1 /****************************************************************************** 2 * 3 * Copyright(c) 2009-2012 Realtek Corporation. 4 * 5 * Tmis program is free software; you can redistribute it and/or modify it 6 * under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * Tme full GNU General Public License is included in this distribution in the 15 * file called LICENSE. 16 * 17 * Contact Information: 18 * wlanfae <wlanfae@realtek.com> 19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, 20 * Hsinchu 300, Taiwan. 21 * 22 * Larry Finger <Larry.Finger@lwfinger.net> 23 * 24 *****************************************************************************/ 25 #include "wifi.h" 26 #include "efuse.h" 27 #include "pci.h" 28 #include <linux/export.h> 29 30 static const u8 MAX_PGPKT_SIZE = 9; 31 static const u8 PGPKT_DATA_SIZE = 8; 32 static const int EFUSE_MAX_SIZE = 512; 33 34 #define START_ADDRESS 0x1000 35 #define REG_MCUFWDL 0x0080 36 37 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = { 38 {0, 0, 0, 2}, 39 {0, 1, 0, 2}, 40 {0, 2, 0, 2}, 41 {1, 0, 0, 1}, 42 {1, 0, 1, 1}, 43 {1, 1, 0, 1}, 44 {1, 1, 1, 3}, 45 {1, 3, 0, 17}, 46 {3, 3, 1, 48}, 47 {10, 0, 0, 6}, 48 {10, 3, 0, 1}, 49 {10, 3, 1, 1}, 50 {11, 0, 0, 28} 51 }; 52 53 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset, 54 u8 *value); 55 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset, 56 u16 *value); 57 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset, 58 u32 *value); 59 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset, 60 u8 value); 61 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset, 62 u16 value); 63 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset, 64 u32 value); 65 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, 66 u8 data); 67 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse); 68 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, 69 u8 *data); 70 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset, 71 u8 word_en, u8 *data); 72 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, 73 u8 *targetdata); 74 static u8 enable_efuse_data_write(struct ieee80211_hw *hw, 75 u16 efuse_addr, u8 word_en, u8 *data); 76 static u16 efuse_get_current_size(struct ieee80211_hw *hw); 77 static u8 efuse_calculate_word_cnts(u8 word_en); 78 79 void efuse_initialize(struct ieee80211_hw *hw) 80 { 81 struct rtl_priv *rtlpriv = rtl_priv(hw); 82 u8 bytetemp; 83 u8 temp; 84 85 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1); 86 temp = bytetemp | 0x20; 87 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp); 88 89 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1); 90 temp = bytetemp & 0xFE; 91 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp); 92 93 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3); 94 temp = bytetemp | 0x80; 95 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp); 96 97 rtl_write_byte(rtlpriv, 0x2F8, 0x3); 98 99 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); 100 101 } 102 103 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address) 104 { 105 struct rtl_priv *rtlpriv = rtl_priv(hw); 106 u8 data; 107 u8 bytetemp; 108 u8 temp; 109 u32 k = 0; 110 const u32 efuse_len = 111 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; 112 113 if (address < efuse_len) { 114 temp = address & 0xFF; 115 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 116 temp); 117 bytetemp = rtl_read_byte(rtlpriv, 118 rtlpriv->cfg->maps[EFUSE_CTRL] + 2); 119 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); 120 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 121 temp); 122 123 bytetemp = rtl_read_byte(rtlpriv, 124 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 125 temp = bytetemp & 0x7F; 126 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 127 temp); 128 129 bytetemp = rtl_read_byte(rtlpriv, 130 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 131 while (!(bytetemp & 0x80)) { 132 bytetemp = rtl_read_byte(rtlpriv, 133 rtlpriv->cfg-> 134 maps[EFUSE_CTRL] + 3); 135 k++; 136 if (k == 1000) { 137 k = 0; 138 break; 139 } 140 } 141 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 142 return data; 143 } else 144 return 0xFF; 145 146 } 147 EXPORT_SYMBOL(efuse_read_1byte); 148 149 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value) 150 { 151 struct rtl_priv *rtlpriv = rtl_priv(hw); 152 u8 bytetemp; 153 u8 temp; 154 u32 k = 0; 155 const u32 efuse_len = 156 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; 157 158 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n", 159 address, value); 160 161 if (address < efuse_len) { 162 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value); 163 164 temp = address & 0xFF; 165 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 166 temp); 167 bytetemp = rtl_read_byte(rtlpriv, 168 rtlpriv->cfg->maps[EFUSE_CTRL] + 2); 169 170 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); 171 rtl_write_byte(rtlpriv, 172 