1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Tme full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29 
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33 
34 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
35 	{0, 0, 0, 2},
36 	{0, 1, 0, 2},
37 	{0, 2, 0, 2},
38 	{1, 0, 0, 1},
39 	{1, 0, 1, 1},
40 	{1, 1, 0, 1},
41 	{1, 1, 1, 3},
42 	{1, 3, 0, 17},
43 	{3, 3, 1, 48},
44 	{10, 0, 0, 6},
45 	{10, 3, 0, 1},
46 	{10, 3, 1, 1},
47 	{11, 0, 0, 28}
48 };
49 
50 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
51 				    u8 *value);
52 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
53 				    u16 *value);
54 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
55 				    u32 *value);
56 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
57 				     u8 value);
58 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
59 				     u16 value);
60 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
61 				     u32 value);
62 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
63 				u8 data);
64 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
65 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
66 				u8 *data);
67 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
68 				 u8 word_en, u8 *data);
69 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
70 					u8 *targetdata);
71 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
72 				  u16 efuse_addr, u8 word_en, u8 *data);
73 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
74 			       u8 pwrstate);
75 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
76 static u8 efuse_calculate_word_cnts(u8 word_en);
77 
78 void efuse_initialize(struct ieee80211_hw *hw)
79 {
80 	struct rtl_priv *rtlpriv = rtl_priv(hw);
81 	u8 bytetemp;
82 	u8 temp;
83 
84 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
85 	temp = bytetemp | 0x20;
86 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
87 
88 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
89 	temp = bytetemp & 0xFE;
90 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
91 
92 	bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
93 	temp = bytetemp | 0x80;
94 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
95 
96 	rtl_write_byte(rtlpriv, 0x2F8, 0x3);
97 
98 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
99 
100 }
101 
102 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
103 {
104 	struct rtl_priv *rtlpriv = rtl_priv(hw);
105 	u8 data;
106 	u8 bytetemp;
107 	u8 temp;
108 	u32 k = 0;
109 	const u32 efuse_len =
110 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
111 
112 	if (address < efuse_len) {
113 		temp = address & 0xFF;
114 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
115 			       temp);
116 		bytetemp = rtl_read_byte(rtlpriv,
117 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
118 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
119 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
120 			       temp);
121 
122 		bytetemp = rtl_read_byte(rtlpriv,
123 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
124 		temp = bytetemp & 0x7F;
125 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
126 			       temp);
127 
128 		bytetemp = rtl_read_byte(rtlpriv,
129 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130 		while (!(bytetemp & 0x80)) {
131 			bytetemp = rtl_read_byte(rtlpriv,
132 						 rtlpriv->cfg->
133 						 maps[EFUSE_CTRL] + 3);
134 			k++;
135 			if (k == 1000) {
136 				k = 0;
137 				break;
138 			}
139 		}
140 		data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
141 		return data;
142 	} else
143 		return 0xFF;
144 
145 }
146 EXPORT_SYMBOL(efuse_read_1byte);
147 
148 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
149 {
150 	struct rtl_priv *rtlpriv = rtl_priv(hw);
151 	u8 bytetemp;
152 	u8 temp;
153 	u32 k = 0;
154 	const u32 efuse_len =
155 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
156 
157 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
158 		 address, value);
159 
160 	if (address < efuse_len) {
161 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
162 
163 		temp = address & 0xFF;
164 		rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
165 			       temp);
166 		bytetemp = rtl_read_byte(rtlpriv,
167 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
168 
169 		temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
170 		rtl_write_byte(rtlpriv,
171 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
172 
173 		bytetemp = rtl_read_byte(rtlpriv,
174 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
175 		temp = bytetemp | 0x80;
176 		rtl_write_byte(rtlpriv,
177 			       rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
178 
179 		bytetemp = rtl_read_byte(rtlpriv,
180 					 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
181 
182 		while (bytetemp & 0x80) {
183 			bytetemp = rtl_read_byte(rtlpriv,
184 						 rtlpriv->cfg->
185 						 maps[EFUSE_CTRL] + 3);
186 			k++;
187 			if (k == 100) {
188 				k = 0;
189 				break;
190 			}
191 		}
192 	}
193 
194 }
195 
196 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
