1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009-2013  Realtek Corporation.*/
3 
4 #include "../wifi.h"
5 #include "../pci.h"
6 #include "../ps.h"
7 #include "reg.h"
8 #include "def.h"
9 #include "phy.h"
10 #include "rf.h"
11 #include "dm.h"
12 #include "table.h"
13 
14 static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
15 				      enum radio_path rfpath, u32 offset);
16 static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
17 					enum radio_path rfpath, u32 offset,
18 					u32 data);
19 static u32 _rtl88e_phy_calculate_bit_shift(u32 bitmask)
20 {
21 	u32 i = ffs(bitmask);
22 
23 	return i ? i - 1 : 32;
24 }
25 static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw);
26 static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw);
27 static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
28 					  u8 configtype);
29 static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw,
30 				     u8 configtype);
31 static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw);
32 static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
33 					     u32 cmdtableidx, u32 cmdtablesz,
34 					     enum swchnlcmd_id cmdid, u32 para1,
35 					     u32 para2, u32 msdelay);
36 static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
37 					     u8 channel, u8 *stage, u8 *step,
38 					     u32 *delay);
39 
40 static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
41 					 enum wireless_mode wirelessmode,
42 					 u8 txpwridx);
43 static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw);
44 static void rtl88e_phy_set_io(struct ieee80211_hw *hw);
45 
46 u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
47 {
48 	struct rtl_priv *rtlpriv = rtl_priv(hw);
49 	u32 returnvalue, originalvalue, bitshift;
50 
51 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
52 		"regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask);
53 	originalvalue = rtl_read_dword(rtlpriv, regaddr);
54 	bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
55 	returnvalue = (originalvalue & bitmask) >> bitshift;
56 
57 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
58 		"BBR MASK=0x%x Addr[0x%x]=0x%x\n", bitmask,
59 		regaddr, originalvalue);
60 
61 	return returnvalue;
62 
63 }
64 
65 void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw,
66 			   u32 regaddr, u32 bitmask, u32 data)
67 {
68 	struct rtl_priv *rtlpriv = rtl_priv(hw);
69 	u32 originalvalue, bitshift;
70 
71 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
72 		"regaddr(%#x), bitmask(%#x), data(%#x)\n",
73 		regaddr, bitmask, data);
74 
75 	if (bitmask != MASKDWORD) {
76 		originalvalue = rtl_read_dword(rtlpriv, regaddr);
77 		bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
78 		data = ((originalvalue & (~bitmask)) | (data << bitshift));
79 	}
80 
81 	rtl_write_dword(rtlpriv, regaddr, data);
82 
83 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
84 		"regaddr(%#x), bitmask(%#x), data(%#x)\n",
85 		regaddr, bitmask, data);
86 }
87 
88 u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw,
89 			    enum radio_path rfpath, u32 regaddr, u32 bitmask)
90 {
91 	struct rtl_priv *rtlpriv = rtl_priv(hw);
92 	u32 original_value, readback_value, bitshift;
93 
94 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
95 		"regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
96 		regaddr, rfpath, bitmask);
97 
98 	spin_lock(&rtlpriv->locks.rf_lock);
99 
100 
101 	original_value = _rtl88e_phy_rf_serial_read(hw, rfpath, regaddr);
102 	bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
103 	readback_value = (original_value & bitmask) >> bitshift;
104 
105 	spin_unlock(&rtlpriv->locks.rf_lock);
106 
107 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
108 		"regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
109 		regaddr, rfpath, bitmask, original_value);
110 	return readback_value;
111 }
112 
113 void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw,
114 			   enum radio_path rfpath,
115 			   u32 regaddr, u32 bitmask, u32 data)
116 {
117 	struct rtl_priv *rtlpriv = rtl_priv(hw);
118 	u32 original_value, bitshift;
119 
120 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
121 		"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
122 		regaddr, bitmask, data, rfpath);
123 
124 	spin_lock(&rtlpriv->locks.rf_lock);
125 
126 	if (bitmask != RFREG_OFFSET_MASK) {
127 			original_value = _rtl88e_phy_rf_serial_read(hw,
128 								    rfpath,
129 								    regaddr);
130 			bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
131 			data =
132 			    ((original_value & (~bitmask)) |
133 			     (data << bitshift));
134 		}
135 
136 	_rtl88e_phy_rf_serial_write(hw, rfpath, regaddr, data);
137 
138 
139 	spin_unlock(&rtlpriv->locks.rf_lock);
140 
141 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
142 		"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
143 		regaddr, bitmask, data, rfpath);
144 }
145 
146 static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
147 				      enum radio_path rfpath, u32 offset)
148 {
149 	struct rtl_priv *rtlpriv = rtl_priv(hw);
150 	struct rtl_phy *rtlphy = &rtlpriv->phy;
151 	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
152 	u32 newoffset;
153 	u32 tmplong, tmplong2;
154 	u8 rfpi_enable = 0;
155 	u32 retvalue;
156 
157 	offset &= 0xff;
158 	newoffset = offset;
159 	if (RT_CANNOT_IO(hw)) {
160 		pr_err("return all one\n");
161 		return 0xFFFFFFFF;
162 	}
163 	tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
164 	if (rfpath == RF90_PATH_A)
165 		tmplong2 = tmplong;
166 	else
167 		tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
168 	tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
169 	    (newoffset << 23) | BLSSIREADEDGE;
170 	rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
171 		      tmplong & (~BLSSIREADEDGE));
172 	udelay(10);
173 	rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
174 	udelay(120);
175 	if (rfpath == RF90_PATH_A)
176 		rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
177 						BIT(8));
178 	else if (rfpath == RF90_PATH_B)
179 		rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
180 						BIT(8));
181 	if (rfpi_enable)
182 		retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
183 					 BLSSIREADBACKDATA);
184 	else
185 		retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
186 					 BLSSIREADBACKDATA);
187 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
188 		"RFR-%d Addr[0x%x]=0x%x\n",
189 		rfpath, pphyreg->rf_rb, retvalue);
190 	return retvalue;
191 }
192 
193 static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
194 					enum radio_path rfpath, u32 offset,
195 					u32 data)
196 {
197 	u32 data_and_addr;
198 	u32 newoffset;
199 	struct rtl_priv *rtlpriv = rtl_priv(hw);
200 	struct rtl_phy *rtlphy = &rtlpriv->phy;
201 	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
202 
203 	if (RT_CANNOT_IO(hw)) {
204 		pr_err("stop\n");
205 		return;
206 	}
207 	offset &= 0xff;
208 	newoffset = offset;
209 	data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
210 	rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
211 	rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
212 		"RFW-%d Addr[0x%x]=0x%x\n",
213 		rfpath, pphyreg->rf3wire_offset, data_and_addr);
214 }
215 
216 bool rtl88e_phy_mac_config(struct ieee80211_hw *hw)
217 {
218 	struct rtl_priv *rtlpriv = rtl_priv(hw);
219 	bool rtstatus = _rtl88e_phy_config_mac_with_headerfile(hw);
220 
221 	rtl_write_byte(rtlpriv, 0x04CA, 0x0B);
222 	return rtstatus;
223 }
224 
225 bool rtl88e_phy_bb_config(struct ieee80211_hw *hw)
226 {
227 	bool rtstatus = true;
228 	struct rtl_priv *rtlpriv = rtl_priv(hw);
229 	u16 regval;
230 	u8 b_reg_hwparafile = 1;
231 	u32 tmp;
232 	_rtl88e_phy_init_bb_rf_register_definition(hw);
233 	regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
234 	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
235 		       regval | BIT(13) | BIT(0) | BIT(1));
236 
237 	rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
238 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
239 		       FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
240 		       FEN_BB_GLB_RSTN | FEN_BBRSTB);
241 	tmp = rtl_read_dword(rtlpriv, 0x4c);
242 	rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23));
243 	if (b_reg_hwparafile == 1)
244 		rtstatus = _rtl88e_phy_bb8188e_config_parafile(hw);
245 	return rtstatus;
246 }
247 
248 bool rtl88e_phy_rf_config(struct ieee80211_hw *hw)
249 {
250 	return rtl88e_phy_rf6052_config(hw);
251 }
252 
253 static bool _rtl88e_check_condition(struct ieee80211_hw *hw,
254 				    const u32  condition)
255 {
256 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
257 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
258 	u32 _board = rtlefuse->board_type; /*need efuse define*/
259 	u32 _interface = rtlhal->interface;
260 	u32 _platform = 0x08;/*SupportPlatform */
261 	u32 cond;
262 
263 	if (condition == 0xCDCDCDCD)
264 		return true;
265 
266 	cond = condition & 0xFF;
267 	if ((_board & cond) == 0 && cond != 0x1F)
268 		return false;
269 
270 	cond = condition & 0xFF00;
271 	cond = cond >> 8;
272 	if ((_interface & cond) == 0 && cond != 0x07)
273 		return false;
274 
275 	cond = condition & 0xFF0000;
276 	cond = cond >> 16;
277 	if ((_platform & cond) == 0 && cond != 0x0F)
278 		return false;
279 	return true;
280 }
281 
282 static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw, u32 addr,
283 				    u32 data, enum radio_path rfpath,
284 				    u32 regaddr)
285 {
286 	if (addr == 0xffe) {
287 		mdelay(50);
288 	} else if (addr == 0xfd) {
289 		mdelay(5);
290 	} else if (addr == 0xfc) {
291 		mdelay(1);
292 	} else if (addr == 0xfb) {
293 		udelay(50);
294 	} else if (addr == 0xfa) {
295 		udelay(5);
296 	} else if (addr == 0xf9) {
297 		udelay(1);
298 	} else {
299 		rtl_set_rfreg(hw, rfpath, regaddr,
300 			      RFREG_OFFSET_MASK,
301 			      data);
302 		udelay(1);
303 	}
304 }
305 
306 static void _rtl8188e_config_rf_radio_a(struct ieee80211_hw *hw,
