
1671 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1672 	enum version_8192d chipver = rtlpriv->rtlhal.version;
1673 	u8 cutvalue[2];
1674 	u16 chipvalue;
1675 
1676 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1677 					   &cutvalue[1]);
1678 	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1679 					   &cutvalue[0]);
1680 	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1681 	switch (chipvalue) {
1682 	case 0xAA55:
1683 		chipver |= CHIP_92D_C_CUT;
1684 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1685 		break;
1686 	case 0x9966:
1687 		chipver |= CHIP_92D_D_CUT;
1688 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1689 		break;
1690 	case 0xCC33:
1691 		chipver |= CHIP_92D_E_CUT;
1692 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1693 		break;
1694 	default:
1695 		chipver |= CHIP_92D_D_CUT;
1696 		pr_err("Unknown CUT!\n");
1697 		break;
1698 	}
1699 	rtlpriv->rtlhal.version = chipver;
1700 }
1701 
1702 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1703 {
1704 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1705 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1706 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1707 	int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
1708 			EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
1709 			EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
1710 			COUNTRY_CODE_WORLD_WIDE_13};
1711 	int i;
1712 	u16 usvalue;
1713 	u8 *hwinfo;
1714 
1715 	hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
1716 	if (!hwinfo)
1717 		return;
1718 
1719 	if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
1720 		goto exit;
1721 
1722 	_rtl92de_efuse_update_chip_version(hw);
1723 	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1724 
1725 	/* Read Permanent MAC address for 2nd interface */
1726 	if (rtlhal->interfaceindex != 0) {
1727 		for (i = 0; i < 6; i += 2) {
1728 			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1729 			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1730 		}
1731 	}
1732 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1733 				      rtlefuse->dev_addr);
1734 	rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1735 	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1736 
1737 	/* Read Channel Plan */
1738 	switch (rtlhal->bandset) {
1739 	case BAND_ON_2_4G:
1740 		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1741 		break;
1742 	case BAND_ON_5G:
1743 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1744 		break;
1745 	case BAND_ON_BOTH:
1746 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1747 		break;
1748 	default:
1749 		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1750 		break;
1751 	}
1752 	rtlefuse->txpwr_fromeprom = true;
1753 exit:
1754 	kfree(hwinfo);
1755 }
1756 
1757 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1758 {
1759 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1760 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1761 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1762 	u8 tmp_u1b;
1763 
1764 	rtlhal->version = _rtl92de_read_chip_version(hw);
1765 	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1766 	rtlefuse->autoload_status = tmp_u1b;
1767 	if (tmp_u1b & BIT(4)) {
1768 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1769 		rtlefuse->epromtype = EEPROM_93C46;
1770 	} else {
1771 		rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1772 		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1773 	}
1774 	if (tmp_u1b & BIT(5)) {
1775 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1776 
1777 		rtlefuse->autoload_failflag = false;
1778 		_rtl92de_read_adapter_info(hw);
1779 	} else {
1780 		pr_err("Autoload ERR!!\n");
1781 	}
1782 	return;
1783 }
1784 
1785 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1786 					  struct ieee80211_sta *sta)
1787 {
1788 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1789 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1790 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1791 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1792 	u32 ratr_value;
1793 	u8 ratr_index = 0;
1794 	u8 nmode = mac->ht_enable;
1795 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1796 	u16 shortgi_rate;
1797 	u32 tmp_ratr_value;
1798 	u8 curtxbw_40mhz = mac->bw_40;
1799 	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1800 							1 : 0;
1801 	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1802 							1 : 0;
1803 	enum wireless_mode wirelessmode = mac->mode;
1804 
1805 	if (rtlhal->current_bandtype == BAND_ON_5G)
1806 		ratr_value = sta->deflink.supp_rates[1] << 4;
1807 	else
