1 /* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 Module: rt73usb 21 Abstract: rt73usb device specific routines. 22 Supported chipsets: rt2571W & rt2671. 23 */ 24 25 #include <linux/crc-itu-t.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 #include <linux/usb.h> 32 33 #include "rt2x00.h" 34 #include "rt2x00usb.h" 35 #include "rt73usb.h" 36 37 /* 38 * Allow hardware encryption to be disabled. 39 */ 40 static bool modparam_nohwcrypt; 41 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); 42 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 43 44 /* 45 * Register access. 46 * All access to the CSR registers will go through the methods 47 * rt2x00usb_register_read and rt2x00usb_register_write. 48 * BBP and RF register require indirect register access, 49 * and use the CSR registers BBPCSR and RFCSR to achieve this. 50 * These indirect registers work with busy bits, 51 * and we will try maximal REGISTER_BUSY_COUNT times to access 52 * the register while taking a REGISTER_BUSY_DELAY us delay 53 * between each attampt. When the busy bit is still set at that time, 54 * the access attempt is considered to have failed, 55 * and we will print an error. 56 * The _lock versions must be used if you already hold the csr_mutex 57 */ 58 #define WAIT_FOR_BBP(__dev, __reg) \ 59 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) 60 #define WAIT_FOR_RF(__dev, __reg) \ 61 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) 62 63 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, 64 const unsigned int word, const u8 value) 65 { 66 u32 reg; 67 68 mutex_lock(&rt2x00dev->csr_mutex); 69 70 /* 71 * Wait until the BBP becomes available, afterwards we 72 * can safely write the new data into the register. 73 */ 74 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 75 reg = 0; 76 rt2x00_set_field32(®, PHY_CSR3_VALUE, value); 77 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 78 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 79 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); 80 81 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); 82 } 83 84 mutex_unlock(&rt2x00dev->csr_mutex); 85 } 86 87 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, 88 const unsigned int word, u8 *value) 89 { 90 u32 reg; 91 92 mutex_lock(&rt2x00dev->csr_mutex); 93 94 /* 95 * Wait until the BBP becomes available, afterwards we 96 * can safely write the read request into the register. 97 * After the data has been written, we wait until hardware 98 * returns the correct value, if at any time the register 99 * doesn't become available in time, reg will be 0xffffffff 100 * which means we return 0xff to the caller. 101 */ 102 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 103 reg = 0; 104 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 105 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 106 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); 107 108 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); 109 110 WAIT_FOR_BBP(rt2x00dev, ®); 111 } 112 113 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); 114 115 mutex_unlock(&rt2x00dev->csr_mutex); 116 } 117 118 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, 119 const unsigned int word, const u32 value) 120 { 121 u32 reg; 122 123 mutex_lock(&rt2x00dev->csr_mutex); 124 125 /* 126 * Wait until the RF becomes available, afterwards we 127 * can safely write the new data into the register. 128 */ 129 if (WAIT_FOR_RF(rt2x00dev, ®)) { 130 reg = 0; 131 rt2x00_set_field32(®, PHY_CSR4_VALUE, value); 132 /* 133 * RF5225 and RF2527 contain 21 bits per RF register value, 134 * all others contain 20 bits. 135 */ 136 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 137 20 + (rt2x00_rf(rt2x00dev, RF5225) || 138 rt2x00_rf(rt2x00dev, RF2527))); 139 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); 140 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); 141 142 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); 143 rt2x00_rf_write(rt2x00dev, word, value); 144 } 145 146 mutex_unlock(&rt2x00dev->csr_mutex); 147 } 148 149 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 150 static const struct rt2x00debug rt73usb_rt2x00debug = { 151 .owner = THIS_MODULE, 152 .csr = { 153 .read = rt2x00usb_register_read, 154 .write = rt2x00usb_register_write, 155 .flags = RT2X00DEBUGFS_OFFSET, 156 .word_base = CSR_REG_BASE, 157 .word_size = sizeof(u32), 158 .word_count = CSR_REG_SIZE / sizeof(u32), 159 }, 160 .eeprom = { 161 .read = rt2x00_eeprom_read, 162 .write = rt2x00_eeprom_write, 163 .word_base = EEPROM_BASE, 164 .word_size = sizeof(u16), 165 .word_count = EEPROM_SIZE / sizeof(u16), 166 }, 167 .bbp = { 168 .read = rt73usb_bbp_read, 169 .write = rt73usb_bbp_write, 170 .word_base = BBP_BASE, 171 .word_size = sizeof(u8), 172 .word_count = BBP_SIZE / sizeof(u8), 173 }, 174 .rf = { 175 .read = rt2x00_rf_read, 176 .write = rt73usb_rf_write, 177 .word_base = RF_BASE, 178 .word_size = sizeof(u32), 179 .word_count = RF_SIZE / sizeof(u32), 180 }, 181 }; 182 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 183 184 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) 185 { 186 u32 reg; 187 188 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®); 189 return rt2x00_get_field32(reg, MAC_CSR13_VAL7); 190 } 191 192 #ifdef CONFIG_RT2X00_LIB_LEDS 193 static void