1 /****************************************************************************** 2 * 3 * Copyright(c) 2009-2012 Realtek Corporation. 4 * 5 * Tmis program is free software; you can redistribute it and/or modify it 6 * under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * Tme full GNU General Public License is included in this distribution in the 15 * file called LICENSE. 16 * 17 * Contact Information: 18 * wlanfae <wlanfae@realtek.com> 19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, 20 * Hsinchu 300, Taiwan. 21 * 22 * Larry Finger <Larry.Finger@lwfinger.net> 23 * 24 *****************************************************************************/ 25 #include "wifi.h" 26 #include "efuse.h" 27 #include <linux/export.h> 28 29 static const u8 MAX_PGPKT_SIZE = 9; 30 static const u8 PGPKT_DATA_SIZE = 8; 31 static const int EFUSE_MAX_SIZE = 512; 32 33 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = { 34 {0, 0, 0, 2}, 35 {0, 1, 0, 2}, 36 {0, 2, 0, 2}, 37 {1, 0, 0, 1}, 38 {1, 0, 1, 1}, 39 {1, 1, 0, 1}, 40 {1, 1, 1, 3}, 41 {1, 3, 0, 17}, 42 {3, 3, 1, 48}, 43 {10, 0, 0, 6}, 44 {10, 3, 0, 1}, 45 {10, 3, 1, 1}, 46 {11, 0, 0, 28} 47 }; 48 49 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset, 50 u8 *value); 51 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset, 52 u16 *value); 53 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset, 54 u32 *value); 55 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset, 56 u8 value); 57 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset, 58 u16 value); 59 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset, 60 u32 value); 61 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, 62 u8 data); 63 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse); 64 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, 65 u8 *data); 66 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset, 67 u8 word_en, u8 *data); 68 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, 69 u8 *targetdata); 70 static u8 enable_efuse_data_write(struct ieee80211_hw *hw, 71 u16 efuse_addr, u8 word_en, u8 *data); 72 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, 73 u8 pwrstate); 74 static u16 efuse_get_current_size(struct ieee80211_hw *hw); 75 static u8 efuse_calculate_word_cnts(u8 word_en); 76 77 void efuse_initialize(struct ieee80211_hw *hw) 78 { 79 struct rtl_priv *rtlpriv = rtl_priv(hw); 80 u8 bytetemp; 81 u8 temp; 82 83 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1); 84 temp = bytetemp | 0x20; 85 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp); 86 87 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1); 88 temp = bytetemp & 0xFE; 89 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp); 90 91 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3); 92 temp = bytetemp | 0x80; 93 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp); 94 95 rtl_write_byte(rtlpriv, 0x2F8, 0x3); 96 97 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); 98 99 } 100 101 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address) 102 { 103 struct rtl_priv *rtlpriv = rtl_priv(hw); 104 u8 data; 105 u8 bytetemp; 106 u8 temp; 107 u32 k = 0; 108 const u32 efuse_len = 109 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; 110 111 if (address < efuse_len) { 112 temp = address & 0xFF; 113 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 114 temp); 115 bytetemp = rtl_read_byte(rtlpriv, 116 rtlpriv->cfg->maps[EFUSE_CTRL] + 2); 117 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); 118 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 119 temp); 120 121 bytetemp = rtl_read_byte(rtlpriv, 122 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 123 temp = bytetemp & 0x7F; 124 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 125 temp); 126 127 bytetemp = rtl_read_byte(rtlpriv, 128 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 129 while (!