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp); 173 174 bytetemp = rtl_read_byte(rtlpriv, 175 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 176 temp = bytetemp | 0x80; 177 rtl_write_byte(rtlpriv, 178 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp); 179 180 bytetemp = rtl_read_byte(rtlpriv, 181 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 182 183 while (bytetemp & 0x80) { 184 bytetemp = rtl_read_byte(rtlpriv, 185 rtlpriv->cfg-> 186 maps[EFUSE_CTRL] + 3); 187 k++; 188 if (k == 100) { 189 k = 0; 190 break; 191 } 192 } 193 } 194 195 } 196 197 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf) 198 { 199 struct rtl_priv *rtlpriv = rtl_priv(hw); 200 u32 value32; 201 u8 readbyte; 202 u16 retry; 203 204 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 205 (_offset & 0xff)); 206 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2); 207 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 208 ((_offset >> 8) & 0x03) | (readbyte & 0xfc)); 209 210 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 211 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 212 (readbyte & 0x7f)); 213 214 retry = 0; 215 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 216 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) { 217 value32 = rtl_read_dword(rtlpriv, 218 rtlpriv->cfg->maps[EFUSE_CTRL]); 219 retry++; 220 } 221 222 udelay(50); 223 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 224 225 *pbuf = (u8) (value32 & 0xff); 226 } 227 EXPORT_SYMBOL_GPL(read_efuse_byte); 228 229 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf) 230 { 231 struct rtl_priv *rtlpriv = rtl_priv(hw); 232 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 233 u8 *efuse_tbl; 234 u8 rtemp8[1]; 235 u16 efuse_addr = 0; 236 u8 offset, wren; 237 u8 u1temp = 0; 238 u16 i; 239 u16 j; 240 const u16 efuse_max_section = 241 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP]; 242 const u32 efuse_len = 243 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; 244 u16 **efuse_word; 245 u16 efuse_utilized = 0; 246 u8 efuse_usage; 247 248 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) { 249 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 250 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n", 251 _offset, _size_byte); 252 return; 253 } 254 255 /* allocate memory for efuse_tbl and efuse_word */ 256 efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] * 257 sizeof(u8), GFP_ATOMIC); 258 if (!efuse_tbl) 259 return; 260 efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC); 261 if (!efuse_word) 262 goto out; 263 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { 264 efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16), 265 GFP_ATOMIC); 266 if (!efuse_word[i]) 267 goto done; 268 } 269 270 for (i = 0; i < efuse_max_section; i++) 271 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) 272 efuse_word[j][i] = 0xFFFF; 273 274 read_efuse_byte(hw, efuse_addr, rtemp8); 275 if (*rtemp8 != 0xFF) { 276 efuse_utilized++; 277 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, 278 "Addr=%d\n", efuse_addr); 279 efuse_addr++; 280 } 281 282 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) { 283 /* Check PG header for section num. */ 284 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */ 285 u1temp = ((*rtemp8 & 0xE0) >> 5); 286 read_efuse_byte(hw, efuse_addr, rtemp8); 287 288 if ((*rtemp8 & 0x0F) == 0x0F) { 289 efuse_addr++; 290 read_efuse_byte(hw, efuse_addr, rtemp8); 291 292 if (*rtemp8 != 0xFF && 293 (efuse_addr < efuse_len)) { 294 efuse_addr++; 295 } 296 continue; 297 } else { 298 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; 299 wren = (*rtemp8 & 0x0F); 300 efuse_addr++; 301 } 302 } else { 303 offset = ((*rtemp8 >> 4) & 0x0f); 304 wren = (*rtemp8 & 0x0f); 305 } 306 307 if (offset < efuse_max_section) { 308 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, 309 "offset-%d Worden=%x\n", offset, wren); 310 311 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { 312 if (!(wren & 0x01)) { 313 RTPRINT(rtlpriv, FEEPROM, 314 EFUSE_READ_ALL, 315 "Addr=%d\n", efuse_addr); 316 317 read_efuse_byte(hw, efuse_addr, rtemp8); 318 efuse_addr++; 319 efuse_utilized++; 320 efuse_word[i][offset] = 321 (*rtemp8 & 0xff); 322 323 if (efuse_addr >= efuse_len) 324 break; 325 326 RTPRINT(rtlpriv, FEEPROM, 327 EFUSE_READ_ALL, 328 "Addr=%d\n", efuse_addr); 329 330 read_efuse_byte(hw, efuse_addr, rtemp8); 331 efuse_addr++; 332 efuse_utilized++; 333 efuse_word[i][offset] |= 334 (((u16)*rtemp8 << 8) & 0xff00); 335 336 if (efuse_addr >= efuse_len) 337 break; 338 } 339 340 wren >>= 1; 341 } 342 } 343 344 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, 345 "Addr=%d\n", efuse_addr); 346 read_efuse_byte(hw, efuse_addr, rtemp8); 347 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) { 348 efuse_utilized++; 349 efuse_addr++; 350 } 351 } 352 353 for (i = 0; i < efuse_max_section; i++) { 354 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { 355 efuse_tbl[(i * 8) + (j * 2)] = 356 (efuse_word[j][i] & 0xff); 357 efuse_tbl[(i * 8) + ((j * 2) + 1)] = 358 ((efuse_word[j][i] >> 8) & 0xff); 359 } 360 } 361 362 for (i = 0; i < _size_byte; i++) 363 pbuf[i] = efuse_tbl[_offset + i]; 364 365 rtlefuse->efuse_usedbytes = efuse_utilized; 366 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len); 367 rtlefuse->efuse_usedpercentage = efuse_usage; 368 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES, 369 (u8 *)&efuse_utilized); 370 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE, 371 &efuse_usage); 372 done: 373 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) 374 kfree(efuse_word[i]); 375 kfree(efuse_word); 376 out: 377 kfree(efuse_tbl); 378 } 379 380 bool efuse_shadow_update_chk(struct ieee80211_hw *hw) 381 { 382 struct rtl_priv *rtlpriv = rtl_priv(hw); 383 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 384 u8 section_idx, i, Base; 385 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used; 386 bool wordchanged, result = true; 387 388 for (section_idx = 0; section_idx < 16; section_idx++) { 389 Base = section_idx * 8; 390 wordchanged = false; 391 392 for (i = 0; i < 8; i = i + 2) { 393 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] != 394 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) || 395 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] != 396 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i + 397 1])) { 398 words_need++; 399 wordchanged = true; 400 } 401 } 402 403 if (wordchanged) 404 hdr_num++; 405 } 406 407 totalbytes = hdr_num + words_need * 2; 408 efuse_used = rtlefuse->efuse_usedbytes; 409 410 if ((totalbytes + efuse_used) >= 411 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) 412 result = false; 413 414 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 415 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n", 416 totalbytes, hdr_num, words_need, efuse_used); 417 418 return result; 419 } 420 421 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type, 422 u16 offset, u32 *value) 423 { 424 if (type == 1) 425 efuse_shadow_read_1byte(hw, offset, (u8 *)value); 426 else if (type == 2) 427 efuse_shadow_read_2byte(hw, offset, (u16 *)value); 428 else if (type == 4) 429 efuse_shadow_read_4byte(hw, offset, value); 430 431 } 432 EXPORT_SYMBOL(efuse_shadow_read); 433 434 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset, 435 u32 value) 436 { 437 if (type == 1) 438 efuse_shadow_write_1byte(hw, offset, (u8) value); 439 else if (type == 2) 440 efuse_shadow_write_2byte(hw, offset, (u16) value); 441 else if (type == 4) 442 efuse_shadow_write_4byte(hw, offset, value); 443 444 } 445 446 bool efuse_shadow_update(struct ieee80211_hw *hw) 447 { 448 struct rtl_priv *rtlpriv = rtl_priv(hw); 449 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 450 u16 i, offset, base; 451 u8 word_en = 0x0F; 452 u8 first_pg = false; 453 454 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); 455 456 if (!efuse_shadow_update_chk(hw)) { 457 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); 458 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], 459 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 460 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 461 462 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 463 "efuse out of capacity!!\n"); 464 return false; 465 } 466 efuse_power_switch(hw, true, true); 467 468 for (offset = 0; offset < 16; offset++) { 469 470 word_en = 0x0F; 471 base = offset * 8; 472 473 for (i = 0; i < 8; i++) { 474 if (first_pg) { 475 word_en &= ~(BIT(i / 2)); 476 477 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = 478 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; 479 } else { 480 481 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] != 482 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) { 483 word_en &= ~(BIT(i / 2)); 484 485 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = 486 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; 487 } 488 } 489 } 490 491 if (word_en != 0x0F) { 492 u8 tmpdata[8]; 493 memcpy(tmpdata, 494 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base], 495 8); 496 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, 497 "U-efuse\n", tmpdata, 8); 498 499 if (!efuse_pg_packet_write(hw, (u8) offset, word_en, 500 tmpdata)) { 501 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 502 "PG section(%#x) fail!!