rt73usb_brightness_set(struct led_classdev *led_cdev, 194 enum led_brightness brightness) 195 { 196 struct rt2x00_led *led = 197 container_of(led_cdev, struct rt2x00_led, led_dev); 198 unsigned int enabled = brightness != LED_OFF; 199 unsigned int a_mode = 200 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ); 201 unsigned int bg_mode = 202 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ); 203 204 if (led->type == LED_TYPE_RADIO) { 205 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 206 MCU_LEDCS_RADIO_STATUS, enabled); 207 208 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 209 0, led->rt2x00dev->led_mcu_reg, 210 REGISTER_TIMEOUT); 211 } else if (led->type == LED_TYPE_ASSOC) { 212 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 213 MCU_LEDCS_LINK_BG_STATUS, bg_mode); 214 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 215 MCU_LEDCS_LINK_A_STATUS, a_mode); 216 217 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 218 0, led->rt2x00dev->led_mcu_reg, 219 REGISTER_TIMEOUT); 220 } else if (led->type == LED_TYPE_QUALITY) { 221 /* 222 * The brightness is divided into 6 levels (0 - 5), 223 * this means we need to convert the brightness 224 * argument into the matching level within that range. 225 */ 226 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 227 brightness / (LED_FULL / 6), 228 led->rt2x00dev->led_mcu_reg, 229 REGISTER_TIMEOUT); 230 } 231 } 232 233 static int rt73usb_blink_set(struct led_classdev *led_cdev, 234 unsigned long *delay_on, 235 unsigned long *delay_off) 236 { 237 struct rt2x00_led *led = 238 container_of(led_cdev, struct rt2x00_led, led_dev); 239 u32 reg; 240 241 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, ®); 242 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); 243 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); 244 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg); 245 246 return 0; 247 } 248 249 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev, 250 struct rt2x00_led *led, 251 enum led_type type) 252 { 253 led->rt2x00dev = rt2x00dev; 254 led->type = type; 255 led->led_dev.brightness_set = rt73usb_brightness_set; 256 led->led_dev.blink_set = rt73usb_blink_set; 257 led->flags = LED_INITIALIZED; 258 } 259 #endif /* CONFIG_RT2X00_LIB_LEDS */ 260 261 /* 262 * Configuration handlers. 263 */ 264 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev, 265 struct rt2x00lib_crypto *crypto, 266 struct ieee80211_key_conf *key) 267 { 268 struct hw_key_entry key_entry; 269 struct rt2x00_field32 field; 270 u32 mask; 271 u32 reg; 272 273 if (crypto->cmd == SET_KEY) { 274 /* 275 * rt2x00lib can't determine the correct free 276 * key_idx for shared keys. We have 1 register 277 * with key valid bits. The goal is simple, read 278 * the register, if that is full we have no slots 279 * left. 280 * Note that each BSS is allowed to have up to 4 281 * shared keys, so put a mask over the allowed 282 * entries. 283 */ 284 mask = (0xf << crypto->bssidx); 285 286 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); 287 reg &= mask; 288 289 if (reg && reg == mask) 290 return -ENOSPC; 291 292 key->hw_key_idx += reg ? ffz(reg) : 0; 293 294 /* 295 * Upload key to hardware 296 */ 297 memcpy(key_entry.key, crypto->key, 298 sizeof(key_entry.key)); 299 memcpy(key_entry.tx_mic, crypto->tx_mic, 300 sizeof(key_entry.tx_mic)); 301 memcpy(key_entry.rx_mic, crypto->rx_mic, 302 sizeof(key_entry.rx_mic)); 303 304 reg = SHARED_KEY_ENTRY(key->hw_key_idx); 305 rt2x00usb_register_multiwrite(rt2x00dev, reg, 306 &key_entry, sizeof(key_entry)); 307 308 /* 309 * The cipher types are stored over 2 registers. 310 * bssidx 0 and 1 keys are stored in SEC_CSR1 and 311 * bssidx 1 and 2 keys are stored in SEC_CSR5. 312 * Using the correct defines correctly will cause overhead, 313 * so just calculate the correct offset. 314 */ 315 if (key->hw_key_idx < 8) { 316 field.bit_offset = (3 * key->hw_key_idx); 317 field.bit_mask = 0x7 << field.bit_offset; 318 319 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, ®); 320 rt2x00_set_field32(®, field, crypto->cipher); 321 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg); 322 } else { 323 field.bit_offset = (3 * (key->hw_key_idx - 8)); 324 field.bit_mask = 0x7 << field.bit_offset; 325 326 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, ®); 327 rt2x00_set_field32(®, field, crypto->cipher); 328 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg); 329 } 330 331 /* 332 * The driver does not support the IV/EIV generation 333 * in hardware. However it doesn't support the IV/EIV 334 * inside the ieee80211 frame either, but requires it 335 * to be provided separately for the descriptor. 336 * rt2x00lib will cut the IV/EIV data out of all frames 337 * given to us by mac80211, but we must tell mac80211 338 * to generate the IV/EIV data. 339 */ 340 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 341 } 342 343 /* 344 * SEC_CSR0 contains only single-bit fields to indicate 345 * a particular key is valid. Because using the FIELD32() 346 * defines directly will cause a lot of overhead we use 347 * a calculation to determine the correct bit directly. 