1808 		ratr_value = sta->deflink.supp_rates[0];
1809 	ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
1810 		       sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1811 	switch (wirelessmode) {
1812 	case WIRELESS_MODE_A:
1813 		ratr_value &= 0x00000FF0;
1814 		break;
1815 	case WIRELESS_MODE_B:
1816 		if (ratr_value & 0x0000000c)
1817 			ratr_value &= 0x0000000d;
1818 		else
1819 			ratr_value &= 0x0000000f;
1820 		break;
1821 	case WIRELESS_MODE_G:
1822 		ratr_value &= 0x00000FF5;
1823 		break;
1824 	case WIRELESS_MODE_N_24G:
1825 	case WIRELESS_MODE_N_5G:
1826 		nmode = 1;
1827 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1828 			ratr_value &= 0x0007F005;
1829 		} else {
1830 			u32 ratr_mask;
1831 
1832 			if (get_rf_type(rtlphy) == RF_1T2R ||
1833 			    get_rf_type(rtlphy) == RF_1T1R) {
1834 				ratr_mask = 0x000ff005;
1835 			} else {
1836 				ratr_mask = 0x0f0ff005;
1837 			}
1838 
1839 			ratr_value &= ratr_mask;
1840 		}
1841 		break;
1842 	default:
1843 		if (rtlphy->rf_type == RF_1T2R)
1844 			ratr_value &= 0x000ff0ff;
1845 		else
1846 			ratr_value &= 0x0f0ff0ff;
1847 
1848 		break;
1849 	}
1850 	ratr_value &= 0x0FFFFFFF;
1851 	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1852 	    (!curtxbw_40mhz && curshortgi_20mhz))) {
1853 		ratr_value |= 0x10000000;
1854 		tmp_ratr_value = (ratr_value >> 12);
1855 		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1856 			if ((1 << shortgi_rate) & tmp_ratr_value)
1857 				break;
1858 		}
1859 		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1860 		    (shortgi_rate << 4) | (shortgi_rate);
1861 	}
1862 	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1863 	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1864 		rtl_read_dword(rtlpriv, REG_ARFR0));
1865 }
1866 
1867 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1868 		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
1869 {
1870 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1871 	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1872 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1873 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1874 	struct rtl_sta_info *sta_entry = NULL;
1875 	u32 ratr_bitmap;
1876 	u8 ratr_index;
1877 	u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1878 	u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1879 							1 : 0;
1880 	u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1881 							1 : 0;
1882 	enum wireless_mode wirelessmode = 0;
1883 	bool shortgi = false;
1884 	u32 value[2];
1885 	u8 macid = 0;
1886 	u8 mimo_ps = IEEE80211_SMPS_OFF;
1887 
1888 	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1889 	mimo_ps = sta_entry->mimo_ps;
1890 	wirelessmode = sta_entry->wireless_mode;
1891 	if (mac->opmode == NL80211_IFTYPE_STATION)
1892 		curtxbw_40mhz = mac->bw_40;
1893 	else if (mac->opmode == NL80211_IFTYPE_AP ||
1894 		mac->opmode == NL80211_IFTYPE_ADHOC)
1895 		macid = sta->aid + 1;
1896 
1897 	if (rtlhal->current_bandtype == BAND_ON_5G)
1898 		ratr_bitmap = sta->deflink.supp_rates[1] << 4;
1899 	else
1900 		ratr_bitmap = sta->deflink.supp_rates[0];
1901 	ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
1902 			sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1903 	switch (wirelessmode) {
1904 	case WIRELESS_MODE_B:
1905 		ratr_index = RATR_INX_WIRELESS_B;
1906 		if (ratr_bitmap & 0x0000000c)
1907 			ratr_bitmap &= 0x0000000d;
1908 		else
1909 			ratr_bitmap &= 0x0000000f;
1910 		break;
1911 	case WIRELESS_MODE_G:
1912 		ratr_index = RATR_INX_WIRELESS_GB;
1913 
1914 		if (rssi_level == 1)
1915 			ratr_bitmap &= 0x00000f00;
1916 		else if (rssi_level == 2)
1917 			ratr_bitmap &= 0x00000ff0;
1918 		else
1919 			ratr_bitmap &= 0x00000ff5;
1920 		break;
1921 	case WIRELESS_MODE_A:
1922 		ratr_index = RATR_INX_WIRELESS_G;
1923 		ratr_bitmap &= 0x00000ff0;
1924 		break;
1925 	case WIRELESS_MODE_N_24G:
1926 	case WIRELESS_MODE_N_5G:
1927 		if (wirelessmode == WIRELESS_MODE_N_24G)
1928 			ratr_index = RATR_INX_WIRELESS_NGB;
1929 		else
1930 			ratr_index = RATR_INX_WIRELESS_NG;
1931 		if (mimo_ps == IEEE80211_SMPS_STATIC) {
1932 			if (rssi_level == 1)
1933 				ratr_bitmap &= 0x00070000;
1934 			else if (rssi_level == 2)
1935 				ratr_bitmap &= 0x0007f000;
1936 			else
1937 				ratr_bitmap &= 0x0007f005;
1938 		} else {
1939 			if (rtlphy->rf_type == RF_1T2R ||
1940 			    rtlphy->rf_type == RF_1T1R) {
1941 				if (curtxbw_40mhz) {
1942 					if (rssi_level == 1)
1943 						ratr_bitmap &= 0x000f0000;
1944 					else if (rssi_level == 2)
1945 						ratr_bitmap &= 0x000ff000;
1946 					else
1947 						ratr_bitmap &= 0x000ff015;
1948 				} else {
1949 					if (rssi_level == 1)