\n", offset); 503 break; 504 } 505 } 506 507 } 508 509 efuse_power_switch(hw, true, false); 510 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); 511 512 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], 513 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 514 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 515 516 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); 517 return true; 518 } 519 520 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw) 521 { 522 struct rtl_priv *rtlpriv = rtl_priv(hw); 523 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 524 525 if (rtlefuse->autoload_failflag) 526 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]), 527 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 528 else 529 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); 530 531 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], 532 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 533 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 534 535 } 536 EXPORT_SYMBOL(rtl_efuse_shadow_map_update); 537 538 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw) 539 { 540 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF }; 541 542 efuse_power_switch(hw, true, true); 543 544 efuse_pg_packet_write(hw, 1, 0xD, tmpdata); 545 546 efuse_power_switch(hw, true, false); 547 548 } 549 550 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx) 551 { 552 } 553 554 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, 555 u16 offset, u8 *value) 556 { 557 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 558 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; 559 } 560 561 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, 562 u16 offset, u16 *value) 563 { 564 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 565 566 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; 567 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; 568 569 } 570 571 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, 572 u16 offset, u32 *value) 573 { 574 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 575 576 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; 577 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; 578 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16; 579 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24; 580 } 581 582 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, 583 u16 offset, u8 value) 584 { 585 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 586 587 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value; 588 } 589 590 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, 591 u16 offset, u16 value) 592 { 593 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 594 595 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF; 596 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8; 597 598 } 599 600 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, 601 u16 offset, u32 value) 602 { 603 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 604 605 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = 606 (u8) (value & 0x000000FF); 607 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = 608 (u8) ((value >> 8) & 0x0000FF); 609 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] = 610 (u8) ((value >> 16) & 0x00FF); 611 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] = 612 (u8) ((value >> 24) & 0xFF); 613 614 } 615 616 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data) 617 { 618 struct rtl_priv *rtlpriv = rtl_priv(hw); 619 u8 tmpidx = 0; 620 int result; 621 622 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 623 (u8) (addr & 0xff)); 624 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 625 ((u8) ((addr >> 8) & 0x03)) | 626 (rtl_read_byte(rtlpriv, 627 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) & 628 0xFC)); 629 630 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); 631 632 while (!(0x80 & rtl_read_byte(rtlpriv, 633 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) 634 && (tmpidx < 100)) { 635 tmpidx++; 636 } 637 638 if (tmpidx < 100) { 639 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 640 result = true; 641 } else { 642 *data = 0xff; 643 result = false; 644 } 645 return result; 646 } 647 EXPORT_SYMBOL(efuse_one_byte_read); 648 649 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data) 650 { 651 struct rtl_priv *rtlpriv = rtl_priv(hw); 652 u8 tmpidx = 0; 653 654 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 655 "Addr = %x Data=%x\n", addr, data); 656 657 rtl_write_byte(rtlpriv, 658 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff)); 659 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 660 (rtl_read_byte(rtlpriv, 661 rtlpriv->cfg->maps[EFUSE_CTRL] + 662 2) & 0xFC) | (u8) ((addr >> 8) & 0x03)); 663 664 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data); 665 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2); 666 667 while ((0x80 & rtl_read_byte(rtlpriv, 668 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) 669 && (tmpidx < 100)) { 670 tmpidx++; 671 } 672 673 if (tmpidx < 100) 674 return true; 675 return false; 676 } 677 678 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse) 679 { 680 struct rtl_priv *rtlpriv = rtl_priv(hw); 681 efuse_power_switch(hw, false, true); 682 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse); 683 efuse_power_switch(hw, false, false); 684 } 685 686 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, 687 u8 efuse_data, u8 offset, u8 *tmpdata, 688 u8 *readstate) 689 { 690 bool