348 */ 349 mask = 1 << key->hw_key_idx; 350 351 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); 352 if (crypto->cmd == SET_KEY) 353 reg |= mask; 354 else if (crypto->cmd == DISABLE_KEY) 355 reg &= ~mask; 356 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg); 357 358 return 0; 359 } 360 361 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev, 362 struct rt2x00lib_crypto *crypto, 363 struct ieee80211_key_conf *key) 364 { 365 struct hw_pairwise_ta_entry addr_entry; 366 struct hw_key_entry key_entry; 367 u32 mask; 368 u32 reg; 369 370 if (crypto->cmd == SET_KEY) { 371 /* 372 * rt2x00lib can't determine the correct free 373 * key_idx for pairwise keys. We have 2 registers 374 * with key valid bits. The goal is simple, read 375 * the first register, if that is full move to 376 * the next register. 377 * When both registers are full, we drop the key, 378 * otherwise we use the first invalid entry. 379 */ 380 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); 381 if (reg && reg == ~0) { 382 key->hw_key_idx = 32; 383 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); 384 if (reg && reg == ~0) 385 return -ENOSPC; 386 } 387 388 key->hw_key_idx += reg ? ffz(reg) : 0; 389 390 /* 391 * Upload key to hardware 392 */ 393 memcpy(key_entry.key, crypto->key, 394 sizeof(key_entry.key)); 395 memcpy(key_entry.tx_mic, crypto->tx_mic, 396 sizeof(key_entry.tx_mic)); 397 memcpy(key_entry.rx_mic, crypto->rx_mic, 398 sizeof(key_entry.rx_mic)); 399 400 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); 401 rt2x00usb_register_multiwrite(rt2x00dev, reg, 402 &key_entry, sizeof(key_entry)); 403 404 /* 405 * Send the address and cipher type to the hardware register. 406 */ 407 memset(&addr_entry, 0, sizeof(addr_entry)); 408 memcpy(&addr_entry, crypto->address, ETH_ALEN); 409 addr_entry.cipher = crypto->cipher; 410 411 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); 412 rt2x00usb_register_multiwrite(rt2x00dev, reg, 413 &addr_entry, sizeof(addr_entry)); 414 415 /* 416 * Enable pairwise lookup table for given BSS idx, 417 * without this received frames will not be decrypted 418 * by the hardware. 419 */ 420 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, ®); 421 reg |= (1 << crypto->bssidx); 422 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg); 423 424 /* 425 * The driver does not support the IV/EIV generation 426 * in hardware. However it doesn't support the IV/EIV 427 * inside the ieee80211 frame either, but requires it 428 * to be provided separately for the descriptor. 429 * rt2x00lib will cut the IV/EIV data out of all frames 430 * given to us by mac80211, but we must tell mac80211 431 * to generate the IV/EIV data. 432 */ 433 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 434 } 435 436 /* 437 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate 438 * a particular key is valid. Because using the FIELD32() 439 * defines directly will cause a lot of overhead we use 440 * a calculation to determine the correct bit directly. 441 */ 442 if (key->hw_key_idx < 32) { 443 mask = 1 << key->hw_key_idx; 444 445 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); 446 if (crypto->cmd == SET_KEY) 447 reg |= mask; 448 else if (crypto->cmd == DISABLE_KEY) 449 reg &= ~mask; 450 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg); 451 } else { 452 mask = 1 << (key->hw_key_idx - 32); 453 454 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); 455 if (crypto->cmd == SET_KEY) 456 reg |= mask; 457 else if (crypto->cmd == DISABLE_KEY) 458 reg &= ~mask; 459 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg); 460 } 461 462 return 0; 463 } 464 465 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev, 466 const unsigned int filter_flags) 467 { 468 u32 reg; 469 470 /* 471 * Start configuration steps. 472 * Note that the version error will always be dropped 473 * and broadcast frames will always be accepted since 474 * there is no filter for it at this time. 475 */ 476 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); 477 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, 478 !(filter_flags & FIF_FCSFAIL)); 479 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, 480 !(filter_flags & FIF_PLCPFAIL)); 481 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, 482 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); 483 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, 484 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 485 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, 486 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 487 !rt2x00dev->intf_ap_count); 488 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); 489 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, 490 !(filter_flags & FIF_ALLMULTI)); 491 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); 492 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 493 !(filter_flags & FIF_CONTROL)); 494 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 495 } 496 497 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, 498 struct rt2x00_intf *intf, 499 struct rt2x00intf_conf *conf, 500 const unsigned int flags) 501 { 502 u32 reg; 503 504 if (flags & CONFIG_UPDATE_TYPE) { 505 /* 506 * Enable synchronisation. 