(bytetemp & 0x80)) { 130 bytetemp = rtl_read_byte(rtlpriv, 131 rtlpriv->cfg-> 132 maps[EFUSE_CTRL] + 3); 133 k++; 134 if (k == 1000) { 135 k = 0; 136 break; 137 } 138 } 139 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 140 return data; 141 } else 142 return 0xFF; 143 144 } 145 EXPORT_SYMBOL(efuse_read_1byte); 146 147 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value) 148 { 149 struct rtl_priv *rtlpriv = rtl_priv(hw); 150 u8 bytetemp; 151 u8 temp; 152 u32 k = 0; 153 const u32 efuse_len = 154 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; 155 156 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n", 157 address, value); 158 159 if (address < efuse_len) { 160 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value); 161 162 temp = address & 0xFF; 163 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 164 temp); 165 bytetemp = rtl_read_byte(rtlpriv, 166 rtlpriv->cfg->maps[EFUSE_CTRL] + 2); 167 168 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); 169 rtl_write_byte(rtlpriv, 170 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp); 171 172 bytetemp = rtl_read_byte(rtlpriv, 173 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 174 temp = bytetemp | 0x80; 175 rtl_write_byte(rtlpriv, 176 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp); 177 178 bytetemp = rtl_read_byte(rtlpriv, 179 rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 180 181 while (bytetemp & 0x80) { 182 bytetemp = rtl_read_byte(rtlpriv, 183 rtlpriv->cfg-> 184 maps[EFUSE_CTRL] + 3); 185 k++; 186 if (k == 100) { 187 k = 0; 188 break; 189 } 190 } 191 } 192 193 } 194 195 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf) 196 { 197 struct rtl_priv *rtlpriv = rtl_priv(hw); 198 u32 value32; 199 u8 readbyte; 200 u16 retry; 201 202 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 203 (_offset & 0xff)); 204 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2); 205 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 206 ((_offset >> 8) & 0x03) | (readbyte & 0xfc)); 207 208 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); 209 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 210 (readbyte & 0x7f)); 211 212 retry = 0; 213 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 214 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) { 215 value32 = rtl_read_dword(rtlpriv, 216 rtlpriv->cfg->maps[EFUSE_CTRL]); 217 retry++; 218 } 219 220 udelay(50); 221 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 222 223 *pbuf = (u8) (value32 & 0xff); 224 } 225 EXPORT_SYMBOL_GPL(read_efuse_byte); 226 227 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf) 228 { 229 struct rtl_priv *rtlpriv = rtl_priv(hw); 230 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 231 u8 *efuse_tbl; 232 u8 rtemp8[1]; 233 u16 efuse_addr = 0; 234 u8 offset, wren; 235 u8 u1temp = 0; 236 u16 i; 237 u16 j; 238 const u16 efuse_max_section = 239 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP]; 240 const u32 efuse_len = 241 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; 242 u16 **efuse_word; 243 u16 efuse_utilized = 0; 244 u8 efuse_usage; 245 246 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) { 247 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 248 "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n", 249 _offset, _size_byte); 250 return; 251 } 252 253 /* allocate memory for efuse_tbl and efuse_word */ 254 efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] * 255 sizeof(u8), GFP_ATOMIC); 256 if (!efuse_tbl) 257 return; 258 efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC); 259 if (!efuse_word) 260 goto out; 261 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { 262 efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16), 263 GFP_ATOMIC); 264 if (!efuse_word[i]) 265 goto done; 266 } 267 268 for (i = 0; i < efuse_max_section; i++) 269 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) 270 efuse_word[j][i] = 0xFFFF; 271 272 read_efuse_byte(hw, efuse_addr, rtemp8); 273 if (*rtemp8 != 0xFF) { 274 efuse_utilized++; 275 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, 276 "Addr=%d\n", efuse_addr); 277 efuse_addr++; 278 } 279 280 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) { 281 /* Check PG header for section num. */ 282 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */ 283 u1temp = ((*rtemp8 & 0xE0) >> 5); 284 read_efuse_byte(hw, efuse_addr, rtemp8); 285 286 if ((*rtemp8 & 0x0F) == 0x0F) { 287 efuse_addr++; 288 read_efuse_byte(hw, efuse_addr, rtemp8); 289 290 if (*rtemp8 != 0xFF && 291 (efuse_addr < efuse_len)) { 292 efuse_addr++; 293 } 294 continue; 295 } else { 296 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; 297 wren = (*rtemp8 & 0x0F); 298 efuse_addr++; 299 } 300 } else { 301 offset = ((*rtemp8 >> 4) & 0x0f); 302 wren = (*rtemp8 & 0x0f); 303 } 304 305 if (offset < efuse_max_section) { 306 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, 307 "offset-%d Worden=%x\n", offset, wren); 308 309 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { 310 if (!