1 /* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 Module: rt73usb 21 Abstract: rt73usb device specific routines. 22 Supported chipsets: rt2571W & rt2671. 23 */ 24 25 #include <linux/crc-itu-t.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 #include <linux/usb.h> 32 33 #include "rt2x00.h" 34 #include "rt2x00usb.h" 35 #include "rt73usb.h" 36 37 /* 38 * Allow hardware encryption to be disabled. 39 */ 40 static bool modparam_nohwcrypt; 41 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); 42 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 43 44 /* 45 * Register access. 46 * All access to the CSR registers will go through the methods 47 * rt2x00usb_register_read and rt2x00usb_register_write. 48 * BBP and RF register require indirect register access, 49 * and use the CSR registers BBPCSR and RFCSR to achieve this. 50 * These indirect registers work with busy bits, 51 * and we will try maximal REGISTER_BUSY_COUNT times to access 52 * the register while taking a REGISTER_BUSY_DELAY us delay 53 * between each attampt. When the busy bit is still set at that time, 54 * the access attempt is considered to have failed, 55 * and we will print an error. 56 * The _lock versions must be used if you already hold the csr_mutex 57 */ 58 #define WAIT_FOR_BBP(__dev, __reg) \ 59 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) 60 #define WAIT_FOR_RF(__dev, __reg) \ 61 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) 62 63 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, 64 const unsigned int word, const u8 value) 65 { 66 u32 reg; 67 68 mutex_lock(&rt2x00dev->csr_mutex); 69 70 /* 71 * Wait until the BBP becomes available, afterwards we 72 * can safely write the new data into the register. 73 */ 74 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 75 reg = 0; 76 rt2x00_set_field32(®, PHY_CSR3_VALUE, value); 77 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 78 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 79 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); 80 81 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); 82 } 83 84 mutex_unlock(&rt2x00dev->csr_mutex); 85 } 86 87 static u8 rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, 88 const unsigned int word) 89 { 90 u32 reg; 91 u8 value; 92 93 mutex_lock(&rt2x00dev->csr_mutex); 94 95 /* 96 * Wait until the BBP becomes available, afterwards we 97 * can safely write the read request into the register. 98 * After the data has been written, we wait until hardware 99 * returns the correct value, if at any time the register 100 * doesn't become available in time, reg will be 0xffffffff 101 * which means we return 0xff to the caller. 102 */ 103 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 104 reg = 0; 105 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 106 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 107 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); 108 109 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); 110 111 WAIT_FOR_BBP(rt2x00dev, ®); 112 } 113 114 value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); 115 116 mutex_unlock(&rt2x00dev->csr_mutex); 117 118 return value; 119 } 120 121 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, 122 const unsigned int word, const u32 value) 123 { 124 u32 reg; 125 126 mutex_lock(&rt2x00dev->csr_mutex); 127 128 /* 129 * Wait until the RF becomes available, afterwards we 130 * can safely write the new data into the register. 131 */ 132 if (WAIT_FOR_RF(rt2x00dev, ®)) { 133 reg = 0; 134 rt2x00_set_field32(®, PHY_CSR4_VALUE, value); 135 /* 136 * RF5225 and RF2527 contain 21 bits per RF register value, 137 * all others contain 20 bits. 138 */ 139 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 140 20 + (rt2x00_rf(rt2x00dev, RF5225) || 141 rt2x00_rf(rt2x00dev, RF2527))); 142 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); 143 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); 144 145 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); 146 rt2x00_rf_write(rt2x00dev, word, value); 147 } 148 149 mutex_unlock(&rt2x00dev->csr_mutex); 150 } 151 152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 153 static const struct rt2x00debug rt73usb_rt2x00debug = { 154 .owner = THIS_MODULE, 155 .csr = { 156 .read = rt2x00usb_register_read, 157 .write = rt2x00usb_register_write, 158 .flags = RT2X00DEBUGFS_OFFSET, 159 .word_base = CSR_REG_BASE, 160 .word_size = sizeof(u32), 161 .word_count = CSR_REG_SIZE / sizeof(u32), 162 }, 163 .eeprom = { 164 .read = rt2x00_eeprom_read, 165 .write = rt2x00_eeprom_write, 166 .word_base = EEPROM_BASE, 167 .word_size = sizeof(u16), 168 .word_count = EEPROM_SIZE / sizeof(u16), 169 }, 170 .bbp = { 171 .read = rt73usb_bbp_read, 172 .write = rt73usb_bbp_write, 173 .word_base = BBP_BASE, 174 .word_size = sizeof(u8), 175 .word_count = BBP_SIZE / sizeof(u8), 176 }, 177 .rf = { 178 .read = rt2x00_rf_read, 179 .write = rt73usb_rf_write, 180 .word_base = RF_BASE, 181 .word_size = sizeof(u32), 182 .word_count = RF_SIZE / sizeof(u32), 183 }, 184 }; 185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 186 187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) 188 { 189 u32 reg; 190 191 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13); 192 return rt2x00_get_field32(reg, MAC_CSR13_VAL7); 193 } 194 195 #ifdef CONFIG_RT2X00_LIB_LEDS 196 static void rt73usb_brightness_set(struct led_classdev *led_cdev, 197 enum led_brightness brightness) 198 { 199 struct rt2x00_led *led = 200 container_of(led_cdev, struct rt2x00_led, led_dev); 201 unsigned int enabled = brightness != LED_OFF; 202 unsigned int a_mode = 203 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ); 204 unsigned int bg_mode = 205 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ); 206 207 if (led->type == LED_TYPE_RADIO) { 208 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 209 MCU_LEDCS_RADIO_STATUS, enabled); 210 211 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 212 0, led->rt2x00dev->led_mcu_reg, 213 REGISTER_TIMEOUT); 214 } else if (led->type == LED_TYPE_ASSOC) { 215 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 216 MCU_LEDCS_LINK_BG_STATUS, bg_mode); 217 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 218 MCU_LEDCS_LINK_A_STATUS, a_mode); 219 220 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 221 0, led->rt2x00dev->led_mcu_reg, 222 REGISTER_TIMEOUT); 223 } else if (led->type == LED_TYPE_QUALITY) { 224 /* 225 * The brightness is divided into 6 levels (0 - 5), 226 * this means we need to convert the brightness 227 * argument into the matching level within that range. 228 */ 229 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 230 brightness / (LED_FULL / 6), 231 led->rt2x00dev->led_mcu_reg, 232 REGISTER_TIMEOUT); 233 } 234 } 235 236 static int rt73usb_blink_set(struct led_classdev *led_cdev, 237 unsigned long *delay_on, 238 unsigned long *delay_off) 239 { 240 struct rt2x00_led *led = 241 container_of(led_cdev, struct rt2x00_led, led_dev); 242 u32 reg; 243 244 reg = rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14); 245 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); 246 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); 247 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg); 248 249 return 0; 250 } 251 252 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev, 253 struct rt2x00_led *led, 254 enum led_type type) 255 { 256 led->rt2x00dev = rt2x00dev; 257 led->type = type; 258 led->led_dev.brightness_set = rt73usb_brightness_set; 259 led->led_dev.blink_set = rt73usb_blink_set; 260 led->flags = LED_INITIALIZED; 261 } 262 #endif /* CONFIG_RT2X00_LIB_LEDS */ 263 264 /* 265 * Configuration handlers. 266 */ 267 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev, 268 struct rt2x00lib_crypto *crypto, 269 struct ieee80211_key_conf *key) 270 { 271 struct hw_key_entry key_entry; 272 struct rt2x00_field32 field; 273 u32 mask; 274 u32 reg; 275 276 if (crypto->cmd == SET_KEY) { 277 /* 278 * rt2x00lib can't determine the correct free 279 * key_idx for shared keys. We have 1 register 280 * with key valid bits. The goal is simple, read 281 * the register, if that is full we have no slots 282 * left. 283 * Note that each BSS is allowed to have up to 4 284 * shared keys, so put a mask over the allowed 285 * entries. 286 */ 287 mask = (0xf << crypto->bssidx); 288 289 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0); 290 reg &= mask; 291 292 if (reg && reg == mask) 293 return -ENOSPC; 294 295 key->hw_key_idx += reg ? ffz(reg) : 0; 296 297 /* 298 * Upload key to hardware 299 */ 300 memcpy(key_entry.key, crypto->key, 301 sizeof(key_entry.key)); 302 memcpy(key_entry.tx_mic, crypto->tx_mic, 303 sizeof(key_entry.tx_mic)); 304 memcpy(key_entry.rx_mic, crypto->rx_mic, 305 sizeof(key_entry.rx_mic)); 306 307 reg = SHARED_KEY_ENTRY(key->hw_key_idx); 308 rt2x00usb_register_multiwrite(rt2x00dev, reg, 309 &key_entry, sizeof(key_entry)); 310 311 /* 312 * The cipher types are stored over 2 registers. 313 * bssidx 0 and 1 keys are stored in SEC_CSR1 and 314 * bssidx 1 and 2 keys are stored in SEC_CSR5. 315 * Using the correct defines correctly will cause overhead, 316 * so just calculate the correct offset. 317 */ 318 if (key->hw_key_idx < 8) { 319 field.bit_offset = (3 * key->hw_key_idx); 320 field.bit_mask = 0x7 << field.bit_offset; 321 322 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR1); 323 rt2x00_set_field32(®, field, crypto->cipher); 324 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg); 325 } else { 326 field.bit_offset = (3 * (key->hw_key_idx - 8)); 327 field.bit_mask = 0x7 << field.bit_offset; 328 329 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR5); 330 rt2x00_set_field32(®, field, crypto->cipher); 331 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg); 332 } 333 334 /* 335 * The driver does not support the IV/EIV generation 336 * in hardware. However it doesn't support the IV/EIV 337 * inside the ieee80211 frame either, but requires it 338 * to be provided separately for the descriptor. 339 * rt2x00lib will cut the IV/EIV data out of all frames 340 * given to us by mac80211, but we must tell mac80211 341 * to generate the IV/EIV data. 342 */ 343 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 344 } 345 346 /* 347 * SEC_CSR0 contains only single-bit fields to indicate 348 * a particular key is valid. Because using the FIELD32() 349 * defines directly will cause a lot of overhead we use 350 * a calculation to determine the correct bit directly. 