307 					u32 addr, u32 data)
308 {
309 	u32 content = 0x1000; /*RF Content: radio_a_txt*/
310 	u32 maskforphyset = (u32)(content & 0xE000);
311 
312 	_rtl8188e_config_rf_reg(hw, addr, data, RF90_PATH_A,
313 		addr | maskforphyset);
314 }
315 
316 static void _rtl8188e_config_bb_reg(struct ieee80211_hw *hw,
317 				    u32 addr, u32 data)
318 {
319 	if (addr == 0xfe) {
320 		mdelay(50);
321 	} else if (addr == 0xfd) {
322 		mdelay(5);
323 	} else if (addr == 0xfc) {
324 		mdelay(1);
325 	} else if (addr == 0xfb) {
326 		udelay(50);
327 	} else if (addr == 0xfa) {
328 		udelay(5);
329 	} else if (addr == 0xf9) {
330 		udelay(1);
331 	} else {
332 		rtl_set_bbreg(hw, addr, MASKDWORD, data);
333 		udelay(1);
334 	}
335 }
336 
337 static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw)
338 {
339 	struct rtl_priv *rtlpriv = rtl_priv(hw);
340 	struct rtl_phy *rtlphy = &rtlpriv->phy;
341 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
342 	bool rtstatus;
343 
344 	rtstatus = phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_PHY_REG);
345 	if (!rtstatus) {
346 		pr_err("Write BB Reg Fail!!\n");
347 		return false;
348 	}
349 
350 	if (!rtlefuse->autoload_failflag) {
351 		rtlphy->pwrgroup_cnt = 0;
352 		rtstatus =
353 		  phy_config_bb_with_pghdr(hw, BASEBAND_CONFIG_PHY_REG);
354 	}
355 	if (!rtstatus) {
356 		pr_err("BB_PG Reg Fail!!\n");
357 		return false;
358 	}
359 	rtstatus =
360 	  phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_AGC_TAB);
361 	if (!rtstatus) {
362 		pr_err("AGC Table Fail\n");
363 		return false;
364 	}
365 	rtlphy->cck_high_power =
366 	  (bool)(rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, 0x200));
367 
368 	return true;
369 }
370 
371 static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw)
372 {
373 	struct rtl_priv *rtlpriv = rtl_priv(hw);
374 	u32 i;
375 	u32 arraylength;
376 	u32 *ptrarray;
377 
378 	rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl8188EMACPHY_Array\n");
379 	arraylength = RTL8188EEMAC_1T_ARRAYLEN;
380 	ptrarray = RTL8188EEMAC_1T_ARRAY;
381 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
382 		"Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", arraylength);
383 	for (i = 0; i < arraylength; i = i + 2)
384 		rtl_write_byte(rtlpriv, ptrarray[i], (u8)ptrarray[i + 1]);
385 	return true;
386 }
387 
388 #define READ_NEXT_PAIR(v1, v2, i)			\
389 	do {						\
390 		i += 2; v1 = array_table[i];		\
391 		v2 = array_table[i+1];			\
392 	} while (0)
393 
394 static void handle_branch1(struct ieee80211_hw *hw, u16 arraylen,
395 			   u32 *array_table)
396 {
397 	u32 v1;
398 	u32 v2;
399 	int i;
400 
401 	for (i = 0; i < arraylen; i = i + 2) {
402 		v1 = array_table[i];
403 		v2 = array_table[i+1];
404 		if (v1 < 0xcdcdcdcd) {
405 			_rtl8188e_config_bb_reg(hw, v1, v2);
406 		} else { /*This line is the start line of branch.*/
407 			/* to protect READ_NEXT_PAIR not overrun */
408 			if (i >= arraylen - 2)
409 				break;
410 
411 			if (!_rtl88e_check_condition(hw, array_table[i])) {
412 				/*Discard the following (offset, data) pairs*/
413 				READ_NEXT_PAIR(v1, v2, i);
414 				while (v2 != 0xDEAD &&
415 				       v2 != 0xCDEF &&
416 				       v2 != 0xCDCD && i < arraylen - 2)
417 					READ_NEXT_PAIR(v1, v2, i);
418 				i -= 2; /* prevent from for-loop += 2*/
419 			} else { /* Configure matched pairs and skip
420 				  * to end of if-else.
421 				  */
422 				READ_NEXT_PAIR(v1, v2, i);
423 				while (v2 != 0xDEAD &&
424 				       v2 != 0xCDEF &&
425 				       v2 != 0xCDCD && i < arraylen - 2) {
426 					_rtl8188e_config_bb_reg(hw, v1, v2);
427 					READ_NEXT_PAIR(v1, v2, i);
428 				}
429 
430 				while (v2 != 0xDEAD && i < arraylen - 2)
431 					READ_NEXT_PAIR(v1, v2, i);
432 			}
433 		}
434 	}
435 }
436 
437 static void handle_branch2(struct ieee80211_hw *hw, u16 arraylen,
438 			   u32 *array_table)
439 {
440 	struct rtl_priv *rtlpriv = rtl_priv(hw);
441 	u32 v1;
442 	u32 v2;
443 	int i;
444 
445 	for (i = 0; i < arraylen; i = i + 2) {
446 		v1 = array_table[i];
447 		v2 = array_table[i+1];
448 		if (v1 < 0xCDCDCDCD) {
449 			rtl_set_bbreg(hw, array_table[i], MASKDWORD,
450 				      array_table[i + 1]);
451 			udelay(1);
452 			continue;
453 		} else { /*This line is the start line of branch.*/
454 			/* to protect READ_NEXT_PAIR not overrun */
455 			if (i >= arraylen - 2)
456 				break;
457 
458 			if (!_rtl88e_check_condition(hw, array_table[i])) {
459 				/*Discard the following (offset, data) pairs*/
460 				READ_NEXT_PAIR(v1, v2, i);
461 				while (v2 != 0xDEAD &&
462 				       v2 != 0xCDEF &&
463 				       v2 != 0xCDCD && i < arraylen - 2)
464 					READ_NEXT_PAIR(v1, v2, i);
465 				i -= 2; /* prevent from for-loop += 2*/
466 			} else { /* Configure matched pairs and skip
467 				  * to end of if-else.
468 				  */
469 				READ_NEXT_PAIR(v1, v2, i);
470 				while (v2 != 0xDEAD &&
471 				       v2 != 0xCDEF &&
472 				       v2 != 0xCDCD && i < arraylen - 2) {
473 					rtl_set_bbreg(hw, array_table[i],
474 						      MASKDWORD,
475 						      array_table[i + 1]);
476 					udelay(1);
477 					READ_NEXT_PAIR(v1, v2, i);
478 				}
479 
480 				while (v2 != 0xDEAD && i < arraylen - 2)
481 					READ_NEXT_PAIR(v1, v2, i);
482 			}
483 		}
484 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
485 			"The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n",
486 			array_table[i], array_table[i + 1]);
487 	}
488 }
489 
490 static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
491 					  u8 configtype)
492 {
493 	u32 *array_table;
494 	u16 arraylen;
495 
496 	if (configtype == BASEBAND_CONFIG_PHY_REG) {
497 		arraylen = RTL8188EEPHY_REG_1TARRAYLEN;
498 		array_table = RTL8188EEPHY_REG_1TARRAY;
499 		handle_branch1(hw, arraylen, array_table);
500 	} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
501 		arraylen = RTL8188EEAGCTAB_1TARRAYLEN;
502 		array_table = RTL8188EEAGCTAB_1TARRAY;
503 		handle_branch2(hw, arraylen, array_table);
504 	}
505 	return true;
506 }
507 
508 static void store_pwrindex_rate_offset(struct ieee80211_hw *hw,
509 				       u32 regaddr, u32 bitmask,
510 				       u32 data)
511 {
512 	struct rtl_priv *rtlpriv = rtl_priv(hw);
513 	struct rtl_phy *rtlphy = &rtlpriv->phy;
514 	int count = rtlphy->pwrgroup_cnt;
515 
516 	if (regaddr == RTXAGC_A_RATE18_06) {
517 		rtlphy->mcs_txpwrlevel_origoffset[count][0] = data;
518 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
519 			"MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n",
520 			count,
521 			rtlphy->mcs_txpwrlevel_origoffset[count][0]);
522 	}
523 	if (regaddr == RTXAGC_A_RATE54_24) {
524 		rtlphy->mcs_txpwrlevel_origoffset[count][1] = data;
525 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
526 			"MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n",
527 			count,
528 			rtlphy->mcs_txpwrlevel_origoffset[count][1]);
529 	}
530 	if (regaddr == RTXAGC_A_CCK1_MCS32) {
531 		rtlphy->mcs_txpwrlevel_origoffset[count][6] = data;
532 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
533 			"MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n",
534 			count,
535 			rtlphy->mcs_txpwrlevel_origoffset[count][6]);
536 	}
537 	if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) {
538 		rtlphy->mcs_txpwrlevel_origoffset[count][7] = data;
539 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
540 			"MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n",
541 			count,
542 			rtlphy->mcs_txpwrlevel_origoffset[count][7]);
543 	}
544 	if (regaddr == RTXAGC_A_MCS03_MCS00) {
545 		rtlphy->mcs_txpwrlevel_origoffset[count][2] = data;
546 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
547 			"MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n",
548 			count,
549 			rtlphy->mcs_txpwrlevel_origoffset[count][2]);
550 	}
551 	if (regaddr == RTXAGC_A_MCS07_MCS04) {
552 		rtlphy->mcs_txpwrlevel_origoffset[count][3] = data;
553 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
554 			"MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n",
555 			count,
556 			rtlphy->mcs_txpwrlevel_origoffset[count][3]);
557 	}
558 	if (regaddr == RTXAGC_A_MCS11_MCS08) {
559 		rtlphy->mcs_txpwrlevel_origoffset[count][4] = data;
560 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
561 			"MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n",
562 			count,
563 			rtlphy->mcs_txpwrlevel_origoffset[count][4]);
564 	}
565 	if (regaddr == RTXAGC_A_MCS15_MCS12) {
566 		rtlphy->mcs_txpwrlevel_origoffset[count][5] = data;
567 		if (get_rf_type(rtlphy) == RF_1T1R) {
568 			count++;
569 			rtlphy->pwrgroup_cnt = count;
570 		}
571 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
572 			"MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n",
573 			count,
574 			rtlphy->mcs_txpwrlevel_origoffset[count][5]);
575 	}
576 	if (regaddr == RTXAGC_B_RATE18_06) {
577 		rtlphy->mcs_txpwrlevel_origoffset[count][8] = data;
578 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
579 			"MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n",
580 			count,
581 			rtlphy->mcs_txpwrlevel_origoffset[count][8]);
582 	}
583 	if (regaddr == RTXAGC_B_RATE54_24) {
584 		rtlphy->mcs_txpwrlevel_origoffset[count][9] = data;
585 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
586 			"MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n",
587 			count,
588 			rtlphy->mcs_txpwrlevel_origoffset[count][9]);
589 	}
590 	if (regaddr == RTXAGC_B_CCK1_55_MCS32) {
591 		rtlphy->mcs_txpwrlevel_origoffset[count][14] = data;
592 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
593 			"MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n",
594 			count,
595 			rtlphy->mcs_txpwrlevel_origoffset[count][14]);
596 	}
597 	if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) {
598 		rtlphy->mcs_txpwrlevel_origoffset[count][15] = data;
599 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
600 			"MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n",
601 			count,