(wren & 0x01)) { 311 RTPRINT(rtlpriv, FEEPROM, 312 EFUSE_READ_ALL, 313 "Addr=%d\n", efuse_addr); 314 315 read_efuse_byte(hw, efuse_addr, rtemp8); 316 efuse_addr++; 317 efuse_utilized++; 318 efuse_word[i][offset] = 319 (*rtemp8 & 0xff); 320 321 if (efuse_addr >= efuse_len) 322 break; 323 324 RTPRINT(rtlpriv, FEEPROM, 325 EFUSE_READ_ALL, 326 "Addr=%d\n", efuse_addr); 327 328 read_efuse_byte(hw, efuse_addr, rtemp8); 329 efuse_addr++; 330 efuse_utilized++; 331 efuse_word[i][offset] |= 332 (((u16)*rtemp8 << 8) & 0xff00); 333 334 if (efuse_addr >= efuse_len) 335 break; 336 } 337 338 wren >>= 1; 339 } 340 } 341 342 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, 343 "Addr=%d\n", efuse_addr); 344 read_efuse_byte(hw, efuse_addr, rtemp8); 345 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) { 346 efuse_utilized++; 347 efuse_addr++; 348 } 349 } 350 351 for (i = 0; i < efuse_max_section; i++) { 352 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { 353 efuse_tbl[(i * 8) + (j * 2)] = 354 (efuse_word[j][i] & 0xff); 355 efuse_tbl[(i * 8) + ((j * 2) + 1)] = 356 ((efuse_word[j][i] >> 8) & 0xff); 357 } 358 } 359 360 for (i = 0; i < _size_byte; i++) 361 pbuf[i] = efuse_tbl[_offset + i]; 362 363 rtlefuse->efuse_usedbytes = efuse_utilized; 364 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len); 365 rtlefuse->efuse_usedpercentage = efuse_usage; 366 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES, 367 (u8 *)&efuse_utilized); 368 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE, 369 &efuse_usage); 370 done: 371 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) 372 kfree(efuse_word[i]); 373 kfree(efuse_word); 374 out: 375 kfree(efuse_tbl); 376 } 377 378 bool efuse_shadow_update_chk(struct ieee80211_hw *hw) 379 { 380 struct rtl_priv *rtlpriv = rtl_priv(hw); 381 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 382 u8 section_idx, i, Base; 383 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used; 384 bool wordchanged, result = true; 385 386 for (section_idx = 0; section_idx < 16; section_idx++) { 387 Base = section_idx * 8; 388 wordchanged = false; 389 390 for (i = 0; i < 8; i = i + 2) { 391 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] != 392 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) || 393 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] != 394 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i + 395 1])) { 396 words_need++; 397 wordchanged = true; 398 } 399 } 400 401 if (wordchanged) 402 hdr_num++; 403 } 404 405 totalbytes = hdr_num + words_need * 2; 406 efuse_used = rtlefuse->efuse_usedbytes; 407 408 if ((totalbytes + efuse_used) >= 409 (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) 410 result = false; 411 412 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 413 "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n", 414 totalbytes, hdr_num, words_need, efuse_used); 415 416 return result; 417 } 418 419 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type, 420 u16 offset, u32 *value) 421 { 422 if (type == 1) 423 efuse_shadow_read_1byte(hw, offset, (u8 *)value); 424 else if (type == 2) 425 efuse_shadow_read_2byte(hw, offset, (u16 *)value); 426 else if (type == 4) 427 efuse_shadow_read_4byte(hw, offset, value); 428 429 } 430 EXPORT_SYMBOL(efuse_shadow_read); 431 432 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset, 433 u32 value) 434 { 435 if (type == 1) 436 efuse_shadow_write_1byte(hw, offset, (u8) value); 437 else if (type == 2) 438 efuse_shadow_write_2byte(hw, offset, (u16) value); 439 else if (type == 4) 440 efuse_shadow_write_4byte(hw, offset, value); 441 442 } 443 444 bool efuse_shadow_update(struct ieee80211_hw *hw) 445 { 446 struct rtl_priv *rtlpriv = rtl_priv(hw); 447 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 448 u16 i, offset, base; 449 u8 word_en = 0x0F; 450 u8 first_pg = false; 451 452 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); 453 454 if (!efuse_shadow_update_chk(hw)) { 455 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); 456 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], 457 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 458 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 459 460 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 461 "efuse out of capacity!!