351 */ 352 mask = 1 << key->hw_key_idx; 353 354 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0); 355 if (crypto->cmd == SET_KEY) 356 reg |= mask; 357 else if (crypto->cmd == DISABLE_KEY) 358 reg &= ~mask; 359 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg); 360 361 return 0; 362 } 363 364 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev, 365 struct rt2x00lib_crypto *crypto, 366 struct ieee80211_key_conf *key) 367 { 368 struct hw_pairwise_ta_entry addr_entry; 369 struct hw_key_entry key_entry; 370 u32 mask; 371 u32 reg; 372 373 if (crypto->cmd == SET_KEY) { 374 /* 375 * rt2x00lib can't determine the correct free 376 * key_idx for pairwise keys. We have 2 registers 377 * with key valid bits. The goal is simple, read 378 * the first register, if that is full move to 379 * the next register. 380 * When both registers are full, we drop the key, 381 * otherwise we use the first invalid entry. 382 */ 383 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2); 384 if (reg && reg == ~0) { 385 key->hw_key_idx = 32; 386 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3); 387 if (reg && reg == ~0) 388 return -ENOSPC; 389 } 390 391 key->hw_key_idx += reg ? ffz(reg) : 0; 392 393 /* 394 * Upload key to hardware 395 */ 396 memcpy(key_entry.key, crypto->key, 397 sizeof(key_entry.key)); 398 memcpy(key_entry.tx_mic, crypto->tx_mic, 399 sizeof(key_entry.tx_mic)); 400 memcpy(key_entry.rx_mic, crypto->rx_mic, 401 sizeof(key_entry.rx_mic)); 402 403 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); 404 rt2x00usb_register_multiwrite(rt2x00dev, reg, 405 &key_entry, sizeof(key_entry)); 406 407 /* 408 * Send the address and cipher type to the hardware register. 409 */ 410 memset(&addr_entry, 0, sizeof(addr_entry)); 411 memcpy(&addr_entry, crypto->address, ETH_ALEN); 412 addr_entry.cipher = crypto->cipher; 413 414 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); 415 rt2x00usb_register_multiwrite(rt2x00dev, reg, 416 &addr_entry, sizeof(addr_entry)); 417 418 /* 419 * Enable pairwise lookup table for given BSS idx, 420 * without this received frames will not be decrypted 421 * by the hardware. 422 */ 423 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR4); 424 reg |= (1 << crypto->bssidx); 425 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg); 426 427 /* 428 * The driver does not support the IV/EIV generation 429 * in hardware. However it doesn't support the IV/EIV 430 * inside the ieee80211 frame either, but requires it 431 * to be provided separately for the descriptor. 432 * rt2x00lib will cut the IV/EIV data out of all frames 433 * given to us by mac80211, but we must tell mac80211 434 * to generate the IV/EIV data. 435 */ 436 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 437 } 438 439 /* 440 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate 441 * a particular key is valid. Because using the FIELD32() 442 * defines directly will cause a lot of overhead we use 443 * a calculation to determine the correct bit directly. 444 */ 445 if (key->hw_key_idx < 32) { 446 mask = 1 << key->hw_key_idx; 447 448 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2); 449 if (crypto->cmd == SET_KEY) 450 reg |= mask; 451 else if (crypto->cmd == DISABLE_KEY) 452 reg &= ~mask; 453 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg); 454 } else { 455 mask = 1 << (key->hw_key_idx - 32); 456 457 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3); 458 if (crypto->cmd == SET_KEY) 459 reg |= mask; 460 else if (crypto->cmd == DISABLE_KEY) 461 reg &= ~mask; 462 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg); 463 } 464 465 return 0; 466 } 467 468 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev, 469 const unsigned int filter_flags) 470 { 471 u32 reg; 472 473 /* 474 * Start configuration steps. 475 * Note that the version error will always be dropped 476 * and broadcast frames will always be accepted since 477 * there is no filter for it at this time. 478 */ 479 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 480 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, 481 !(filter_flags & FIF_FCSFAIL)); 482 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, 483 !(filter_flags & FIF_PLCPFAIL)); 484 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, 485 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); 486 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, 487 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 488 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, 489 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 490 !rt2x00dev->intf_ap_count); 491 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); 492 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, 493 !(filter_flags & FIF_ALLMULTI)); 494 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); 495 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 496 !(filter_flags & FIF_CONTROL)); 497 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 498 } 499 500 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, 501 struct rt2x00_intf *intf, 502 struct rt2x00intf_conf *conf, 503 const unsigned int flags) 504 { 505 u32 reg; 506 507 if (flags & CONFIG_UPDATE_TYPE) { 508 /* 509 * Enable synchronisation. 510 */ 511 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 512 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); 513 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 514 } 515 516 if (flags & CONFIG_UPDATE_MAC) { 517 reg = le32_to_cpu(conf->mac[1]); 518 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); 519 conf->mac[1] = cpu_to_le32(reg); 520 521 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2, 522 conf->mac, sizeof(conf->mac)); 523 } 524 525 if (flags & CONFIG_UPDATE_BSSID) { 526 reg = le32_to_cpu(conf->bssid[1]); 527 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); 528 conf->bssid[1] = cpu_to_le32(reg); 529 530 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4, 531 conf->bssid, sizeof(conf->bssid)); 532 } 533 } 534 535 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev, 536 struct rt2x00lib_erp *erp, 537 u32 changed) 538 { 539 u32 reg; 540 541 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 542 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); 543 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); 544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 545 546 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 547 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4); 548 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); 549 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, 550 !!erp->short_preamble); 551 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); 552 } 553 554 if (changed & BSS_CHANGED_BASIC_RATES) 555 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, 556 erp->basic_rates); 557 558 if (changed & BSS_CHANGED_BEACON_INT) { 559 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 560 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 561 erp->beacon_int * 16); 562 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 563 } 564 565 if (changed & BSS_CHANGED_ERP_SLOT) { 566 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9); 567 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); 568 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); 569 570 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR8); 571 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); 572 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); 573 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); 574 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg); 575 } 576 } 577 578 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, 579 struct antenna_setup *ant) 580 { 581 u8 r3; 582 u8 r4; 583 u8 r77; 584 u8 temp; 585 586 r3 = rt73usb_bbp_read(rt2x00dev, 3); 587 r4 = rt73usb_bbp_read(rt2x00dev, 4); 588 r77 = rt73usb_bbp_read(rt2x00dev, 77); 589 590 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); 591 592 /* 593 * Configure the RX antenna. 594 */ 595 switch (ant->rx) { 596 case ANTENNA_HW_DIVERSITY: 597 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 598 temp = !rt2x00_has_cap_frame_type(rt2x00dev) && 599 (rt2x00dev->curr_band != NL80211_BAND_5GHZ); 600 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); 601 break; 602 case ANTENNA_A: 603 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 604 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 605 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 606 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 607 else 608 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 609 break; 610 case ANTENNA_B: 611 default: 612 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 613 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 614 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 615 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 616 else 617 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 618 break; 619 } 620 621 rt73usb_bbp_write(rt2x00dev, 77, r77); 622 rt73usb_bbp_write(rt2x00dev, 3, r3); 623 rt73usb_bbp_write(rt2x00dev, 4, r4); 624 } 625 626 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, 627 struct antenna_setup *ant) 628 { 629 u8 r3; 630 u8 r4; 631 u8 r77; 632 633 r3 = rt73usb_bbp_read(rt2x00dev, 3); 634 r4 = rt73usb_bbp_read(rt2x00dev, 4); 635 r77 = rt73usb_bbp_read(rt2x00dev, 77); 636 637 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); 638 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 639 !rt2x00_has_cap_frame_type(rt2x00dev)); 640 641 /* 642 * Configure the RX antenna. 643 */ 644 switch (ant->rx) { 645 case ANTENNA_HW_DIVERSITY: 646 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 647 break; 648 case ANTENNA_A: 649 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 651 break; 652 case ANTENNA_B: 653 default: 654 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 655 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 656 break; 657 } 658 659 rt73usb_bbp_write(rt2x00dev, 77, r77); 660 rt73usb_bbp_write(rt2x00dev, 3, r3); 661 rt73usb_bbp_write(rt2x00dev, 4, r4); 662 } 663 664 struct antenna_sel { 665 u8 word; 666 /* 667 * value[0] -> non-LNA 668 * value[1] -> LNA 669 */ 670 u8 value[2]; 671 }; 672 673 static const struct antenna_sel antenna_sel_a[] = { 674 { 96, { 0x58, 0x78 } }, 675 { 104, { 0x38, 0x48 } }, 676 { 75, { 0xfe, 0x80 } }, 677 { 86, { 0xfe, 0x80 } }, 678 { 88, { 0xfe, 0x80 } }, 679 { 35, { 0x60, 0x60 } }, 680 { 97, { 0x58, 0x58 } }, 681 { 98, { 0x58, 0x58 } }, 682 }; 683 684 static const struct antenna_sel antenna_sel_bg[] = { 685 { 96, { 0x48, 0x68 } }, 686 { 104, { 0x2c, 0x3c } }, 687 { 75, { 0xfe, 0x80 } }, 688 { 86, { 0xfe, 0x80 } }, 689 { 88, { 0xfe, 0x80 } }, 690 { 35, { 0x50, 0x50 } }, 691 { 97, { 0x48, 0x48 } }, 692 { 98, { 0x48, 0x48 } }, 693 }; 694 695 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev, 696 struct antenna_setup *ant) 697 { 698 const struct antenna_sel *sel; 699 unsigned int lna; 700 unsigned int i; 701 u32 reg; 702 703 /* 704 * We should never come here because rt2x00lib is supposed 705 * to catch this and send us the correct antenna explicitely. 