602 			rtlphy->mcs_txpwrlevel_origoffset[count][15]);
603 	}
604 	if (regaddr == RTXAGC_B_MCS03_MCS00) {
605 		rtlphy->mcs_txpwrlevel_origoffset[count][10] = data;
606 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
607 			"MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n",
608 			count,
609 			rtlphy->mcs_txpwrlevel_origoffset[count][10]);
610 	}
611 	if (regaddr == RTXAGC_B_MCS07_MCS04) {
612 		rtlphy->mcs_txpwrlevel_origoffset[count][11] = data;
613 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
614 			"MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n",
615 			count,
616 			rtlphy->mcs_txpwrlevel_origoffset[count][11]);
617 	}
618 	if (regaddr == RTXAGC_B_MCS11_MCS08) {
619 		rtlphy->mcs_txpwrlevel_origoffset[count][12] = data;
620 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
621 			"MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n",
622 			count,
623 			rtlphy->mcs_txpwrlevel_origoffset[count][12]);
624 	}
625 	if (regaddr == RTXAGC_B_MCS15_MCS12) {
626 		rtlphy->mcs_txpwrlevel_origoffset[count][13] = data;
627 		rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
628 			"MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n",
629 			count,
630 			rtlphy->mcs_txpwrlevel_origoffset[count][13]);
631 		if (get_rf_type(rtlphy) != RF_1T1R) {
632 			count++;
633 			rtlphy->pwrgroup_cnt = count;
634 		}
635 	}
636 }
637 
638 static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw, u8 configtype)
639 {
640 	struct rtl_priv *rtlpriv = rtl_priv(hw);
641 	int i;
642 	u32 *phy_reg_page;
643 	u16 phy_reg_page_len;
644 	u32 v1 = 0, v2 = 0;
645 
646 	phy_reg_page_len = RTL8188EEPHY_REG_ARRAY_PGLEN;
647 	phy_reg_page = RTL8188EEPHY_REG_ARRAY_PG;
648 
649 	if (configtype == BASEBAND_CONFIG_PHY_REG) {
650 		for (i = 0; i < phy_reg_page_len; i = i + 3) {
651 			v1 = phy_reg_page[i];
652 			v2 = phy_reg_page[i+1];
653 
654 			if (v1 < 0xcdcdcdcd) {
655 				if (phy_reg_page[i] == 0xfe)
656 					mdelay(50);
657 				else if (phy_reg_page[i] == 0xfd)
658 					mdelay(5);
659 				else if (phy_reg_page[i] == 0xfc)
660 					mdelay(1);
661 				else if (phy_reg_page[i] == 0xfb)
662 					udelay(50);
663 				else if (phy_reg_page[i] == 0xfa)
664 					udelay(5);
665 				else if (phy_reg_page[i] == 0xf9)
666 					udelay(1);
667 
668 				store_pwrindex_rate_offset(hw, phy_reg_page[i],
669 							   phy_reg_page[i + 1],
670 							   phy_reg_page[i + 2]);
671 				continue;
672 			} else {
673 				if (!_rtl88e_check_condition(hw,
674 							     phy_reg_page[i])) {
675 					/*don't need the hw_body*/
676 				    i += 2; /* skip the pair of expression*/
677 				    /* to protect 'i+1' 'i+2' not overrun */
678 				    if (i >= phy_reg_page_len - 2)
679 					break;
680 
681 				    v1 = phy_reg_page[i];
682 				    v2 = phy_reg_page[i+1];
683 				    while (v2 != 0xDEAD &&
684 					   i < phy_reg_page_len - 5) {
685 					i += 3;
686 					v1 = phy_reg_page[i];
687 					v2 = phy_reg_page[i+1];
688 				    }
689 				}
690 			}
691 		}
692 	} else {
693 		rtl_dbg(rtlpriv, COMP_SEND, DBG_TRACE,
694 			"configtype != BaseBand_Config_PHY_REG\n");
695 	}
696 	return true;
697 }
698 
699 #define READ_NEXT_RF_PAIR(v1, v2, i) \
700 do { \
701 	i += 2; \
702 	v1 = radioa_array_table[i]; \
703 	v2 = radioa_array_table[i+1]; \
704 } while (0)
705 
706 static void process_path_a(struct ieee80211_hw *hw,
707 			   u16  radioa_arraylen,
708 			   u32 *radioa_array_table)
709 {
710 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
711 	u32 v1, v2;
712 	int i;
713 
714 	for (i = 0; i < radioa_arraylen; i = i + 2) {
715 		v1 = radioa_array_table[i];
716 		v2 = radioa_array_table[i+1];
717 		if (v1 < 0xcdcdcdcd) {
718 			_rtl8188e_config_rf_radio_a(hw, v1, v2);
719 		} else { /*This line is the start line of branch.*/
720 			/* to protect READ_NEXT_PAIR not overrun */
721 			if (i >= radioa_arraylen - 2)
722 				break;
723 
724 			if (!_rtl88e_check_condition(hw, radioa_array_table[i])) {
725 				/*Discard the following (offset, data) pairs*/
726 				READ_NEXT_RF_PAIR(v1, v2, i);
727 				while (v2 != 0xDEAD &&
728 				       v2 != 0xCDEF &&
729 				       v2 != 0xCDCD &&
730 				       i < radioa_arraylen - 2) {
731 					READ_NEXT_RF_PAIR(v1, v2, i);
732 				}
733 				i -= 2; /* prevent from for-loop += 2*/
734 			} else { /* Configure matched pairs and
735 				  * skip to end of if-else.
736 				  */
737 				READ_NEXT_RF_PAIR(v1, v2, i);
738 				while (v2 != 0xDEAD &&
739 				       v2 != 0xCDEF &&
740 				       v2 != 0xCDCD &&
741 				       i < radioa_arraylen - 2) {
742 					_rtl8188e_config_rf_radio_a(hw, v1, v2);
743 					READ_NEXT_RF_PAIR(v1, v2, i);
744 				}
745 
746 				while (v2 != 0xDEAD &&
747 				       i < radioa_arraylen - 2)
748 					READ_NEXT_RF_PAIR(v1, v2, i);
749 			}
750 		}
751 	}
752 
753 	if (rtlhal->oem_id == RT_CID_819X_HP)
754 		_rtl8188e_config_rf_radio_a(hw, 0x52, 0x7E4BD);
755 }
756 
757 bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
758 					  enum radio_path rfpath)
759 {
760 	struct rtl_priv *rtlpriv = rtl_priv(hw);
761 	u32 *radioa_array_table;
762 	u16 radioa_arraylen;
763 
764 	radioa_arraylen = RTL8188EE_RADIOA_1TARRAYLEN;
765 	radioa_array_table = RTL8188EE_RADIOA_1TARRAY;
766 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
767 		"Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", radioa_arraylen);
768 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
769 	switch (rfpath) {
770 	case RF90_PATH_A:
771 		process_path_a(hw, radioa_arraylen, radioa_array_table);
772 		break;
773 	case RF90_PATH_B:
774 	case RF90_PATH_C:
775 	case RF90_PATH_D:
776 		break;
777 	}
778 	return true;
779 }
780 
781 void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
782 {
783 	struct rtl_priv *rtlpriv = rtl_priv(hw);
784 	struct rtl_phy *rtlphy = &rtlpriv->phy;
785 
786 	rtlphy->default_initialgain[0] =
787 	    (u8)rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
788 	rtlphy->default_initialgain[1] =
789 	    (u8)rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
790 	rtlphy->default_initialgain[2] =
791 	    (u8)rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
792 	rtlphy->default_initialgain[3] =
793 	    (u8)rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
794 
795 	rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
796 		"Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
797 		rtlphy->default_initialgain[0],
798 		rtlphy->default_initialgain[1],
799 		rtlphy->default_initialgain[2],
800 		rtlphy->default_initialgain[3]);
801 
802 	rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
803 					      MASKBYTE0);
804 	rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
805 					      MASKDWORD);
806 
807 	rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
808 		"Default framesync (0x%x) = 0x%x\n",
809 		ROFDM0_RXDETECTOR3, rtlphy->framesync);
810 }
811 
812 static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
813 {
814 	struct rtl_priv *rtlpriv = rtl_priv(hw);
815 	struct rtl_phy *rtlphy = &rtlpriv->phy;
816 
817 	rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
818 	rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
819 	rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
820 	rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
821 
822 	rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
823 	rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
824 	rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
825 	rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
826 
827 	rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
828 	rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
829 
830 	rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
831 	rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
832 
833 	rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
834 	    RFPGA0_XA_LSSIPARAMETER;
835 	rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
836 	    RFPGA0_XB_LSSIPARAMETER;
837 
838 	rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
839 	rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
840 	rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
841 	rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
842 
843 	rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
844 	rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
845 	rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
846 	rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
847 
848 	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
849 	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
850 
851 	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
852 	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
853 
854 	rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl =
855 	    RFPGA0_XAB_SWITCHCONTROL;
856 	rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl =
857 	    RFPGA0_XAB_SWITCHCONTROL;
858 	rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl =
859 	    RFPGA0_XCD_SWITCHCONTROL;
860 	rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl =
861 	    RFPGA0_XCD_SWITCHCONTROL;
862 
863 	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
864 	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
865 	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
866 	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
867 
868 	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
869 	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
870 	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
871 	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
872 
873 	rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
874 	rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
875 	rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBANLANCE;
876 	rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
877 
878 	rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
879 	rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
880 	rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