197 {
198 	struct rtl_priv *rtlpriv = rtl_priv(hw);
199 	u32 value32;
200 	u8 readbyte;
201 	u16 retry;
202 
203 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
204 		       (_offset & 0xff));
205 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
206 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
207 		       ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
208 
209 	readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
210 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
211 		       (readbyte & 0x7f));
212 
213 	retry = 0;
214 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
215 	while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
216 		value32 = rtl_read_dword(rtlpriv,
217 					 rtlpriv->cfg->maps[EFUSE_CTRL]);
218 		retry++;
219 	}
220 
221 	udelay(50);
222 	value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223 
224 	*pbuf = (u8) (value32 & 0xff);
225 }
226 EXPORT_SYMBOL_GPL(read_efuse_byte);
227 
228 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
229 {
230 	struct rtl_priv *rtlpriv = rtl_priv(hw);
231 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
232 	u8 *efuse_tbl;
233 	u8 rtemp8[1];
234 	u16 efuse_addr = 0;
235 	u8 offset, wren;
236 	u8 u1temp = 0;
237 	u16 i;
238 	u16 j;
239 	const u16 efuse_max_section =
240 		rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
241 	const u32 efuse_len =
242 		rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
243 	u16 **efuse_word;
244 	u16 efuse_utilized = 0;
245 	u8 efuse_usage;
246 
247 	if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
248 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
249 			 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
250 			 _offset, _size_byte);
251 		return;
252 	}
253 
254 	/* allocate memory for efuse_tbl and efuse_word */
255 	efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
256 			    sizeof(u8), GFP_ATOMIC);
257 	if (!efuse_tbl)
258 		return;
259 	efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
260 	if (!efuse_word)
261 		goto out;
262 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
263 		efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
264 					GFP_ATOMIC);
265 		if (!efuse_word[i])
266 			goto done;
267 	}
268 
269 	for (i = 0; i < efuse_max_section; i++)
270 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
271 			efuse_word[j][i] = 0xFFFF;
272 
273 	read_efuse_byte(hw, efuse_addr, rtemp8);
274 	if (*rtemp8 != 0xFF) {
275 		efuse_utilized++;
276 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
277 			"Addr=%d\n", efuse_addr);
278 		efuse_addr++;
279 	}
280 
281 	while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
282 		/*  Check PG header for section num.  */
283 		if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
284 			u1temp = ((*rtemp8 & 0xE0) >> 5);
285 			read_efuse_byte(hw, efuse_addr, rtemp8);
286 
287 			if ((*rtemp8 & 0x0F) == 0x0F) {
288 				efuse_addr++;
289 				read_efuse_byte(hw, efuse_addr, rtemp8);
290 
291 				if (*rtemp8 != 0xFF &&
292 				    (efuse_addr < efuse_len)) {
293 					efuse_addr++;
294 				}
295 				continue;
296 			} else {
297 				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
298 				wren = (*rtemp8 & 0x0F);
299 				efuse_addr++;
300 			}
301 		} else {
302 			offset = ((*rtemp8 >> 4) & 0x0f);
303 			wren = (*rtemp8 & 0x0f);
304 		}
305 
306 		if (offset < efuse_max_section) {
307 			RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
308 				"offset-%d Worden=%x\n", offset, wren);
309 
310 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
311 				if (!(wren & 0x01)) {
312 					RTPRINT(rtlpriv, FEEPROM,
313 						EFUSE_READ_ALL,
314 						"Addr=%d\n", efuse_addr);
315 
316 					read_efuse_byte(hw, efuse_addr, rtemp8);
317 					efuse_addr++;
318 					efuse_utilized++;
319 					efuse_word[i][offset] =
320 							 (*rtemp8 & 0xff);
321 
322 					if (efuse_addr >= efuse_len)
323 						break;
324 
325 					RTPRINT(rtlpriv, FEEPROM,
326 						EFUSE_READ_ALL,
327 						"Addr=%d\n", efuse_addr);
328 
329 					read_efuse_byte(hw, efuse_addr, rtemp8);
330 					efuse_addr++;
331 					efuse_utilized++;
332 					efuse_word[i][offset] |=
333 					    (((u16)*rtemp8 << 8) & 0xff00);
334 
335 					if (efuse_addr >= efuse_len)
336 						break;
337 				}
338 
339 				wren >>= 1;
340 			}
341 		}
342 
343 		RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
344 			"Addr=%d\n", efuse_addr);
345 		read_efuse_byte(hw, efuse_addr, rtemp8);
346 		if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
347 			efuse_utilized++;
348 			efuse_addr++;
349 		}
350 	}
351 
352 	for (i = 0; i < efuse_max_section; i++) {
353 		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
354 			efuse_tbl[(i * 8) + (j * 2)] =
355 			    (efuse_word[j][i] & 0xff);
356 			efuse_tbl[(i * 8) + ((j * 2) + 1)] =
357 			    ((efuse_word[j][i] >> 8) & 0xff);
358 		}
359 	}
360 
361 	for (i = 0; i < _size_byte; i++)
362 		pbuf[i] = efuse_tbl[_offset + i];
363 
364 	rtlefuse->efuse_usedbytes = efuse_utilized;
365 	efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