706 */ 707 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 708 ant->tx == ANTENNA_SW_DIVERSITY); 709 710 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 711 sel = antenna_sel_a; 712 lna = rt2x00_has_cap_external_lna_a(rt2x00dev); 713 } else { 714 sel = antenna_sel_bg; 715 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); 716 } 717 718 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) 719 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); 720 721 reg = rt2x00usb_register_read(rt2x00dev, PHY_CSR0); 722 723 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 724 (rt2x00dev->curr_band == NL80211_BAND_2GHZ)); 725 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 726 (rt2x00dev->curr_band == NL80211_BAND_5GHZ)); 727 728 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg); 729 730 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225)) 731 rt73usb_config_antenna_5x(rt2x00dev, ant); 732 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527)) 733 rt73usb_config_antenna_2x(rt2x00dev, ant); 734 } 735 736 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev, 737 struct rt2x00lib_conf *libconf) 738 { 739 u16 eeprom; 740 short lna_gain = 0; 741 742 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) { 743 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) 744 lna_gain += 14; 745 746 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); 747 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); 748 } else { 749 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); 750 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); 751 } 752 753 rt2x00dev->lna_gain = lna_gain; 754 } 755 756 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, 757 struct rf_channel *rf, const int txpower) 758 { 759 u8 r3; 760 u8 r94; 761 u8 smart; 762 763 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 764 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); 765 766 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); 767 768 r3 = rt73usb_bbp_read(rt2x00dev, 3); 769 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); 770 rt73usb_bbp_write(rt2x00dev, 3, r3); 771 772 r94 = 6; 773 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) 774 r94 += txpower - MAX_TXPOWER; 775 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) 776 r94 += txpower; 777 rt73usb_bbp_write(rt2x00dev, 94, r94); 778 779 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 780 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 781 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 782 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 783 784 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 785 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 786 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); 787 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 788 789 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 790 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 791 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 792 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 793 794 udelay(10); 795 } 796 797 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, 798 const int txpower) 799 { 800 struct rf_channel rf; 801 802 rf.rf1 = rt2x00_rf_read(rt2x00dev, 1); 803 rf.rf2 = rt2x00_rf_read(rt2x00dev, 2); 804 rf.rf3 = rt2x00_rf_read(rt2x00dev, 3); 805 rf.rf4 = rt2x00_rf_read(rt2x00dev, 4); 806 807 rt73usb_config_channel(rt2x00dev, &rf, txpower); 808 } 809 810 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev, 811 struct rt2x00lib_conf *libconf) 812 { 813 u32 reg; 814 815 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4); 816 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); 817 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); 818 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); 819 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, 820 libconf->conf->long_frame_max_tx_count); 821 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, 822 libconf->conf->short_frame_max_tx_count); 823 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); 824 } 825 826 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev, 827 struct rt2x00lib_conf *libconf) 828 { 829 enum dev_state state = 830 (libconf->conf->flags & IEEE80211_CONF_PS) ? 831 STATE_SLEEP : STATE_AWAKE; 832 u32 reg; 833 834 if (state == STATE_SLEEP) { 835 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11); 836 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 837 rt2x00dev->beacon_int - 10); 838 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 839 libconf->conf->listen_interval - 1); 840 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); 841 842 /* We must first disable autowake before it can be enabled */ 843 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 844 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 845 846 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); 847 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 848 849 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, 850 USB_MODE_SLEEP, REGISTER_TIMEOUT); 851 } else { 852 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11); 853 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); 854 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); 855 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 856 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); 857 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 858 859 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, 860 USB_MODE_WAKEUP, REGISTER_TIMEOUT); 861 } 862 } 863 864 static void rt73usb_config(struct rt2x00_dev *rt2x00dev, 865 struct rt2x00lib_conf *libconf, 866 const unsigned int flags) 867 { 868 /* Always recalculate LNA gain before changing configuration */ 869 rt73usb_config_lna_gain(rt2x00dev, libconf); 870 871 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 872 rt73usb_config_channel(rt2x00dev, &libconf->rf, 873 libconf->conf->power_level); 874 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 875 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 876 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); 877 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 878 rt73usb_config_retry_limit(rt2x00dev, libconf); 879 if (flags & IEEE80211_CONF_CHANGE_PS) 880 rt73usb_config_ps(rt2x00dev, libconf); 881 } 882 883 /* 884 * Link tuning 885 */ 886 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, 887 struct link_qual *qual) 888 { 889 u32 reg; 890 891 /* 892 * Update FCS error count from register. 893 */ 894 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0); 895 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); 896 897 /* 898 * Update False CCA count from register. 899 */ 900 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1); 901 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); 902 } 903 904 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev, 905 struct link_qual *qual, u8 vgc_level) 906 { 907 if (qual->vgc_level != vgc_level) { 908 rt73usb_bbp_write(rt2x00dev, 17, vgc_level); 909 qual->vgc_level = vgc_level; 910 qual->vgc_level_reg = vgc_level; 911 } 912 } 913 914 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev, 915 struct link_qual *qual) 916 { 917 rt73usb_set_vgc(rt2x00dev, qual, 0x20); 918 } 919 920 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev, 921 struct link_qual *qual, const u32 count) 922 { 923 u8 up_bound; 924 u8 low_bound; 925 926 /* 927 * Determine r17 bounds. 928 */ 929 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 930 low_bound = 0x28; 931 up_bound = 0x48; 932 933 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 934 low_bound += 0x10; 935 up_bound += 0x10; 936 } 937 } else { 938 if (qual->rssi > -82) { 939 low_bound = 0x1c; 940 up_bound = 0x40; 941 } else if (qual->rssi > -84) { 942 low_bound = 0x1c; 943 up_bound = 0x20; 944 } else { 945 low_bound = 0x1c; 946 up_bound = 0x1c; 947 } 948 949 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { 950 low_bound += 0x14; 951 up_bound += 0x10; 952 } 953 } 954 955 /* 956 * If we are not associated, we should go straight to the 957 * dynamic CCA tuning. 958 */ 959 if (!rt2x00dev->intf_associated) 960 goto dynamic_cca_tune; 961 962 /* 963 * Special big-R17 for very short distance 964 */ 965 if (qual->rssi > -35) { 966 rt73usb_set_vgc(rt2x00dev, qual, 0x60); 967 return; 968 } 969 970 /* 971 * Special big-R17 for short distance 972 */ 973 if (qual->rssi >= -58) { 974 rt73usb_set_vgc(rt2x00dev, qual, up_bound); 975 return; 976 } 977 978 /* 979 * Special big-R17 for middle-short distance 980 */ 981 if (qual->rssi >= -66) { 982 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10); 983 return; 984 } 985 986 /* 987 * Special mid-R17 for middle distance 988 */ 989 if (qual->rssi >= -74) { 990 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08); 991 return; 992 } 993 994 /* 995 * Special case: Change up_bound based on the rssi. 996 * Lower up_bound when rssi is weaker then -74 dBm. 997 */ 998 up_bound -= 2 * (-74 - qual->rssi); 999 if (low_bound > up_bound) 1000 up_bound = low_bound; 1001 1002 if (qual->vgc_level > up_bound) { 1003 rt73usb_set_vgc(rt2x00dev, qual, up_bound); 1004 return; 1005 } 1006 1007 dynamic_cca_tune: 1008 1009 /* 1010 * r17 does not yet exceed upper limit, continue and base 1011 * the r17 tuning on the false CCA count. 1012 */ 1013 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) 1014 rt73usb_set_vgc(rt2x00dev, qual, 1015 min_t(u8, qual->vgc_level + 4, up_bound)); 1016 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) 1017 rt73usb_set_vgc(rt2x00dev, qual, 1018 max_t(u8, qual->vgc_level - 4, low_bound)); 1019 } 1020 1021 /* 1022 * Queue handlers. 