507 */ 508 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); 509 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); 510 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 511 } 512 513 if (flags & CONFIG_UPDATE_MAC) { 514 reg = le32_to_cpu(conf->mac[1]); 515 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); 516 conf->mac[1] = cpu_to_le32(reg); 517 518 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2, 519 conf->mac, sizeof(conf->mac)); 520 } 521 522 if (flags & CONFIG_UPDATE_BSSID) { 523 reg = le32_to_cpu(conf->bssid[1]); 524 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); 525 conf->bssid[1] = cpu_to_le32(reg); 526 527 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4, 528 conf->bssid, sizeof(conf->bssid)); 529 } 530 } 531 532 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev, 533 struct rt2x00lib_erp *erp, 534 u32 changed) 535 { 536 u32 reg; 537 538 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); 539 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); 540 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); 541 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 542 543 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 544 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); 545 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); 546 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, 547 !!erp->short_preamble); 548 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); 549 } 550 551 if (changed & BSS_CHANGED_BASIC_RATES) 552 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, 553 erp->basic_rates); 554 555 if (changed & BSS_CHANGED_BEACON_INT) { 556 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); 557 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 558 erp->beacon_int * 16); 559 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 560 } 561 562 if (changed & BSS_CHANGED_ERP_SLOT) { 563 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); 564 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); 565 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); 566 567 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, ®); 568 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); 569 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); 570 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); 571 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg); 572 } 573 } 574 575 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, 576 struct antenna_setup *ant) 577 { 578 u8 r3; 579 u8 r4; 580 u8 r77; 581 u8 temp; 582 583 rt73usb_bbp_read(rt2x00dev, 3, &r3); 584 rt73usb_bbp_read(rt2x00dev, 4, &r4); 585 rt73usb_bbp_read(rt2x00dev, 77, &r77); 586 587 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); 588 589 /* 590 * Configure the RX antenna. 591 */ 592 switch (ant->rx) { 593 case ANTENNA_HW_DIVERSITY: 594 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 595 temp = !rt2x00_has_cap_frame_type(rt2x00dev) && 596 (rt2x00dev->curr_band != NL80211_BAND_5GHZ); 597 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); 598 break; 599 case ANTENNA_A: 600 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 601 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 602 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 603 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 604 else 605 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 606 break; 607 case ANTENNA_B: 608 default: 609 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 610 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 611 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 612 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 613 else 614 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 615 break; 616 } 617 618 rt73usb_bbp_write(rt2x00dev, 77, r77); 619 rt73usb_bbp_write(rt2x00dev, 3, r3); 620 rt73usb_bbp_write(rt2x00dev, 4, r4); 621 } 622 623 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, 624 struct antenna_setup *ant) 625 { 626 u8 r3; 627 u8 r4; 628 u8 r77; 629 630 rt73usb_bbp_read(rt2x00dev, 3, &r3); 631 rt73usb_bbp_read(rt2x00dev, 4, &r4); 632 rt73usb_bbp_read(rt2x00dev, 77, &r77); 633 634 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); 635 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 636 !rt2x00_has_cap_frame_type(rt2x00dev)); 637 638 /* 639 * Configure the RX antenna. 640 */ 641 switch (ant->rx) { 642 case ANTENNA_HW_DIVERSITY: 643 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 644 break; 645 case ANTENNA_A: 646 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 647 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 648 break; 649 case ANTENNA_B: 650 default: 651 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 652 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 653 break; 654 } 655 656 rt73usb_bbp_write(rt2x00dev, 77, r77); 657 rt73usb_bbp_write(rt2x00dev, 3, r3); 658 rt73usb_bbp_write(rt2x00dev, 4, r4); 659 } 660 661 struct antenna_sel { 662 u8 word; 663 /* 664 * value[0] -> non-LNA 665 * value[1] -> LNA 666 */ 667 u8 value[2]; 668 }; 669 670 static const struct antenna_sel antenna_sel_a[] = { 671 { 96, { 0x58, 0x78 } }, 672 { 104, { 0x38, 0x48 } }, 673 { 75, { 0xfe, 0x80 } }, 674 { 86, { 0xfe, 0x80 } }, 675 { 88, { 0xfe, 0x80 } }, 676 { 35, { 0x60, 0x60 } }, 677 { 97, { 0x58, 0x58 } }, 678 { 98, { 0x58, 0x58 } }, 679 }; 680 681 static const struct antenna_sel antenna_sel_bg[] = { 682 { 96, { 0x48, 0x68 } }, 683 { 104, { 0x2c, 0x3c } }, 684 { 75, { 0xfe, 0x80 } }, 685 { 86, { 0xfe, 0x80 } }, 686 { 88, { 0xfe, 0x80 } }, 687 { 35, { 0x50, 0x50 } }, 688 { 97, { 0x48, 0x48 } }, 689 { 98, { 0x48, 0x48 } }, 690 }; 691 692 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev, 693 struct antenna_setup *ant) 694 { 695 const struct antenna_sel *sel; 696 unsigned int lna; 697 unsigned int i; 698 u32 reg; 699 700 /* 701 * We should never come here because rt2x00lib is supposed 702 * to catch this and send us the correct antenna explicitely. 