1950 						ratr_bitmap &= 0x000f0000;
1951 					else if (rssi_level == 2)
1952 						ratr_bitmap &= 0x000ff000;
1953 					else
1954 						ratr_bitmap &= 0x000ff005;
1955 				}
1956 			} else {
1957 				if (curtxbw_40mhz) {
1958 					if (rssi_level == 1)
1959 						ratr_bitmap &= 0x0f0f0000;
1960 					else if (rssi_level == 2)
1961 						ratr_bitmap &= 0x0f0ff000;
1962 					else
1963 						ratr_bitmap &= 0x0f0ff015;
1964 				} else {
1965 					if (rssi_level == 1)
1966 						ratr_bitmap &= 0x0f0f0000;
1967 					else if (rssi_level == 2)
1968 						ratr_bitmap &= 0x0f0ff000;
1969 					else
1970 						ratr_bitmap &= 0x0f0ff005;
1971 				}
1972 			}
1973 		}
1974 		if ((curtxbw_40mhz && curshortgi_40mhz) ||
1975 		    (!curtxbw_40mhz && curshortgi_20mhz)) {
1976 
1977 			if (macid == 0)
1978 				shortgi = true;
1979 			else if (macid == 1)
1980 				shortgi = false;
1981 		}
1982 		break;
1983 	default:
1984 		ratr_index = RATR_INX_WIRELESS_NGB;
1985 
1986 		if (rtlphy->rf_type == RF_1T2R)
1987 			ratr_bitmap &= 0x000ff0ff;
1988 		else
1989 			ratr_bitmap &= 0x0f0ff0ff;
1990 		break;
1991 	}
1992 
1993 	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
1994 	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
1995 	rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
1996 		"ratr_bitmap :%x value0:%x value1:%x\n",
1997 		ratr_bitmap, value[0], value[1]);
1998 	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
1999 	if (macid != 0)
2000 		sta_entry->ratr_index = ratr_index;
2001 }
2002 
2003 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2004 		struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2005 {
2006 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2007 
2008 	if (rtlpriv->dm.useramask)
2009 		rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2010 	else
2011 		rtl92de_update_hal_rate_table(hw, sta);
2012 }
2013 
2014 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2015 {
2016 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2017 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2018 	u16 sifs_timer;
2019 
2020 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2021 				      &mac->slot_time);
2022 	if (!mac->ht_enable)
2023 		sifs_timer = 0x0a0a;
2024 	else
2025 		sifs_timer = 0x1010;
2026 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2027 }
2028 
2029 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2030 {
2031 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2032 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2033 	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2034 	enum rf_pwrstate e_rfpowerstate_toset;
2035 	u8 u1tmp;
2036 	bool actuallyset = false;
2037 	unsigned long flag;
2038 
2039 	if (rtlpci->being_init_adapter)
2040 		return false;
2041 	if (ppsc->swrf_processing)
2042 		return false;
2043 	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2044 	if (ppsc->rfchange_inprogress) {
2045 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2046 		return false;
2047 	} else {
2048 		ppsc->rfchange_inprogress = true;
2049 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2050 	}
2051 	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2052 			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2053 	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2054 	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2055 	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2056 		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2057 			"GPIOChangeRF  - HW Radio ON, RF ON\n");
2058 		e_rfpowerstate_toset = ERFON;
2059 		ppsc->hwradiooff = false;
2060 		actuallyset = true;
2061 	} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2062 		rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2063 			"GPIOChangeRF  - HW Radio OFF, RF OFF\n");
2064 		e_rfpowerstate_toset = ERFOFF;
2065 		ppsc->hwradiooff = true;
2066 		actuallyset = true;
2067 	}
2068 	if (actuallyset) {
2069 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2070 		ppsc->rfchange_inprogress = false;
2071 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2072 	} else {
2073 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2074 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2075 		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2076 		ppsc->rfchange_inprogress = false;
2077 		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2078 	}
2079 	*valid = 1;
2080 	return !ppsc->hwradiooff;
2081 }
2082 
2083 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2084 		     u8 *p_macaddr, bool is_group, u8 enc_algo,
2085 		     bool is_wepkey, bool clear_all)
2086 {