1023 */ 1024 static void rt73usb_start_queue(struct data_queue *queue) 1025 { 1026 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1027 u32 reg; 1028 1029 switch (queue->qid) { 1030 case QID_RX: 1031 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 1032 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1033 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1034 break; 1035 case QID_BEACON: 1036 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1037 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); 1038 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); 1039 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1040 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1041 break; 1042 default: 1043 break; 1044 } 1045 } 1046 1047 static void rt73usb_stop_queue(struct data_queue *queue) 1048 { 1049 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1050 u32 reg; 1051 1052 switch (queue->qid) { 1053 case QID_RX: 1054 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 1055 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); 1056 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1057 break; 1058 case QID_BEACON: 1059 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1060 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1061 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1062 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1063 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1064 break; 1065 default: 1066 break; 1067 } 1068 } 1069 1070 /* 1071 * Firmware functions 1072 */ 1073 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) 1074 { 1075 return FIRMWARE_RT2571; 1076 } 1077 1078 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev, 1079 const u8 *data, const size_t len) 1080 { 1081 u16 fw_crc; 1082 u16 crc; 1083 1084 /* 1085 * Only support 2kb firmware files. 1086 */ 1087 if (len != 2048) 1088 return FW_BAD_LENGTH; 1089 1090 /* 1091 * The last 2 bytes in the firmware array are the crc checksum itself, 1092 * this means that we should never pass those 2 bytes to the crc 1093 * algorithm. 1094 */ 1095 fw_crc = (data[len - 2] << 8 | data[len - 1]); 1096 1097 /* 1098 * Use the crc itu-t algorithm. 1099 */ 1100 crc = crc_itu_t(0, data, len - 2); 1101 crc = crc_itu_t_byte(crc, 0); 1102 crc = crc_itu_t_byte(crc, 0); 1103 1104 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; 1105 } 1106 1107 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, 1108 const u8 *data, const size_t len) 1109 { 1110 unsigned int i; 1111 int status; 1112 u32 reg; 1113 1114 /* 1115 * Wait for stable hardware. 1116 */ 1117 for (i = 0; i < 100; i++) { 1118 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0); 1119 if (reg) 1120 break; 1121 msleep(1); 1122 } 1123 1124 if (!reg) { 1125 rt2x00_err(rt2x00dev, "Unstable hardware\n"); 1126 return -EBUSY; 1127 } 1128 1129 /* 1130 * Write firmware to device. 1131 */ 1132 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); 1133 1134 /* 1135 * Send firmware request to device to load firmware, 1136 * we need to specify a long timeout time. 1137 */ 1138 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 1139 0, USB_MODE_FIRMWARE, 1140 REGISTER_TIMEOUT_FIRMWARE); 1141 if (status < 0) { 1142 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n"); 1143 return status; 1144 } 1145 1146 return 0; 1147 } 1148 1149 /* 1150 * Initialization functions. 1151 */ 1152 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) 1153 { 1154 u32 reg; 1155 1156 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 1157 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); 1158 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1159 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); 1160 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1161 1162 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR1); 1163 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ 1164 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); 1165 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ 1166 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); 1167 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ 1168 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); 1169 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ 1170 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); 1171 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg); 1172 1173 /* 1174 * CCK TXD BBP registers 1175 */ 1176 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR2); 1177 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); 1178 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); 1179 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); 1180 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); 1181 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); 1182 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); 1183 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); 1184 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); 1185 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg); 1186 1187 /* 1188 * OFDM TXD BBP registers 1189 */ 1190 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR3); 1191 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); 1192 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); 1193 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); 1194 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); 1195 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); 1196 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); 1197 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg); 1198 1199 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR7); 1200 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); 1201 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); 1202 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); 1203 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); 1204 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg); 1205 1206 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR8); 1207 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); 1208 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); 1209 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); 1210 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); 1211 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg); 1212 1213 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1214 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); 1215 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1216 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); 1217 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1218 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1219 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); 1220 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1221 1222 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); 1223 1224 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR6); 1225 rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); 1226 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg); 1227 1228 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); 1229 1230 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 1231 return -EBUSY; 1232 1233 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); 1234 1235 /* 1236 * Invalidate all Shared Keys (SEC_CSR0), 1237 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) 1238 */ 1239 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); 1240 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); 1241 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); 1242 1243 reg = 0x000023b0; 1244 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)) 1245 rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); 1246 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg); 1247 1248 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); 1249 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); 1250 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); 1251 1252 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9); 1253 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); 1254 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); 1255 1256 /* 1257 * Clear all beacons 1258 * For the Beacon base registers we only need to clear 1259 * the first byte since that byte contains the VALID and OWNER 1260 * bits which (when set to 0) will invalidate the entire beacon. 1261 */ 1262 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); 1263 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); 1264 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); 1265 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); 1266 1267 /* 1268 * We must clear the error counters. 1269 * These registers are cleared on read, 1270 * so we may pass a useless variable to store the value. 1271 */ 1272 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0); 1273 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1); 1274 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR2); 1275 1276 /* 1277 * Reset MAC and BBP registers. 1278 */ 1279 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); 1280 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); 1281 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); 1282 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1283 1284 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); 1285 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); 1286 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); 1287 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1288 1289 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); 1290 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); 1291 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1292 1293 return 0; 1294 } 1295 1296 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 1297 { 1298 unsigned int i; 1299 u8 value; 1300 1301 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 1302 value = rt73usb_bbp_read(rt2x00dev, 0); 1303 if ((value != 0xff) && (value != 0x00)) 1304 return 0; 1305 udelay(REGISTER_BUSY_DELAY); 1306 } 1307 1308 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 1309 return -EACCES; 1310 } 1311 1312 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) 1313 { 1314 unsigned int i; 1315 u16 eeprom; 1316 u8 reg_id; 1317 u8 value; 1318 1319 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev))) 1320 return -EACCES; 1321 1322 rt73usb_bbp_write(rt2x00dev, 3, 0x80); 1323 rt73usb_bbp_write(rt2x00dev, 15, 0x30); 1324 rt73usb_bbp_write(rt2x00dev, 21, 0xc8); 1325 rt73usb_bbp_write(rt2x00dev, 22, 0x38); 1326 rt73usb_bbp_write(rt2x00dev, 23, 0x06); 1327 rt73usb_bbp_write(rt2x00dev, 24, 0xfe); 1328 rt73usb_bbp_write(rt2x00dev, 25, 0x0a); 1329 rt73usb_bbp_write(rt2x00dev, 26, 0x0d); 1330 rt73usb_bbp_write(rt2x00dev, 32, 0x0b); 1331 rt73usb_bbp_write(rt2x00dev, 34, 0x12); 1332 rt73usb_bbp_write(rt2x00dev, 37, 0x07); 1333 rt73usb_bbp_write(rt2x00dev, 39, 0xf8); 1334 rt73usb_bbp_write(rt2x00dev, 41, 0x60); 1335 rt73usb_bbp_write(rt2x00dev, 53, 0x10); 1336 rt73usb_bbp_write(rt2x00dev, 54, 0x18); 1337 rt73usb_bbp_write(rt2x00dev, 60, 0x10); 1338 rt73usb_bbp_write(rt2x00dev, 61, 0x04); 1339 rt73usb_bbp_write(rt2x00dev, 62, 0x04); 1340 rt73usb_bbp_write(rt2x00dev, 75, 0xfe); 1341 rt73usb_bbp_write(rt2x00dev, 86, 0xfe); 1342 rt73usb_bbp_write(rt2x00dev, 88, 0xfe); 1343 rt73usb_bbp_write(rt2x00dev, 90, 0x0f); 1344 rt73usb_bbp_write(rt2x00dev, 99, 0x00); 1345 rt73usb_bbp_write(rt2x00dev, 102, 0x16); 1346 rt73usb_bbp_write(rt2x00dev, 107, 0x04); 1347 1348 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 1349 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); 1350 1351 if (eeprom != 0xffff && eeprom != 0x0000) { 1352 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 1353 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 1354 rt73usb_bbp_write(rt2x00dev, reg_id, value); 1355 } 1356 } 1357 1358 return 0; 1359 } 1360 1361 /* 1362 * Device state switch handlers. 