\n"); 462 return false; 463 } 464 efuse_power_switch(hw, true, true); 465 466 for (offset = 0; offset < 16; offset++) { 467 468 word_en = 0x0F; 469 base = offset * 8; 470 471 for (i = 0; i < 8; i++) { 472 if (first_pg) { 473 word_en &= ~(BIT(i / 2)); 474 475 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = 476 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; 477 } else { 478 479 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] != 480 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) { 481 word_en &= ~(BIT(i / 2)); 482 483 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = 484 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; 485 } 486 } 487 } 488 489 if (word_en != 0x0F) { 490 u8 tmpdata[8]; 491 memcpy(tmpdata, 492 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base], 493 8); 494 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, 495 "U-efuse\n", tmpdata, 8); 496 497 if (!efuse_pg_packet_write(hw, (u8) offset, word_en, 498 tmpdata)) { 499 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, 500 "PG section(%#x) fail!!\n", offset); 501 break; 502 } 503 } 504 505 } 506 507 efuse_power_switch(hw, true, false); 508 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); 509 510 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], 511 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 512 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 513 514 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); 515 return true; 516 } 517 518 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw) 519 { 520 struct rtl_priv *rtlpriv = rtl_priv(hw); 521 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 522 523 if (rtlefuse->autoload_failflag) 524 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]), 525 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 526 else 527 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); 528 529 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], 530 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 531 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); 532 533 } 534 EXPORT_SYMBOL(rtl_efuse_shadow_map_update); 535 536 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw) 537 { 538 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF }; 539 540 efuse_power_switch(hw, true, true); 541 542 efuse_pg_packet_write(hw, 1, 0xD, tmpdata); 543 544 efuse_power_switch(hw, true, false); 545 546 } 547 548 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx) 549 { 550 } 551 552 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, 553 u16 offset, u8 *value) 554 { 555 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 556 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; 557 } 558 559 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, 560 u16 offset, u16 *value) 561 { 562 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 563 564 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; 565 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; 566 567 } 568 569 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, 570 u16 offset, u32 *value) 571 { 572 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 573 574 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; 575 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; 576 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16; 577 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24; 578 } 579 580 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, 581 u16 offset, u8 value) 582 { 583 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 584 585 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value; 586 } 587 588 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, 589 u16 offset, u16 value) 590 { 591 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 592 593 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF; 594 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8; 595 596 } 597 598 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, 599 u16 offset, u32 value) 600 { 601 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); 602 603 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = 604 (u8) (value & 0x000000FF); 605 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = 606 (u8) ((value >> 8) & 0x0000FF); 607 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] = 608 (u8) ((value >> 16) & 0x00FF); 609 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] = 610 (u8) ((value >> 24) & 0xFF); 611 612 } 613 614 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data) 615 { 616 struct rtl_priv *rtlpriv = rtl_priv(hw); 617 u8 tmpidx = 0; 618 int result; 619 620 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, 621 (u8) (addr & 0xff)); 622 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 623 ((u8) ((addr >> 8) & 0x03)) | 624 (rtl_read_byte(rtlpriv, 625 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) & 626 0xFC)); 627 628 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); 629 630 while (!