881 	rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
882 
883 	rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATXIQIMBALANCE;
884 	rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTXIQIMBALANCE;
885 	rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTXIQIMBALANCE;
886 	rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTXIQIMBALANCE;
887 
888 	rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATXAFE;
889 	rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTXAFE;
890 
891 	rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
892 	rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
893 
894 	rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVEA_HSPI_READBACK;
895 	rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVEB_HSPI_READBACK;
896 }
897 
898 void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw, long *powerlevel)
899 {
900 	struct rtl_priv *rtlpriv = rtl_priv(hw);
901 	struct rtl_phy *rtlphy = &rtlpriv->phy;
902 	u8 txpwr_level;
903 	long txpwr_dbm;
904 
905 	txpwr_level = rtlphy->cur_cck_txpwridx;
906 	txpwr_dbm = _rtl88e_phy_txpwr_idx_to_dbm(hw,
907 						 WIRELESS_MODE_B, txpwr_level);
908 	txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
909 	if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
910 					 WIRELESS_MODE_G,
911 					 txpwr_level) > txpwr_dbm)
912 		txpwr_dbm =
913 		    _rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_G,
914 						 txpwr_level);
915 	txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
916 	if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
917 					 WIRELESS_MODE_N_24G,
918 					 txpwr_level) > txpwr_dbm)
919 		txpwr_dbm =
920 		    _rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_N_24G,
921 						 txpwr_level);
922 	*powerlevel = txpwr_dbm;
923 }
924 
925 static void handle_path_a(struct rtl_efuse *rtlefuse, u8 index,
926 			  u8 *cckpowerlevel, u8 *ofdmpowerlevel,
927 			  u8 *bw20powerlevel, u8 *bw40powerlevel)
928 {
929 	cckpowerlevel[RF90_PATH_A] =
930 	    rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
931 		/*-8~7 */
932 	if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][index] > 0x0f)
933 		bw20powerlevel[RF90_PATH_A] =
934 		  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
935 		  (~(rtlefuse->txpwr_ht20diff[RF90_PATH_A][index]) + 1);
936 	else
937 		bw20powerlevel[RF90_PATH_A] =
938 		  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
939 		  rtlefuse->txpwr_ht20diff[RF90_PATH_A][index];
940 	if (rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index] > 0xf)
941 		ofdmpowerlevel[RF90_PATH_A] =
942 		  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
943 		  (~(rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index])+1);
944 	else
945 		ofdmpowerlevel[RF90_PATH_A] =
946 		rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
947 		  rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index];
948 	bw40powerlevel[RF90_PATH_A] =
949 	  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
950 }
951 
952 static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
953 				      u8 *cckpowerlevel, u8 *ofdmpowerlevel,
954 				      u8 *bw20powerlevel, u8 *bw40powerlevel)
955 {
956 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
957 	u8 index = (channel - 1);
958 	u8 rf_path = 0;
959 
960 	for (rf_path = 0; rf_path < 2; rf_path++) {
961 		if (rf_path == RF90_PATH_A) {
962 			handle_path_a(rtlefuse, index, cckpowerlevel,
963 				      ofdmpowerlevel, bw20powerlevel,
964 				      bw40powerlevel);
965 		} else if (rf_path == RF90_PATH_B) {
966 			cckpowerlevel[RF90_PATH_B] =
967 			  rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
968 			bw20powerlevel[RF90_PATH_B] =
969 			  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
970 			  rtlefuse->txpwr_ht20diff[RF90_PATH_B][index];
971 			ofdmpowerlevel[RF90_PATH_B] =
972 			  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
973 			  rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][index];
974 			bw40powerlevel[RF90_PATH_B] =
975 			  rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
976 		}
977 	}
978 
979 }
980 
981 static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw,
982 					 u8 channel, u8 *cckpowerlevel,
983 					 u8 *ofdmpowerlevel, u8 *bw20powerlevel,
984 					 u8 *bw40powerlevel)
985 {
986 	struct rtl_priv *rtlpriv = rtl_priv(hw);
987 	struct rtl_phy *rtlphy = &rtlpriv->phy;
988 
989 	rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
990 	rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
991 	rtlphy->cur_bw20_txpwridx = bw20powerlevel[0];
992 	rtlphy->cur_bw40_txpwridx = bw40powerlevel[0];
993 
994 }
995 
996 void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
997 {
998 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
999 	u8 cckpowerlevel[MAX_TX_COUNT]  = {0};
1000 	u8 ofdmpowerlevel[MAX_TX_COUNT] = {0};
1001 	u8 bw20powerlevel[MAX_TX_COUNT] = {0};
1002 	u8 bw40powerlevel[MAX_TX_COUNT] = {0};
1003 
1004 	if (!rtlefuse->txpwr_fromeprom)
1005 		return;
1006 	_rtl88e_get_txpower_index(hw, channel,
1007 				  &cckpowerlevel[0], &ofdmpowerlevel[0],
1008 				  &bw20powerlevel[0], &bw40powerlevel[0]);
1009 	_rtl88e_ccxpower_index_check(hw, channel,
1010 				     &cckpowerlevel[0], &ofdmpowerlevel[0],
1011 				     &bw20powerlevel[0], &bw40powerlevel[0]);
1012 	rtl88e_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
1013 	rtl88e_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0],
1014 					   &bw20powerlevel[0],
1015 					   &bw40powerlevel[0], channel);
1016 }
1017 
1018 static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
1019 					 enum wireless_mode wirelessmode,
1020 					 u8 txpwridx)
1021 {
1022 	long offset;
1023 	long pwrout_dbm;
1024 
1025 	switch (wirelessmode) {
1026 	case WIRELESS_MODE_B:
1027 		offset = -7;
1028 		break;
1029 	case WIRELESS_MODE_G:
1030 	case WIRELESS_MODE_N_24G:
1031 		offset = -8;
1032 		break;
1033 	default:
1034 		offset = -8;
1035 		break;
1036 	}
1037 	pwrout_dbm = txpwridx / 2 + offset;
1038 	return pwrout_dbm;
1039 }
1040 
1041 void rtl88e_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
1042 {
1043 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1044 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1045 	enum io_type iotype;
1046 
1047 	if (!is_hal_stop(rtlhal)) {
1048 		switch (operation) {
1049 		case SCAN_OPT_BACKUP_BAND0:
1050 			iotype = IO_CMD_PAUSE_BAND0_DM_BY_SCAN;
1051 			rtlpriv->cfg->ops->set_hw_reg(hw,
1052 						      HW_VAR_IO_CMD,
1053 						      (u8 *)&iotype);
1054 
1055 			break;
1056 		case SCAN_OPT_RESTORE:
1057 			iotype = IO_CMD_RESUME_DM_BY_SCAN;
1058 			rtlpriv->cfg->ops->set_hw_reg(hw,
1059 						      HW_VAR_IO_CMD,
1060 						      (u8 *)&iotype);
1061 			break;
1062 		default:
1063 			pr_err("Unknown Scan Backup operation.\n");
1064 			break;
1065 		}
1066 	}
1067 }
1068 
1069 void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
1070 {
1071 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1072 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1073 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1074 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1075 	u8 reg_bw_opmode;
1076 	u8 reg_prsr_rsc;
1077 
1078 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
1079 		"Switch to %s bandwidth\n",
1080 		rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
1081 		"20MHz" : "40MHz");
1082 
1083 	if (is_hal_stop(rtlhal)) {
1084 		rtlphy->set_bwmode_inprogress = false;
1085 		return;
1086 	}
1087 
1088 	reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
1089 	reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
1090 
1091 	switch (rtlphy->current_chan_bw) {
1092 	case HT_CHANNEL_WIDTH_20:
1093 		reg_bw_opmode |= BW_OPMODE_20MHZ;
1094 		rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
1095 		break;
1096 	case HT_CHANNEL_WIDTH_20_40:
1097 		reg_bw_opmode &= ~BW_OPMODE_20MHZ;
1098 		rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
1099 		reg_prsr_rsc =
1100 		    (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5);
1101 		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
1102 		break;
1103 	default:
1104 		pr_err("unknown bandwidth: %#X\n",
1105 		       rtlphy->current_chan_bw);
1106 		break;
1107 	}
1108 
1109 	switch (rtlphy->current_chan_bw) {
1110 	case HT_CHANNEL_WIDTH_20:
1111 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
1112 		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
1113 	/*	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);*/
1114 		break;
1115 	case HT_CHANNEL_WIDTH_20_40:
1116 		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
1117 		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
1118 
1119 		rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
1120 			      (mac->cur_40_prime_sc >> 1));
1121 		rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
1122 		/*rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);*/
1123 
1124 		rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
1125 			      (mac->cur_40_prime_sc ==
1126 			       HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
1127 		break;
1128 	default:
1129 		pr_err("unknown bandwidth: %#X\n",
1130 		       rtlphy->current_chan_bw);
1131 		break;
1132 	}
1133 	rtl88e_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
1134 	rtlphy->set_bwmode_inprogress = false;
1135 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_LOUD, "\n");
1136 }
1137 
1138 void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw,
1139 			    enum nl80211_channel_type ch_type)
1140 {
1141 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1142 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1143 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1144 	u8 tmp_bw = rtlphy->current_chan_bw;
1145 
1146 	if (rtlphy->set_bwmode_inprogress)
1147 		return;
1148 	rtlphy->set_bwmode_inprogress = true;
1149 	if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
1150 		rtl88e_phy_set_bw_mode_callback(hw);
