1 /****************************************************************************** 2 * 3 * Copyright(c) 2009-2012 Realtek Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called LICENSE. 16 * 17 * Contact Information: 18 * wlanfae <wlanfae@realtek.com> 19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, 20 * Hsinchu 300, Taiwan. 21 * 22 * Larry Finger <Larry.Finger@lwfinger.net> 23 * 24 *****************************************************************************/ 25 26 #include "../wifi.h" 27 #include "../efuse.h" 28 #include "../base.h" 29 #include "../regd.h" 30 #include "../cam.h" 31 #include "../ps.h" 32 #include "../pci.h" 33 #include "reg.h" 34 #include "def.h" 35 #include "phy.h" 36 #include "dm.h" 37 #include "fw.h" 38 #include "led.h" 39 #include "sw.h" 40 #include "hw.h" 41 42 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct) 43 { 44 struct rtl_priv *rtlpriv = rtl_priv(hw); 45 u32 value; 46 47 rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC)); 48 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct); 49 udelay(10); 50 value = rtl_read_dword(rtlpriv, REG_DBI_RDATA); 51 return value; 52 } 53 54 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw, 55 u16 offset, u32 value, u8 direct) 56 { 57 struct rtl_priv *rtlpriv = rtl_priv(hw); 58 59 rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000)); 60 rtl_write_dword(rtlpriv, REG_DBI_WDATA, value); 61 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct); 62 } 63 64 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw, 65 u8 set_bits, u8 clear_bits) 66 { 67 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 68 struct rtl_priv *rtlpriv = rtl_priv(hw); 69 70 rtlpci->reg_bcn_ctrl_val |= set_bits; 71 rtlpci->reg_bcn_ctrl_val &= ~clear_bits; 72 rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); 73 } 74 75 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw) 76 { 77 struct rtl_priv *rtlpriv = rtl_priv(hw); 78 u8 tmp1byte; 79 80 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); 81 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); 82 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff); 83 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); 84 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); 85 tmp1byte &= ~(BIT(0)); 86 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); 87 } 88 89 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw) 90 { 91 struct rtl_priv *rtlpriv = rtl_priv(hw); 92 u8 tmp1byte; 93 94 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); 95 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); 96 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); 97 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); 98 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); 99 tmp1byte |= BIT(0); 100 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); 101 } 102 103 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw) 104 { 105 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1)); 106 } 107 108 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw) 109 { 110 _rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0); 111 } 112 113 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 114 { 115 struct rtl_priv *rtlpriv = rtl_priv(hw); 116 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 117 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 118 119 switch (variable) { 120 case HW_VAR_RCR: 121 *((u32 *) (val)) = rtlpci->receive_config; 122 break; 123 case HW_VAR_RF_STATE: 124 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; 125 break; 126 case HW_VAR_FWLPS_RF_ON:{ 127 enum rf_pwrstate rfState; 128 u32 val_rcr; 129 130 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, 131 (u8 *) (&rfState)); 132 if (rfState == ERFOFF) { 133 *((bool *) (val)) = true; 134 } else { 135 val_rcr = rtl_read_dword(rtlpriv, REG_RCR); 136 val_rcr &= 0x00070000; 137 if (val_rcr) 138 *((bool *) (val)) = false; 139 else 140 *((bool *) (val)) = true; 141 } 142 break; 143 } 144 case HW_VAR_FW_PSMODE_STATUS: 145 *((bool *) (val)) = ppsc->fw_current_inpsmode; 146 break; 147 case HW_VAR_CORRECT_TSF:{ 148 u64 tsf; 149 u32 *ptsf_low = (u32 *)&tsf; 150 u32 *ptsf_high = ((u32 *)&tsf) + 1; 151 152 *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); 153 *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); 154 *((u64 *) (val)) = tsf; 155 break; 156 } 157 case HW_VAR_INT_MIGRATION: 158 *((bool *)(val)) = rtlpriv->dm.interrupt_migration; 159 break; 160 case HW_VAR_INT_AC: 161 *((bool *)(val)) = rtlpriv->dm.disable_tx_int; 162 break; 163 case HAL_DEF_WOWLAN: 164 break; 165 default: 166 pr_err("switch case %#x not processed\n", variable); 167 break; 168 } 169 } 170 171 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) 172 { 173 struct rtl_priv *rtlpriv = rtl_priv(hw); 174 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 175 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 176 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 177 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 178 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 179 u8 idx; 180 181 switch (variable) { 182 case HW_VAR_ETHER_ADDR: 183 for (idx = 0; idx < ETH_ALEN; idx++) { 184 rtl_write_byte(rtlpriv, (REG_MACID + idx), 185 val[idx]); 186 } 187 break; 188 case HW_VAR_BASIC_RATE: { 189 u16 rate_cfg = ((u16 *) val)[0]; 190 u8 rate_index = 0; 191 192 rate_cfg = rate_cfg & 0x15f; 193 if (mac->vendor == PEER_CISCO && 194 ((rate_cfg & 0x150) == 0)) 195 rate_cfg |= 0x01; 196 rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); 197 rtl_write_byte(rtlpriv, REG_RRSR + 1, 198 (rate_cfg >> 8) & 0xff); 199 while (rate_cfg > 0x1) { 200 rate_cfg = (rate_cfg >> 1); 201 rate_index++; 202 } 203 if (rtlhal->fw_version > 0xe) 204 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 205 rate_index); 206 break; 207 } 208 case HW_VAR_BSSID: 209 for (idx = 0; idx < ETH_ALEN; idx++) { 210 rtl_write_byte(rtlpriv, (REG_BSSID + idx), 211 val[idx]); 212 } 213 break; 214 case HW_VAR_SIFS: 215 rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); 216 rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); 217 rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); 218 rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); 219 if (!mac->ht_enable) 220 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 221 0x0e0e); 222 else 223 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 224 *((u16 *) val)); 225 break; 226 case HW_VAR_SLOT_TIME: { 227 u8 e_aci; 228 229 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 230 "HW_VAR_SLOT_TIME %x\n", val[0]); 231 rtl_write_byte(rtlpriv, REG_SLOT, val[0]); 232 for (e_aci = 0; e_aci < AC_MAX; e_aci++) 233 rtlpriv->cfg->ops->set_hw_reg(hw, 234 HW_VAR_AC_PARAM, 235 (&e_aci)); 236 break; 237 } 238 case HW_VAR_ACK_PREAMBLE: { 239 u8 reg_tmp; 240 u8 short_preamble = (bool) (*val); 241 242 reg_tmp = (mac->cur_40_prime_sc) << 5; 243 if (short_preamble) 244 reg_tmp |= 0x80; 245 rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); 246 break; 247 } 248 case HW_VAR_AMPDU_MIN_SPACE: { 249 u8 min_spacing_to_set; 250 u8 sec_min_space; 251 252 min_spacing_to_set = *val; 253 if (min_spacing_to_set <= 7) { 254 sec_min_space = 0; 255 if (min_spacing_to_set < sec_min_space) 256 min_spacing_to_set = sec_min_space; 257 mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | 258 min_spacing_to_set); 259 *val = min_spacing_to_set; 260 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 261 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", 262 mac->min_space_cfg); 263 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 264 mac->min_space_cfg); 265 } 266 break; 267 } 268 case HW_VAR_SHORTGI_DENSITY: { 269 u8 density_to_set; 270 271 density_to_set = *val; 272 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; 273 mac->min_space_cfg |= (density_to_set << 3); 274 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 275 "Set HW_VAR_SHORTGI_DENSITY: %#x\n", 276 mac->min_space_cfg); 277 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 278 mac->min_space_cfg); 279 break; 280 } 281 case HW_VAR_AMPDU_FACTOR: { 282 u8 factor_toset; 283 u32 regtoSet; 284 u8 *ptmp_byte = NULL; 285 u8 index; 286 287 if (rtlhal->macphymode == DUALMAC_DUALPHY) 288 regtoSet = 0xb9726641; 289 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) 290 regtoSet = 0x66626641; 291 else 292 regtoSet = 0xb972a841; 293 factor_toset = *val; 294 if (factor_toset <= 3) { 295 factor_toset = (1 << (factor_toset + 2)); 296 if (factor_toset > 0xf) 297 factor_toset = 0xf; 298 for (index = 0; index < 4; index++) { 299 ptmp_byte = (u8 *) (®toSet) + index; 300 if ((*ptmp_byte & 0xf0) > 301 (factor_toset << 4)) 302 *ptmp_byte = (*ptmp_byte & 0x0f) 303 | (factor_toset << 4); 304 if ((*ptmp_byte & 0x0f) > factor_toset) 305 *ptmp_byte = (*ptmp_byte & 0xf0) 306 | (factor_toset); 307 } 308 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet); 309 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, 310 "Set HW_VAR_AMPDU_FACTOR: %#x\n", 311 factor_toset); 312 } 313 break; 314 } 315 case HW_VAR_AC_PARAM: { 316 u8 e_aci = *val; 317 rtl92d_dm_init_edca_turbo(hw); 318 if (rtlpci->acm_method != EACMWAY2_SW) 319 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, 320 &e_aci); 321 break; 322 } 323 case HW_VAR_ACM_CTRL: { 324 u8 e_aci = *val; 325 union aci_aifsn *p_aci_aifsn = 326 (union aci_aifsn *)(&(mac->ac[0].aifs)); 327 u8 acm = p_aci_aifsn->f.acm; 328 u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); 329 330 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); 331 if (acm) { 332 switch (e_aci) { 333 case AC0_BE: 334 acm_ctrl |= ACMHW_BEQEN; 335 break; 336 case AC2_VI: 337 acm_ctrl |= ACMHW_VIQEN; 338 break; 339 case AC3_VO: 340 acm_ctrl |= ACMHW_VOQEN; 341 break; 342 default: 343 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 344 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", 345 acm); 346 break; 347 } 348 } else { 349 switch (e_aci) { 350 case AC0_BE: 351 acm_ctrl &= (~ACMHW_BEQEN); 352 break; 353 case AC2_VI: 354 acm_ctrl &= (~ACMHW_VIQEN); 355 break; 356 case AC3_VO: 357 acm_ctrl &= (~ACMHW_VOQEN); 358 break; 359 default: 360 pr_err("switch case %#x not processed\n", 361 e_aci); 362 break; 363 } 364 } 365 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, 366 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", 367 acm_ctrl); 368 rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); 369 break; 370 } 371 case HW_VAR_RCR: 372 rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]); 373 rtlpci->receive_config = ((u32 *) (val))[0]; 374 break; 375 case HW_VAR_RETRY_LIMIT: { 376 u8 retry_limit = val[0]; 377 378 rtl_write_word(rtlpriv, REG_RL, 379 retry_limit << RETRY_LIMIT_SHORT_SHIFT | 380 retry_limit << RETRY_LIMIT_LONG_SHIFT); 381 break; 382 } 383 case HW_VAR_DUAL_TSF_RST: 384 rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); 385 break; 386 case HW_VAR_EFUSE_BYTES: 387 rtlefuse->efuse_usedbytes = *((u16 *) val); 388 break; 389 case HW_VAR_EFUSE_USAGE: 390 rtlefuse->efuse_usedpercentage = *val; 391 break; 392 case HW_VAR_IO_CMD: 393 rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val)); 394 break; 395 case HW_VAR_WPA_CONFIG: 396 rtl_write_byte(rtlpriv, REG_SECCFG, *val); 397 break; 398 case HW_VAR_SET_RPWM: 399 rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val)); 400 break; 401 case HW_VAR_H2C_FW_PWRMODE: 402 break; 403 case HW_VAR_FW_PSMODE_STATUS: 404 ppsc->fw_current_inpsmode = *((bool *) val); 405 break; 406 case HW_VAR_H2C_FW_JOINBSSRPT: { 407 u8 mstatus = (*val); 408 u8 tmp_regcr, tmp_reg422; 409 bool recover = false; 410 411 if (mstatus == RT_MEDIA_CONNECT) { 412 rtlpriv->cfg->ops->set_hw_reg(hw, 413 HW_VAR_AID, NULL); 414 tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); 415 rtl_write_byte(rtlpriv, REG_CR + 1, 416 (tmp_regcr | BIT(0))); 417 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); 418 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); 419 tmp_reg422 = rtl_read_byte(rtlpriv, 420 REG_FWHW_TXQ_CTRL + 2); 421 if (tmp_reg422 & BIT(6)) 422 recover = true; 423 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, 424 tmp_reg422 & (~BIT(6))); 425 rtl92d_set_fw_rsvdpagepkt(hw, 0); 426 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); 427 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); 428 if (recover) 429 rtl_write_byte(rtlpriv, 430 REG_FWHW_TXQ_CTRL + 2, 431 tmp_reg422); 432 rtl_write_byte(rtlpriv, REG_CR + 1, 433 (tmp_regcr & ~(BIT(0)))); 434 } 435 rtl92d_set_fw_joinbss_report_cmd(hw, (*val)); 436 break; 437 } 438 case HW_VAR_AID: { 439 u16 u2btmp; 440 u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); 441 u2btmp &= 0xC000; 442 rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | 443 mac->assoc_id)); 444 break; 445 } 446 case HW_VAR_CORRECT_TSF: { 447 u8 btype_ibss = val[0]; 448 449 if (btype_ibss) 450 _rtl92de_stop_tx_beacon(hw); 451 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); 452 rtl_write_dword(rtlpriv, REG_TSFTR, 453 (u32) (mac->tsf & 0xffffffff)); 454 rtl_write_dword(rtlpriv, REG_TSFTR + 4, 455 (u32) ((mac->tsf >> 32) & 0xffffffff)); 456 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); 457 if (btype_ibss) 458 _rtl92de_resume_tx_beacon(hw); 459 460 break; 461 } 462 case HW_VAR_INT_MIGRATION: { 463 bool int_migration = *(bool *) (val); 464 465 if (int_migration) { 466 /* Set interrupt migration timer and 467 * corresponding Tx/Rx counter. 468 * timer 25ns*0xfa0=100us for 0xf packets. 469 * 0x306:Rx, 0x307:Tx */ 470 rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0); 471 rtlpriv->dm.interrupt_migration = int_migration; 472 } else { 473 /* Reset all interrupt migration settings. */ 474 rtl_write_dword(rtlpriv, REG_INT_MIG, 0); 475 rtlpriv->dm.interrupt_migration = int_migration; 476 } 477 break; 478 } 479 case HW_VAR_INT_AC: { 480 bool disable_ac_int = *((bool *) val); 481 482 /* Disable four ACs interrupts. */ 483 if (disable_ac_int) { 484 /* Disable VO, VI, BE and BK four AC interrupts 485 * to gain more efficient CPU utilization. 486 * When extremely highly Rx OK occurs, 487 * we will disable Tx interrupts. 488 */ 489 rtlpriv->cfg->ops->update_interrupt_mask(hw, 0, 490 RT_AC_INT_MASKS); 491 rtlpriv->dm.disable_tx_int = disable_ac_int; 492 /* Enable four ACs interrupts. */ 493 } else { 494 rtlpriv->cfg->ops->update_interrupt_mask(hw, 495 RT_AC_INT_MASKS, 0); 496 rtlpriv->dm.disable_tx_int = disable_ac_int; 497 } 498 break; 499 } 500 default: 501 pr_err("switch case %#x not processed\n", variable); 502 break; 503 } 504 } 505 506 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) 507 { 508 struct rtl_priv *rtlpriv = rtl_priv(hw); 509 bool status = true; 510 long count = 0; 511 u32 value = _LLT_INIT_ADDR(address) | 512 _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); 513 514 rtl_write_dword(rtlpriv, REG_LLT_INIT, value); 515 do { 516 value = rtl_read_dword(rtlpriv, REG_LLT_INIT); 517 if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) 518 break; 519 if (count > POLLING_LLT_THRESHOLD) { 520 pr_err("Failed to polling write LLT done at address %d!\n", 521 address); 522 status = false; 523 break; 524 } 525 } while (++count); 526 return status; 527 } 528 529 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw) 530 { 531 struct rtl_priv *rtlpriv = rtl_priv(hw); 532 unsigned short i; 533 u8 txpktbuf_bndy; 534 u8 maxPage; 535 bool status; 536 u32 value32; /* High+low page number */ 537 u8 value8; /* normal page number */ 538 539 if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) { 540 maxPage = 255; 541 txpktbuf_bndy = 246; 542 value8 = 0; 543 value32 = 0x80bf0d29; 544 } else { 545 maxPage = 127; 546 txpktbuf_bndy = 123; 547 value8 = 0; 548 value32 = 0x80750005; 549 } 550 551 /* Set reserved page for each queue */ 552 /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */ 553 /* load RQPN */ 554 rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8); 555 rtl_write_dword(rtlpriv, REG_RQPN, value32); 556 557 /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */ 558 /* TXRKTBUG_PG_BNDY */ 559 rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, 560 (rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 | 561 txpktbuf_bndy)); 562 563 /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */ 564 /* Beacon Head for TXDMA */ 565 rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); 566 567 /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */ 568 /* BCNQ_PGBNDY */ 569 rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); 570 rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); 571 572 /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */ 573 /* WMAC_LBK_BF_HD */ 574 rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); 575 576 /* Set Tx/Rx page size (Tx must be 128 Bytes, */ 577 /* Rx can be 64,128,256,512,1024 bytes) */ 578 /* 16. PBP [7:0] = 0x11 */ 579 /* TRX page size */ 580 rtl_write_byte(rtlpriv, REG_PBP, 0x11); 581 582 /* 17. DRV_INFO_SZ = 0x04 */ 583 rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); 584 585 /* 18. LLT_table_init(Adapter); */ 586 for (i = 0; i < (txpktbuf_bndy - 1); i++) { 587 status = _rtl92de_llt_write(hw, i, i + 1); 588 if (true != status) 589 return status; 590 } 591 592 /* end of list */ 593 status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); 594 if (true != status) 595 return status; 596 597 /* Make the other pages as ring buffer */ 598 /* This ring buffer is used as beacon buffer if we */ 599 /* config this MAC as two MAC transfer. */ 600 /* Otherwise used as local loopback buffer. */ 601 for (i = txpktbuf_bndy; i < maxPage; i++) { 602 status = _rtl92de_llt_write(hw, i, (i + 1)); 603 if (true != status) 604 return status; 605 } 606 607 /* Let last entry point to the start entry of ring buffer */ 608 status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy); 609 if (true != status) 610 return status; 611 612 return true; 613 } 614 615 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw) 616 { 617 struct rtl_priv *rtlpriv = rtl_priv(hw); 618 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 619 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 620 struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0; 621 622 if (rtlpci->up_first_time) 623 return; 624 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) 625 rtl92de_sw_led_on(hw, pled0); 626 else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) 627 rtl92de_sw_led_on(hw, pled0); 628 else 629 rtl92de_sw_led_off(hw, pled0); 630 } 631 632 static bool _rtl92de_init_mac(struct ieee80211_hw *hw) 633 { 634 struct rtl_priv *rtlpriv = rtl_priv(hw); 635 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 636 unsigned char bytetmp; 637 unsigned