(0x80 & rtl_read_byte(rtlpriv, 631 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) 632 && (tmpidx < 100)) { 633 tmpidx++; 634 } 635 636 if (tmpidx < 100) { 637 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); 638 result = true; 639 } else { 640 *data = 0xff; 641 result = false; 642 } 643 return result; 644 } 645 EXPORT_SYMBOL(efuse_one_byte_read); 646 647 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data) 648 { 649 struct rtl_priv *rtlpriv = rtl_priv(hw); 650 u8 tmpidx = 0; 651 652 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 653 "Addr = %x Data=%x\n", addr, data); 654 655 rtl_write_byte(rtlpriv, 656 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff)); 657 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, 658 (rtl_read_byte(rtlpriv, 659 rtlpriv->cfg->maps[EFUSE_CTRL] + 660 2) & 0xFC) | (u8) ((addr >> 8) & 0x03)); 661 662 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data); 663 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2); 664 665 while ((0x80 & rtl_read_byte(rtlpriv, 666 rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) 667 && (tmpidx < 100)) { 668 tmpidx++; 669 } 670 671 if (tmpidx < 100) 672 return true; 673 return false; 674 } 675 676 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse) 677 { 678 struct rtl_priv *rtlpriv = rtl_priv(hw); 679 efuse_power_switch(hw, false, true); 680 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse); 681 efuse_power_switch(hw, false, false); 682 } 683 684 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, 685 u8 efuse_data, u8 offset, u8 *tmpdata, 686 u8 *readstate) 687 { 688 bool dataempty = true; 689 u8 hoffset; 690 u8 tmpidx; 691 u8 hworden; 692 u8 word_cnts; 693 694 hoffset = (efuse_data >> 4) & 0x0F; 695 hworden = efuse_data & 0x0F; 696 word_cnts = efuse_calculate_word_cnts(hworden); 697 698 if (hoffset == offset) { 699 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) { 700 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx, 701 &efuse_data)) { 702 tmpdata[tmpidx] = efuse_data; 703 if (efuse_data != 0xff) 704 dataempty = false; 705 } 706 } 707 708 if (!dataempty) { 709 *readstate = PG_STATE_DATA; 710 } else { 711 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; 712 *readstate = PG_STATE_HEADER; 713 } 714 715 } else { 716 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; 717 *readstate = PG_STATE_HEADER; 718 } 719 } 720 721 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data) 722 { 723 u8 readstate = PG_STATE_HEADER; 724 725 bool continual = true; 726 727 u8 efuse_data, word_cnts = 0; 728 u16 efuse_addr = 0; 729 u8 tmpdata[8]; 730 731 if (data == NULL) 732 return false; 733 if (offset > 15) 734 return false; 735 736 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); 737 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); 738 739 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) { 740 if (readstate & PG_STATE_HEADER) { 741 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) 742 && (efuse_data != 0xFF)) 743 efuse_read_data_case1(hw, &efuse_addr, 744 efuse_data, offset, 745 tmpdata, &readstate); 746 else 747 continual = false; 748 } else if (readstate & PG_STATE_DATA) { 749 efuse_word_enable_data_read(0, tmpdata, data); 750 efuse_addr = efuse_addr + (word_cnts * 2) + 1; 751 readstate = PG_STATE_HEADER; 752 } 753 754 } 755 756 if ((data[0] == 0xff) && (data[1] == 0xff) && 757 (data[2] == 0xff) && (data[3] == 0xff) && 758 (data[4] == 0xff) && (data[5] == 0xff) && 759 (data[6] == 0xff) && (data[7] == 0xff)) 760 return false; 761 else 762 return true; 763 764 } 765 766 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, 767 u8 efuse_data, u8 offset, 768 int *continual, u8 *write_state, 769 struct pgpkt_struct *target_pkt, 770 int *repeat_times, int *result, u8 word_en) 771 { 772 struct rtl_priv *rtlpriv = rtl_priv(hw); 773 struct pgpkt_struct tmp_pkt; 774 int dataempty = true; 775 u8 originaldata[8 * sizeof(u8)]; 776 u8 badworden = 0x0F; 777 u8 match_word_en, tmp_word_en; 778 u8 tmpindex; 779 u8 tmp_header = efuse_data; 780 u8 tmp_word_cnts; 781 782 tmp_pkt.offset = (tmp_header >> 4) & 0x0F; 783 tmp_pkt.word_en = tmp_header & 0x0F; 784 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); 785 786 if (tmp_pkt.offset != target_pkt->offset) { 787 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; 788 *write_state = PG_STATE_HEADER; 789 } else { 790 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) { 791 if (efuse_one_byte_read(hw, 792 (*efuse_addr + 1 + tmpindex), 793 &efuse_data) && 794 (efuse_data != 0xFF)) 795 dataempty = false; 796 } 797 798 if (!dataempty) { 799 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; 800 *write_state = PG_STATE_HEADER; 801 } else { 802 match_word_en = 0x0F; 803 if (!