1151 	} else {
1152 		rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
1153 			"false driver sleep or unload\n");
1154 		rtlphy->set_bwmode_inprogress = false;
1155 		rtlphy->current_chan_bw = tmp_bw;
1156 	}
1157 }
1158 
1159 void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw)
1160 {
1161 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1162 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1163 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1164 	u32 delay;
1165 
1166 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
1167 		"switch to channel%d\n", rtlphy->current_channel);
1168 	if (is_hal_stop(rtlhal))
1169 		return;
1170 	do {
1171 		if (!rtlphy->sw_chnl_inprogress)
1172 			break;
1173 		if (!_rtl88e_phy_sw_chnl_step_by_step
1174 		    (hw, rtlphy->current_channel, &rtlphy->sw_chnl_stage,
1175 		     &rtlphy->sw_chnl_step, &delay)) {
1176 			if (delay > 0)
1177 				mdelay(delay);
1178 			else
1179 				continue;
1180 		} else {
1181 			rtlphy->sw_chnl_inprogress = false;
1182 		}
1183 		break;
1184 	} while (true);
1185 	rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "\n");
1186 }
1187 
1188 u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw)
1189 {
1190 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1191 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1192 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1193 
1194 	if (rtlphy->sw_chnl_inprogress)
1195 		return 0;
1196 	if (rtlphy->set_bwmode_inprogress)
1197 		return 0;
1198 	WARN_ONCE((rtlphy->current_channel > 14),
1199 		  "rtl8188ee: WIRELESS_MODE_G but channel>14");
1200 	rtlphy->sw_chnl_inprogress = true;
1201 	rtlphy->sw_chnl_stage = 0;
1202 	rtlphy->sw_chnl_step = 0;
1203 	if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
1204 		rtl88e_phy_sw_chnl_callback(hw);
1205 		rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
1206 			"sw_chnl_inprogress false schedule workitem current channel %d\n",
1207 			rtlphy->current_channel);
1208 		rtlphy->sw_chnl_inprogress = false;
1209 	} else {
1210 		rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
1211 			"sw_chnl_inprogress false driver sleep or unload\n");
1212 		rtlphy->sw_chnl_inprogress = false;
1213 	}
1214 	return 1;
1215 }
1216 
1217 static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
1218 					     u8 channel, u8 *stage, u8 *step,
1219 					     u32 *delay)
1220 {
1221 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1222 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1223 	struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
1224 	u32 precommoncmdcnt;
1225 	struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
1226 	u32 postcommoncmdcnt;
1227 	struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
1228 	u32 rfdependcmdcnt;
1229 	struct swchnlcmd *currentcmd = NULL;
1230 	u8 rfpath;
1231 	u8 num_total_rfpath = rtlphy->num_total_rfpath;
1232 
1233 	precommoncmdcnt = 0;
1234 	_rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
1235 					 MAX_PRECMD_CNT,
1236 					 CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
1237 	_rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
1238 					 MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
1239 
1240 	postcommoncmdcnt = 0;
1241 
1242 	_rtl88e_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
1243 					 MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
1244 
1245 	rfdependcmdcnt = 0;
1246 
1247 	WARN_ONCE((channel < 1 || channel > 14),
1248 		  "rtl8188ee: illegal channel for Zebra: %d\n", channel);
1249 
1250 	_rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
1251 					 MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
1252 					 RF_CHNLBW, channel, 10);
1253 
1254 	_rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
1255 					 MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0,
1256 					 0);
1257 
1258 	do {
1259 		switch (*stage) {
1260 		case 0:
1261 			currentcmd = &precommoncmd[*step];
1262 			break;
1263 		case 1:
1264 			currentcmd = &rfdependcmd[*step];
1265 			break;
1266 		case 2:
1267 			currentcmd = &postcommoncmd[*step];
1268 			break;
1269 		default:
1270 			pr_err("Invalid 'stage' = %d, Check it!\n",
1271 			       *stage);
1272 			return true;
1273 		}
1274 
1275 		if (currentcmd->cmdid == CMDID_END) {
1276 			if ((*stage) == 2)
1277 				return true;
1278 			(*stage)++;
1279 			(*step) = 0;
1280 			continue;
1281 		}
1282 
1283 		switch (currentcmd->cmdid) {
1284 		case CMDID_SET_TXPOWEROWER_LEVEL:
1285 			rtl88e_phy_set_txpower_level(hw, channel);
1286 			break;
1287 		case CMDID_WRITEPORT_ULONG:
1288 			rtl_write_dword(rtlpriv, currentcmd->para1,
1289 					currentcmd->para2);
1290 			break;
1291 		case CMDID_WRITEPORT_USHORT:
1292 			rtl_write_word(rtlpriv, currentcmd->para1,
1293 				       (u16)currentcmd->para2);
1294 			break;
1295 		case CMDID_WRITEPORT_UCHAR:
1296 			rtl_write_byte(rtlpriv, currentcmd->para1,
1297 				       (u8)currentcmd->para2);
1298 			break;
1299 		case CMDID_RF_WRITEREG:
1300 			for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
1301 				rtlphy->rfreg_chnlval[rfpath] =
1302 				    ((rtlphy->rfreg_chnlval[rfpath] &
1303 				      0xfffffc00) | currentcmd->para2);
1304 
1305 				rtl_set_rfreg(hw, (enum radio_path)rfpath,
1306 					      currentcmd->para1,
1307 					      RFREG_OFFSET_MASK,
1308 					      rtlphy->rfreg_chnlval[rfpath]);
1309 			}
1310 			break;
1311 		default:
1312 			rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
1313 				"switch case %#x not processed\n",
1314 				currentcmd->cmdid);
1315 			break;
1316 		}
1317 
1318 		break;
1319 	} while (true);
1320 
1321 	(*delay) = currentcmd->msdelay;
1322 	(*step)++;
1323 	return false;
1324 }
1325 
1326 static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
1327 					     u32 cmdtableidx, u32 cmdtablesz,
1328 					     enum swchnlcmd_id cmdid,
1329 					     u32 para1, u32 para2, u32 msdelay)
1330 {
1331 	struct swchnlcmd *pcmd;
1332 
1333 	if (cmdtable == NULL) {
1334 		WARN_ONCE(true, "rtl8188ee: cmdtable cannot be NULL.\n");
1335 		return false;
1336 	}
1337 
1338 	if (cmdtableidx >= cmdtablesz)
1339 		return false;
1340 
1341 	pcmd = cmdtable + cmdtableidx;
1342 	pcmd->cmdid = cmdid;
1343 	pcmd->para1 = para1;
1344 	pcmd->para2 = para2;
1345 	pcmd->msdelay = msdelay;
1346 	return true;
1347 }
1348 
1349 static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw, bool config_pathb)
1350 {
1351 	u32 reg_eac, reg_e94, reg_e9c;
1352 	u8 result = 0x00;
1353 
1354 	rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1c);
1355 	rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x30008c1c);
1356 	rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x8214032a);
1357 	rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160000);
1358 
1359 	rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
1360 	rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
1361 	rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
1362 
1363 	mdelay(IQK_DELAY_TIME);
1364 
1365 	reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
1366 	reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
1367 	reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
1368 	rtl_get_bbreg(hw, 0xea4, MASKDWORD);
1369 
1370 	if (!(reg_eac & BIT(28)) &&
1371 	    (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
1372 	    (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
1373 		result |= 0x01;
1374 	return result;
1375 }
1376 
1377 static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw)
1378 {
1379 	u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc;
1380 	u8 result = 0x00;
1381 
1382 	rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
1383 	rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
1384 	mdelay(IQK_DELAY_TIME);
1385 	reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
1386 	reg_eb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
1387 	reg_ebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
1388 	reg_ec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
1389 	reg_ecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
1390 
1391 	if (!(reg_eac & BIT(31)) &&
1392 	    (((reg_eb4 & 0x03FF0000) >> 16) != 0x142) &&
1393 	    (((reg_ebc & 0x03FF0000) >> 16) != 0x42))
1394 		result |= 0x01;
1395 	else
1396 		return result;
1397 	if (!(reg_eac & BIT(30)) &&
1398 	    (((reg_ec4 & 0x03FF0000) >> 16) != 0x132) &&
1399 	    (((reg_ecc & 0x03FF0000) >> 16) != 0x36))
1400 		result |= 0x02;
1401 	return result;
1402 }
1403 
1404 static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw, bool config_pathb)
1405 {
1406 	u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32temp;
1407 	u8 result = 0x00;
1408 
1409 	/*Get TXIMR Setting*/
1410 	/*Modify RX IQK mode table*/
1411 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
1412 	rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
1413 	rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
1414 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
1415 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf117b);
1416 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
1417 
1418 	/*IQK Setting*/
1419 	rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
1420 	rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x81004800);
1421 
1422 	/*path a IQK setting*/
1423 	rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
1424 	rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
1425 	rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160804);
1426 	rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000);
1427 
1428 	/*LO calibration Setting*/
1429 	rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
1430 	/*one shot,path A LOK & iqk*/
1431 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
1432 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
1433 
1434 	mdelay(IQK_DELAY_TIME);
1435 
1436 	reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
1437 	reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