short wordtmp; 638 u16 retry; 639 640 rtl92d_phy_set_poweron(hw); 641 /* Add for resume sequence of power domain according 642 * to power document V11. Chapter V.11.... */ 643 /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */ 644 /* unlock ISO/CLK/Power control register */ 645 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); 646 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05); 647 648 /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */ 649 /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */ 650 /* 3. delay (1ms) this is not necessary when initially power on */ 651 652 /* C. Resume Sequence */ 653 /* a. SPS0_CTRL 0x11[7:0] = 0x2b */ 654 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); 655 656 /* b. AFE_XTAL_CTRL [7:0] = 0x0F */ 657 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F); 658 659 /* c. DRV runs power on init flow */ 660 661 /* auto enable WLAN */ 662 /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */ 663 /* Power On Reset for MAC Block */ 664 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0); 665 udelay(2); 666 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); 667 udelay(2); 668 669 /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */ 670 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); 671 udelay(50); 672 retry = 0; 673 while ((bytetmp & BIT(0)) && retry < 1000) { 674 retry++; 675 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); 676 udelay(50); 677 } 678 679 /* Enable Radio off, GPIO, and LED function */ 680 /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */ 681 rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012); 682 683 /* release RF digital isolation */ 684 /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */ 685 /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */ 686 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82); 687 udelay(2); 688 689 /* make sure that BB reset OK. */ 690 /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */ 691 692 /* Disable REG_CR before enable it to assure reset */ 693 rtl_write_word(rtlpriv, REG_CR, 0x0); 694 695 /* Release MAC IO register reset */ 696 rtl_write_word(rtlpriv, REG_CR, 0x2ff); 697 698 /* clear stopping tx/rx dma */ 699 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0); 700 701 /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */ 702 703 /* System init */ 704 /* 18. LLT_table_init(Adapter); */ 705 if (!_rtl92de_llt_table_init(hw)) 706 return false; 707 708 /* Clear interrupt and enable interrupt */ 709 /* 19. HISR 0x124[31:0] = 0xffffffff; */ 710 /* HISRE 0x12C[7:0] = 0xFF */ 711 rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); 712 rtl_write_byte(rtlpriv, REG_HISRE, 0xff); 713 714 /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */ 715 /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */ 716 /* The IMR should be enabled later after all init sequence 717 * is finished. */ 718 719 /* 22. PCIE configuration space configuration */ 720 /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */ 721 /* and PCIe gated clock function is enabled. */ 722 /* PCIE configuration space will be written after 723 * all init sequence.(Or by BIOS) */ 724 725 rtl92d_phy_config_maccoexist_rfpage(hw); 726 727 /* THe below section is not related to power document Vxx . */ 728 /* This is only useful for driver and OS setting. */ 729 /* -------------------Software Relative Setting---------------------- */ 730 wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); 731 wordtmp &= 0xf; 732 wordtmp |= 0xF771; 733 rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); 734 735 /* Reported Tx status from HW for rate adaptive. */ 736 /* This should be realtive to power on step 14. But in document V11 */ 737 /* still not contain the description.!!! */ 738 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); 739 740 /* Set Tx/Rx page size (Tx must be 128 Bytes, 741 * Rx can be 64,128,256,512,1024 bytes) */ 742 /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */ 743 744 /* Set RCR register */ 745 rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); 746 /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */ 747 748 /* Set TCR register */ 749 rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); 750 751 /* disable earlymode */ 752 rtl_write_byte(rtlpriv, 0x4d0, 0x0); 753 754 /* Set TX/RX descriptor physical address(from OS API). */ 755 rtl_write_dword(rtlpriv, REG_BCNQ_DESA, 756 rtlpci->tx_ring[BEACON_QUEUE].dma); 757 rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma); 758 rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma); 759 rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma); 760 rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma); 761 rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma); 762 rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma); 763 /* Set RX Desc Address */ 764 rtl_write_dword(rtlpriv, REG_RX_DESA, 765 rtlpci->rx_ring[RX_MPDU_QUEUE].dma); 766 767 /* if we want to support 64 bit DMA, we should set it here, 768 * but now we do not support 64 bit DMA*/ 769 770 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33); 771 772 /* Reset interrupt migration setting when initialization */ 773 rtl_write_dword(rtlpriv, REG_INT_MIG, 0); 774 775 /* Reconsider when to do this operation after asking HWSD. */ 776 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); 777 rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6)); 778 do { 779 retry++; 780 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); 781 } while ((retry < 200) && !(bytetmp & BIT(7))); 782 783 /* After MACIO reset,we must refresh LED state. */ 784 _rtl92de_gen_refresh_led_state(hw); 785 786 /* Reset H2C protection register */ 787 rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); 788 789 return true; 790 } 791 792 static void _rtl92de_hw_configure(struct ieee80211_hw *hw) 793 { 794 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 795 struct rtl_priv *rtlpriv = rtl_priv(hw); 796 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 797 u8 reg_bw_opmode = BW_OPMODE_20MHZ; 798 u32 reg_rrsr; 799 800 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; 801 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8); 802 rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); 803 rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr); 804 rtl_write_byte(rtlpriv, REG_SLOT, 0x09); 805 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0); 806 rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80); 807 rtl_write_word(rtlpriv, REG_RL, 0x0707); 808 rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802); 809 rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); 810 rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); 811 rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); 812 rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); 813 rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); 814 /* Aggregation threshold */ 815 if (rtlhal->macphymode == DUALMAC_DUALPHY) 816 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641); 817 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) 818 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641); 819 else 820 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841); 821 rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2); 822 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); 823 rtlpci->reg_bcn_ctrl_val = 0x1f; 824 rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); 825 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); 826 rtl_write_byte(rtlpriv, REG_PIFS, 0x1C); 827 rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); 828 rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); 829 /* For throughput */ 830 rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666); 831 /* ACKTO for IOT issue. */ 832 rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); 833 /* Set Spec SIFS (used in NAV) */ 834 rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010); 835 rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010); 836 /* Set SIFS for CCK */ 837 rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010); 838 /* Set SIFS for OFDM */ 839 rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010); 840 /* Set Multicast Address. */ 841 rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff); 842 rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff); 843 switch (rtlpriv->phy.rf_type) { 844 case RF_1T2R: 845 case RF_1T1R: 846 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); 847 break; 848 case RF_2T2R: 849 case RF_2T2R_GREEN: 850 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); 851 break; 852 } 853 } 854 855 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw) 856 { 857 struct rtl_priv *rtlpriv = rtl_priv(hw); 858 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 859 860 rtl_write_byte(rtlpriv, 0x34b, 0x93); 861 rtl_write_word(rtlpriv, 0x350, 0x870c); 862 rtl_write_byte(rtlpriv, 0x352, 0x1); 863 if (ppsc->support_backdoor) 864 rtl_write_byte(rtlpriv, 0x349, 0x1b); 865 else 866 rtl_write_byte(rtlpriv, 0x349, 0x03); 867 rtl_write_word(rtlpriv, 0x350, 0x2718); 868 rtl_write_byte(rtlpriv, 0x352, 0x1); 869 } 870 871 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw) 872 { 873 struct rtl_priv *rtlpriv = rtl_priv(hw); 874 u8 sec_reg_value; 875 876 