((target_pkt->word_en & BIT(0)) | 804 (tmp_pkt.word_en & BIT(0)))) 805 match_word_en &= (~BIT(0)); 806 807 if (!((target_pkt->word_en & BIT(1)) | 808 (tmp_pkt.word_en & BIT(1)))) 809 match_word_en &= (~BIT(1)); 810 811 if (!((target_pkt->word_en & BIT(2)) | 812 (tmp_pkt.word_en & BIT(2)))) 813 match_word_en &= (~BIT(2)); 814 815 if (!((target_pkt->word_en & BIT(3)) | 816 (tmp_pkt.word_en & BIT(3)))) 817 match_word_en &= (~BIT(3)); 818 819 if ((match_word_en & 0x0F) != 0x0F) { 820 badworden = 821 enable_efuse_data_write(hw, 822 *efuse_addr + 1, 823 tmp_pkt.word_en, 824 target_pkt->data); 825 826 if (0x0F != (badworden & 0x0F)) { 827 u8 reorg_offset = offset; 828 u8 reorg_worden = badworden; 829 efuse_pg_packet_write(hw, reorg_offset, 830 reorg_worden, 831 originaldata); 832 } 833 834 tmp_word_en = 0x0F; 835 if ((target_pkt->word_en & BIT(0)) ^ 836 (match_word_en & BIT(0))) 837 tmp_word_en &= (~BIT(0)); 838 839 if ((target_pkt->word_en & BIT(1)) ^ 840 (match_word_en & BIT(1))) 841 tmp_word_en &= (~BIT(1)); 842 843 if ((target_pkt->word_en & BIT(2)) ^ 844 (match_word_en & BIT(2))) 845 tmp_word_en &= (~BIT(2)); 846 847 if ((target_pkt->word_en & BIT(3)) ^ 848 (match_word_en & BIT(3))) 849 tmp_word_en &= (~BIT(3)); 850 851 if ((tmp_word_en & 0x0F) != 0x0F) { 852 *efuse_addr = efuse_get_current_size(hw); 853 target_pkt->offset = offset; 854 target_pkt->word_en = tmp_word_en; 855 } else { 856 *continual = false; 857 } 858 *write_state = PG_STATE_HEADER; 859 *repeat_times += 1; 860 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { 861 *continual = false; 862 *result = false; 863 } 864 } else { 865 *efuse_addr += (2 * tmp_word_cnts) + 1; 866 target_pkt->offset = offset; 867 target_pkt->word_en = word_en; 868 *write_state = PG_STATE_HEADER; 869 } 870 } 871 } 872 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n"); 873 } 874 875 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr, 876 int *continual, u8 *write_state, 877 struct pgpkt_struct target_pkt, 878 int *repeat_times, int *result) 879 { 880 struct rtl_priv *rtlpriv = rtl_priv(hw); 881 struct pgpkt_struct tmp_pkt; 882 u8 pg_header; 883 u8 tmp_header; 884 u8 originaldata[8 * sizeof(u8)]; 885 u8 tmp_word_cnts; 886 u8 badworden = 0x0F; 887 888 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en; 889 efuse_one_byte_write(hw, *efuse_addr, pg_header); 890 efuse_one_byte_read(hw, *efuse_addr, &tmp_header); 891 892 if (tmp_header == pg_header) { 893 *write_state = PG_STATE_DATA; 894 } else if (tmp_header == 0xFF) { 895 *write_state = PG_STATE_HEADER; 896 *repeat_times += 1; 897 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { 898 *continual = false; 899 *result = false; 900 } 901 } else { 902 tmp_pkt.offset = (tmp_header >> 4) & 0x0F; 903 tmp_pkt.word_en = tmp_header & 0x0F; 904 905 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); 906 907 memset(originaldata, 0xff, 8 * sizeof(u8)); 908 909 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) { 910 badworden = enable_efuse_data_write(hw, 911 *efuse_addr + 1, 912 tmp_pkt.word_en, 913 originaldata); 914 915 if (0x0F != (badworden & 0x0F)) { 916 u8 reorg_offset = tmp_pkt.offset; 917 u8 reorg_worden = badworden; 918 efuse_pg_packet_write(hw, reorg_offset, 919 reorg_worden, 920 originaldata); 921 *efuse_addr = efuse_get_current_size(hw); 922 } else { 923 *efuse_addr = *efuse_addr + 924 (tmp_word_cnts * 2) + 1; 925 } 926 } else { 927 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; 928 } 929 930 *write_state = PG_STATE_HEADER; 931 *repeat_times += 1; 932 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { 933 *continual = false; 934 *result = false; 935 } 936 937 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 938 "efuse PG_STATE_HEADER-2\n"); 939 } 940 } 941 942 static int efuse_pg_packet_write(struct ieee80211_hw *hw, 943 u8 offset, u8 word_en, u8 *data) 944 { 945 