1438 	reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
1439 
1440 
1441 	if (!(reg_eac & BIT(28)) &&
1442 	    (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
1443 	    (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
1444 		result |= 0x01;
1445 	else
1446 		return result;
1447 
1448 	u32temp = 0x80007C00 | (reg_e94&0x3FF0000) |
1449 		  ((reg_e9c&0x3FF0000) >> 16);
1450 	rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32temp);
1451 	/*RX IQK*/
1452 	/*Modify RX IQK mode table*/
1453 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
1454 	rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
1455 	rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
1456 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
1457 	rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ffa);
1458 	rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
1459 
1460 	/*IQK Setting*/
1461 	rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
1462 
1463 	/*path a IQK setting*/
1464 	rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
1465 	rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
1466 	rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160c05);
1467 	rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160c05);
1468 
1469 	/*LO calibration Setting*/
1470 	rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
1471 	/*one shot,path A LOK & iqk*/
1472 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
1473 	rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
1474 
1475 	mdelay(IQK_DELAY_TIME);
1476 
1477 	reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
1478 	reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
1479 	reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
1480 	reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
1481 
1482 	if (!(reg_eac & BIT(27)) &&
1483 	    (((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
1484 	    (((reg_eac & 0x03FF0000) >> 16) != 0x36))
1485 		result |= 0x02;
1486 	return result;
1487 }
1488 
1489 static void _rtl88e_phy_path_a_fill_iqk_matrix(struct ieee80211_hw *hw,
1490 					       bool iqk_ok, long result[][8],
1491 					       u8 final_candidate, bool btxonly)
1492 {
1493 	u32 oldval_0, x, tx0_a, reg;
1494 	long y, tx0_c;
1495 
1496 	if (final_candidate == 0xFF) {
1497 		return;
1498 	} else if (iqk_ok) {
1499 		oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATXIQIMBALANCE,
1500 					  MASKDWORD) >> 22) & 0x3FF;
1501 		x = result[final_candidate][0];
1502 		if ((x & 0x00000200) != 0)
1503 			x = x | 0xFFFFFC00;
1504 		tx0_a = (x * oldval_0) >> 8;
1505 		rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x3FF, tx0_a);
1506 		rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(31),
1507 			      ((x * oldval_0 >> 7) & 0x1));
1508 		y = result[final_candidate][1];
1509 		if ((y & 0x00000200) != 0)
1510 			y = y | 0xFFFFFC00;
1511 		tx0_c = (y * oldval_0) >> 8;
1512 		rtl_set_bbreg(hw, ROFDM0_XCTXAFE, 0xF0000000,
1513 			      ((tx0_c & 0x3C0) >> 6));
1514 		rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x003F0000,
1515 			      (tx0_c & 0x3F));
1516 		rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(29),
1517 			      ((y * oldval_0 >> 7) & 0x1));
1518 		if (btxonly)
1519 			return;
1520 		reg = result[final_candidate][2];
1521 		rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
1522 		reg = result[final_candidate][3] & 0x3F;
1523 		rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
1524 		reg = (result[final_candidate][3] >> 6) & 0xF;
1525 		rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
1526 	}
1527 }
1528 
1529 static void _rtl88e_phy_save_adda_registers(struct ieee80211_hw *hw,
1530 					    u32 *addareg, u32 *addabackup,
1531 					    u32 registernum)
1532 {
1533 	u32 i;
1534 
1535 	for (i = 0; i < registernum; i++)
1536 		addabackup[i] = rtl_get_bbreg(hw, addareg[i], MASKDWORD);
1537 }
1538 
1539 static void _rtl88e_phy_save_mac_registers(struct ieee80211_hw *hw,
1540 					   u32 *macreg, u32 *macbackup)
1541 {
1542 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1543 	u32 i;
1544 
1545 	for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
1546 		macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
1547 	macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
1548 }
1549 
1550 static void _rtl88e_phy_reload_adda_registers(struct ieee80211_hw *hw,
1551 					      u32 *addareg, u32 *addabackup,
1552 					      u32 regiesternum)
1553 {
1554 	u32 i;
1555 
1556 	for (i = 0; i < regiesternum; i++)
1557 		rtl_set_bbreg(hw, addareg[i], MASKDWORD, addabackup[i]);
1558 }
1559 
1560 static void _rtl88e_phy_reload_mac_registers(struct ieee80211_hw *hw,
1561 					     u32 *macreg, u32 *macbackup)
1562 {
1563 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1564 	u32 i;
1565 
1566 	for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
1567 		rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
1568 	rtl_write_dword(rtlpriv, macreg[i], macbackup[i]);
1569 }
1570 
1571 static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw,
1572 				     u32 *addareg, bool is_patha_on, bool is2t)
1573 {
1574 	u32 pathon;
1575 	u32 i;
1576 
1577 	pathon = is_patha_on ? 0x04db25a4 : 0x0b1b25a4;
1578 	if (!is2t) {
1579 		pathon = 0x0bdb25a0;
1580 		rtl_set_bbreg(hw, addareg[0], MASKDWORD, 0x0b1b25a0);
1581 	} else {
1582 		rtl_set_bbreg(hw, addareg[0], MASKDWORD, pathon);
1583 	}
1584 
1585 	for (i = 1; i < IQK_ADDA_REG_NUM; i++)
1586 		rtl_set_bbreg(hw, addareg[i], MASKDWORD, pathon);
1587 }
1588 
1589 static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw,
1590 						u32 *macreg, u32 *macbackup)
1591 {
1592 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1593 	u32 i = 0;
1594 
1595 	rtl_write_byte(rtlpriv, macreg[i], 0x3F);
1596 
1597 	for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
1598 		rtl_write_byte(rtlpriv, macreg[i],
1599 			       (u8) (macbackup[i] & (~BIT(3))));
1600 	rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
1601 }
1602 
1603 static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw)
1604 {
1605 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
1606 	rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
1607 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
1608 }
1609 
1610 static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw, bool pi_mode)
1611 {
1612 	u32 mode;
1613 
1614 	mode = pi_mode ? 0x01000100 : 0x01000000;
1615 	rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
1616 	rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
1617 }
1618 
1619 static bool _rtl88e_phy_simularity_compare(struct ieee80211_hw *hw,
1620 					   long result[][8], u8 c1, u8 c2)
1621 {
1622 	u32 i, j, diff, simularity_bitmap, bound;
1623 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1624 
1625 	u8 final_candidate[2] = { 0xFF, 0xFF };
1626 	bool bresult = true, is2t = IS_92C_SERIAL(rtlhal->version);
1627 
1628 	if (is2t)
1629 		bound = 8;
1630 	else
1631 		bound = 4;
1632 
1633 	simularity_bitmap = 0;
1634 
1635 	for (i = 0; i < bound; i++) {
1636 		diff = (result[c1][i] > result[c2][i]) ?
1637 		    (result[c1][i] - result[c2][i]) :
1638 		    (result[c2][i] - result[c1][i]);
1639 
1640 		if (diff > MAX_TOLERANCE) {
1641 			if ((i == 2 || i == 6) && !simularity_bitmap) {
1642 				if (result[c1][i] + result[c1][i + 1] == 0)
1643 					final_candidate[(i / 4)] = c2;
1644 				else if (result[c2][i] + result[c2][i + 1] == 0)
1645 					final_candidate[(i / 4)] = c1;
1646 				else
1647 					simularity_bitmap = simularity_bitmap |
1648 					    (1 << i);
1649 			} else
1650 				simularity_bitmap =
1651 				    simularity_bitmap | (1 << i);
1652 		}
1653 	}
1654 
1655 	if (simularity_bitmap == 0) {
1656 		for (i = 0; i < (bound / 4); i++) {
1657 			if (final_candidate[i] != 0xFF) {
1658 				for (j = i * 4; j < (i + 1) * 4 - 2; j++)
1659 					result[3][j] =
1660 					    result[final_candidate[i]][j];
1661 				bresult = false;
1662 			}
1663 		}
1664 		return bresult;
1665 	} else if (!(simularity_bitmap & 0x0F)) {
1666 		for (i = 0; i < 4; i++)
1667 			result[3][i] = result[c1][i];
1668 		return false;
1669 	} else if (!(simularity_bitmap & 0xF0) && is2t) {
1670 		for (i = 4; i < 8; i++)
1671 			result[3][i] = result[c1][i];
1672 		return false;
1673 	} else {
1674 		return false;
1675 	}
1676 
1677 }
1678 
1679 static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw,
1680 				     long result[][8], u8 t, bool is2t)
1681 {
1682 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1683 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1684 	u32 i;
1685 	u8 patha_ok, pathb_ok;
1686 	u32 adda_reg[IQK_ADDA_REG_NUM] = {
1687 		0x85c, 0xe6c, 0xe70, 0xe74,
1688 		0xe78, 0xe7c, 0xe80, 0xe84,
1689 		0xe88, 0xe8c, 0xed0, 0xed4,
1690 		0xed8, 0xedc, 0xee0, 0xeec
1691 	};
1692 	u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
1693 		0x522, 0x550, 0x551, 0x040
1694 	};
1695 	u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
1696 		ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR,
1697 		RFPGA0_XCD_RFINTERFACESW, 0xb68, 0xb6c,
1698 		0x870, 0x860, 0x864, 0x800
1699 	};
1700 	const u32 retrycount = 2;
1701 
1702 	if (t == 0) {
1703 		_rtl88e_phy_save_adda_registers(hw, adda_reg,
1704 						rtlphy->adda_backup, 16);
1705 		_rtl88e_phy_save_mac_registers(hw, iqk_mac_reg,
1706 					       rtlphy->iqk_mac_backup);
1707 		_rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
1708 						rtlphy->iqk_bb_backup,
1709 						IQK_BB_REG_NUM);
1710 	}
1711 	_rtl88e_phy_path_adda_on(hw, adda_reg, true, is2t);
1712 	if (t == 0) {
1713 		rtlphy->rfpi_enable =
1714 		  (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8));
1715 	}
1716 
1717 	if (!rtlphy->rfpi_enable)
1718 		_rtl88e_phy_pi_mode_switch(hw, true);
1719 	/*BB Setting*/
1720 	rtl_set_bbreg(hw, 0x800, BIT(24), 0x00);
1721 	rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600);
1722 	rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4);