366 	rtlefuse->efuse_usedpercentage = efuse_usage;
367 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
368 				      (u8 *)&efuse_utilized);
369 	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
370 				      &efuse_usage);
371 done:
372 	for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
373 		kfree(efuse_word[i]);
374 	kfree(efuse_word);
375 out:
376 	kfree(efuse_tbl);
377 }
378 
379 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
380 {
381 	struct rtl_priv *rtlpriv = rtl_priv(hw);
382 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
383 	u8 section_idx, i, Base;
384 	u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
385 	bool wordchanged, result = true;
386 
387 	for (section_idx = 0; section_idx < 16; section_idx++) {
388 		Base = section_idx * 8;
389 		wordchanged = false;
390 
391 		for (i = 0; i < 8; i = i + 2) {
392 			if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
393 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
394 			    (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
395 			     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
396 								   1])) {
397 				words_need++;
398 				wordchanged = true;
399 			}
400 		}
401 
402 		if (wordchanged)
403 			hdr_num++;
404 	}
405 
406 	totalbytes = hdr_num + words_need * 2;
407 	efuse_used = rtlefuse->efuse_usedbytes;
408 
409 	if ((totalbytes + efuse_used) >=
410 	    (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
411 		result = false;
412 
413 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
414 		 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
415 		 totalbytes, hdr_num, words_need, efuse_used);
416 
417 	return result;
418 }
419 
420 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
421 		       u16 offset, u32 *value)
422 {
423 	if (type == 1)
424 		efuse_shadow_read_1byte(hw, offset, (u8 *)value);
425 	else if (type == 2)
426 		efuse_shadow_read_2byte(hw, offset, (u16 *)value);
427 	else if (type == 4)
428 		efuse_shadow_read_4byte(hw, offset, value);
429 
430 }
431 EXPORT_SYMBOL(efuse_shadow_read);
432 
433 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
434 				u32 value)
435 {
436 	if (type == 1)
437 		efuse_shadow_write_1byte(hw, offset, (u8) value);
438 	else if (type == 2)
439 		efuse_shadow_write_2byte(hw, offset, (u16) value);
440 	else if (type == 4)
441 		efuse_shadow_write_4byte(hw, offset, value);
442 
443 }
444 
445 bool efuse_shadow_update(struct ieee80211_hw *hw)
446 {
447 	struct rtl_priv *rtlpriv = rtl_priv(hw);
448 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
449 	u16 i, offset, base;
450 	u8 word_en = 0x0F;
451 	u8 first_pg = false;
452 
453 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
454 
455 	if (!efuse_shadow_update_chk(hw)) {
456 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
457 		memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
458 		       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
459 		       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
460 
461 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
462 			 "efuse out of capacity!!\n");
463 		return false;
464 	}
465 	efuse_power_switch(hw, true, true);
466 
467 	for (offset = 0; offset < 16; offset++) {
468 
469 		word_en = 0x0F;
470 		base = offset * 8;
471 
472 		for (i = 0; i < 8; i++) {
473 			if (first_pg) {
474 				word_en &= ~(BIT(i / 2));
475 
476 				rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
477 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
478 			} else {
479 
480 				if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
481 				    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
482 					word_en &= ~(BIT(i / 2));
483 
484 					rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
485 					    rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
486 				}
487 			}
488 		}
489 
490 		if (word_en != 0x0F) {
491 			u8 tmpdata[8];
492 			memcpy(tmpdata,
493 			       &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
494 			       8);
495 			RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
496 				      "U-efuse\n", tmpdata, 8);
497 
498 			if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
499 						   tmpdata)) {
500 				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
501 					 "PG section(%#x) fail!!\n", offset);
502 				break;
503 			}
504 		}
505 
506 	}
507 
508 	efuse_power_switch(hw, true, false);
509 	efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
510 
511 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
512 	       &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
513 	       rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
514 
515 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
516 	return true;
517 }
518 
519 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
520 {
521 	struct rtl_priv *rtlpriv = rtl_priv(hw);
522 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
523 
524 	if (rtlefuse->autoload_failflag)
525 		memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