703 */ 704 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 705 ant->tx == ANTENNA_SW_DIVERSITY); 706 707 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 708 sel = antenna_sel_a; 709 lna = rt2x00_has_cap_external_lna_a(rt2x00dev); 710 } else { 711 sel = antenna_sel_bg; 712 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); 713 } 714 715 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) 716 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); 717 718 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, ®); 719 720 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 721 (rt2x00dev->curr_band == NL80211_BAND_2GHZ)); 722 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 723 (rt2x00dev->curr_band == NL80211_BAND_5GHZ)); 724 725 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg); 726 727 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225)) 728 rt73usb_config_antenna_5x(rt2x00dev, ant); 729 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527)) 730 rt73usb_config_antenna_2x(rt2x00dev, ant); 731 } 732 733 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev, 734 struct rt2x00lib_conf *libconf) 735 { 736 u16 eeprom; 737 short lna_gain = 0; 738 739 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) { 740 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) 741 lna_gain += 14; 742 743 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); 744 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); 745 } else { 746 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); 747 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); 748 } 749 750 rt2x00dev->lna_gain = lna_gain; 751 } 752 753 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, 754 struct rf_channel *rf, const int txpower) 755 { 756 u8 r3; 757 u8 r94; 758 u8 smart; 759 760 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 761 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); 762 763 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); 764 765 rt73usb_bbp_read(rt2x00dev, 3, &r3); 766 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); 767 rt73usb_bbp_write(rt2x00dev, 3, r3); 768 769 r94 = 6; 770 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) 771 r94 += txpower - MAX_TXPOWER; 772 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) 773 r94 += txpower; 774 rt73usb_bbp_write(rt2x00dev, 94, r94); 775 776 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 777 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 778 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 779 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 780 781 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 782 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 783 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); 784 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 785 786 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 787 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 788 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 789 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 790 791 udelay(10); 792 } 793 794 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, 795 const int txpower) 796 { 797 struct rf_channel rf; 798 799 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); 800 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); 801 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); 802 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); 803 804 rt73usb_config_channel(rt2x00dev, &rf, txpower); 805 } 806 807 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev, 808 struct rt2x00lib_conf *libconf) 809 { 810 u32 reg; 811 812 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); 813 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); 814 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); 815 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); 816 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, 817 libconf->conf->long_frame_max_tx_count); 818 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, 819 libconf->conf->short_frame_max_tx_count); 820 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); 821 } 822 823 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev, 824 struct rt2x00lib_conf *libconf) 825 { 826 enum dev_state state = 827 (libconf->conf->flags & IEEE80211_CONF_PS) ? 