1723 	rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000);
1724 
1725 	rtl_set_bbreg(hw, 0x870, BIT(10), 0x01);
1726 	rtl_set_bbreg(hw, 0x870, BIT(26), 0x01);
1727 	rtl_set_bbreg(hw, 0x860, BIT(10), 0x00);
1728 	rtl_set_bbreg(hw, 0x864, BIT(10), 0x00);
1729 
1730 	if (is2t) {
1731 		rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
1732 		rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00010000);
1733 	}
1734 	_rtl88e_phy_mac_setting_calibration(hw, iqk_mac_reg,
1735 					    rtlphy->iqk_mac_backup);
1736 	rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
1737 	if (is2t)
1738 		rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
1739 
1740 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
1741 	rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
1742 	rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x81004800);
1743 	for (i = 0; i < retrycount; i++) {
1744 		patha_ok = _rtl88e_phy_path_a_iqk(hw, is2t);
1745 		if (patha_ok == 0x01) {
1746 			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1747 				"Path A Tx IQK Success!!\n");
1748 			result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
1749 					0x3FF0000) >> 16;
1750 			result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
1751 					0x3FF0000) >> 16;
1752 			break;
1753 		}
1754 	}
1755 
1756 	for (i = 0; i < retrycount; i++) {
1757 		patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, is2t);
1758 		if (patha_ok == 0x03) {
1759 			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1760 				"Path A Rx IQK Success!!\n");
1761 			result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
1762 					0x3FF0000) >> 16;
1763 			result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
1764 					0x3FF0000) >> 16;
1765 			break;
1766 		} else {
1767 			rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1768 				"Path a RX iqk fail!!!\n");
1769 		}
1770 	}
1771 
1772 	if (0 == patha_ok)
1773 		rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
1774 			"Path A IQK Success!!\n");
1775 	if (is2t) {
1776 		_rtl88e_phy_path_a_standby(hw);
1777 		_rtl88e_phy_path_adda_on(hw, adda_reg, false, is2t);
1778 		for (i = 0; i < retrycount; i++) {
1779 			pathb_ok = _rtl88e_phy_path_b_iqk(hw);
1780 			if (pathb_ok == 0x03) {
1781 				result[t][4] = (rtl_get_bbreg(hw,
1782 							      0xeb4,
1783 							      MASKDWORD) &
1784 						0x3FF0000) >> 16;
1785 				result[t][5] =
1786 				    (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
1787 				     0x3FF0000) >> 16;
1788 				result[t][6] =
1789 				    (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
1790 				     0x3FF0000) >> 16;
1791 				result[t][7] =
1792 				    (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
1793 				     0x3FF0000) >> 16;
1794 				break;
1795 			} else if (i == (retrycount - 1) && pathb_ok == 0x01) {
1796 				result[t][4] = (rtl_get_bbreg(hw,
1797 							      0xeb4,
1798 							      MASKDWORD) &
1799 						0x3FF0000) >> 16;
1800 			}
1801 			result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
1802 					0x3FF0000) >> 16;
1803 		}
1804 	}
1805 
1806 	rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
1807 
1808 	if (t != 0) {
1809 		if (!rtlphy->rfpi_enable)
1810 			_rtl88e_phy_pi_mode_switch(hw, false);
1811 		_rtl88e_phy_reload_adda_registers(hw, adda_reg,
1812 						  rtlphy->adda_backup, 16);
1813 		_rtl88e_phy_reload_mac_registers(hw, iqk_mac_reg,
1814 						 rtlphy->iqk_mac_backup);
1815 		_rtl88e_phy_reload_adda_registers(hw, iqk_bb_reg,
1816 						  rtlphy->iqk_bb_backup,
1817 						  IQK_BB_REG_NUM);
1818 
1819 		rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00032ed3);
1820 		if (is2t)
1821 			rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00032ed3);
1822 		rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
1823 		rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
1824 	}
1825 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "88ee IQK Finish!!\n");
1826 }
1827 
1828 static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
1829 {
1830 	u8 tmpreg;
1831 	u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
1832 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1833 
1834 	tmpreg = rtl_read_byte(rtlpriv, 0xd03);
1835 
1836 	if ((tmpreg & 0x70) != 0)
1837 		rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
1838 	else
1839 		rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
1840 
1841 	if ((tmpreg & 0x70) != 0) {
1842 		rf_a_mode = rtl_get_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS);
1843 
1844 		if (is2t)
1845 			rf_b_mode = rtl_get_rfreg(hw, RF90_PATH_B, 0x00,
1846 						  MASK12BITS);
1847 
1848 		rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS,
1849 			      (rf_a_mode & 0x8FFFF) | 0x10000);
1850 
1851 		if (is2t)
1852 			rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
1853 				      (rf_b_mode & 0x8FFFF) | 0x10000);
1854 	}
1855 	lc_cal = rtl_get_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS);
1856 
1857 	rtl_set_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS, lc_cal | 0x08000);
1858 
1859 	mdelay(100);
1860 
1861 	if ((tmpreg & 0x70) != 0) {
1862 		rtl_write_byte(rtlpriv, 0xd03, tmpreg);
1863 		rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, rf_a_mode);
1864 
1865 		if (is2t)
1866 			rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
1867 				      rf_b_mode);
1868 	} else {
1869 		rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
1870 	}
1871 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
1872 }
1873 
1874 static void _rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw,
1875 					  bool bmain, bool is2t)
1876 {
1877 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1878 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1879 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1880 	rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
1881 
1882 	if (is_hal_stop(rtlhal)) {
1883 		u8 u1btmp;
1884 		u1btmp = rtl_read_byte(rtlpriv, REG_LEDCFG0);
1885 		rtl_write_byte(rtlpriv, REG_LEDCFG0, u1btmp | BIT(7));
1886 		rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
1887 	}
1888 	if (is2t) {
1889 		if (bmain)
1890 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1891 				      BIT(5) | BIT(6), 0x1);
1892 		else
1893 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1894 				      BIT(5) | BIT(6), 0x2);
1895 	} else {
1896 		rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(8) | BIT(9), 0);
1897 		rtl_set_bbreg(hw, 0x914, MASKLWORD, 0x0201);
1898 
1899 		/* We use the RF definition of MAIN and AUX,
1900 		 * left antenna and right antenna repectively.
1901 		 * Default output at AUX.
1902 		 */
1903 		if (bmain) {
1904 			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
1905 				      BIT(14) | BIT(13) | BIT(12), 0);
1906 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1907 				      BIT(5) | BIT(4) | BIT(3), 0);
1908 			if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
1909 				rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 0);
1910 		} else {
1911 			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
1912 				      BIT(14) | BIT(13) | BIT(12), 1);
1913 			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1914 				      BIT(5) | BIT(4) | BIT(3), 1);
1915 			if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
1916 				rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 1);
1917 		}
1918 	}
1919 }
1920 
1921 #undef IQK_ADDA_REG_NUM
1922 #undef IQK_DELAY_TIME
1923 
1924 void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, bool b_recovery)
1925 {
1926 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1927 	struct rtl_phy *rtlphy = &rtlpriv->phy;
1928 	long result[4][8];
1929 	u8 i, final_candidate;
1930 	bool b_patha_ok;
1931 	long reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc,
1932 	    reg_tmp = 0;
1933 	bool is12simular, is13simular, is23simular;
1934 	u32 iqk_bb_reg[9] = {
1935 		ROFDM0_XARXIQIMBALANCE,
1936 		ROFDM0_XBRXIQIMBALANCE,
1937 		ROFDM0_ECCATHRESHOLD,
1938 		ROFDM0_AGCRSSITABLE,
1939 		ROFDM0_XATXIQIMBALANCE,
1940 		ROFDM0_XBTXIQIMBALANCE,
1941 		ROFDM0_XCTXAFE,
1942 		ROFDM0_XDTXAFE,
1943 		ROFDM0_RXIQEXTANTA
1944 	};
1945 
1946 	if (b_recovery) {
1947 		_rtl88e_phy_reload_adda_registers(hw,
1948 						  iqk_bb_reg,
1949 						  rtlphy->iqk_bb_backup, 9);
1950 		return;
1951 	}
1952 
1953 	for (i = 0; i < 8; i++) {
1954 		result[0][i] = 0;
1955 		result[1][i] = 0;
1956 		result[2][i] = 0;
1957 		result[3][i] = 0;
1958 	}
1959 	final_candidate = 0xff;
1960 	b_patha_ok = false;
1961 	is12simular = false;
1962 	is23simular = false;
1963 	is13simular = false;
1964 	for (i = 0; i < 3; i++) {
1965 		if (get_rf_type(rtlphy) == RF_2T2R)
1966 			_rtl88e_phy_iq_calibrate(hw, result, i, true);
1967 		else
1968 			_rtl88e_phy_iq_calibrate(hw, result, i, false);
1969 		if (i == 1) {
1970 			is12simular =
1971 			  _rtl88e_phy_simularity_compare(hw, result, 0, 1);
1972 			if (is12simular) {
1973 				final_candidate = 0;
1974 				break;
1975 			}
1976 		}
1977 		if (i == 2) {
1978 			is13simular =
1979 			  _rtl88e_phy_simularity_compare(hw, result, 0, 2);
1980 			if (is13simular) {
1981 				final_candidate = 0;
1982 				break;
1983 			}
1984 			is23simular =
1985 			   _rtl88e_phy_simularity_compare(hw, result, 1, 2);
1986 			if (is23simular) {
1987 				final_candidate = 1;
1988 			} else {
1989 				for (i = 0; i < 8; i++)
1990 					reg_tmp += result[3][i];
1991 
1992 				if (reg_tmp != 0)
1993 					final_candidate = 3;
1994 				else
1995 					final_candidate = 0xFF;
1996 			}
1997 		}
1998 	}
1999 	for (i = 0; i < 4; i++) {
2000 		reg_e94 = result[i][0];
2001 		reg_e9c = result[i][1];
2002 		reg_ea4 = result[i][2];
2003 		reg_eb4 = result[i][4];
2004 		reg_ebc = result[i][5];
2005 	}
2006 	if (final_candidate != 0xff) {
2007 		reg_e94 = result[final_candidate][0];
2008 		reg_e9c = result[final_candidate][1];
2009 		reg_ea4 = result[final_candidate][2];
2010 		reg_eb4 = result[final_candidate][4];