dataempty = true; 691 u8 hoffset; 692 u8 tmpidx; 693 u8 hworden; 694 u8 word_cnts; 695 696 hoffset = (efuse_data >> 4) & 0x0F; 697 hworden = efuse_data & 0x0F; 698 word_cnts = efuse_calculate_word_cnts(hworden); 699 700 if (hoffset == offset) { 701 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) { 702 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx, 703 &efuse_data)) { 704 tmpdata[tmpidx] = efuse_data; 705 if (efuse_data != 0xff) 706 dataempty = false; 707 } 708 } 709 710 if (!dataempty) { 711 *readstate = PG_STATE_DATA; 712 } else { 713 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; 714 *readstate = PG_STATE_HEADER; 715 } 716 717 } else { 718 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; 719 *readstate = PG_STATE_HEADER; 720 } 721 } 722 723 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data) 724 { 725 u8 readstate = PG_STATE_HEADER; 726 727 bool continual = true; 728 729 u8 efuse_data, word_cnts = 0; 730 u16 efuse_addr = 0; 731 u8 tmpdata[8]; 732 733 if (data == NULL) 734 return false; 735 if (offset > 15) 736 return false; 737 738 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); 739 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); 740 741 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) { 742 if (readstate & PG_STATE_HEADER) { 743 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) 744 && (efuse_data != 0xFF)) 745 efuse_read_data_case1(hw, &efuse_addr, 746 efuse_data, offset, 747 tmpdata, &readstate); 748 else 749 continual = false; 750 } else if (readstate & PG_STATE_DATA) { 751 efuse_word_enable_data_read(0, tmpdata, data); 752 efuse_addr = efuse_addr + (word_cnts * 2) + 1; 753 readstate = PG_STATE_HEADER; 754 } 755 756 } 757 758 if ((data[0] == 0xff) && (data[1] == 0xff) && 759 (data[2] == 0xff) && (data[3] == 0xff) && 760 (data[4] == 0xff) && (data[5] == 0xff) && 761 (data[6] == 0xff) && (data[7] == 0xff)) 762 return false; 763 else 764 return true; 765 766 } 767 768 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, 769 u8 efuse_data, u8 offset, 770 int *continual, u8 *write_state, 771 struct pgpkt_struct *target_pkt, 772 int *repeat_times, int *result, u8 word_en) 773 { 774 struct rtl_priv *rtlpriv = rtl_priv(hw); 775 struct pgpkt_struct tmp_pkt; 776 int dataempty = true; 777 u8 originaldata[8 * sizeof(u8)]; 778 u8 badworden = 0x0F; 779 u8 match_word_en, tmp_word_en; 780 u8 tmpindex; 781 u8 tmp_header = efuse_data; 782 u8 tmp_word_cnts; 783 784 tmp_pkt.offset = (tmp_header >> 4) & 0x0F; 785 tmp_pkt.word_en = tmp_header & 0x0F; 786 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); 787 788 if (tmp_pkt.offset != target_pkt->offset) { 789 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; 790 *write_state = PG_STATE_HEADER; 791 } else { 792 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) { 793 if (efuse_one_byte_read(hw, 794 (*efuse_addr + 1 + tmpindex), 795 &efuse_data) && 796 (efuse_data != 0xFF)) 797 dataempty = false; 798 } 799 800 if (!dataempty) { 801 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; 802 *write_state = PG_STATE_HEADER; 803 } else { 804 match_word_en = 0x0F; 805 if (!((target_pkt->word_en & BIT(0)) | 806 (tmp_pkt.word_en & BIT(0)))) 807 match_word_en &= (~BIT(0)); 808 809 if (!((target_pkt->word_en & BIT(1)) | 810 (tmp_pkt.word_en & BIT(1)))) 811 match_word_en &= (~BIT(1)); 812 813 if (!((target_pkt->word_en & BIT(2)) | 814 (tmp_pkt.word_en & BIT(2)))) 815 match_word_en &= (~BIT(2)); 816 817 if (!((target_pkt->word_en & BIT(3)) | 818 (tmp_pkt.word_en & BIT(3)))) 819 match_word_en &= (~BIT(3)); 820 821 if ((match_word_en & 0x0F) != 0x0F) { 822 badworden = 823 enable_efuse_data_write(hw, 824 *efuse_addr + 1, 825 tmp_pkt.word_en, 826 target_pkt->data); 827 828 if (0x0F != (badworden & 0x0F)) { 829 u8 reorg_offset = offset; 830 u8 reorg_worden = badworden; 831 efuse_pg_packet_write(hw, reorg_offset, 832 reorg_worden, 833 originaldata); 834 } 835 836 tmp_word_en = 0x0F; 837 if ((target_pkt->word_en & BIT(0)) ^ 838 (match_word_en & BIT(0))) 839 tmp_word_en &= (~BIT(0)); 840 841 if ((target_pkt->word_en & BIT(1)) ^ 842 (match_word_en & BIT(1))) 843 tmp_word_en &= (~BIT(1)); 844 845 if ((target_pkt->word_en & BIT(2)) ^ 846 (match_word_en & BIT(2))) 847 tmp_word_en &= (~BIT(2)); 848 849 if ((target_pkt->word_en & BIT(3)) ^ 850 (match_word_en & BIT(3))) 851 tmp_word_en &= (~BIT(3)); 852 853 if ((tmp_word_en & 0x0F) != 0x0F) { 854 *efuse_addr = efuse_get_current_size(hw); 855 target_pkt->offset = offset; 856 target_pkt->word_en = tmp_word_en; 857 } else { 858 *continual = false; 859 } 860 *write_state = PG_STATE_HEADER; 861 *repeat_times += 1; 862 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { 863 *continual = false; 864 *result = false; 865 } 866 } else { 867 *efuse_addr += (2 * tmp_word_cnts) + 1; 868 target_pkt->offset = offset; 869 target_pkt->word_en = word_en; 870 *write_state = PG_STATE_HEADER; 871 } 872 } 873 } 874 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n"); 