828 STATE_SLEEP : STATE_AWAKE; 829 u32 reg; 830 831 if (state == STATE_SLEEP) { 832 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); 833 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 834 rt2x00dev->beacon_int - 10); 835 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 836 libconf->conf->listen_interval - 1); 837 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); 838 839 /* We must first disable autowake before it can be enabled */ 840 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 841 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 842 843 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); 844 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 845 846 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, 847 USB_MODE_SLEEP, REGISTER_TIMEOUT); 848 } else { 849 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); 850 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); 851 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); 852 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 853 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); 854 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 855 856 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, 857 USB_MODE_WAKEUP, REGISTER_TIMEOUT); 858 } 859 } 860 861 static void rt73usb_config(struct rt2x00_dev *rt2x00dev, 862 struct rt2x00lib_conf *libconf, 863 const unsigned int flags) 864 { 865 /* Always recalculate LNA gain before changing configuration */ 866 rt73usb_config_lna_gain(rt2x00dev, libconf); 867 868 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 869 rt73usb_config_channel(rt2x00dev, &libconf->rf, 870 libconf->conf->power_level); 871 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 872 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 873 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); 874 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 875 rt73usb_config_retry_limit(rt2x00dev, libconf); 876 if (flags & IEEE80211_CONF_CHANGE_PS) 877 rt73usb_config_ps(rt2x00dev, libconf); 878 } 879 880 /* 881 * Link tuning 882 */ 883 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, 884 struct link_qual *qual) 885 { 886 u32 reg; 887 888 /* 889 * Update FCS error count from register. 890 */ 891 rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); 892 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); 893 894 /* 895 * Update False CCA count from register. 896 */ 897 rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); 898 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); 899 } 900 901 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev, 902 struct link_qual *qual, u8 vgc_level) 903 { 904 if (qual->vgc_level != vgc_level) { 905 rt73usb_bbp_write(rt2x00dev, 17, vgc_level); 906 qual->vgc_level = vgc_level; 907 qual->vgc_level_reg = vgc_level; 908 } 909 } 910 911 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev, 912 struct link_qual *qual) 913 { 914 rt73usb_set_vgc(rt2x00dev, qual, 0x20); 915 } 916 917 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev, 918 struct link_qual *qual, const u32 count) 919 { 920 u8 up_bound; 921 u8 low_bound; 922 923 /* 924 * Determine r17 bounds. 925 */ 926 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 927 low_bound = 0x28; 928 up_bound = 0x48; 929 930 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 931 low_bound += 0x10; 932 up_bound += 0x10; 933 } 934 } else { 935 if (qual->rssi > -82) { 936 low_bound = 0x1c; 937 up_bound = 0x40; 938 } else if (qual->rssi > -84) { 939 low_bound = 0x1c; 940 up_bound = 0x20; 941 } else { 942 low_bound = 0x1c; 943 up_bound = 0x1c; 944 } 945 946 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { 947 low_bound += 0x14; 948 up_bound += 0x10; 949 } 950 } 951 952 /* 953 * If we are not associated, we should go straight to the 954 * dynamic CCA tuning. 955 */ 956 if (!rt2x00dev->intf_associated) 957 goto dynamic_cca_tune; 958 959 /* 960 * Special big-R17 for very short distance 961 */ 962 if (qual->rssi > -35) { 963 rt73usb_set_vgc(rt2x00dev, qual, 0x60); 964 return; 965 } 966 967 /* 968 * Special big-R17 for short distance 969 */ 970 if (qual->rssi >= -58) { 971 rt73usb_set_vgc(rt2x00dev, qual, up_bound); 972 return; 973 } 974 975 /* 976 * Special big-R17 for middle-short distance 977 */ 978 if (qual->rssi >= -66) { 979 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10); 980 return; 981 } 982 983 /* 984 * Special mid-R17 for middle distance 985 */ 986 if (qual->rssi >= -74) { 987 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08); 988 return; 989 } 990 991 /* 992 * Special case: Change up_bound based on the rssi. 993 * Lower up_bound when rssi is weaker then -74 dBm. 994 */ 995 up_bound -= 2 * (-74 - qual->rssi); 996 if (low_bound > up_bound) 997 up_bound = low_bound; 998 999 if (qual->vgc_level > up_bound) { 1000 rt73usb_set_vgc(rt2x00dev, qual, up_bound); 1001 return; 1002 } 1003 1004 dynamic_cca_tune: 1005 1006 /* 1007 * r17 does not yet exceed upper limit, continue and base 1008 * the r17 tuning on the false CCA count. 1009 */ 1010 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) 1011 rt73usb_set_vgc(rt2x00dev, qual, 1012 min_t(u8, qual->vgc_level + 4, up_bound)); 1013 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) 1014 rt73usb_set_vgc(rt2x00dev, qual, 1015 max_t(u8, qual->vgc_level - 4, low_bound)); 1016 } 1017 1018 /* 1019 * Queue handlers. 