2011 		reg_ebc = result[final_candidate][5];
2012 		rtlphy->reg_eb4 = reg_eb4;
2013 		rtlphy->reg_ebc = reg_ebc;
2014 		rtlphy->reg_e94 = reg_e94;
2015 		rtlphy->reg_e9c = reg_e9c;
2016 		b_patha_ok = true;
2017 	} else {
2018 		rtlphy->reg_e94 = 0x100;
2019 		rtlphy->reg_eb4 = 0x100;
2020 		rtlphy->reg_e9c = 0x0;
2021 		rtlphy->reg_ebc = 0x0;
2022 	}
2023 	if (reg_e94 != 0) /*&&(reg_ea4 != 0) */
2024 		_rtl88e_phy_path_a_fill_iqk_matrix(hw, b_patha_ok, result,
2025 						   final_candidate,
2026 						   (reg_ea4 == 0));
2027 	if (final_candidate != 0xFF) {
2028 		for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
2029 			rtlphy->iqk_matrix[0].value[0][i] =
2030 				result[final_candidate][i];
2031 		rtlphy->iqk_matrix[0].iqk_done = true;
2032 
2033 	}
2034 	_rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
2035 					rtlphy->iqk_bb_backup, 9);
2036 }
2037 
2038 void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw)
2039 {
2040 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2041 	struct rtl_phy *rtlphy = &rtlpriv->phy;
2042 	struct rtl_hal *rtlhal = &rtlpriv->rtlhal;
2043 	u32 timeout = 2000, timecount = 0;
2044 
2045 	while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
2046 		udelay(50);
2047 		timecount += 50;
2048 	}
2049 
2050 	rtlphy->lck_inprogress = true;
2051 	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2052 		"LCK:Start!!! currentband %x delay %d ms\n",
2053 		 rtlhal->current_bandtype, timecount);
2054 
2055 	_rtl88e_phy_lc_calibrate(hw, false);
2056 
2057 	rtlphy->lck_inprogress = false;
2058 }
2059 
2060 void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain)
2061 {
2062 	_rtl88e_phy_set_rfpath_switch(hw, bmain, false);
2063 }
2064 
2065 bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
2066 {
2067 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2068 	struct rtl_phy *rtlphy = &rtlpriv->phy;
2069 	bool postprocessing = false;
2070 
2071 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2072 		"-->IO Cmd(%#x), set_io_inprogress(%d)\n",
2073 		iotype, rtlphy->set_io_inprogress);
2074 	do {
2075 		switch (iotype) {
2076 		case IO_CMD_RESUME_DM_BY_SCAN:
2077 			rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2078 				"[IO CMD] Resume DM after scan.\n");
2079 			postprocessing = true;
2080 			break;
2081 		case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
2082 			rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2083 				"[IO CMD] Pause DM before scan.\n");
2084 			postprocessing = true;
2085 			break;
2086 		default:
2087 			rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
2088 				"switch case %#x not processed\n", iotype);
2089 			break;
2090 		}
2091 	} while (false);
2092 	if (postprocessing && !rtlphy->set_io_inprogress) {
2093 		rtlphy->set_io_inprogress = true;
2094 		rtlphy->current_io_type = iotype;
2095 	} else {
2096 		return false;
2097 	}
2098 	rtl88e_phy_set_io(hw);
2099 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype);
2100 	return true;
2101 }
2102 
2103 static void rtl88e_phy_set_io(struct ieee80211_hw *hw)
2104 {
2105 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2106 	struct rtl_phy *rtlphy = &rtlpriv->phy;
2107 	struct dig_t *dm_digtable = &rtlpriv->dm_digtable;
2108 
2109 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2110 		"--->Cmd(%#x), set_io_inprogress(%d)\n",
2111 		rtlphy->current_io_type, rtlphy->set_io_inprogress);
2112 	switch (rtlphy->current_io_type) {
2113 	case IO_CMD_RESUME_DM_BY_SCAN:
2114 		dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
2115 		/*rtl92c_dm_write_dig(hw);*/
2116 		rtl88e_phy_set_txpower_level(hw, rtlphy->current_channel);
2117 		rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83);
2118 		break;
2119 	case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
2120 		rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue;
2121 		dm_digtable->cur_igvalue = 0x17;
2122 		rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40);
2123 		break;
2124 	default:
2125 		rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
2126 			"switch case %#x not processed\n",
2127 			rtlphy->current_io_type);
2128 		break;
2129 	}
2130 	rtlphy->set_io_inprogress = false;
2131 	rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
2132 		"(%#x)\n", rtlphy->current_io_type);
2133 }
2134 
2135 static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw)
2136 {
2137 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2138 
2139 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
2140 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
2141 	/*rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);*/
2142 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
2143 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
2144 	rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
2145 }
2146 
2147 static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw)
2148 {
2149 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2150 
2151 	rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
2152 	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
2153 	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
2154 	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
2155 }
2156 
2157 static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw,
2158 					    enum rf_pwrstate rfpwr_state)
2159 {
2160 	struct rtl_priv *rtlpriv = rtl_priv(hw);
2161 	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
2162 	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2163 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2164 	bool bresult = true;
2165 	u8 i, queue_id;
2166 	struct rtl8192_tx_ring *ring = NULL;
2167 
2168 	switch (rfpwr_state) {
2169 	case ERFON:
2170 		if ((ppsc->rfpwr_state == ERFOFF) &&
2171 		    RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2172 			bool rtstatus;
2173 			u32 initializecount = 0;
2174 
2175 			do {
2176 				initializecount++;
2177 				rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2178 					"IPS Set eRf nic enable\n");
2179 				rtstatus = rtl_ps_enable_nic(hw);
2180 			} while (!rtstatus &&
2181 				 (initializecount < 10));
2182 			RT_CLEAR_PS_LEVEL(ppsc,
2183 					  RT_RF_OFF_LEVL_HALT_NIC);
2184 		} else {
2185 			rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2186 				"Set ERFON slept:%d ms\n",
2187 				jiffies_to_msecs(jiffies -
2188 						 ppsc->last_sleep_jiffies));
2189 			ppsc->last_awake_jiffies = jiffies;
2190 			rtl88ee_phy_set_rf_on(hw);
2191 		}
2192 		if (mac->link_state == MAC80211_LINKED) {
2193 			rtlpriv->cfg->ops->led_control(hw,
2194 						       LED_CTL_LINK);
2195 		} else {
2196 			rtlpriv->cfg->ops->led_control(hw,
2197 						       LED_CTL_NO_LINK);
2198 		}
2199 		break;
2200 	case ERFOFF:
2201 		for (queue_id = 0, i = 0;
2202 		     queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
2203 			ring = &pcipriv->dev.tx_ring[queue_id];
2204 			if (queue_id == BEACON_QUEUE ||
2205 			    skb_queue_len(&ring->queue) == 0) {
2206 				queue_id++;
2207 				continue;
2208 			} else {
2209 				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2210 					"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
2211 					(i + 1), queue_id,
2212 					skb_queue_len(&ring->queue));
2213 
2214 				udelay(10);
2215 				i++;
2216 			}
2217 			if (i >= MAX_DOZE_WAITING_TIMES_9x) {
2218 				rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2219 					"\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
2220 					MAX_DOZE_WAITING_TIMES_9x,
2221 					queue_id,
2222 					skb_queue_len(&ring->queue));
2223 				break;
2224 			}
2225 		}
2226 
2227 		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
2228 			rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2229 				"IPS Set eRf nic disable\n");
2230 			rtl_ps_disable_nic(hw);
2231 			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2232 		} else {
2233 			if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
2234 				rtlpriv->cfg->ops->led_control(hw,
2235 							       LED_CTL_NO_LINK);
2236 			} else {
2237 				rtlpriv->cfg->ops->led_control(hw,
2238 							       LED_CTL_POWER_OFF);
2239 			}
2240 		}
2241 		break;
2242 	case ERFSLEEP:{
2243 			if (ppsc->rfpwr_state == ERFOFF)
2244 				break;
2245 			for (queue_id = 0, i = 0;
2246 			     queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
2247 				ring = &pcipriv->dev.tx_ring[queue_id];
2248 				if (skb_queue_len(&ring->queue) == 0) {
2249 					queue_id++;
2250 					continue;
2251 				} else {
2252 					rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2253 						"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
2254 						(i + 1), queue_id,
2255 						skb_queue_len(&ring->queue));
2256 
2257 					udelay(10);
2258 					i++;
2259 				}
2260 				if (i >= MAX_DOZE_WAITING_TIMES_9x) {
2261 					rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
2262 						"\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
2263 						MAX_DOZE_WAITING_TIMES_9x,
2264 						queue_id,
2265 						skb_queue_len(&ring->queue));
2266 					break;
2267 				}
2268 			}
2269 			rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
2270 				"Set ERFSLEEP awaked:%d ms\n",
2271 				jiffies_to_msecs(jiffies -
2272 				ppsc->last_awake_jiffies));
2273 			ppsc->last_sleep_jiffies = jiffies;
2274 			_rtl88ee_phy_set_rf_sleep(hw);
2275 			break;
2276 		}
2277 	default:
2278 		rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
2279 			"switch case %#x not processed\n", rfpwr_state);
2280 		bresult = false;
2281 		break;
2282 	}
2283 	if (bresult)
2284 		ppsc->rfpwr_state = rfpwr_state;
2285 	return bresult;
2286 }
2287 
2288 bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw,
2289 				   enum rf_pwrstate rfpwr_state)
2290 {
2291 	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2292 
2293 	bool bresult = false;
2294 
2295 	if (rfpwr_state == ppsc->rfpwr_state)
2296 		return bresult;
2297 	bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state);
2298 	return bresult;
2299 }
2300