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 877 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", 878 rtlpriv->sec.pairwise_enc_algorithm, 879 rtlpriv->sec.group_enc_algorithm); 880 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { 881 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 882 "not open hw encryption\n"); 883 return; 884 } 885 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; 886 if (rtlpriv->sec.use_defaultkey) { 887 sec_reg_value |= SCR_TXUSEDK; 888 sec_reg_value |= SCR_RXUSEDK; 889 } 890 sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); 891 rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); 892 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, 893 "The SECR-value %x\n", sec_reg_value); 894 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); 895 } 896 897 int rtl92de_hw_init(struct ieee80211_hw *hw) 898 { 899 struct rtl_priv *rtlpriv = rtl_priv(hw); 900 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 901 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 902 struct rtl_phy *rtlphy = &(rtlpriv->phy); 903 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 904 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 905 bool rtstatus = true; 906 u8 tmp_u1b; 907 int i; 908 int err; 909 unsigned long flags; 910 911 rtlpci->being_init_adapter = true; 912 rtlpci->init_ready = false; 913 spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags); 914 /* we should do iqk after disable/enable */ 915 rtl92d_phy_reset_iqk_result(hw); 916 /* rtlpriv->intf_ops->disable_aspm(hw); */ 917 rtstatus = _rtl92de_init_mac(hw); 918 if (!rtstatus) { 919 pr_err("Init MAC failed\n"); 920 err = 1; 921 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); 922 return err; 923 } 924 err = rtl92d_download_fw(hw); 925 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); 926 if (err) { 927 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 928 "Failed to download FW. Init HW without FW..\n"); 929 return 1; 930 } 931 rtlhal->last_hmeboxnum = 0; 932 rtlpriv->psc.fw_current_inpsmode = false; 933 934 tmp_u1b = rtl_read_byte(rtlpriv, 0x605); 935 tmp_u1b = tmp_u1b | 0x30; 936 rtl_write_byte(rtlpriv, 0x605, tmp_u1b); 937 938 if (rtlhal->earlymode_enable) { 939 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 940 "EarlyMode Enabled!!!\n"); 941 942 tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0); 943 tmp_u1b = tmp_u1b | 0x1f; 944 rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b); 945 946 rtl_write_byte(rtlpriv, 0x4d3, 0x80); 947 948 tmp_u1b = rtl_read_byte(rtlpriv, 0x605); 949 tmp_u1b = tmp_u1b | 0x40; 950 rtl_write_byte(rtlpriv, 0x605, tmp_u1b); 951 } 952 953 if (mac->rdg_en) { 954 rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff); 955 rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200); 956 rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05); 957 } 958 959 rtl92d_phy_mac_config(hw); 960 /* because last function modify RCR, so we update 961 * rcr var here, or TP will unstable for receive_config 962 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx 963 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/ 964 rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); 965 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); 966 967 rtl92d_phy_bb_config(hw); 968 969 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; 970 /* set before initialize RF */ 971 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); 972 973 /* config RF */ 974 rtl92d_phy_rf_config(hw); 975 976 /* After read predefined TXT, we must set BB/MAC/RF 977 * register as our requirement */ 978 /* After load BB,RF params,we need do more for 92D. */ 979 rtl92d_update_bbrf_configuration(hw); 980 /* set default value after initialize RF, */ 981 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0); 982 rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, 983 RF_CHNLBW, RFREG_OFFSET_MASK); 984 rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, 985 RF_CHNLBW, RFREG_OFFSET_MASK); 986 987 /*---- Set CCK and OFDM Block "ON"----*/ 988 if (rtlhal->current_bandtype == BAND_ON_2_4G) 989 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); 990 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); 991 if (rtlhal->interfaceindex == 0) { 992 /* RFPGA0_ANALOGPARAMETER2: cck clock select, 993 * set to 20MHz by default */ 994 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) | 995 BIT(11), 3); 996 } else { 997 /* Mac1 */ 998 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) | 999 BIT(10), 3); 1000 } 1001 1002 _rtl92de_hw_configure(hw); 1003 1004 /* reset hw sec */ 1005 rtl_cam_reset_all_entry(hw); 1006 rtl92de_enable_hw_security_config(hw); 1007 1008 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ 1009 /* TX power index for different rate set. */ 1010 rtl92d_phy_get_hw_reg_originalvalue(hw); 1011 rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel); 1012 1013 ppsc->rfpwr_state = ERFON; 1014 1015 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); 1016 1017 _rtl92de_enable_aspm_back_door(hw); 1018 /* rtlpriv->intf_ops->enable_aspm(hw); */ 1019 1020 rtl92d_dm_init(hw); 1021 rtlpci->being_init_adapter = false; 1022 1023 if (ppsc->rfpwr_state == ERFON) { 1024 rtl92d_phy_lc_calibrate(hw); 1025 /* 5G and 2.4G must wait sometime to let RF LO ready */ 1026 if (rtlhal->macphymode == DUALMAC_DUALPHY) { 1027 u32 tmp_rega; 1028 for (i = 0; i < 10000; i++) { 1029 udelay(MAX_STALL_TIME); 1030 1031 tmp_rega = rtl_get_rfreg(hw, 1032 (enum radio_path)RF90_PATH_A, 1033 0x2a, MASKDWORD); 1034 1035 if (((tmp_rega & BIT(11)) == BIT(11))) 1036 break; 1037 } 1038 /* check that loop was successful. If not, exit now */ 1039 if (i == 10000) { 1040 rtlpci->init_ready = false; 1041 return 1; 1042 } 1043 } 1044 } 1045 rtlpci->init_ready = true; 1046 return err; 1047 } 1048 1049 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw) 1050 { 1051 struct rtl_priv *rtlpriv = rtl_priv(hw); 1052 enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; 1053 u32 value32; 1054 1055 value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); 1056 if (!(value32 & 0x000f0000)) { 1057 version = VERSION_TEST_CHIP_92D_SINGLEPHY; 1058 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n"); 1059 } else { 1060 version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; 1061 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n"); 1062 } 1063 return version; 1064 } 1065 1066 static int _rtl92de_set_media_status(struct ieee80211_hw *hw, 1067 enum nl80211_iftype type) 1068 { 1069 struct rtl_priv *rtlpriv = rtl_priv(hw); 1070 u8 bt_msr = rtl_read_byte(rtlpriv, MSR); 1071 enum led_ctl_mode ledaction = LED_CTL_NO_LINK; 1072 u8 bcnfunc_enable; 1073 1074 bt_msr &= 0xfc; 1075 1076 if (type == NL80211_IFTYPE_UNSPECIFIED || 1077 type == NL80211_IFTYPE_STATION) { 1078 _rtl92de_stop_tx_beacon(hw); 1079 _rtl92de_enable_bcn_sub_func(hw); 1080 } else if (type == NL80211_IFTYPE_ADHOC || 1081 type == NL80211_IFTYPE_AP) { 1082 _rtl92de_resume_tx_beacon(hw); 1083 _rtl92de_disable_bcn_sub_func(hw); 1084 } else { 1085 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 1086 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n", 1087 type); 1088 } 1089 bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL); 1090 switch (type) { 1091 case NL80211_IFTYPE_UNSPECIFIED: 1092 bt_msr |= MSR_NOLINK; 1093 ledaction = LED_CTL_LINK; 1094 bcnfunc_enable &= 0xF7; 1095 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1096 "Set Network type to NO LINK!\n"); 1097 break; 1098 case NL80211_IFTYPE_ADHOC: 1099 bt_msr |= MSR_ADHOC; 1100 bcnfunc_enable |= 0x08; 1101 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1102 "Set Network type to Ad Hoc!\n"); 1103 break; 1104 case NL80211_IFTYPE_STATION: 1105 bt_msr |= MSR_INFRA; 1106 ledaction = LED_CTL_LINK; 1107 bcnfunc_enable &= 0xF7; 1108 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1109 "Set Network type to STA!\n"); 1110 break; 1111 case NL80211_IFTYPE_AP: 1112 bt_msr |= MSR_AP; 1113 bcnfunc_enable |= 0x08; 1114 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, 1115 "Set Network type to AP!\n"); 1116 break; 1117 default: 1118 pr_err("Network type %d not supported!