2087 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2088 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2089 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2090 	u8 *macaddr = p_macaddr;
2091 	u32 entry_id;
2092 	bool is_pairwise = false;
2093 	static u8 cam_const_addr[4][6] = {
2094 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2095 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2096 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2097 		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2098 	};
2099 	static u8 cam_const_broad[] = {
2100 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2101 	};
2102 
2103 	if (clear_all) {
2104 		u8 idx;
2105 		u8 cam_offset = 0;
2106 		u8 clear_number = 5;
2107 		rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2108 		for (idx = 0; idx < clear_number; idx++) {
2109 			rtl_cam_mark_invalid(hw, cam_offset + idx);
2110 			rtl_cam_empty_entry(hw, cam_offset + idx);
2111 
2112 			if (idx < 5) {
2113 				memset(rtlpriv->sec.key_buf[idx], 0,
2114 				       MAX_KEY_LEN);
2115 				rtlpriv->sec.key_len[idx] = 0;
2116 			}
2117 		}
2118 	} else {
2119 		switch (enc_algo) {
2120 		case WEP40_ENCRYPTION:
2121 			enc_algo = CAM_WEP40;
2122 			break;
2123 		case WEP104_ENCRYPTION:
2124 			enc_algo = CAM_WEP104;
2125 			break;
2126 		case TKIP_ENCRYPTION:
2127 			enc_algo = CAM_TKIP;
2128 			break;
2129 		case AESCCMP_ENCRYPTION:
2130 			enc_algo = CAM_AES;
2131 			break;
2132 		default:
2133 			pr_err("switch case %#x not processed\n",
2134 			       enc_algo);
2135 			enc_algo = CAM_TKIP;
2136 			break;
2137 		}
2138 		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2139 			macaddr = cam_const_addr[key_index];
2140 			entry_id = key_index;
2141 		} else {
2142 			if (is_group) {
2143 				macaddr = cam_const_broad;
2144 				entry_id = key_index;
2145 			} else {
2146 				if (mac->opmode == NL80211_IFTYPE_AP) {
2147 					entry_id = rtl_cam_get_free_entry(hw,
2148 								 p_macaddr);
2149 					if (entry_id >=  TOTAL_CAM_ENTRY) {
2150 						pr_err("Can not find free hw security cam entry\n");
2151 						return;
2152 					}
2153 				} else {
2154 					entry_id = CAM_PAIRWISE_KEY_POSITION;
2155 				}
2156 				key_index = PAIRWISE_KEYIDX;
2157 				is_pairwise = true;
2158 			}
2159 		}
2160 		if (rtlpriv->sec.key_len[key_index] == 0) {
2161 			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2162 				"delete one entry, entry_id is %d\n",
2163 				entry_id);
2164 			if (mac->opmode == NL80211_IFTYPE_AP)
2165 				rtl_cam_del_entry(hw, p_macaddr);
2166 			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2167 		} else {
2168 			rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
2169 				"The insert KEY length is %d\n",
2170 				rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2171 			rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
2172 				"The insert KEY is %x %x\n",
2173 				rtlpriv->sec.key_buf[0][0],
2174 				rtlpriv->sec.key_buf[0][1]);
2175 			rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2176 				"add one entry\n");
2177 			if (is_pairwise) {
2178 				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2179 					      "Pairwise Key content",
2180 					      rtlpriv->sec.pairwise_key,
2181 					      rtlpriv->
2182 					      sec.key_len[PAIRWISE_KEYIDX]);
2183 				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2184 					"set Pairwise key\n");
2185 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2186 						      entry_id, enc_algo,
2187 						      CAM_CONFIG_NO_USEDK,
2188 						      rtlpriv->
2189 						      sec.key_buf[key_index]);
2190 			} else {
2191 				rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
2192 					"set group key\n");
2193 				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2194 					rtl_cam_add_one_entry(hw,
2195 						rtlefuse->dev_addr,
2196 						PAIRWISE_KEYIDX,
2197 						CAM_PAIRWISE_KEY_POSITION,
2198 						enc_algo, CAM_CONFIG_NO_USEDK,
2199 						rtlpriv->sec.key_buf[entry_id]);
2200 				}
2201 				rtl_cam_add_one_entry(hw, macaddr, key_index,
2202 						entry_id, enc_algo,
2203 						CAM_CONFIG_NO_USEDK,
2204 						rtlpriv->sec.key_buf
2205 						[entry_id]);
2206 			}
2207 		}
2208 	}
2209 }
2210 
2211 void rtl92de_suspend(struct ieee80211_hw *hw)
2212 {
2213 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2214 
2215 	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2216 		REG_MAC_PHY_CTRL_NORMAL);
2217 }
2218 
2219 void rtl92de_resume(struct ieee80211_hw *hw)
2220 {
2221 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2222 
2223 	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2224 		       rtlpriv->rtlhal.macphyctl_reg);
2225 }
2226