1363 */ 1364 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) 1365 { 1366 /* 1367 * Initialize all registers. 1368 */ 1369 if (unlikely(rt73usb_init_registers(rt2x00dev) || 1370 rt73usb_init_bbp(rt2x00dev))) 1371 return -EIO; 1372 1373 return 0; 1374 } 1375 1376 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) 1377 { 1378 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); 1379 1380 /* 1381 * Disable synchronisation. 1382 */ 1383 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0); 1384 1385 rt2x00usb_disable_radio(rt2x00dev); 1386 } 1387 1388 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) 1389 { 1390 u32 reg, reg2; 1391 unsigned int i; 1392 char put_to_sleep; 1393 1394 put_to_sleep = (state != STATE_AWAKE); 1395 1396 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR12); 1397 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); 1398 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); 1399 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); 1400 1401 /* 1402 * Device is not guaranteed to be in the requested state yet. 1403 * We must wait until the register indicates that the 1404 * device has entered the correct state. 1405 */ 1406 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1407 reg2 = rt2x00usb_register_read(rt2x00dev, MAC_CSR12); 1408 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); 1409 if (state == !put_to_sleep) 1410 return 0; 1411 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); 1412 msleep(10); 1413 } 1414 1415 return -EBUSY; 1416 } 1417 1418 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, 1419 enum dev_state state) 1420 { 1421 int retval = 0; 1422 1423 switch (state) { 1424 case STATE_RADIO_ON: 1425 retval = rt73usb_enable_radio(rt2x00dev); 1426 break; 1427 case STATE_RADIO_OFF: 1428 rt73usb_disable_radio(rt2x00dev); 1429 break; 1430 case STATE_RADIO_IRQ_ON: 1431 case STATE_RADIO_IRQ_OFF: 1432 /* No support, but no error either */ 1433 break; 1434 case STATE_DEEP_SLEEP: 1435 case STATE_SLEEP: 1436 case STATE_STANDBY: 1437 case STATE_AWAKE: 1438 retval = rt73usb_set_state(rt2x00dev, state); 1439 break; 1440 default: 1441 retval = -ENOTSUPP; 1442 break; 1443 } 1444 1445 if (unlikely(retval)) 1446 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1447 state, retval); 1448 1449 return retval; 1450 } 1451 1452 /* 1453 * TX descriptor initialization 1454 */ 1455 static void rt73usb_write_tx_desc(struct queue_entry *entry, 1456 struct txentry_desc *txdesc) 1457 { 1458 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1459 __le32 *txd = (__le32 *) entry->skb->data; 1460 u32 word; 1461 1462 /* 1463 * Start writing the descriptor words. 1464 */ 1465 word = rt2x00_desc_read(txd, 0); 1466 rt2x00_set_field32(&word, TXD_W0_BURST, 1467 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1468 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1469 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1470 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1471 rt2x00_set_field32(&word, TXD_W0_ACK, 1472 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1473 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1474 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1475 rt2x00_set_field32(&word, TXD_W0_OFDM, 1476 (txdesc->rate_mode == RATE_MODE_OFDM)); 1477 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1478 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1479 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1480 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 1481 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); 1482 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, 1483 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); 1484 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); 1485 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1486 rt2x00_set_field32(&word, TXD_W0_BURST2, 1487 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1488 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); 1489 rt2x00_desc_write(txd, 0, word); 1490 1491 word = rt2x00_desc_read(txd, 1); 1492 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); 1493 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); 1494 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1495 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1496 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1497 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1498 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); 1499 rt2x00_desc_write(txd, 1, word); 1500 1501 word = rt2x00_desc_read(txd, 2); 1502 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1503 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1504 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1505 txdesc->u.plcp.length_low); 1506 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1507 txdesc->u.plcp.length_high); 1508 rt2x00_desc_write(txd, 2, word); 1509 1510 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1511 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1512 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1513 } 1514 1515 word = rt2x00_desc_read(txd, 5); 1516 rt2x00_set_field32(&word, TXD_W5_TX_POWER, 1517 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); 1518 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); 1519 rt2x00_desc_write(txd, 5, word); 1520 1521 /* 1522 * Register descriptor details in skb frame descriptor. 1523 */ 1524 skbdesc->flags |= SKBDESC_DESC_IN_SKB; 1525 skbdesc->desc = txd; 1526 skbdesc->desc_len = TXD_DESC_SIZE; 1527 } 1528 1529 /* 1530 * TX data initialization 1531 */ 1532 static void rt73usb_write_beacon(struct queue_entry *entry, 1533 struct txentry_desc *txdesc) 1534 { 1535 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1536 unsigned int beacon_base; 1537 unsigned int padding_len; 1538 u32 orig_reg, reg; 1539 1540 /* 1541 * Disable beaconing while we are reloading the beacon data, 1542 * otherwise we might be sending out invalid data. 1543 */ 1544 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1545 orig_reg = reg; 1546 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1547 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1548 1549 /* 1550 * Add space for the descriptor in front of the skb. 1551 */ 1552 skb_push(entry->skb, TXD_DESC_SIZE); 1553 memset(entry->skb->data, 0, TXD_DESC_SIZE); 1554 1555 /* 1556 * Write the TX descriptor for the beacon. 1557 */ 1558 rt73usb_write_tx_desc(entry, txdesc); 1559 1560 /* 1561 * Dump beacon to userspace through debugfs. 1562 */ 1563 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); 1564 1565 /* 1566 * Write entire beacon with descriptor and padding to register. 1567 */ 1568 padding_len = roundup(entry->skb->len, 4) - entry->skb->len; 1569 if (padding_len && skb_pad(entry->skb, padding_len)) { 1570 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); 1571 /* skb freed by skb_pad() on failure */ 1572 entry->skb = NULL; 1573 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1574 return; 1575 } 1576 1577 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 1578 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, 1579 entry->skb->len + padding_len); 1580 1581 /* 1582 * Enable beaconing again. 1583 * 1584 * For Wi-Fi faily generated beacons between participating stations. 1585 * Set TBTT phase adaptive adjustment step to 8us (default 16us) 1586 */ 1587 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); 1588 1589 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1590 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1591 1592 /* 1593 * Clean up the beacon skb. 1594 */ 1595 dev_kfree_skb(entry->skb); 1596 entry->skb = NULL; 1597 } 1598 1599 static void rt73usb_clear_beacon(struct queue_entry *entry) 1600 { 1601 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1602 unsigned int beacon_base; 1603 u32 orig_reg, reg; 1604 1605 /* 1606 * Disable beaconing while we are reloading the beacon data, 1607 * otherwise we might be sending out invalid data. 1608 */ 1609 orig_reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1610 reg = orig_reg; 1611 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1612 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1613 1614 /* 1615 * Clear beacon. 1616 */ 1617 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 1618 rt2x00usb_register_write(rt2x00dev, beacon_base, 0); 1619 1620 /* 1621 * Restore beaconing state. 1622 */ 1623 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1624 } 1625 1626 static int rt73usb_get_tx_data_len(struct queue_entry *entry) 1627 { 1628 int length; 1629 1630 /* 1631 * The length _must_ be a multiple of 4, 1632 * but it must _not_ be a multiple of the USB packet size. 1633 */ 1634 length = roundup(entry->skb->len, 4); 1635 length += (4 * !