\n", type); 1119 return 1; 1120 } 1121 rtl_write_byte(rtlpriv, MSR, bt_msr); 1122 rtlpriv->cfg->ops->led_control(hw, ledaction); 1123 if ((bt_msr & MSR_MASK) == MSR_AP) 1124 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); 1125 else 1126 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); 1127 return 0; 1128 } 1129 1130 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) 1131 { 1132 struct rtl_priv *rtlpriv = rtl_priv(hw); 1133 u32 reg_rcr; 1134 1135 if (rtlpriv->psc.rfpwr_state != ERFON) 1136 return; 1137 1138 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1139 1140 if (check_bssid) { 1141 reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); 1142 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1143 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); 1144 } else if (!check_bssid) { 1145 reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); 1146 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); 1147 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); 1148 } 1149 } 1150 1151 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) 1152 { 1153 struct rtl_priv *rtlpriv = rtl_priv(hw); 1154 1155 if (_rtl92de_set_media_status(hw, type)) 1156 return -EOPNOTSUPP; 1157 1158 /* check bssid */ 1159 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { 1160 if (type != NL80211_IFTYPE_AP) 1161 rtl92de_set_check_bssid(hw, true); 1162 } else { 1163 rtl92de_set_check_bssid(hw, false); 1164 } 1165 return 0; 1166 } 1167 1168 /* do iqk or reload iqk */ 1169 /* windows just rtl92d_phy_reload_iqk_setting in set channel, 1170 * but it's very strict for time sequence so we add 1171 * rtl92d_phy_reload_iqk_setting here */ 1172 void rtl92d_linked_set_reg(struct ieee80211_hw *hw) 1173 { 1174 struct rtl_priv *rtlpriv = rtl_priv(hw); 1175 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1176 u8 indexforchannel; 1177 u8 channel = rtlphy->current_channel; 1178 1179 indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel); 1180 if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) { 1181 RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG, 1182 "Do IQK for channel:%d\n", channel); 1183 rtl92d_phy_iq_calibrate(hw); 1184 } 1185 } 1186 1187 /* don't set REG_EDCA_BE_PARAM here because 1188 * mac80211 will send pkt when scan */ 1189 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci) 1190 { 1191 rtl92d_dm_init_edca_turbo(hw); 1192 } 1193 1194 void rtl92de_enable_interrupt(struct ieee80211_hw *hw) 1195 { 1196 struct rtl_priv *rtlpriv = rtl_priv(hw); 1197 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1198 1199 rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); 1200 rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); 1201 } 1202 1203 void rtl92de_disable_interrupt(struct ieee80211_hw *hw) 1204 { 1205 struct rtl_priv *rtlpriv = rtl_priv(hw); 1206 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1207 1208 rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED); 1209 rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED); 1210 synchronize_irq(rtlpci->pdev->irq); 1211 } 1212 1213 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw) 1214 { 1215 struct rtl_priv *rtlpriv = rtl_priv(hw); 1216 u8 u1b_tmp; 1217 unsigned long flags; 1218 1219 rtlpriv->intf_ops->enable_aspm(hw); 1220 rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); 1221 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0); 1222 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0); 1223 1224 /* 0x20:value 05-->04 */ 1225 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04); 1226 1227 /* ==== Reset digital sequence ====== */ 1228 rtl92d_firmware_selfreset(hw); 1229 1230 /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */ 1231 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51); 1232 1233 /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */ 1234 rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); 1235 1236 /* ==== Pull GPIO PIN to balance level and LED control ====== */ 1237 1238 /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */ 1239 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000); 1240 1241 /* i. Value = GPIO_PIN_CTRL[7:0] */ 1242 u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL); 1243 1244 /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */ 1245 /* write external PIN level */ 1246 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 1247 0x00FF0000 | (u1b_tmp << 8)); 1248 1249 /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */ 1250 rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790); 1251 1252 /* l. LEDCFG 0x4C[15:0] = 0x8080 */ 1253 rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080); 1254 1255 /* ==== Disable analog sequence === */ 1256 1257 /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */ 1258 rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80); 1259 1260 /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */ 1261 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23); 1262 1263 /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */ 1264 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e); 1265 1266 /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */ 1267 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); 1268 1269 /* ==== interface into suspend === */ 1270 1271 /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */ 1272 /* According to power document V11, we need to set this */ 1273 /* value as 0x18. Otherwise, we may not L0s sometimes. */ 1274 /* This indluences power consumption. Bases on SD1's test, */ 1275 /* set as 0x00 do not affect power current. And if it */ 1276 /* is set as 0x18, they had ever met auto load fail problem. */ 1277 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10); 1278 1279 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1280 "In PowerOff,reg0x%x=%X\n", 1281 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL)); 1282 /* r. Note: for PCIe interface, PON will not turn */ 1283 /* off m-bias and BandGap in PCIe suspend mode. */ 1284 1285 /* 0x17[7] 1b': power off in process 0b' : power off over */ 1286 if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) { 1287 spin_lock_irqsave(&globalmutex_power, flags); 1288 u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS); 1289 u1b_tmp &= (~BIT(7)); 1290 rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp); 1291 spin_unlock_irqrestore(&globalmutex_power, flags); 1292 } 1293 1294 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n"); 1295 } 1296 1297 void rtl92de_card_disable(struct ieee80211_hw *hw) 1298 { 1299 struct rtl_priv *rtlpriv = rtl_priv(hw); 1300 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 1301 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1302 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1303 enum nl80211_iftype opmode; 1304 1305 mac->link_state = MAC80211_NOLINK; 1306 opmode = NL80211_IFTYPE_UNSPECIFIED; 1307 _rtl92de_set_media_status(hw, opmode); 1308 1309 if (rtlpci->driver_is_goingto_unload || 1310 ppsc->rfoff_reason > RF_CHANGE_BY_PS) 1311 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); 1312 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 1313 /* Power sequence for each MAC. */ 1314 /* a. stop tx DMA */ 1315 /* b. close RF */ 1316 /* c. clear rx buf */ 1317 /* d. stop rx DMA */ 1318 /* e. reset MAC */ 1319 1320 /* a. stop tx DMA */ 1321 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE); 1322 udelay(50); 1323 1324 /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */ 1325 1326 /* c. ========RF OFF sequence========== */ 1327 /* 0x88c[23:20] = 0xf. */ 1328 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); 1329 rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00); 1330 1331 /* APSD_CTRL 0x600[7:0] = 0x40 */ 1332 rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40); 1333 1334 /* Close antenna 0,0xc04,0xd04 */ 1335 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0); 1336 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0); 1337 1338 /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */ 1339 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); 1340 1341 /* Mac0 can not do Global reset. Mac1 can do. */ 1342 /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */ 1343 if (rtlpriv->rtlhal.interfaceindex == 1) 1344 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0); 1345 udelay(50); 1346 1347 /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */ 1348 /* dma hang issue when disable/enable device. */ 1349 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff); 1350 udelay(50); 1351 rtl_write_byte(rtlpriv, REG_CR, 0x0); 1352 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n"); 1353 if (rtl92d_phy_check_poweroff(hw)) 1354 _rtl92de_poweroff_adapter(hw); 1355 return; 1356 } 1357 1358 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw, 1359 u32 *p_inta, u32 *p_intb, 1360 u32 *p_intc, u32 *p_intd) 1361 { 1362 struct rtl_priv *rtlpriv = rtl_priv(hw); 1363 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1364 1365 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; 1366 rtl_write_dword(rtlpriv, ISR, *p_inta); 1367 1368 /* 1369 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1]; 1370 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb); 1371 */ 1372 } 1373 1374 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw) 1375 { 1376 struct rtl_priv *rtlpriv = rtl_priv(hw); 1377 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1378 u16 bcn_interval, atim_window; 1379 1380 bcn_interval = mac->beacon_interval; 1381 atim_window = 2; 1382 /*rtl92de_disable_interrupt(hw); */ 1383 rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); 1384 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); 1385 rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); 1386 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20); 1387 if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) 1388 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30); 1389 else 1390 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20); 1391 rtl_write_byte(rtlpriv, 0x606, 0x30); 1392 } 1393 1394 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw) 1395 { 1396 struct rtl_priv *rtlpriv = rtl_priv(hw); 1397 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1398 u16 bcn_interval = mac->beacon_interval; 1399 1400 RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, 1401 "beacon_interval:%d\n", bcn_interval); 1402 /* rtl92de_disable_interrupt(hw); */ 1403 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); 