526 		       0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
527 	else
528 		efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
529 
530 	memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
531 			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
532 			rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
533 
534 }
535 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
536 
537 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
538 {
539 	u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
540 
541 	efuse_power_switch(hw, true, true);
542 
543 	efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
544 
545 	efuse_power_switch(hw, true, false);
546 
547 }
548 
549 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
550 {
551 }
552 
553 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
554 				    u16 offset, u8 *value)
555 {
556 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
557 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
558 }
559 
560 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
561 				    u16 offset, u16 *value)
562 {
563 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
564 
565 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
566 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
567 
568 }
569 
570 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
571 				    u16 offset, u32 *value)
572 {
573 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
574 
575 	*value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
576 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
577 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
578 	*value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
579 }
580 
581 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
582 				     u16 offset, u8 value)
583 {
584 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
585 
586 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
587 }
588 
589 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
590 				     u16 offset, u16 value)
591 {
592 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
593 
594 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
595 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
596 
597 }
598 
599 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
600 				     u16 offset, u32 value)
601 {
602 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
603 
604 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
605 	    (u8) (value & 0x000000FF);
606 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
607 	    (u8) ((value >> 8) & 0x0000FF);
608 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
609 	    (u8) ((value >> 16) & 0x00FF);
610 	rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
611 	    (u8) ((value >> 24) & 0xFF);
612 
613 }
614 
615 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
616 {
617 	struct rtl_priv *rtlpriv = rtl_priv(hw);
618 	u8 tmpidx = 0;
619 	int result;
620 
621 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
622 		       (u8) (addr & 0xff));
623 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
624 		       ((u8) ((addr >> 8) & 0x03)) |
625 		       (rtl_read_byte(rtlpriv,
626 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
627 			0xFC));
628 
629 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
630 
631 	while (!(0x80 & rtl_read_byte(rtlpriv,
632 				      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
633 	       && (tmpidx < 100)) {
634 		tmpidx++;
635 	}
636 
637 	if (tmpidx < 100) {
638 		*data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
639 		result = true;
640 	} else {
641 		*data = 0xff;
642 		result = false;
643 	}
644 	return result;
645 }
646 EXPORT_SYMBOL(efuse_one_byte_read);
647 
648 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
649 {
650 	struct rtl_priv *rtlpriv = rtl_priv(hw);
651 	u8 tmpidx = 0;
652 
653 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
654 		 "Addr = %x Data=%x\n", addr, data);
655 
656 	rtl_write_byte(rtlpriv,
657 		       rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
658 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
659 		       (rtl_read_byte(rtlpriv,
660 			 rtlpriv->cfg->maps[EFUSE_CTRL] +
661 			 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
662 
663 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
664 	rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
665 
666 	while ((0x80 & rtl_read_byte(rtlpriv,
667 				     rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
668 	       && (tmpidx < 100)) {
669 		tmpidx++;
670 	}
671 
672 	if (tmpidx < 100)
673 		return true;
674 	return false;
675 }
676 
677 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
678 {
679 	struct rtl_priv *rtlpriv = rtl_priv(hw);
680 	efuse_power_switch(hw, false, true);
681 	read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
682 	efuse_power_switch(hw, false, false);
683 }
684 
685 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
686 				u8 efuse_data, u8 offset, u8 *tmpdata,
687 				u8 *readstate)
688 {
689 	bool dataempty = true;
690 	u8 hoffset;