875 } 876 877 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr, 878 int *continual, u8 *write_state, 879 struct pgpkt_struct target_pkt, 880 int *repeat_times, int *result) 881 { 882 struct rtl_priv *rtlpriv = rtl_priv(hw); 883 struct pgpkt_struct tmp_pkt; 884 u8 pg_header; 885 u8 tmp_header; 886 u8 originaldata[8 * sizeof(u8)]; 887 u8 tmp_word_cnts; 888 u8 badworden = 0x0F; 889 890 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en; 891 efuse_one_byte_write(hw, *efuse_addr, pg_header); 892 efuse_one_byte_read(hw, *efuse_addr, &tmp_header); 893 894 if (tmp_header == pg_header) { 895 *write_state = PG_STATE_DATA; 896 } else if (tmp_header == 0xFF) { 897 *write_state = PG_STATE_HEADER; 898 *repeat_times += 1; 899 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { 900 *continual = false; 901 *result = false; 902 } 903 } else { 904 tmp_pkt.offset = (tmp_header >> 4) & 0x0F; 905 tmp_pkt.word_en = tmp_header & 0x0F; 906 907 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); 908 909 memset(originaldata, 0xff, 8 * sizeof(u8)); 910 911 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) { 912 badworden = enable_efuse_data_write(hw, 913 *efuse_addr + 1, 914 tmp_pkt.word_en, 915 originaldata); 916 917 if (0x0F != (badworden & 0x0F)) { 918 u8 reorg_offset = tmp_pkt.offset; 919 u8 reorg_worden = badworden; 920 efuse_pg_packet_write(hw, reorg_offset, 921 reorg_worden, 922 originaldata); 923 *efuse_addr = efuse_get_current_size(hw); 924 } else { 925 *efuse_addr = *efuse_addr + 926 (tmp_word_cnts * 2) + 1; 927 } 928 } else { 929 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; 930 } 931 932 *write_state = PG_STATE_HEADER; 933 *repeat_times += 1; 934 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { 935 *continual = false; 936 *result = false; 937 } 938 939 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 940 "efuse PG_STATE_HEADER-2\n"); 941 } 942 } 943 944 static int efuse_pg_packet_write(struct ieee80211_hw *hw, 945 u8 offset, u8 word_en, u8 *data) 946 { 947 struct rtl_priv *rtlpriv = rtl_priv(hw); 948 struct pgpkt_struct target_pkt; 949 u8 write_state = PG_STATE_HEADER; 950 int continual = true, dataempty = true, result = true; 951 u16 efuse_addr = 0; 952 u8 efuse_data; 953 u8 target_word_cnts = 0; 954 u8 badworden = 0x0F; 955 static int repeat_times; 956 957 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE - 958 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { 959 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 960 "efuse_pg_packet_write error\n"); 961 return false; 962 } 963 964 target_pkt.offset = offset; 965 target_pkt.word_en = word_en; 966 967 memset(target_pkt.data, 0xFF, 8 * sizeof(u8)); 968 969 efuse_word_enable_data_read(word_en, data, target_pkt.data); 970 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en); 971 972 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n"); 973 974 while (continual && (efuse_addr < (EFUSE_MAX_SIZE - 975 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) { 976 977 if (write_state == PG_STATE_HEADER) { 978 dataempty = true; 979 badworden = 0x0F; 980 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 981 "efuse PG_STATE_HEADER\n"); 982 983 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) && 984 (efuse_data != 0xFF)) 985 efuse_write_data_case1(hw, &efuse_addr, 986 efuse_data, offset, 987 &continual, 988 &write_state, 989 &target_pkt, 990 &repeat_times, &result, 991 word_en); 992 else 993 efuse_write_data_case2(hw, &efuse_addr, 994 &continual, 995 &write_state, 996 target_pkt, 997 &repeat_times, 998 &result); 999 1000 } else if (write_state == PG_STATE_DATA) { 1001 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 1002 "efuse PG_STATE_DATA\n"); 1003 badworden = 0x0f; 1004 badworden = 1005 enable_efuse_data_write(hw, efuse_addr + 1, 1006 target_pkt.word_en, 1007 target_pkt.data); 1008 1009 if ((badworden & 0x0F) == 0x0F) { 1010 continual = false; 1011 } else { 1012 efuse_addr = 1013 efuse_addr + (2 * target_word_cnts) + 1; 1014 1015 target_pkt.offset = offset; 1016 target_pkt.word_en = badworden; 1017 target_word_cnts = 1018 efuse_calculate_word_cnts(target_pkt. 1019 word_en); 1020 write_state = PG_STATE_HEADER; 1021 repeat_times++; 1022 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { 1023 continual = false; 1024 result = false; 1025 } 1026 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 1027 "efuse PG_STATE_HEADER-3\n"); 1028 } 1029 } 1030 } 1031 1032 if (efuse_addr >= (EFUSE_MAX_SIZE - 1033 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { 1034 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 1035 "efuse_addr(%#x) Out of size!!\n", efuse_addr); 1036 } 1037 1038 return true; 1039 } 1040 1041 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, 1042 u8 *targetdata) 1043 { 1044 if (!(word_en & BIT(0))) { 1045 targetdata[0] = sourdata[0]; 1046 targetdata[1] = sourdata[1]; 1047 } 1048 1049 if (!