1404 /* rtl92de_enable_interrupt(hw); */ 1405 } 1406 1407 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw, 1408 u32 add_msr, u32 rm_msr) 1409 { 1410 struct rtl_priv *rtlpriv = rtl_priv(hw); 1411 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 1412 1413 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", 1414 add_msr, rm_msr); 1415 if (add_msr) 1416 rtlpci->irq_mask[0] |= add_msr; 1417 if (rm_msr) 1418 rtlpci->irq_mask[0] &= (~rm_msr); 1419 rtl92de_disable_interrupt(hw); 1420 rtl92de_enable_interrupt(hw); 1421 } 1422 1423 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo, 1424 u8 *rom_content, bool autoLoadfail) 1425 { 1426 u32 rfpath, eeaddr, group, offset1, offset2; 1427 u8 i; 1428 1429 memset(pwrinfo, 0, sizeof(struct txpower_info)); 1430 if (autoLoadfail) { 1431 for (group = 0; group < CHANNEL_GROUP_MAX; group++) { 1432 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1433 if (group < CHANNEL_GROUP_MAX_2G) { 1434 pwrinfo->cck_index[rfpath][group] = 1435 EEPROM_DEFAULT_TXPOWERLEVEL_2G; 1436 pwrinfo->ht40_1sindex[rfpath][group] = 1437 EEPROM_DEFAULT_TXPOWERLEVEL_2G; 1438 } else { 1439 pwrinfo->ht40_1sindex[rfpath][group] = 1440 EEPROM_DEFAULT_TXPOWERLEVEL_5G; 1441 } 1442 pwrinfo->ht40_2sindexdiff[rfpath][group] = 1443 EEPROM_DEFAULT_HT40_2SDIFF; 1444 pwrinfo->ht20indexdiff[rfpath][group] = 1445 EEPROM_DEFAULT_HT20_DIFF; 1446 pwrinfo->ofdmindexdiff[rfpath][group] = 1447 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; 1448 pwrinfo->ht40maxoffset[rfpath][group] = 1449 EEPROM_DEFAULT_HT40_PWRMAXOFFSET; 1450 pwrinfo->ht20maxoffset[rfpath][group] = 1451 EEPROM_DEFAULT_HT20_PWRMAXOFFSET; 1452 } 1453 } 1454 for (i = 0; i < 3; i++) { 1455 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; 1456 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; 1457 } 1458 return; 1459 } 1460 1461 /* Maybe autoload OK,buf the tx power index value is not filled. 1462 * If we find it, we set it to default value. */ 1463 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1464 for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) { 1465 eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3) 1466 + group; 1467 pwrinfo->cck_index[rfpath][group] = 1468 (rom_content[eeaddr] == 0xFF) ? 1469 (eeaddr > 0x7B ? 1470 EEPROM_DEFAULT_TXPOWERLEVEL_5G : 1471 EEPROM_DEFAULT_TXPOWERLEVEL_2G) : 1472 rom_content[eeaddr]; 1473 } 1474 } 1475 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1476 for (group = 0; group < CHANNEL_GROUP_MAX; group++) { 1477 offset1 = group / 3; 1478 offset2 = group % 3; 1479 eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) + 1480 offset2 + offset1 * 21; 1481 pwrinfo->ht40_1sindex[rfpath][group] = 1482 (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ? 1483 EEPROM_DEFAULT_TXPOWERLEVEL_5G : 1484 EEPROM_DEFAULT_TXPOWERLEVEL_2G) : 1485 rom_content[eeaddr]; 1486 } 1487 } 1488 /* These just for 92D efuse offset. */ 1489 for (group = 0; group < CHANNEL_GROUP_MAX; group++) { 1490 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { 1491 int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G; 1492 1493 offset1 = group / 3; 1494 offset2 = group % 3; 1495 1496 if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF) 1497 pwrinfo->ht40_2sindexdiff[rfpath][group] = 1498 (rom_content[base1 + 1499 offset2 + offset1 * 21] >> (rfpath * 4)) 1500 & 0xF; 1501 else 1502 pwrinfo->ht40_2sindexdiff[rfpath][group] = 1503 EEPROM_DEFAULT_HT40_2SDIFF; 1504 if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2 1505 + offset1 * 21] != 0xFF) 1506 pwrinfo->ht20indexdiff[rfpath][group] = 1507 (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G 1508 + offset2 + offset1 * 21] >> (rfpath * 4)) 1509 & 0xF; 1510 else 1511 pwrinfo->ht20indexdiff[rfpath][group] = 1512 EEPROM_DEFAULT_HT20_DIFF; 1513 if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2 1514 + offset1 * 21] != 0xFF) 1515 pwrinfo->ofdmindexdiff[rfpath][group] = 1516 (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G 1517 + offset2 + offset1 * 21] >> (rfpath * 4)) 1518 & 0xF; 1519 else 1520 pwrinfo->ofdmindexdiff[rfpath][group] = 1521 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; 1522 if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2 1523 + offset1 * 21] != 0xFF) 1524 pwrinfo->ht40maxoffset[rfpath][group] = 1525 (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G 1526 + offset2 + offset1 * 21] >> (rfpath * 4)) 1527 & 0xF; 1528 else 1529 pwrinfo->ht40maxoffset[rfpath][group] = 1530 EEPROM_DEFAULT_HT40_PWRMAXOFFSET; 1531 if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2 1532 + offset1 * 21] != 0xFF) 1533 pwrinfo->ht20maxoffset[rfpath][group] = 1534 (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + 1535 offset2 + offset1 * 21] >> (rfpath * 4)) & 1536 0xF; 1537 else 1538 pwrinfo->ht20maxoffset[rfpath][group] = 1539 EEPROM_DEFAULT_HT20_PWRMAXOFFSET; 1540 } 1541 } 1542 if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) { 1543 /* 5GL */ 1544 pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F; 1545 pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F; 1546 /* 5GM */ 1547 pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F; 1548 pwrinfo->tssi_b[1] = 1549 (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 | 1550 (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2; 1551 /* 5GH */ 1552 pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] & 1553 0xF0) >> 4 | 1554 (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4; 1555 pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] & 1556 0xFC) >> 2; 1557 } else { 1558 for (i = 0; i < 3; i++) { 1559 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; 1560 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; 1561 } 1562 } 1563 } 1564 1565 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw, 1566 bool autoload_fail, u8 *hwinfo) 1567 { 1568 struct rtl_priv *rtlpriv = rtl_priv(hw); 1569 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1570 struct txpower_info pwrinfo; 1571 u8 tempval[2], i, pwr, diff; 1572 u32 ch, rfPath, group; 1573 1574 _rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail); 1575 if (!autoload_fail) { 1576 /* bit0~2 */ 1577 rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7); 1578 rtlefuse->eeprom_thermalmeter = 1579 hwinfo[EEPROM_THERMAL_METER] & 0x1f; 1580 rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K]; 1581 tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03; 1582 tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2; 1583 rtlefuse->txpwr_fromeprom = true; 1584 if (IS_92D_D_CUT(rtlpriv->rtlhal.version) || 1585 IS_92D_E_CUT(rtlpriv->rtlhal.version)) { 1586 rtlefuse->internal_pa_5g[0] = 1587 !((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6); 1588 rtlefuse->internal_pa_5g[1] = 1589 !((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6); 1590 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, 1591 "Is D cut,Internal PA0 %d Internal PA1 %d\n", 1592 rtlefuse->internal_pa_5g[0], 1593 rtlefuse->internal_pa_5g[1]); 1594 } 1595 rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6]; 1596 rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7]; 1597 } else { 1598 rtlefuse->eeprom_regulatory = 0; 1599 rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; 1600 rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP; 1601 tempval[0] = tempval[1] = 3; 1602 } 1603 1604 /* Use default value to fill parameters if 1605 * efuse is not filled on some place. */ 1606 1607 /* ThermalMeter from EEPROM */ 1608 if (rtlefuse->eeprom_thermalmeter < 0x06 || 1609 rtlefuse->eeprom_thermalmeter > 0x1c) 1610 rtlefuse->eeprom_thermalmeter = 0x12; 1611 rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; 1612 1613 /* check XTAL_K */ 1614 if (rtlefuse->crystalcap == 0xFF) 1615 rtlefuse->crystalcap = 0; 1616 if (rtlefuse->eeprom_regulatory > 3) 1617 rtlefuse->eeprom_regulatory = 0; 1618 1619 for (i = 0; i < 2; i++) { 1620 switch (tempval[i]) { 1621 case 0: 1622 tempval[i] = 5; 1623 break; 1624 case 1: 1625 tempval[i] = 4; 1626 break; 1627 case 2: 1628 tempval[i] = 3; 1629 break; 1630 case 3: 1631 default: 1632 tempval[i] = 0; 1633 break; 1634 } 1635 } 1636 1637 rtlefuse->delta_iqk = tempval[0]; 1638 if (tempval[1] > 0) 1639 rtlefuse->delta_lck = tempval[1] - 1; 1640 if (rtlefuse->eeprom_c9 == 0xFF) 1641 rtlefuse->eeprom_c9 = 0x00; 1642 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, 1643 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory); 1644 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, 1645 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); 1646 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, 1647 "CrystalCap = 0x%x\n", rtlefuse->crystalcap); 1648 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, 1649 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n", 1650 rtlefuse->delta_iqk, rtlefuse->delta_lck); 1651 1652 for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) { 1653 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) { 1654 group = rtl92d_get_chnlgroup_fromarray((u8) ch); 1655 if (ch < CHANNEL_MAX_NUMBER_2G) 1656 rtlefuse->txpwrlevel_cck[rfPath][ch] = 1657 pwrinfo.cck_index[rfPath][group]; 1658 rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] = 1659 pwrinfo.ht40_1sindex[rfPath][group]; 1660 rtlefuse->txpwr_ht20diff[rfPath][ch] = 1661 