691 	u8 tmpidx;
692 	u8 hworden;
693 	u8 word_cnts;
694 
695 	hoffset = (efuse_data >> 4) & 0x0F;
696 	hworden = efuse_data & 0x0F;
697 	word_cnts = efuse_calculate_word_cnts(hworden);
698 
699 	if (hoffset == offset) {
700 		for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
701 			if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
702 						&efuse_data)) {
703 				tmpdata[tmpidx] = efuse_data;
704 				if (efuse_data != 0xff)
705 					dataempty = false;
706 			}
707 		}
708 
709 		if (!dataempty) {
710 			*readstate = PG_STATE_DATA;
711 		} else {
712 			*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
713 			*readstate = PG_STATE_HEADER;
714 		}
715 
716 	} else {
717 		*efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
718 		*readstate = PG_STATE_HEADER;
719 	}
720 }
721 
722 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
723 {
724 	u8 readstate = PG_STATE_HEADER;
725 
726 	bool continual = true;
727 
728 	u8 efuse_data, word_cnts = 0;
729 	u16 efuse_addr = 0;
730 	u8 tmpdata[8];
731 
732 	if (data == NULL)
733 		return false;
734 	if (offset > 15)
735 		return false;
736 
737 	memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
738 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
739 
740 	while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
741 		if (readstate & PG_STATE_HEADER) {
742 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
743 			    && (efuse_data != 0xFF))
744 				efuse_read_data_case1(hw, &efuse_addr,
745 						      efuse_data, offset,
746 						      tmpdata, &readstate);
747 			else
748 				continual = false;
749 		} else if (readstate & PG_STATE_DATA) {
750 			efuse_word_enable_data_read(0, tmpdata, data);
751 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
752 			readstate = PG_STATE_HEADER;
753 		}
754 
755 	}
756 
757 	if ((data[0] == 0xff) && (data[1] == 0xff) &&
758 	    (data[2] == 0xff) && (data[3] == 0xff) &&
759 	    (data[4] == 0xff) && (data[5] == 0xff) &&
760 	    (data[6] == 0xff) && (data[7] == 0xff))
761 		return false;
762 	else
763 		return true;
764 
765 }
766 
767 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
768 				   u8 efuse_data, u8 offset,
769 				   int *continual, u8 *write_state,
770 				   struct pgpkt_struct *target_pkt,
771 				   int *repeat_times, int *result, u8 word_en)
772 {
773 	struct rtl_priv *rtlpriv = rtl_priv(hw);
774 	struct pgpkt_struct tmp_pkt;
775 	int dataempty = true;
776 	u8 originaldata[8 * sizeof(u8)];
777 	u8 badworden = 0x0F;
778 	u8 match_word_en, tmp_word_en;
779 	u8 tmpindex;
780 	u8 tmp_header = efuse_data;
781 	u8 tmp_word_cnts;
782 
783 	tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
784 	tmp_pkt.word_en = tmp_header & 0x0F;
785 	tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
786 
787 	if (tmp_pkt.offset != target_pkt->offset) {
788 		*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
789 		*write_state = PG_STATE_HEADER;
790 	} else {
791 		for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
792 			if (efuse_one_byte_read(hw,
793 						(*efuse_addr + 1 + tmpindex),
794 						&efuse_data) &&
795 			    (efuse_data != 0xFF))
796 				dataempty = false;
797 		}
798 
799 		if (!dataempty) {
800 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
801 			*write_state = PG_STATE_HEADER;
802 		} else {
803 			match_word_en = 0x0F;
804 			if (!((target_pkt->word_en & BIT(0)) |
805 			    (tmp_pkt.word_en & BIT(0))))
806 				match_word_en &= (~BIT(0));
807 
808 			if (!((target_pkt->word_en & BIT(1)) |
809 			    (tmp_pkt.word_en & BIT(1))))
810 				match_word_en &= (~BIT(1));
811 
812 			if (!((target_pkt->word_en & BIT(2)) |
813 			    (tmp_pkt.word_en & BIT(2))))
814 				match_word_en &= (~BIT(2));
815 
816 			if (!((target_pkt->word_en & BIT(3)) |
817 			    (tmp_pkt.word_en & BIT(3))))
818 				match_word_en &= (~BIT(3));
819 
820 			if ((match_word_en & 0x0F) != 0x0F) {
821 				badworden =
822 				  enable_efuse_data_write(hw,
823 							  *efuse_addr + 1,
824 							  tmp_pkt.word_en,
825 							  target_pkt->data);
826 
827 				if (0x0F != (badworden & 0x0F))	{
828 					u8 reorg_offset = offset;
829 					u8 reorg_worden = badworden;
830 					efuse_pg_packet_write(hw, reorg_offset,
831 							      reorg_worden,
832 							      originaldata);
833 				}
834 
835 				tmp_word_en = 0x0F;
836 				if ((target_pkt->word_en & BIT(0)) ^
837 				    (match_word_en & BIT(0)))
838 					tmp_word_en &= (~BIT(0));
839 
840 				if ((target_pkt->word_en & BIT(1)) ^
841 				    (match_word_en & BIT(1)))
842 					tmp_word_en &= (~BIT(1));
843 
844 				if ((target_pkt->word_en & BIT(2)) ^
845 				    (match_word_en & BIT(2)))
846 					tmp_word_en &= (~BIT(2));
847 
848 				if ((target_pkt->word_en & BIT(3)) ^
849 				    (match_word_en & BIT(3)))
850 					tmp_word_en &= (~BIT(3));
851 
852 				if ((tmp_word_en & 0x0F) != 0x0F) {
853 					*efuse_addr = efuse_get_current_size(hw);
854 					target_pkt->offset = offset;
855 					target_pkt->word_en = tmp_word_en;
856 				} else {
857 					*continual = false;
858 				}
859 				*write_state = PG_STATE_HEADER;