(length % entry->queue->usb_maxpacket)); 1636 1637 return length; 1638 } 1639 1640 /* 1641 * RX control handlers 1642 */ 1643 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) 1644 { 1645 u8 offset = rt2x00dev->lna_gain; 1646 u8 lna; 1647 1648 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); 1649 switch (lna) { 1650 case 3: 1651 offset += 90; 1652 break; 1653 case 2: 1654 offset += 74; 1655 break; 1656 case 1: 1657 offset += 64; 1658 break; 1659 default: 1660 return 0; 1661 } 1662 1663 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 1664 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 1665 if (lna == 3 || lna == 2) 1666 offset += 10; 1667 } else { 1668 if (lna == 3) 1669 offset += 6; 1670 else if (lna == 2) 1671 offset += 8; 1672 } 1673 } 1674 1675 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; 1676 } 1677 1678 static void rt73usb_fill_rxdone(struct queue_entry *entry, 1679 struct rxdone_entry_desc *rxdesc) 1680 { 1681 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1682 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1683 __le32 *rxd = (__le32 *)entry->skb->data; 1684 u32 word0; 1685 u32 word1; 1686 1687 /* 1688 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of 1689 * frame data in rt2x00usb. 1690 */ 1691 memcpy(skbdesc->desc, rxd, skbdesc->desc_len); 1692 rxd = (__le32 *)skbdesc->desc; 1693 1694 /* 1695 * It is now safe to read the descriptor on all architectures. 1696 */ 1697 word0 = rt2x00_desc_read(rxd, 0); 1698 word1 = rt2x00_desc_read(rxd, 1); 1699 1700 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1701 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1702 1703 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); 1704 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); 1705 1706 if (rxdesc->cipher != CIPHER_NONE) { 1707 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2); 1708 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3); 1709 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 1710 1711 rxdesc->icv = _rt2x00_desc_read(rxd, 4); 1712 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; 1713 1714 /* 1715 * Hardware has stripped IV/EIV data from 802.11 frame during 1716 * decryption. It has provided the data separately but rt2x00lib 1717 * should decide if it should be reinserted. 1718 */ 1719 rxdesc->flags |= RX_FLAG_IV_STRIPPED; 1720 1721 /* 1722 * The hardware has already checked the Michael Mic and has 1723 * stripped it from the frame. Signal this to mac80211. 1724 */ 1725 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 1726 1727 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 1728 rxdesc->flags |= RX_FLAG_DECRYPTED; 1729 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 1730 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 1731 } 1732 1733 /* 1734 * Obtain the status about this packet. 1735 * When frame was received with an OFDM bitrate, 1736 * the signal is the PLCP value. If it was received with 1737 * a CCK bitrate the signal is the rate in 100kbit/s. 1738 */ 1739 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 1740 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1); 1741 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1742 1743 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1744 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1745 else 1746 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1747 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1748 rxdesc->dev_flags |= RXDONE_MY_BSS; 1749 1750 /* 1751 * Set skb pointers, and update frame information. 1752 */ 1753 skb_pull(entry->skb, entry->queue->desc_size); 1754 skb_trim(entry->skb, rxdesc->size); 1755 } 1756 1757 /* 1758 * Device probe functions. 1759 */ 1760 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1761 { 1762 u16 word; 1763 u8 *mac; 1764 s8 value; 1765 1766 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); 1767 1768 /* 1769 * Start validation of the data that has been read. 1770 */ 1771 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1772 rt2x00lib_set_mac_address(rt2x00dev, mac); 1773 1774 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1775 if (word == 0xffff) { 1776 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1777 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1778 ANTENNA_B); 1779 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1780 ANTENNA_B); 1781 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); 1782 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1783 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1784 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); 1785 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1786 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 1787 } 1788 1789 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 1790 if (word == 0xffff) { 1791 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); 1792 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1793 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 1794 } 1795 1796 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); 1797 if (word == 0xffff) { 1798 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); 1799 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); 1800 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); 1801 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); 1802 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); 1803 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); 1804 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); 1805 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); 1806 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, 1807 LED_MODE_DEFAULT); 1808 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); 1809 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); 1810 } 1811 1812 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); 1813 if (word == 0xffff) { 1814 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); 1815 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); 1816 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); 1817 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); 1818 } 1819 1820 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); 1821 if (word == 0xffff) { 1822 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 1823 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 1824 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 1825 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); 1826 } else { 1827 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); 1828 if (value < -10 || value > 10) 1829 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 1830 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); 1831 if (value < -10 || value > 10) 1832 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 1833 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 1834 } 1835 1836 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); 1837 if (word == 0xffff) { 1838 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 1839 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 1840 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 1841 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); 1842 } else { 1843 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); 1844 if (value < -10 || value > 10) 1845 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 1846 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); 1847 if (value < -10 || value > 10) 1848 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 1849 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 1850 } 1851 1852 return 0; 1853 } 1854 1855 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) 1856 { 1857 u32 reg; 1858 u16 value; 1859 u16 eeprom; 1860 1861 /* 1862 * Read EEPROM word for configuration. 1863 */ 1864 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1865 1866 /* 1867 * Identify RF chipset. 1868 */ 1869 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1870 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0); 1871 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), 1872 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); 1873 1874 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) { 1875 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); 1876 return -ENODEV; 1877 } 1878 1879 if (!rt2x00_rf(rt2x00dev, RF5226) && 1880 !rt2x00_rf(rt2x00dev, RF2528) && 1881 !rt2x00_rf(rt2x00dev, RF5225) && 1882 !rt2x00_rf(rt2x00dev, RF2527)) { 1883 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1884 return -ENODEV; 1885 } 1886 1887 /* 1888 * Identify default antenna configuration. 1889 */ 1890 rt2x00dev->default_ant.tx = 1891 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1892 rt2x00dev->default_ant.rx = 1893 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1894 1895 /* 1896 * Read the Frame type. 1897 */ 1898 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) 1899 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); 1900 1901 /* 1902 * Detect if this device has an hardware controlled radio. 1903 */ 1904 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1905 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1906 1907 /* 1908 * Read frequency offset. 1909 */ 1910 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); 1911 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); 1912 1913 /* 1914 * Read external LNA informations. 1915 */ 1916 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 1917 1918 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { 1919 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); 1920 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); 1921 } 1922 1923 /* 1924 * Store led settings, for correct led behaviour. 