pwrinfo.ht20indexdiff[rfPath][group]; 1662 rtlefuse->txpwr_legacyhtdiff[rfPath][ch] = 1663 pwrinfo.ofdmindexdiff[rfPath][group]; 1664 rtlefuse->pwrgroup_ht20[rfPath][ch] = 1665 pwrinfo.ht20maxoffset[rfPath][group]; 1666 rtlefuse->pwrgroup_ht40[rfPath][ch] = 1667 pwrinfo.ht40maxoffset[rfPath][group]; 1668 pwr = pwrinfo.ht40_1sindex[rfPath][group]; 1669 diff = pwrinfo.ht40_2sindexdiff[rfPath][group]; 1670 rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] = 1671 (pwr > diff) ? (pwr - diff) : 0; 1672 } 1673 } 1674 } 1675 1676 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw, 1677 u8 *content) 1678 { 1679 struct rtl_priv *rtlpriv = rtl_priv(hw); 1680 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1681 u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION]; 1682 1683 if (macphy_crvalue & BIT(3)) { 1684 rtlhal->macphymode = SINGLEMAC_SINGLEPHY; 1685 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1686 "MacPhyMode SINGLEMAC_SINGLEPHY\n"); 1687 } else { 1688 rtlhal->macphymode = DUALMAC_DUALPHY; 1689 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1690 "MacPhyMode DUALMAC_DUALPHY\n"); 1691 } 1692 } 1693 1694 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw, 1695 u8 *content) 1696 { 1697 _rtl92de_read_macphymode_from_prom(hw, content); 1698 rtl92d_phy_config_macphymode(hw); 1699 rtl92d_phy_config_macphymode_info(hw); 1700 } 1701 1702 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw) 1703 { 1704 struct rtl_priv *rtlpriv = rtl_priv(hw); 1705 enum version_8192d chipver = rtlpriv->rtlhal.version; 1706 u8 cutvalue[2]; 1707 u16 chipvalue; 1708 1709 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H, 1710 &cutvalue[1]); 1711 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L, 1712 &cutvalue[0]); 1713 chipvalue = (cutvalue[1] << 8) | cutvalue[0]; 1714 switch (chipvalue) { 1715 case 0xAA55: 1716 chipver |= CHIP_92D_C_CUT; 1717 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n"); 1718 break; 1719 case 0x9966: 1720 chipver |= CHIP_92D_D_CUT; 1721 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n"); 1722 break; 1723 case 0xCC33: 1724 chipver |= CHIP_92D_E_CUT; 1725 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n"); 1726 break; 1727 default: 1728 chipver |= CHIP_92D_D_CUT; 1729 pr_err("Unknown CUT!\n"); 1730 break; 1731 } 1732 rtlpriv->rtlhal.version = chipver; 1733 } 1734 1735 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw) 1736 { 1737 struct rtl_priv *rtlpriv = rtl_priv(hw); 1738 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1739 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1740 int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID, 1741 EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D, 1742 EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID, 1743 COUNTRY_CODE_WORLD_WIDE_13}; 1744 int i; 1745 u16 usvalue; 1746 u8 *hwinfo; 1747 1748 hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL); 1749 if (!hwinfo) 1750 return; 1751 1752 if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params)) 1753 goto exit; 1754 1755 _rtl92de_efuse_update_chip_version(hw); 1756 _rtl92de_read_macphymode_and_bandtype(hw, hwinfo); 1757 1758 /* Read Permanent MAC address for 2nd interface */ 1759 if (rtlhal->interfaceindex != 0) { 1760 for (i = 0; i < 6; i += 2) { 1761 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i]; 1762 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; 1763 } 1764 } 1765 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, 1766 rtlefuse->dev_addr); 1767 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); 1768 _rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo); 1769 1770 /* Read Channel Plan */ 1771 switch (rtlhal->bandset) { 1772 case BAND_ON_2_4G: 1773 rtlefuse->channel_plan = COUNTRY_CODE_TELEC; 1774 break; 1775 case BAND_ON_5G: 1776 rtlefuse->channel_plan = COUNTRY_CODE_FCC; 1777 break; 1778 case BAND_ON_BOTH: 1779 rtlefuse->channel_plan = COUNTRY_CODE_FCC; 1780 break; 1781 default: 1782 rtlefuse->channel_plan = COUNTRY_CODE_FCC; 1783 break; 1784 } 1785 rtlefuse->txpwr_fromeprom = true; 1786 exit: 1787 kfree(hwinfo); 1788 } 1789 1790 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw) 1791 { 1792 struct rtl_priv *rtlpriv = rtl_priv(hw); 1793 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1794 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1795 u8 tmp_u1b; 1796 1797 rtlhal->version = _rtl92de_read_chip_version(hw); 1798 tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); 1799 rtlefuse->autoload_status = tmp_u1b; 1800 if (tmp_u1b & BIT(4)) { 1801 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); 1802 rtlefuse->epromtype = EEPROM_93C46; 1803 } else { 1804 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); 1805 rtlefuse->epromtype = EEPROM_BOOT_EFUSE; 1806 } 1807 if (tmp_u1b & BIT(5)) { 1808 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); 1809 1810 rtlefuse->autoload_failflag = false; 1811 _rtl92de_read_adapter_info(hw); 1812 } else { 1813 pr_err("Autoload ERR!!\n"); 1814 } 1815 return; 1816 } 1817 1818 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw, 1819 struct ieee80211_sta *sta) 1820 { 1821 struct rtl_priv *rtlpriv = rtl_priv(hw); 1822 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1823 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1824 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1825 u32 ratr_value; 1826 u8 ratr_index = 0; 1827 u8 nmode = mac->ht_enable; 1828 u8 mimo_ps = IEEE80211_SMPS_OFF; 1829 u16 shortgi_rate; 1830 u32 tmp_ratr_value; 1831 u8 curtxbw_40mhz = mac->bw_40; 1832 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1833 1 : 0; 1834 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1835 1 : 0; 1836 enum wireless_mode wirelessmode = mac->mode; 1837 1838 if (rtlhal->current_bandtype == BAND_ON_5G) 1839 ratr_value = sta->supp_rates[1] << 4; 1840 else 1841 ratr_value = sta->supp_rates[0]; 1842 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | 1843 sta->ht_cap.mcs.rx_mask[0] << 12); 1844 switch (wirelessmode) { 1845 case WIRELESS_MODE_A: 1846 ratr_value &= 0x00000FF0; 1847 break; 1848 case WIRELESS_MODE_B: 1849 if (ratr_value & 0x0000000c) 1850 ratr_value &= 0x0000000d; 1851 else 1852 ratr_value &= 0x0000000f; 1853 break; 1854 case WIRELESS_MODE_G: 1855 ratr_value &= 0x00000FF5; 1856 break; 1857 case WIRELESS_MODE_N_24G: 1858 case WIRELESS_MODE_N_5G: 1859 nmode = 1; 1860 if (mimo_ps == IEEE80211_SMPS_STATIC) { 1861 ratr_value &= 0x0007F005; 1862 } else { 1863 u32 ratr_mask; 1864 1865 if (get_rf_type(rtlphy) == RF_1T2R || 1866 get_rf_type(rtlphy) == RF_1T1R) { 1867 ratr_mask = 0x000ff005; 1868 } else { 1869 ratr_mask = 0x0f0ff005; 1870 } 1871 1872 ratr_value &= ratr_mask; 1873 } 1874 break; 1875 default: 1876 if (rtlphy->rf_type == RF_1T2R) 1877 ratr_value &= 0x000ff0ff; 1878 else 1879 ratr_value &= 0x0f0ff0ff; 1880 1881 break; 1882 } 1883 ratr_value &= 0x0FFFFFFF; 1884 if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) || 1885 (!curtxbw_40mhz && curshortgi_20mhz))) { 1886 ratr_value |= 0x10000000; 1887 tmp_ratr_value = (ratr_value >> 12); 1888 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { 1889 if ((1 << shortgi_rate) & tmp_ratr_value) 1890 break; 1891 } 1892 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | 1893 (shortgi_rate << 4) | (shortgi_rate); 1894 } 1895 rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); 1896 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", 1897 rtl_read_dword(rtlpriv, REG_ARFR0)); 1898 } 1899 1900 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw, 1901 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) 1902 { 1903 struct rtl_priv *rtlpriv = rtl_priv(hw); 1904 struct rtl_phy *rtlphy = &(rtlpriv->phy); 1905 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 1906 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1907 struct rtl_sta_info *sta_entry = NULL; 1908 u32 ratr_bitmap; 1909 u8 ratr_index; 1910 u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; 1911 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1912 1 : 0; 1913 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1914 1 : 0; 1915 enum wireless_mode wirelessmode = 0; 1916 bool shortgi = false; 1917 u32 value[2]; 1918 u8 macid = 0; 1919 u8 mimo_ps = IEEE80211_SMPS_OFF; 1920 1921 sta_entry = (struct rtl_sta_info *) sta->drv_priv; 1922 mimo_ps = sta_entry->mimo_ps; 1923 wirelessmode = sta_entry->wireless_mode; 1924 if (mac->opmode == NL80211_IFTYPE_STATION) 1925 curtxbw_40mhz = mac->bw_40; 1926 else if (mac->opmode == NL80211_IFTYPE_AP || 1927 mac->opmode == NL80211_IFTYPE_ADHOC) 1928 macid = sta->aid + 1; 1929 1930 if (rtlhal->current_bandtype == BAND_ON_5G) 1931 ratr_bitmap = sta->supp_rates[1] << 4; 1932 else 1933 ratr_bitmap = sta->supp_rates[0]; 1934 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | 1935 sta->ht_cap.mcs.rx_mask[0] << 12); 1936 switch (wirelessmode) { 1937 case WIRELESS_MODE_B: 1938 ratr_index = RATR_INX_WIRELESS_B; 1939 if (ratr_bitmap & 0x0000000c) 1940 ratr_bitmap &= 0x0000000d; 1941 else 1942 ratr_bitmap &= 0x0000000f; 1943 break; 1944 case WIRELESS_MODE_G: 1945 ratr_index = RATR_INX_WIRELESS_GB; 1946 1947 if (rssi_level == 1) 1948 ratr_bitmap &= 0x00000f00; 1949 else if (rssi_level == 2) 1950 ratr_bitmap &= 0x00000ff0; 1951 else 1952 ratr_bitmap &= 0x00000ff5; 1953 break; 1954 case WIRELESS_MODE_A: 1955 ratr_index = RATR_INX_WIRELESS_G; 1956 ratr_bitmap &= 0x00000ff0; 1957 break; 1958 case WIRELESS_MODE_N_24G: 1959 case WIRELESS_MODE_N_5G: 1960 if (wirelessmode == WIRELESS_MODE_N_24G) 1961 ratr_index = RATR_INX_WIRELESS_NGB; 1962 else 1963 ratr_index = RATR_INX_WIRELESS_NG; 1964 if (mimo_ps == IEEE80211_SMPS_STATIC) { 1965 if (rssi_level == 1) 1966 ratr_bitmap &= 0x00070000; 1967 else if (rssi_level == 2) 1968 ratr_bitmap &= 0x0007f000; 1969 else 1970 ratr_bitmap &= 0x0007f005; 1971 } else { 1972 if (rtlphy->rf_type == RF_1T2R || 1973 rtlphy->rf_type == RF_1T1R) { 1974 if (curtxbw_40mhz) { 1975 if (rssi_level == 1) 1976 ratr_bitmap &= 0x000f0000; 1977 else if (rssi_level == 2) 1978 ratr_bitmap &= 0x000ff000; 1979 else 1980 ratr_bitmap &= 0x000ff015; 1981 } else { 1982 if (rssi_level == 1) 1983 ratr_bitmap &= 0x000f0000; 1984 else if (rssi_level == 2) 1985 ratr_bitmap &= 0x000ff000; 1986 else 1987 ratr_bitmap &= 0x000ff005; 1988 } 1989 } else { 1990 if (curtxbw_40mhz) { 1991 if (rssi_level == 1) 1992 ratr_bitmap &= 0x0f0f0000; 1993 else if (rssi_level == 2) 1994 ratr_bitmap &= 0x0f0ff000; 1995 else 1996 ratr_bitmap &= 0x0f0ff015; 1997 } else { 1998 if (rssi_level == 1) 1999 ratr_bitmap &= 0x0f0f0000; 2000 else if (rssi_level == 2) 2001 ratr_bitmap &= 0x0f0ff000; 2002 else 2003 ratr_bitmap &= 0x0f0ff005; 2004 } 2005 } 2006 } 2007 if ((curtxbw_40mhz && curshortgi_40mhz) || 2008 (!curtxbw_40mhz && curshortgi_20mhz)) { 2009 2010 if (macid == 0) 2011 shortgi = true; 2012 else if (macid == 1) 2013 shortgi = false; 2014 } 2015 break; 2016 default: 2017 ratr_index = RATR_INX_WIRELESS_NGB; 2018 2019 if (rtlphy->rf_type == RF_1T2R) 2020 ratr_bitmap &= 0x000ff0ff; 2021 else 2022 ratr_bitmap &= 0x0f0ff0ff; 2023 break; 2024 } 2025 2026 value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); 2027 value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80; 2028 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, 2029 "ratr_bitmap :%x value0:%x value1:%x\n", 2030 ratr_bitmap, value[0], value[1]); 2031 rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value); 2032 if (macid != 0) 2033 sta_entry->ratr_index = ratr_index; 2034 } 2035 2036 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw, 2037 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) 2038 { 2039 struct rtl_priv *rtlpriv = rtl_priv(hw); 2040 2041 if (rtlpriv->dm.useramask) 2042 rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw); 2043 else 2044 rtl92de_update_hal_rate_table(hw, sta); 2045 } 2046 2047 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw) 2048 { 2049 struct rtl_priv *rtlpriv = rtl_priv(hw); 2050 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2051 u16 sifs_timer; 2052 2053 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, 2054 &mac->slot_time); 2055 if (!mac->ht_enable) 2056 sifs_timer = 0x0a0a; 2057 else 2058 sifs_timer = 0x1010; 2059 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); 2060 } 2061 2062 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) 2063 { 2064 struct rtl_priv *rtlpriv = rtl_priv(hw); 2065 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); 2066 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); 2067 enum rf_pwrstate e_rfpowerstate_toset; 2068 u8 u1tmp; 2069 bool actuallyset = false; 2070 unsigned long flag; 2071 2072 if (rtlpci->being_init_adapter) 2073 return false; 2074 if (ppsc->swrf_processing) 2075 return false; 2076 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2077 if (ppsc->rfchange_inprogress) { 2078 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2079 return false; 2080 } else { 2081 ppsc->rfchange_inprogress = true; 2082 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2083 } 2084 rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv, 2085 REG_MAC_PINMUX_CFG) & ~(BIT(3))); 2086 u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); 2087 e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF; 2088 if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) { 2089 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, 2090 "GPIOChangeRF - HW Radio ON, RF ON\n"); 2091 e_rfpowerstate_toset = ERFON; 2092 ppsc->hwradiooff = false; 2093 actuallyset = true; 2094 } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) { 2095 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, 2096 "GPIOChangeRF - HW Radio OFF, RF OFF\n"); 2097 e_rfpowerstate_toset = ERFOFF; 2098 ppsc->hwradiooff = true; 2099 actuallyset = true; 2100 } 2101 if (actuallyset) { 2102 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2103 ppsc->rfchange_inprogress = false; 2104 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2105 } else { 2106 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) 2107 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); 2108 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); 2109 ppsc->rfchange_inprogress = false; 2110 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); 2111 } 2112 *valid = 1; 2113 return !ppsc->hwradiooff; 2114 } 2115 2116 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index, 2117 u8 *p_macaddr, bool is_group, u8 enc_algo, 2118 bool is_wepkey, bool clear_all) 2119 { 2120 struct rtl_priv *rtlpriv = rtl_priv(hw); 2121 struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); 2122 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 2123 u8 *macaddr = p_macaddr; 2124 u32 entry_id; 2125 bool is_pairwise = false; 2126 static u8 cam_const_addr[4][6] = { 2127 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 2128 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 2129 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, 2130 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} 2131 }; 2132 static u8 cam_const_broad[] = { 2133 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 2134 }; 2135 2136 if (clear_all) { 2137 u8 idx; 2138 u8 cam_offset = 0; 2139 u8 clear_number = 5; 2140 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); 2141 for (idx = 0; idx < clear_number; idx++) { 2142 rtl_cam_mark_invalid(hw, cam_offset + idx); 2143 rtl_cam_empty_entry(hw, cam_offset + idx); 2144 2145 if (idx < 5) { 2146 memset(rtlpriv->sec.key_buf[idx], 0, 2147 MAX_KEY_LEN); 2148 rtlpriv->sec.key_len[idx] = 0; 2149 } 2150 } 2151 } else { 2152 switch (enc_algo) { 2153 case WEP40_ENCRYPTION: 2154 enc_algo = CAM_WEP40; 2155 break; 2156 case WEP104_ENCRYPTION: 2157 enc_algo = CAM_WEP104; 2158 break; 2159 case TKIP_ENCRYPTION: 2160 enc_algo = CAM_TKIP; 2161 break; 2162 case AESCCMP_ENCRYPTION: 2163 enc_algo = CAM_AES; 2164 break; 2165 default: 2166 pr_err("switch case %#x not processed\n", 2167 enc_algo); 2168 enc_algo = CAM_TKIP; 2169 break; 2170 } 2171 if (is_wepkey || rtlpriv->sec.use_defaultkey) { 2172 macaddr = cam_const_addr[key_index]; 2173 entry_id = key_index; 2174 } else { 2175 if (is_group) { 2176 macaddr = cam_const_broad; 2177 entry_id = key_index; 2178 } else { 2179 if (mac->opmode == NL80211_IFTYPE_AP) { 2180 entry_id = rtl_cam_get_free_entry(hw, 2181 p_macaddr); 2182 if (entry_id >= TOTAL_CAM_ENTRY) { 2183 pr_err("Can not find free hw security cam entry\n"); 2184 return; 2185 } 2186 } else { 2187 entry_id = CAM_PAIRWISE_KEY_POSITION; 2188 } 2189 key_index = PAIRWISE_KEYIDX; 2190 is_pairwise = true; 2191 } 2192 } 2193 if (rtlpriv->sec.key_len[key_index] == 0) { 2194 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2195 "delete one entry, entry_id is %d\n", 2196 entry_id); 2197 if (mac->opmode == NL80211_IFTYPE_AP) 2198 rtl_cam_del_entry(hw, p_macaddr); 2199 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); 2200 } else { 2201 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, 2202 "The insert KEY length is %d\n", 2203 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]); 2204 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, 2205 "The insert KEY is %x %x\n", 2206 rtlpriv->sec.key_buf[0][0], 2207 rtlpriv->sec.key_buf[0][1]); 2208 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2209 "add one entry\n"); 2210 if (is_pairwise) { 2211 RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD, 2212 "Pairwise Key content", 2213 rtlpriv->sec.pairwise_key, 2214 rtlpriv-> 2215 sec.key_len[PAIRWISE_KEYIDX]); 2216 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2217 "set Pairwise key\n"); 2218 rtl_cam_add_one_entry(hw, macaddr, key_index, 2219 entry_id, enc_algo, 2220 CAM_CONFIG_NO_USEDK, 2221 rtlpriv-> 2222 sec.key_buf[key_index]); 2223 } else { 2224 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, 2225 "set group key\n"); 2226 if (mac->opmode == NL80211_IFTYPE_ADHOC) { 2227 rtl_cam_add_one_entry(hw, 2228 rtlefuse->dev_addr, 2229 PAIRWISE_KEYIDX, 2230 CAM_PAIRWISE_KEY_POSITION, 2231 enc_algo, CAM_CONFIG_NO_USEDK, 2232 rtlpriv->sec.key_buf[entry_id]); 2233 } 2234 rtl_cam_add_one_entry(hw, macaddr, key_index, 2235 entry_id, enc_algo, 2236 CAM_CONFIG_NO_USEDK, 2237 rtlpriv->sec.key_buf 2238 [entry_id]); 2239 } 2240 } 2241 } 2242 } 2243 2244 void rtl92de_suspend(struct ieee80211_hw *hw) 2245 { 2246 struct rtl_priv *rtlpriv = rtl_priv(hw); 2247 2248 rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv, 2249 REG_MAC_PHY_CTRL_NORMAL); 2250 } 2251 2252 void rtl92de_resume(struct ieee80211_hw *hw) 2253 { 2254 struct rtl_priv *rtlpriv = rtl_priv(hw); 2255 2256 rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL, 2257 rtlpriv->rtlhal.macphyctl_reg); 2258 } 2259