1020 */ 1021 static void rt73usb_start_queue(struct data_queue *queue) 1022 { 1023 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1024 u32 reg; 1025 1026 switch (queue->qid) { 1027 case QID_RX: 1028 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); 1029 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1030 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1031 break; 1032 case QID_BEACON: 1033 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); 1034 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); 1035 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); 1036 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1037 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1038 break; 1039 default: 1040 break; 1041 } 1042 } 1043 1044 static void rt73usb_stop_queue(struct data_queue *queue) 1045 { 1046 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1047 u32 reg; 1048 1049 switch (queue->qid) { 1050 case QID_RX: 1051 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); 1052 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); 1053 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1054 break; 1055 case QID_BEACON: 1056 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); 1057 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1058 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1059 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1060 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1061 break; 1062 default: 1063 break; 1064 } 1065 } 1066 1067 /* 1068 * Firmware functions 1069 */ 1070 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) 1071 { 1072 return FIRMWARE_RT2571; 1073 } 1074 1075 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev, 1076 const u8 *data, const size_t len) 1077 { 1078 u16 fw_crc; 1079 u16 crc; 1080 1081 /* 1082 * Only support 2kb firmware files. 1083 */ 1084 if (len != 2048) 1085 return FW_BAD_LENGTH; 1086 1087 /* 1088 * The last 2 bytes in the firmware array are the crc checksum itself, 1089 * this means that we should never pass those 2 bytes to the crc 1090 * algorithm. 1091 */ 1092 fw_crc = (data[len - 2] << 8 | data[len - 1]); 1093 1094 /* 1095 * Use the crc itu-t algorithm. 1096 */ 1097 crc = crc_itu_t(0, data, len - 2); 1098 crc = crc_itu_t_byte(crc, 0); 1099 crc = crc_itu_t_byte(crc, 0); 1100 1101 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; 1102 } 1103 1104 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, 1105 const u8 *data, const size_t len) 1106 { 1107 unsigned int i; 1108 int status; 1109 u32 reg; 1110 1111 /* 1112 * Wait for stable hardware. 1113 */ 1114 for (i = 0; i < 100; i++) { 1115 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); 1116 if (reg) 1117 break; 1118 msleep(1); 1119 } 1120 1121 if (!reg) { 1122 rt2x00_err(rt2x00dev, "Unstable hardware\n"); 1123 return -EBUSY; 1124 } 1125 1126 /* 1127 * Write firmware to device. 1128 */ 1129 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); 1130 1131 /* 1132 * Send firmware request to device to load firmware, 1133 * we need to specify a long timeout time. 1134 */ 1135 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 1136 0, USB_MODE_FIRMWARE, 1137 REGISTER_TIMEOUT_FIRMWARE); 1138 if (status < 0) { 1139 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n"); 1140 return status; 1141 } 1142 1143 return 0; 1144 } 1145 1146 /* 1147 * Initialization functions. 1148 */ 1149 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) 1150 { 1151 u32 reg; 1152 1153 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); 1154 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); 1155 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1156 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); 1157 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1158 1159 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, ®); 1160 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ 1161 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); 1162 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ 1163 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); 1164 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ 1165 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); 1166 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ 1167 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); 1168 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg); 1169 1170 /* 1171 * CCK TXD BBP registers 1172 */ 1173 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, ®); 1174 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); 1175 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); 1176 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); 1177 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); 1178 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); 1179 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); 1180 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); 1181 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); 1182 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg); 1183 1184 /* 1185 * OFDM TXD BBP registers 1186 */ 1187 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, ®); 1188 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); 1189 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); 1190 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); 1191 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); 1192 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); 1193 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); 1194 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg); 1195 1196 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, ®); 1197 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); 1198 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); 1199 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); 1200 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); 1201 