(word_en & BIT(1))) { 1050 targetdata[2] = sourdata[2]; 1051 targetdata[3] = sourdata[3]; 1052 } 1053 1054 if (!(word_en & BIT(2))) { 1055 targetdata[4] = sourdata[4]; 1056 targetdata[5] = sourdata[5]; 1057 } 1058 1059 if (!(word_en & BIT(3))) { 1060 targetdata[6] = sourdata[6]; 1061 targetdata[7] = sourdata[7]; 1062 } 1063 } 1064 1065 static u8 enable_efuse_data_write(struct ieee80211_hw *hw, 1066 u16 efuse_addr, u8 word_en, u8 *data) 1067 { 1068 struct rtl_priv *rtlpriv = rtl_priv(hw); 1069 u16 tmpaddr; 1070 u16 start_addr = efuse_addr; 1071 u8 badworden = 0x0F; 1072 u8 tmpdata[8]; 1073 1074 memset(tmpdata, 0xff, PGPKT_DATA_SIZE); 1075 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 1076 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr); 1077 1078 if (!(word_en & BIT(0))) { 1079 tmpaddr = start_addr; 1080 efuse_one_byte_write(hw, start_addr++, data[0]); 1081 efuse_one_byte_write(hw, start_addr++, data[1]); 1082 1083 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]); 1084 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]); 1085 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) 1086 badworden &= (~BIT(0)); 1087 } 1088 1089 if (!(word_en & BIT(1))) { 1090 tmpaddr = start_addr; 1091 efuse_one_byte_write(hw, start_addr++, data[2]); 1092 efuse_one_byte_write(hw, start_addr++, data[3]); 1093 1094 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]); 1095 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]); 1096 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) 1097 badworden &= (~BIT(1)); 1098 } 1099 1100 if (!(word_en & BIT(2))) { 1101 tmpaddr = start_addr; 1102 efuse_one_byte_write(hw, start_addr++, data[4]); 1103 efuse_one_byte_write(hw, start_addr++, data[5]); 1104 1105 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]); 1106 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]); 1107 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) 1108 badworden &= (~BIT(2)); 1109 } 1110 1111 if (!(word_en & BIT(3))) { 1112 tmpaddr = start_addr; 1113 efuse_one_byte_write(hw, start_addr++, data[6]); 1114 efuse_one_byte_write(hw, start_addr++, data[7]); 1115 1116 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]); 1117 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]); 1118 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) 1119 badworden &= (~BIT(3)); 1120 } 1121 1122 return badworden; 1123 } 1124 1125 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate) 1126 { 1127 struct rtl_priv *rtlpriv = rtl_priv(hw); 1128 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1129 u8 tempval; 1130 u16 tmpV16; 1131 1132 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) { 1133 1134 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && 1135 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) { 1136 rtl_write_byte(rtlpriv, 1137 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69); 1138 } else { 1139 tmpV16 = 1140 rtl_read_word(rtlpriv, 1141 rtlpriv->cfg->maps[SYS_ISO_CTRL]); 1142 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) { 1143 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V]; 1144 rtl_write_word(rtlpriv, 1145 rtlpriv->cfg->maps[SYS_ISO_CTRL], 1146 tmpV16); 1147 } 1148 } 1149 tmpV16 = rtl_read_word(rtlpriv, 1150 rtlpriv->cfg->maps[SYS_FUNC_EN]); 1151 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) { 1152 tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR]; 1153 rtl_write_word(rtlpriv, 1154 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16); 1155 } 1156 1157 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]); 1158 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) || 1159 (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) { 1160 tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] | 1161 rtlpriv->cfg->maps[EFUSE_ANA8M]); 1162 rtl_write_word(rtlpriv, 1163 rtlpriv->cfg->maps[SYS_CLK], tmpV16); 1164 } 1165 } 1166 1167 if (pwrstate) { 1168 if (write) { 1169 tempval = rtl_read_byte(rtlpriv, 1170 rtlpriv->cfg->maps[EFUSE_TEST] + 1171 3); 1172 1173 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) { 1174 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6)); 1175 tempval |= (VOLTAGE_V25 << 3); 1176 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) { 1177 tempval &= 0x0F; 1178 tempval |= (VOLTAGE_V25 << 4); 1179 } 1180 1181 rtl_write_byte(rtlpriv, 1182 rtlpriv->cfg->maps[EFUSE_TEST] + 3, 1183 (tempval | 0x80)); 1184 } 1185 1186 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { 1187 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], 1188 0x03); 1189 } 1190 } else { 1191 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && 1192 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) 1193 rtl_write_byte(rtlpriv, 1194 rtlpriv->cfg->maps[EFUSE_ACCESS], 0); 1195 1196 if (write) { 1197 tempval = rtl_read_byte(rtlpriv, 1198 rtlpriv->cfg->maps[EFUSE_TEST] + 1199 3); 1200 rtl_write_byte(rtlpriv, 1201 rtlpriv->cfg->maps[EFUSE_TEST] + 3, 1202 (tempval & 0x7F)); 1203 } 1204 