1925 */ 1926 #ifdef CONFIG_RT2X00_LIB_LEDS 1927 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); 1928 1929 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1930 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); 1931 if (value == LED_MODE_SIGNAL_STRENGTH) 1932 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual, 1933 LED_TYPE_QUALITY); 1934 1935 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); 1936 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, 1937 rt2x00_get_field16(eeprom, 1938 EEPROM_LED_POLARITY_GPIO_0)); 1939 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, 1940 rt2x00_get_field16(eeprom, 1941 EEPROM_LED_POLARITY_GPIO_1)); 1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, 1943 rt2x00_get_field16(eeprom, 1944 EEPROM_LED_POLARITY_GPIO_2)); 1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, 1946 rt2x00_get_field16(eeprom, 1947 EEPROM_LED_POLARITY_GPIO_3)); 1948 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, 1949 rt2x00_get_field16(eeprom, 1950 EEPROM_LED_POLARITY_GPIO_4)); 1951 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, 1952 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); 1953 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, 1954 rt2x00_get_field16(eeprom, 1955 EEPROM_LED_POLARITY_RDY_G)); 1956 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, 1957 rt2x00_get_field16(eeprom, 1958 EEPROM_LED_POLARITY_RDY_A)); 1959 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1960 1961 return 0; 1962 } 1963 1964 /* 1965 * RF value list for RF2528 1966 * Supports: 2.4 GHz 1967 */ 1968 static const struct rf_channel rf_vals_bg_2528[] = { 1969 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, 1970 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, 1971 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, 1972 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, 1973 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, 1974 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, 1975 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, 1976 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, 1977 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, 1978 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, 1979 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, 1980 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, 1981 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, 1982 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, 1983 }; 1984 1985 /* 1986 * RF value list for RF5226 1987 * Supports: 2.4 GHz & 5.2 GHz 1988 */ 1989 static const struct rf_channel rf_vals_5226[] = { 1990 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, 1991 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, 1992 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, 1993 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, 1994 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, 1995 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, 1996 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, 1997 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, 1998 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, 1999 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, 2000 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, 2001 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, 2002 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, 2003 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, 2004 2005 /* 802.11 UNI / HyperLan 2 */ 2006 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, 2007 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, 2008 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, 2009 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, 2010 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, 2011 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, 2012 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, 2013 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, 2014 2015 /* 802.11 HyperLan 2 */ 2016 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, 2017 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, 2018 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, 2019 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, 2020 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, 2021 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, 2022 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, 2023 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, 2024 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, 2025 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, 2026 2027 /* 802.11 UNII */ 2028 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, 2029 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, 2030 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, 2031 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, 2032 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, 2033 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, 2034 2035 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2036 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, 2037 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, 2038 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, 2039 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, 2040 }; 2041 2042 /* 2043 * RF value list for RF5225 & RF2527 2044 * Supports: 2.4 GHz & 5.2 GHz 2045 */ 2046 static const struct rf_channel rf_vals_5225_2527[] = { 2047 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, 2048 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, 2049 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, 2050 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, 2051 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, 2052 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, 2053 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, 2054 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, 2055 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, 2056 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, 2057 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, 2058 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, 2059 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, 2060 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, 2061 2062 /* 802.11 UNI / HyperLan 2 */ 2063 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, 2064 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, 2065 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, 2066 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, 2067 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, 2068 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, 2069 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, 2070 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, 2071 2072 /* 802.11 HyperLan 2 */ 2073 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, 2074 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, 2075 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, 2076 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, 2077 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, 2078 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, 2079 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, 2080 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, 2081 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, 2082 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, 2083 2084 /* 802.11 UNII */ 2085 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, 2086 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, 2087 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, 2088 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, 2089 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, 2090 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, 2091 2092 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2093 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, 2094 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, 2095 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, 2096 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, 2097 }; 2098 2099 2100 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 2101 { 2102 struct hw_mode_spec *spec = &rt2x00dev->spec; 2103 struct channel_info *info; 2104 char *tx_power; 2105 unsigned int i; 2106 2107 /* 2108 * Initialize all hw fields. 2109 * 2110 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are 2111 * capable of sending the buffered frames out after the DTIM 2112 * transmission using rt2x00lib_beacondone. This will send out 2113 * multicast and broadcast traffic immediately instead of buffering it 2114 * infinitly and thus dropping it after some time. 2115 */ 2116 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 2117 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 2118 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 2119 2120 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 2121 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 2122 rt2x00_eeprom_addr(rt2x00dev, 2123 EEPROM_MAC_ADDR_0)); 2124 2125 /* 2126 * Initialize hw_mode information. 2127 */ 2128 spec->supported_bands = SUPPORT_BAND_2GHZ; 2129 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 2130 2131 if (rt2x00_rf(rt2x00dev, RF2528)) { 2132 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); 2133 spec->channels = rf_vals_bg_2528; 2134 } else if (rt2x00_rf(rt2x00dev, RF5226)) { 2135 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2136 spec->num_channels = ARRAY_SIZE(rf_vals_5226); 2137 spec->channels = rf_vals_5226; 2138 } else if (rt2x00_rf(rt2x00dev, RF2527)) { 2139 spec->num_channels = 14; 2140 spec->channels = rf_vals_5225_2527; 2141 } else if (rt2x00_rf(rt2x00dev, RF5225)) { 2142 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2143 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); 2144 spec->channels = rf_vals_5225_2527; 2145 } 2146 2147 /* 2148 * Create channel information array 2149 */ 2150 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 2151 if (!info) 2152 return -ENOMEM; 2153 2154 spec->channels_info = info; 2155 2156 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); 2157 for (i = 0; i < 14; i++) { 2158 info[i].max_power = MAX_TXPOWER; 2159 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 2160 } 2161 2162 if (spec->num_channels > 14) { 2163 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); 2164 for (i = 14; i < spec->num_channels; i++) { 2165 info[i].max_power = MAX_TXPOWER; 2166 info[i].default_power1 = 2167 TXPOWER_FROM_DEV(tx_power[i - 14]); 2168 } 2169 } 2170 2171 return 0; 2172 } 2173 2174 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) 2175 { 2176 int retval; 2177 u32 reg; 2178 2179 /* 2180 * Allocate eeprom data. 2181 */ 2182 retval = rt73usb_validate_eeprom(rt2x00dev); 2183 if (retval) 2184 return retval; 2185 2186 retval = rt73usb_init_eeprom(rt2x00dev); 2187 if (retval) 2188 return retval; 2189 2190 /* 2191 * Enable rfkill polling by setting GPIO direction of the 2192 * rfkill switch GPIO pin correctly. 2193 */ 2194 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13); 2195 rt2x00_set_field32(®, MAC_CSR13_DIR7, 0); 2196 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg); 2197 2198 /* 2199 * Initialize hw specifications. 2200 */ 2201 retval = rt73usb_probe_hw_mode(rt2x00dev); 2202 if (retval) 2203 return retval; 2204 2205 /* 2206 * This device has multiple filters for control frames, 2207 * but has no a separate filter for PS Poll frames. 2208 */ 2209 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); 2210 2211 /* 2212 * This device requires firmware. 2213 */ 2214 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); 2215 if (!modparam_nohwcrypt) 2216 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 2217 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 2218 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); 2219 2220 /* 2221 * Set the rssi offset. 