struct rtl_priv *rtlpriv = rtl_priv(hw); 946 struct pgpkt_struct target_pkt; 947 u8 write_state = PG_STATE_HEADER; 948 int continual = true, dataempty = true, result = true; 949 u16 efuse_addr = 0; 950 u8 efuse_data; 951 u8 target_word_cnts = 0; 952 u8 badworden = 0x0F; 953 static int repeat_times; 954 955 if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE - 956 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { 957 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 958 "efuse_pg_packet_write error\n"); 959 return false; 960 } 961 962 target_pkt.offset = offset; 963 target_pkt.word_en = word_en; 964 965 memset(target_pkt.data, 0xFF, 8 * sizeof(u8)); 966 967 efuse_word_enable_data_read(word_en, data, target_pkt.data); 968 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en); 969 970 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n"); 971 972 while (continual && (efuse_addr < (EFUSE_MAX_SIZE - 973 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) { 974 975 if (write_state == PG_STATE_HEADER) { 976 dataempty = true; 977 badworden = 0x0F; 978 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 979 "efuse PG_STATE_HEADER\n"); 980 981 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) && 982 (efuse_data != 0xFF)) 983 efuse_write_data_case1(hw, &efuse_addr, 984 efuse_data, offset, 985 &continual, 986 &write_state, 987 &target_pkt, 988 &repeat_times, &result, 989 word_en); 990 else 991 efuse_write_data_case2(hw, &efuse_addr, 992 &continual, 993 &write_state, 994 target_pkt, 995 &repeat_times, 996 &result); 997 998 } else if (write_state == PG_STATE_DATA) { 999 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 1000 "efuse PG_STATE_DATA\n"); 1001 badworden = 0x0f; 1002 badworden = 1003 enable_efuse_data_write(hw, efuse_addr + 1, 1004 target_pkt.word_en, 1005 target_pkt.data); 1006 1007 if ((badworden & 0x0F) == 0x0F) { 1008 continual = false; 1009 } else { 1010 efuse_addr = 1011 efuse_addr + (2 * target_word_cnts) + 1; 1012 1013 target_pkt.offset = offset; 1014 target_pkt.word_en = badworden; 1015 target_word_cnts = 1016 efuse_calculate_word_cnts(target_pkt. 1017 word_en); 1018 write_state = PG_STATE_HEADER; 1019 repeat_times++; 1020 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { 1021 continual = false; 1022 result = false; 1023 } 1024 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, 1025 "efuse PG_STATE_HEADER-3\n"); 1026 } 1027 } 1028 } 1029 1030 if (efuse_addr >= (EFUSE_MAX_SIZE - 1031 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { 1032 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 1033 "efuse_addr(%#x) Out of size!!\n", efuse_addr); 1034 } 1035 1036 return true; 1037 } 1038 1039 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, 1040 u8 *targetdata) 1041 { 1042 if (!(word_en & BIT(0))) { 1043 targetdata[0] = sourdata[0]; 1044 targetdata[1] = sourdata[1]; 1045 } 1046 1047 if (!(word_en & BIT(1))) { 1048 targetdata[2] = sourdata[2]; 1049 targetdata[3] = sourdata[3]; 1050 } 1051 1052 if (!(word_en & BIT(2))) { 1053 targetdata[4] = sourdata[4]; 1054 targetdata[5] = sourdata[5]; 1055 } 1056 1057 if (!(word_en & BIT(3))) { 1058 targetdata[6] = sourdata[6]; 1059 targetdata[7] = sourdata[7]; 1060 } 1061 } 1062 1063 static u8 enable_efuse_data_write(struct ieee80211_hw *hw, 1064 u16 efuse_addr, u8 word_en, u8 *data) 1065 { 1066 struct rtl_priv *rtlpriv = rtl_priv(hw); 1067 u16 tmpaddr; 1068 u16 start_addr = efuse_addr; 1069 u8 badworden = 0x0F; 1070 u8 tmpdata[8]; 1071 1072 memset(tmpdata, 0xff, PGPKT_DATA_SIZE); 1073 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, 1074 "word_en = %x efuse_addr=%x\n", word_en, efuse_addr); 1075 1076 if (!(word_en & BIT(0))) { 1077 tmpaddr = start_addr; 1078 efuse_one_byte_write(hw, start_addr++, data[0]); 1079 efuse_one_byte_write(hw, start_addr++, data[1]); 1080 1081 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]); 1082 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]); 1083 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) 1084 badworden &= (~BIT(0)); 1085 } 1086 1087 if (!(word_en & BIT(1))) { 1088 tmpaddr = start_addr; 1089 efuse_one_byte_write(hw, start_addr++, data[2]); 1090 efuse_one_byte_write(hw, start_addr++, data[3]); 1091 1092 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]); 1093 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]); 1094 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) 1095 badworden &= (~BIT(1)); 1096 } 1097 1098 if (!