1205 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { 1206 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], 1207 0x02); 1208 } 1209 } 1210 } 1211 EXPORT_SYMBOL(efuse_power_switch); 1212 1213 static u16 efuse_get_current_size(struct ieee80211_hw *hw) 1214 { 1215 int continual = true; 1216 u16 efuse_addr = 0; 1217 u8 hoffset, hworden; 1218 u8 efuse_data, word_cnts; 1219 1220 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) && 1221 (efuse_addr < EFUSE_MAX_SIZE)) { 1222 if (efuse_data != 0xFF) { 1223 hoffset = (efuse_data >> 4) & 0x0F; 1224 hworden = efuse_data & 0x0F; 1225 word_cnts = efuse_calculate_word_cnts(hworden); 1226 efuse_addr = efuse_addr + (word_cnts * 2) + 1; 1227 } else { 1228 continual = false; 1229 } 1230 } 1231 1232 return efuse_addr; 1233 } 1234 1235 static u8 efuse_calculate_word_cnts(u8 word_en) 1236 { 1237 u8 word_cnts = 0; 1238 if (!(word_en & BIT(0))) 1239 word_cnts++; 1240 if (!(word_en & BIT(1))) 1241 word_cnts++; 1242 if (!(word_en & BIT(2))) 1243 word_cnts++; 1244 if (!(word_en & BIT(3))) 1245 word_cnts++; 1246 return word_cnts; 1247 } 1248 1249 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv, 1250 int max_size, u8 *hwinfo, int *params) 1251 { 1252 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 1253 struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); 1254 struct device *dev = &rtlpcipriv->dev.pdev->dev; 1255 u16 eeprom_id; 1256 u16 i, usvalue; 1257 1258 switch (rtlefuse->epromtype) { 1259 case EEPROM_BOOT_EFUSE: 1260 rtl_efuse_shadow_map_update(hw); 1261 break; 1262 1263 case EEPROM_93C46: 1264 pr_err("RTL8XXX did not boot from eeprom, check it !!\n"); 1265 return 1; 1266 1267 default: 1268 dev_warn(dev, "no efuse data\n"); 1269 return 1; 1270 } 1271 1272 memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size); 1273 1274 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", 1275 hwinfo, max_size); 1276 1277 eeprom_id = *((u16 *)&hwinfo[0]); 1278 if (eeprom_id != params[0]) { 1279 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 1280 "EEPROM ID(%#x) is invalid!!\n", eeprom_id); 1281 rtlefuse->autoload_failflag = true; 1282 } else { 1283 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); 1284 rtlefuse->autoload_failflag = false; 1285 } 1286 1287 if (rtlefuse->autoload_failflag) 1288 return 1; 1289 1290 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]]; 1291 rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]]; 1292 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]]; 1293 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]]; 1294 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1295 "EEPROMId = 0x%4x\n", eeprom_id); 1296 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1297 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); 1298 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1299 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); 1300 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1301 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); 1302 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1303 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); 1304 1305 for (i = 0; i < 6; i += 2) { 1306 usvalue = *(u16 *)&hwinfo[params[5] + i]; 1307 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue; 1308 } 1309 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); 1310 1311 rtlefuse->eeprom_channelplan = *&hwinfo[params[6]]; 1312 rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]]; 1313 rtlefuse->txpwr_fromeprom = true; 1314 rtlefuse->eeprom_oemid = *&hwinfo[params[8]]; 1315 1316 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, 1317 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); 1318 1319 /* set channel plan to world wide 13 */ 1320 rtlefuse->channel_plan = params[9]; 1321 1322 return 0; 1323 } 1324 EXPORT_SYMBOL_GPL(rtl_get_hwinfo); 1325 1326 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size) 1327 { 1328 struct rtl_priv *rtlpriv = rtl_priv(hw); 1329 u8 *pu4byteptr = (u8 *)buffer; 1330 u32 i; 1331 1332 for (i = 0; i < size; i++) 1333 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i)); 1334 } 1335 EXPORT_SYMBOL_GPL(rtl_fw_block_write); 1336 1337 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer, 1338 u32 size) 1339 { 1340 struct rtl_priv *rtlpriv = rtl_priv(hw); 1341 u8 value8; 1342 u8 u8page = (u8)(page & 0x07); 1343 1344 value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page; 1345 1346 rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8); 1347 rtl_fw_block_write(hw, buffer, size); 1348 } 1349 EXPORT_SYMBOL_GPL(rtl_fw_page_write); 1350 1351 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen) 1352 { 1353 u32 fwlen = *pfwlen; 1354 u8 remain = (u8)(fwlen % 4); 1355 1356 remain = (remain == 0) ? 0 : (4 - remain); 1357 1358 while (remain > 0) { 1359 pfwbuf[fwlen] = 0; 1360 fwlen++; 1361 remain--; 1362 } 1363 1364 *pfwlen = fwlen; 1365 } 1366 EXPORT_SYMBOL_GPL(rtl_fill_dummy); 1367