2222 */ 2223 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 2224 2225 return 0; 2226 } 2227 2228 /* 2229 * IEEE80211 stack callback functions. 2230 */ 2231 static int rt73usb_conf_tx(struct ieee80211_hw *hw, 2232 struct ieee80211_vif *vif, u16 queue_idx, 2233 const struct ieee80211_tx_queue_params *params) 2234 { 2235 struct rt2x00_dev *rt2x00dev = hw->priv; 2236 struct data_queue *queue; 2237 struct rt2x00_field32 field; 2238 int retval; 2239 u32 reg; 2240 u32 offset; 2241 2242 /* 2243 * First pass the configuration through rt2x00lib, that will 2244 * update the queue settings and validate the input. After that 2245 * we are free to update the registers based on the value 2246 * in the queue parameter. 2247 */ 2248 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); 2249 if (retval) 2250 return retval; 2251 2252 /* 2253 * We only need to perform additional register initialization 2254 * for WMM queues/ 2255 */ 2256 if (queue_idx >= 4) 2257 return 0; 2258 2259 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 2260 2261 /* Update WMM TXOP register */ 2262 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); 2263 field.bit_offset = (queue_idx & 1) * 16; 2264 field.bit_mask = 0xffff << field.bit_offset; 2265 2266 reg = rt2x00usb_register_read(rt2x00dev, offset); 2267 rt2x00_set_field32(®, field, queue->txop); 2268 rt2x00usb_register_write(rt2x00dev, offset, reg); 2269 2270 /* Update WMM registers */ 2271 field.bit_offset = queue_idx * 4; 2272 field.bit_mask = 0xf << field.bit_offset; 2273 2274 reg = rt2x00usb_register_read(rt2x00dev, AIFSN_CSR); 2275 rt2x00_set_field32(®, field, queue->aifs); 2276 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg); 2277 2278 reg = rt2x00usb_register_read(rt2x00dev, CWMIN_CSR); 2279 rt2x00_set_field32(®, field, queue->cw_min); 2280 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg); 2281 2282 reg = rt2x00usb_register_read(rt2x00dev, CWMAX_CSR); 2283 rt2x00_set_field32(®, field, queue->cw_max); 2284 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg); 2285 2286 return 0; 2287 } 2288 2289 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 2290 { 2291 struct rt2x00_dev *rt2x00dev = hw->priv; 2292 u64 tsf; 2293 u32 reg; 2294 2295 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR13); 2296 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; 2297 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR12); 2298 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); 2299 2300 return tsf; 2301 } 2302 2303 static const struct ieee80211_ops rt73usb_mac80211_ops = { 2304 .tx = rt2x00mac_tx, 2305 .start = rt2x00mac_start, 2306 .stop = rt2x00mac_stop, 2307 .add_interface = rt2x00mac_add_interface, 2308 .remove_interface = rt2x00mac_remove_interface, 2309 .config = rt2x00mac_config, 2310 .configure_filter = rt2x00mac_configure_filter, 2311 .set_tim = rt2x00mac_set_tim, 2312 .set_key = rt2x00mac_set_key, 2313 .sw_scan_start = rt2x00mac_sw_scan_start, 2314 .sw_scan_complete = rt2x00mac_sw_scan_complete, 2315 .get_stats = rt2x00mac_get_stats, 2316 .bss_info_changed = rt2x00mac_bss_info_changed, 2317 .conf_tx = rt73usb_conf_tx, 2318 .get_tsf = rt73usb_get_tsf, 2319 .rfkill_poll = rt2x00mac_rfkill_poll, 2320 .flush = rt2x00mac_flush, 2321 .set_antenna = rt2x00mac_set_antenna, 2322 .get_antenna = rt2x00mac_get_antenna, 2323 .get_ringparam = rt2x00mac_get_ringparam, 2324 .tx_frames_pending = rt2x00mac_tx_frames_pending, 2325 }; 2326 2327 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { 2328 .probe_hw = rt73usb_probe_hw, 2329 .get_firmware_name = rt73usb_get_firmware_name, 2330 .check_firmware = rt73usb_check_firmware, 2331 .load_firmware = rt73usb_load_firmware, 2332 .initialize = rt2x00usb_initialize, 2333 .uninitialize = rt2x00usb_uninitialize, 2334 .clear_entry = rt2x00usb_clear_entry, 2335 .set_device_state = rt73usb_set_device_state, 2336 .rfkill_poll = rt73usb_rfkill_poll, 2337 .link_stats = rt73usb_link_stats, 2338 .reset_tuner = rt73usb_reset_tuner, 2339 .link_tuner = rt73usb_link_tuner, 2340 .watchdog = rt2x00usb_watchdog, 2341 .start_queue = rt73usb_start_queue, 2342 .kick_queue = rt2x00usb_kick_queue, 2343 .stop_queue = rt73usb_stop_queue, 2344 .flush_queue = rt2x00usb_flush_queue, 2345 .write_tx_desc = rt73usb_write_tx_desc, 2346 .write_beacon = rt73usb_write_beacon, 2347 .clear_beacon = rt73usb_clear_beacon, 2348 .get_tx_data_len = rt73usb_get_tx_data_len, 2349 .fill_rxdone = rt73usb_fill_rxdone, 2350 .config_shared_key = rt73usb_config_shared_key, 2351 .config_pairwise_key = rt73usb_config_pairwise_key, 2352 .config_filter = rt73usb_config_filter, 2353 .config_intf = rt73usb_config_intf, 2354 .config_erp = rt73usb_config_erp, 2355 .config_ant = rt73usb_config_ant, 2356 .config = rt73usb_config, 2357 }; 2358 2359 static void rt73usb_queue_init(struct data_queue *queue) 2360 { 2361 switch (queue->qid) { 2362 case QID_RX: 2363 queue->limit = 32; 2364 queue->data_size = DATA_FRAME_SIZE; 2365 queue->desc_size = RXD_DESC_SIZE; 2366 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2367 break; 2368 2369 case QID_AC_VO: 2370 case QID_AC_VI: 2371 case QID_AC_BE: 2372 case QID_AC_BK: 2373 queue->limit = 32; 2374 queue->data_size = DATA_FRAME_SIZE; 2375 queue->desc_size = TXD_DESC_SIZE; 2376 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2377 break; 2378 2379 case QID_BEACON: 2380 queue->limit = 4; 2381 queue->data_size = MGMT_FRAME_SIZE; 2382 queue->desc_size = TXINFO_SIZE; 2383 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2384 break; 2385 2386 case QID_ATIM: 2387 /* fallthrough */ 2388 default: 2389 BUG(); 2390 break; 2391 } 2392 } 2393 2394 static const struct rt2x00_ops rt73usb_ops = { 2395 .name = KBUILD_MODNAME, 2396 .max_ap_intf = 4, 2397 .eeprom_size = EEPROM_SIZE, 2398 .rf_size = RF_SIZE, 2399 .tx_queues = NUM_TX_QUEUES, 2400 .queue_init = rt73usb_queue_init, 2401 .lib = &rt73usb_rt2x00_ops, 2402 .hw = &rt73usb_mac80211_ops, 2403 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 2404 .debugfs = &rt73usb_rt2x00debug, 2405 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 2406 }; 2407 2408 /* 2409 * rt73usb module information. 2410 */ 2411 static const struct usb_device_id rt73usb_device_table[] = { 2412 /* AboCom */ 2413 { USB_DEVICE(0x07b8, 0xb21b) }, 2414 { USB_DEVICE(0x07b8, 0xb21c) }, 2415 { USB_DEVICE(0x07b8, 0xb21d) }, 2416 { USB_DEVICE(0x07b8, 0xb21e) }, 2417 { USB_DEVICE(0x07b8, 0xb21f) }, 2418 /* AL */ 2419 { USB_DEVICE(0x14b2, 0x3c10) }, 2420 /* Amigo */ 2421 { USB_DEVICE(0x148f, 0x9021) }, 2422 { USB_DEVICE(0x0eb0, 0x9021) }, 2423 /* AMIT */ 2424 { USB_DEVICE(0x18c5, 0x0002) }, 2425 /* Askey */ 2426 { USB_DEVICE(0x1690, 0x0722) }, 2427 /* ASUS */ 2428 { USB_DEVICE(0x0b05, 0x1723) }, 2429 { USB_DEVICE(0x0b05, 0x1724) }, 2430 /* Belkin */ 2431 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */ 2432 { USB_DEVICE(0x050d, 0x705a) }, 2433 { USB_DEVICE(0x050d, 0x905b) }, 2434 { USB_DEVICE(0x050d, 0x905c) }, 2435 /* Billionton */ 2436 { USB_DEVICE(0x1631, 0xc019) }, 2437 { USB_DEVICE(0x08dd, 0x0120) }, 2438 /* Buffalo */ 2439 { USB_DEVICE(0x0411, 0x00d8) }, 2440 { USB_DEVICE(0x0411, 0x00d9) }, 2441 { USB_DEVICE(0x0411, 0x00e6) }, 2442 { USB_DEVICE(0x0411, 0x00f4) }, 2443 { USB_DEVICE(0x0411, 0x0116) }, 2444 { USB_DEVICE(0x0411, 0x0119) }, 2445 { USB_DEVICE(0x0411, 0x0137) }, 2446 /* CEIVA */ 2447 { USB_DEVICE(0x178d, 0x02be) }, 2448 /* CNet */ 2449 { USB_DEVICE(0x1371, 0x9022) }, 2450 { USB_DEVICE(0x1371, 0x9032) }, 2451 /* Conceptronic */ 2452 { USB_DEVICE(0x14b2, 0x3c22) }, 2453 /* Corega */ 2454 { USB_DEVICE(0x07aa, 0x002e) }, 2455 /* D-Link */ 2456 { USB_DEVICE(0x07d1, 0x3c03) }, 2457 { USB_DEVICE(0x07d1, 0x3c04) }, 2458 { USB_DEVICE(0x07d1, 0x3c06) }, 2459 { USB_DEVICE(0x07d1, 0x3c07) }, 2460 /* Edimax */ 2461 { USB_DEVICE(0x7392, 0x7318) }, 2462 { USB_DEVICE(0x7392, 0x7618) }, 2463 /* EnGenius */ 2464 { USB_DEVICE(0x1740, 0x3701) }, 2465 /* Gemtek */ 2466 { USB_DEVICE(0x15a9, 0x0004) }, 2467 /* Gigabyte */ 2468 { USB_DEVICE(0x1044, 0x8008) }, 2469 { USB_DEVICE(0x1044, 0x800a) }, 2470 /* Huawei-3Com */ 2471 { USB_DEVICE(0x1472, 0x0009) }, 2472 /* Hercules */ 2473 { USB_DEVICE(0x06f8, 0xe002) }, 2474 { USB_DEVICE(0x06f8, 0xe010) }, 2475 { USB_DEVICE(0x06f8, 0xe020) }, 2476 /* Linksys */ 2477 { USB_DEVICE(0x13b1, 0x0020) }, 2478 { USB_DEVICE(0x13b1, 0x0023) }, 2479 { USB_DEVICE(0x13b1, 0x0028) }, 2480 /* MSI */ 2481 { USB_DEVICE(0x0db0, 0x4600) }, 2482 { USB_DEVICE(0x0db0, 0x6877) }, 2483 { USB_DEVICE(0x0db0, 0x6874) }, 2484 { USB_DEVICE(0x0db0, 0xa861) }, 2485 { USB_DEVICE(0x0db0, 0xa874) }, 2486 /* Ovislink */ 2487 { USB_DEVICE(0x1b75, 0x7318) }, 2488 /* Ralink */ 2489 { USB_DEVICE(0x04bb, 0x093d) }, 2490 { USB_DEVICE(0x148f, 0x2573) }, 2491 { USB_DEVICE(0x148f, 0x2671) }, 2492 { USB_DEVICE(0x0812, 0x3101) }, 2493 /* Qcom */ 2494 { USB_DEVICE(0x18e8, 0x6196) }, 2495 { USB_DEVICE(0x18e8, 0x6229) }, 2496 { USB_DEVICE(0x18e8, 0x6238) }, 2497 /* Samsung */ 2498 { USB_DEVICE(0x04e8, 0x4471) }, 2499 /* Senao */ 2500 { USB_DEVICE(0x1740, 0x7100) }, 2501 /* Sitecom */ 2502 { USB_DEVICE(0x0df6, 0x0024) }, 2503 { USB_DEVICE(0x0df6, 0x0027) }, 2504 { USB_DEVICE(0x0df6, 0x002f) }, 2505 { USB_DEVICE(0x0df6, 0x90ac) }, 2506 { USB_DEVICE(0x0df6, 0x9712) }, 2507 /* Surecom */ 2508 { USB_DEVICE(0x0769, 0x31f3) }, 2509 /* Tilgin */ 2510 { USB_DEVICE(0x6933, 0x5001) }, 2511 /* Philips */ 2512 { USB_DEVICE(0x0471, 0x200a) }, 2513 /* Planex */ 2514 { USB_DEVICE(0x2019, 0xab01) }, 2515 { USB_DEVICE(0x2019, 0xab50) }, 2516 /* WideTell */ 2517 { USB_DEVICE(0x7167, 0x3840) }, 2518 /* Zcom */ 2519 { USB_DEVICE(0x0cde, 0x001c) }, 2520 /* ZyXEL */ 2521 { USB_DEVICE(0x0586, 0x3415) }, 2522 { 0, } 2523 }; 2524 2525 MODULE_AUTHOR(DRV_PROJECT); 2526 MODULE_VERSION(DRV_VERSION); 2527 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); 2528 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); 2529 MODULE_DEVICE_TABLE(usb, rt73usb_device_table); 2530 MODULE_FIRMWARE(FIRMWARE_RT2571); 2531 MODULE_LICENSE("GPL"); 2532 2533 static int rt73usb_probe(struct usb_interface *usb_intf, 2534 const struct usb_device_id *id) 2535 { 2536 return rt2x00usb_probe(usb_intf, &rt73usb_ops); 2537 } 2538 2539 static struct usb_driver rt73usb_driver = { 2540 .name = KBUILD_MODNAME, 2541 .id_table = rt73usb_device_table, 2542 .probe = rt73usb_probe, 2543 .disconnect = rt2x00usb_disconnect, 2544 .suspend = rt2x00usb_suspend, 2545 .resume = rt2x00usb_resume, 2546 .reset_resume = rt2x00usb_resume, 2547 .disable_hub_initiated_lpm = 1, 2548 }; 2549 2550 module_usb_driver(rt73usb_driver); 2551