860 				*repeat_times += 1;
861 				if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
862 					*continual = false;
863 					*result = false;
864 				}
865 			} else {
866 				*efuse_addr += (2 * tmp_word_cnts) + 1;
867 				target_pkt->offset = offset;
868 				target_pkt->word_en = word_en;
869 				*write_state = PG_STATE_HEADER;
870 			}
871 		}
872 	}
873 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
874 }
875 
876 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
877 				   int *continual, u8 *write_state,
878 				   struct pgpkt_struct target_pkt,
879 				   int *repeat_times, int *result)
880 {
881 	struct rtl_priv *rtlpriv = rtl_priv(hw);
882 	struct pgpkt_struct tmp_pkt;
883 	u8 pg_header;
884 	u8 tmp_header;
885 	u8 originaldata[8 * sizeof(u8)];
886 	u8 tmp_word_cnts;
887 	u8 badworden = 0x0F;
888 
889 	pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
890 	efuse_one_byte_write(hw, *efuse_addr, pg_header);
891 	efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
892 
893 	if (tmp_header == pg_header) {
894 		*write_state = PG_STATE_DATA;
895 	} else if (tmp_header == 0xFF) {
896 		*write_state = PG_STATE_HEADER;
897 		*repeat_times += 1;
898 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
899 			*continual = false;
900 			*result = false;
901 		}
902 	} else {
903 		tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
904 		tmp_pkt.word_en = tmp_header & 0x0F;
905 
906 		tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
907 
908 		memset(originaldata, 0xff,  8 * sizeof(u8));
909 
910 		if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
911 			badworden = enable_efuse_data_write(hw,
912 							    *efuse_addr + 1,
913 							    tmp_pkt.word_en,
914 							    originaldata);
915 
916 			if (0x0F != (badworden & 0x0F)) {
917 				u8 reorg_offset = tmp_pkt.offset;
918 				u8 reorg_worden = badworden;
919 				efuse_pg_packet_write(hw, reorg_offset,
920 						      reorg_worden,
921 						      originaldata);
922 				*efuse_addr = efuse_get_current_size(hw);
923 			} else {
924 				*efuse_addr = *efuse_addr +
925 					      (tmp_word_cnts * 2) + 1;
926 			}
927 		} else {
928 			*efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
929 		}
930 
931 		*write_state = PG_STATE_HEADER;
932 		*repeat_times += 1;
933 		if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
934 			*continual = false;
935 			*result = false;
936 		}
937 
938 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
939 			"efuse PG_STATE_HEADER-2\n");
940 	}
941 }
942 
943 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
944 				 u8 offset, u8 word_en, u8 *data)
945 {
946 	struct rtl_priv *rtlpriv = rtl_priv(hw);
947 	struct pgpkt_struct target_pkt;
948 	u8 write_state = PG_STATE_HEADER;
949 	int continual = true, dataempty = true, result = true;
950 	u16 efuse_addr = 0;
951 	u8 efuse_data;
952 	u8 target_word_cnts = 0;
953 	u8 badworden = 0x0F;
954 	static int repeat_times;
955 
956 	if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
957 		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
958 		RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
959 			"efuse_pg_packet_write error\n");
960 		return false;
961 	}
962 
963 	target_pkt.offset = offset;
964 	target_pkt.word_en = word_en;
965 
966 	memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
967 
968 	efuse_word_enable_data_read(word_en, data, target_pkt.data);
969 	target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
970 
971 	RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
972 
973 	while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
974 		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
975 
976 		if (write_state == PG_STATE_HEADER) {
977 			dataempty = true;
978 			badworden = 0x0F;
979 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
980 				"efuse PG_STATE_HEADER\n");
981 
982 			if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
983 			    (efuse_data != 0xFF))
984 				efuse_write_data_case1(hw, &efuse_addr,
985 						       efuse_data, offset,
986 						       &continual,
987 						       &write_state,
988 						       &target_pkt,
989 						       &repeat_times, &result,
990 						       word_en);
991 			else
992 				efuse_write_data_case2(hw, &efuse_addr,
993 						       &continual,
994 						       &write_state,
995 						       target_pkt,
996 						       &repeat_times,
997 						       &result);
998 
999 		} else if (write_state == PG_STATE_DATA) {
1000 			RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001 				"efuse PG_STATE_DATA\n");
1002 			badworden = 0x0f;
1003 			badworden =
1004 			    enable_efuse_data_write(hw, efuse_addr + 1,
1005 						    target_pkt.word_en,
1006 						    target_pkt.data);
1007 
1008 			if ((badworden & 0x0F) == 0x0F) {
1009 				continual = false;
1010 			} else {
1011 				efuse_addr =
1012 				    efuse_addr + (2 * target_word_cnts) + 1;
1013 
1014 				target_pkt.offset = offset;
1015 				target_pkt.word_en = badworden;
1016 				target_word_cnts =
1017 				    efuse_calculate_word_cnts(target_pkt.