(word_en & BIT(2))) { 1099 tmpaddr = start_addr; 1100 efuse_one_byte_write(hw, start_addr++, data[4]); 1101 efuse_one_byte_write(hw, start_addr++, data[5]); 1102 1103 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]); 1104 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]); 1105 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) 1106 badworden &= (~BIT(2)); 1107 } 1108 1109 if (!(word_en & BIT(3))) { 1110 tmpaddr = start_addr; 1111 efuse_one_byte_write(hw, start_addr++, data[6]); 1112 efuse_one_byte_write(hw, start_addr++, data[7]); 1113 1114 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]); 1115 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]); 1116 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) 1117 badworden &= (~BIT(3)); 1118 } 1119 1120 return badworden; 1121 } 1122 1123 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate) 1124 { 1125 struct rtl_priv *rtlpriv = rtl_priv(hw); 1126 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); 1127 u8 tempval; 1128 u16 tmpV16; 1129 1130 if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) { 1131 1132 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && 1133 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) { 1134 rtl_write_byte(rtlpriv, 1135 rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69); 1136 } else { 1137 tmpV16 = 1138 rtl_read_word(rtlpriv, 1139 rtlpriv->cfg->maps[SYS_ISO_CTRL]); 1140 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) { 1141 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V]; 1142 rtl_write_word(rtlpriv, 1143 rtlpriv->cfg->maps[SYS_ISO_CTRL], 1144 tmpV16); 1145 } 1146 } 1147 tmpV16 = rtl_read_word(rtlpriv, 1148 rtlpriv->cfg->maps[SYS_FUNC_EN]); 1149 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) { 1150 tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR]; 1151 rtl_write_word(rtlpriv, 1152 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16); 1153 } 1154 1155 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]); 1156 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) || 1157 (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) { 1158 tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] | 1159 rtlpriv->cfg->maps[EFUSE_ANA8M]); 1160 rtl_write_word(rtlpriv, 1161 rtlpriv->cfg->maps[SYS_CLK], tmpV16); 1162 } 1163 } 1164 1165 if (pwrstate) { 1166 if (write) { 1167 tempval = rtl_read_byte(rtlpriv, 1168 rtlpriv->cfg->maps[EFUSE_TEST] + 1169 3); 1170 1171 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) { 1172 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6)); 1173 tempval |= (VOLTAGE_V25 << 3); 1174 } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) { 1175 tempval &= 0x0F; 1176 tempval |= (VOLTAGE_V25 << 4); 1177 } 1178 1179 rtl_write_byte(rtlpriv, 1180 rtlpriv->cfg->maps[EFUSE_TEST] + 3, 1181 (tempval | 0x80)); 1182 } 1183 1184 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { 1185 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], 1186 0x03); 1187 } 1188 } else { 1189 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && 1190 rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) 1191 rtl_write_byte(rtlpriv, 1192 rtlpriv->cfg->maps[EFUSE_ACCESS], 0); 1193 1194 if (write) { 1195 tempval = rtl_read_byte(rtlpriv, 1196 rtlpriv->cfg->maps[EFUSE_TEST] + 1197 3); 1198 rtl_write_byte(rtlpriv, 1199 rtlpriv->cfg->maps[EFUSE_TEST] + 3, 1200 (tempval & 0x7F)); 1201 } 1202 1203 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { 1204 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], 1205 0x02); 1206 } 1207 } 1208 } 1209 1210 static u16 efuse_get_current_size(struct ieee80211_hw *hw) 1211 { 1212 int continual = true; 1213 u16 efuse_addr = 0; 1214 u8 hoffset, hworden; 1215 u8 efuse_data, word_cnts; 1216 1217 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) && 1218 (efuse_addr < EFUSE_MAX_SIZE)) { 1219 if (efuse_data != 0xFF) { 1220 hoffset = (efuse_data >> 4) & 0x0F; 1221 hworden = efuse_data & 0x0F; 1222 word_cnts = efuse_calculate_word_cnts(hworden); 1223 efuse_addr = efuse_addr + (word_cnts * 2) + 1; 1224 } else { 1225 continual = false; 1226 } 1227 } 1228 1229 return efuse_addr; 1230 } 1231 1232 static u8 efuse_calculate_word_cnts(u8 word_en) 1233 { 1234 u8 word_cnts = 0; 1235 if (!(word_en & BIT(0))) 1236 word_cnts++; 1237 if (!(word_en & BIT(1))) 1238 word_cnts++; 1239 if (!(word_en & BIT(2))) 1240 word_cnts++; 1241 if (!(word_en & BIT(3))) 1242 word_cnts++; 1243 return word_cnts; 1244 } 1245 1246