1018 							      word_en);
1019 				write_state = PG_STATE_HEADER;
1020 				repeat_times++;
1021 				if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1022 					continual = false;
1023 					result = false;
1024 				}
1025 				RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1026 					"efuse PG_STATE_HEADER-3\n");
1027 			}
1028 		}
1029 	}
1030 
1031 	if (efuse_addr >= (EFUSE_MAX_SIZE -
1032 		rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1033 		RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1034 			 "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1035 	}
1036 
1037 	return true;
1038 }
1039 
1040 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1041 					u8 *targetdata)
1042 {
1043 	if (!(word_en & BIT(0))) {
1044 		targetdata[0] = sourdata[0];
1045 		targetdata[1] = sourdata[1];
1046 	}
1047 
1048 	if (!(word_en & BIT(1))) {
1049 		targetdata[2] = sourdata[2];
1050 		targetdata[3] = sourdata[3];
1051 	}
1052 
1053 	if (!(word_en & BIT(2))) {
1054 		targetdata[4] = sourdata[4];
1055 		targetdata[5] = sourdata[5];
1056 	}
1057 
1058 	if (!(word_en & BIT(3))) {
1059 		targetdata[6] = sourdata[6];
1060 		targetdata[7] = sourdata[7];
1061 	}
1062 }
1063 
1064 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1065 				  u16 efuse_addr, u8 word_en, u8 *data)
1066 {
1067 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1068 	u16 tmpaddr;
1069 	u16 start_addr = efuse_addr;
1070 	u8 badworden = 0x0F;
1071 	u8 tmpdata[8];
1072 
1073 	memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1074 	RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1075 		 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1076 
1077 	if (!(word_en & BIT(0))) {
1078 		tmpaddr = start_addr;
1079 		efuse_one_byte_write(hw, start_addr++, data[0]);
1080 		efuse_one_byte_write(hw, start_addr++, data[1]);
1081 
1082 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1083 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1084 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1085 			badworden &= (~BIT(0));
1086 	}
1087 
1088 	if (!(word_en & BIT(1))) {
1089 		tmpaddr = start_addr;
1090 		efuse_one_byte_write(hw, start_addr++, data[2]);
1091 		efuse_one_byte_write(hw, start_addr++, data[3]);
1092 
1093 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1094 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1095 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1096 			badworden &= (~BIT(1));
1097 	}
1098 
1099 	if (!(word_en & BIT(2))) {
1100 		tmpaddr = start_addr;
1101 		efuse_one_byte_write(hw, start_addr++, data[4]);
1102 		efuse_one_byte_write(hw, start_addr++, data[5]);
1103 
1104 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1105 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1106 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1107 			badworden &= (~BIT(2));
1108 	}
1109 
1110 	if (!(word_en & BIT(3))) {
1111 		tmpaddr = start_addr;
1112 		efuse_one_byte_write(hw, start_addr++, data[6]);
1113 		efuse_one_byte_write(hw, start_addr++, data[7]);
1114 
1115 		efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1116 		efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1117 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1118 			badworden &= (~BIT(3));
1119 	}
1120 
1121 	return badworden;
1122 }
1123 
1124 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1125 {
1126 	struct rtl_priv *rtlpriv = rtl_priv(hw);
1127 	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1128 	u8 tempval;
1129 	u16 tmpV16;
1130 
1131 	if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1132 
1133 		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1134 		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1135 			rtl_write_byte(rtlpriv,
1136 				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1137 		} else {
1138 			tmpV16 =
1139 			  rtl_read_word(rtlpriv,
1140 					rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1141 			if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1142 				tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1143 				rtl_write_word(rtlpriv,
1144 					       rtlpriv->cfg->maps[SYS_ISO_CTRL],
1145 					       tmpV16);
1146 			}
1147 		}
1148 		tmpV16 = rtl_read_word(rtlpriv,
1149 				       rtlpriv->cfg->maps[SYS_FUNC_EN]);
1150 		if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1151 			tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1152 			rtl_write_word(rtlpriv,
1153 				       rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1154 		}
1155 
1156 		tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1157 		if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1158 		    (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1159 			tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1160 				   rtlpriv->cfg->maps[EFUSE_ANA8M]);
1161 			rtl_write_word(rtlpriv,
1162 				       rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1163 		}
1164 	}
1165 
1166 	if (pwrstate) {
1167 		if (write) {
1168 			tempval = rtl_read_byte(rtlpriv,
1169 						rtlpriv->cfg->maps[EFUSE_TEST] +
1170 						3);
1171 
1172 			if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1173 				tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1174 				tempval |= (VOLTAGE_V25 << 3);
1175 			} else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1176 				tempval &= 0x0F;
1177 				tempval |= (VOLTAGE_V25 << 4);
1178 			}
1179 
1180 			rtl_write_byte(rtlpriv,
1181 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1182 				       (tempval | 0x80));
1183 		}
1184 
1185 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1186 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1187 				       0x03);
1188 		}
1189 	} else {
1190 		if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1191 		    rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1192 			rtl_write_byte(rtlpriv,
1193 				       rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1194 
1195 		if (write) {
1196 			tempval = rtl_read_byte(rtlpriv,
1197 						rtlpriv->cfg->maps[EFUSE_TEST] +
1198 						3);
1199 			rtl_write_byte(rtlpriv,
1200 				       rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1201 				       (tempval & 0x7F));
1202 		}
1203 
1204 		if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1205 			rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1206 				       0x02);
1207 		}
1208 	}
1209 }
1210 
1211 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1212 {
1213 	int continual = true;
1214 	u16 efuse_addr = 0;
1215 	u8 hoffset, hworden;
1216 	u8 efuse_data, word_cnts;
1217 
1218 	while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1219 	       (efuse_addr < EFUSE_MAX_SIZE)) {
1220 		if (efuse_data != 0xFF) {
1221 			hoffset = (efuse_data >> 4) & 0x0F;
1222 			hworden = efuse_data & 0x0F;
1223 			word_cnts = efuse_calculate_word_cnts(hworden);
1224 			efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1225 		} else {
1226 			continual = false;
1227 		}
1228 	}
1229 
1230 	return efuse_addr;
1231 }
1232 
1233 static u8 efuse_calculate_word_cnts(u8 word_en)
1234 {
1235 	u8 word_cnts = 0;
1236 	if (!(word_en & BIT(0)))
1237 		word_cnts++;
1238 	if (!(word_en & BIT(1)))
1239 		word_cnts++;
1240 	if (!(word_en & BIT(2)))
1241 		word_cnts++;
1242 	if (!(word_en & BIT(3)))
1243 		word_cnts++;
1244 	return word_cnts;
1245 }
1246 
1247 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1248 		   int max_size, u8 *hwinfo, int *params)
1249 {
1250 	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1251 	struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1252 	struct device *dev = &rtlpcipriv->dev.pdev->dev;
1253 	u16 eeprom_id;
1254 	u16 i, usvalue;
1255 
1256 	switch (rtlefuse->epromtype) {
1257 	case EEPROM_BOOT_EFUSE:
1258 		rtl_efuse_shadow_map_update(hw);
1259 		break;
1260 
1261 	case EEPROM_93C46:
1262 		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1263 			 "RTL8XXX did not boot from eeprom, check it !!\n");
1264 		return 1;
1265 
1266 	default:
1267 		dev_warn(dev, "no efuse data\n");
1268 		return 1;
1269 	}
1270 
1271 	memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1272 
1273 	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1274 		      hwinfo, max_size);
1275 
1276 	eeprom_id = *((u16 *)&hwinfo[0]);
1277 	if (eeprom_id != params[0]) {
1278 		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1279 			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1280 		rtlefuse->autoload_failflag = true;
1281 	} else {
1282 		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1283 		rtlefuse->autoload_failflag = false;
1284 	}
1285 
1286 	if (rtlefuse->autoload_failflag)
1287 		return 1;
1288 
1289 	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1290 	rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1291 	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1292 	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1293 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1294 		 "EEPROMId = 0x%4x\n", eeprom_id);
1295 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1296 		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1297 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1298 		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1299 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1300 		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1301 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1302 		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1303 
1304 	for (i = 0; i < 6; i += 2) {
1305 		usvalue = *(u16 *)&hwinfo[params[5] + i];
1306 		*((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1307 	}
1308 	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1309 
1310 	rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1311 	rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1312 	rtlefuse->txpwr_fromeprom = true;
1313 	rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1314 
1315 	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1316 		 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1317 
1318 	/* set channel plan to world wide 13 */
1319 	rtlefuse->channel_plan = params[9];
1320 
1321 	return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
1324