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg); 1202 1203 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, ®); 1204 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); 1205 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); 1206 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); 1207 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); 1208 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg); 1209 1210 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); 1211 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); 1212 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1213 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); 1214 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1215 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1216 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); 1217 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1218 1219 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); 1220 1221 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, ®); 1222 rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); 1223 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg); 1224 1225 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); 1226 1227 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 1228 return -EBUSY; 1229 1230 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); 1231 1232 /* 1233 * Invalidate all Shared Keys (SEC_CSR0), 1234 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) 1235 */ 1236 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); 1237 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); 1238 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); 1239 1240 reg = 0x000023b0; 1241 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)) 1242 rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); 1243 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg); 1244 1245 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); 1246 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); 1247 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); 1248 1249 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); 1250 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); 1251 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); 1252 1253 /* 1254 * Clear all beacons 1255 * For the Beacon base registers we only need to clear 1256 * the first byte since that byte contains the VALID and OWNER 1257 * bits which (when set to 0) will invalidate the entire beacon. 1258 */ 1259 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); 1260 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); 1261 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); 1262 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); 1263 1264 /* 1265 * We must clear the error counters. 1266 * These registers are cleared on read, 1267 * so we may pass a useless variable to store the value. 1268 */ 1269 rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); 1270 rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); 1271 rt2x00usb_register_read(rt2x00dev, STA_CSR2, ®); 1272 1273 /* 1274 * Reset MAC and BBP registers. 1275 */ 1276 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); 1277 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); 1278 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); 1279 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1280 1281 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); 1282 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); 1283 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); 1284 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1285 1286 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); 1287 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); 1288 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1289 1290 return 0; 1291 } 1292 1293 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 1294 { 1295 unsigned int i; 1296 u8 value; 1297 1298 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 1299 rt73usb_bbp_read(rt2x00dev, 0, &value); 1300 if ((value != 0xff) && (value != 0x00)) 1301 return 0; 1302 udelay(REGISTER_BUSY_DELAY); 1303 } 1304 1305 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 1306 return -EACCES; 1307 } 1308 1309 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) 1310 { 1311 unsigned int i; 1312 u16 eeprom; 1313 u8 reg_id; 1314 u8 value; 1315 1316 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev))) 1317 return -EACCES; 1318 1319 rt73usb_bbp_write(rt2x00dev, 3, 0x80); 1320 rt73usb_bbp_write(rt2x00dev, 15, 0x30); 1321 rt73usb_bbp_write(rt2x00dev, 21, 0xc8); 1322 rt73usb_bbp_write(rt2x00dev, 22, 0x38); 1323 rt73usb_bbp_write(rt2x00dev, 23, 0x06); 1324 rt73usb_bbp_write(rt2x00dev, 24, 0xfe); 1325 rt73usb_bbp_write(rt2x00dev, 25, 0x0a); 1326 rt73usb_bbp_write(rt2x00dev, 26, 0x0d); 1327 rt73usb_bbp_write(rt2x00dev, 32, 0x0b); 1328 rt73usb_bbp_write(rt2x00dev, 34, 0x12); 1329 rt73usb_bbp_write(rt2x00dev, 37, 0x07); 1330 rt73usb_bbp_write(rt2x00dev, 39, 0xf8); 1331 rt73usb_bbp_write(rt2x00dev, 41, 0x60); 1332 rt73usb_bbp_write(rt2x00dev, 53, 0x10); 1333 rt73usb_bbp_write(rt2x00dev, 54, 0x18); 1334 rt73usb_bbp_write(rt2x00dev, 60, 0x10); 1335 rt73usb_bbp_write(rt2x00dev, 61, 0x04); 1336 rt73usb_bbp_write(rt2x00dev, 62, 0x04); 1337 rt73usb_bbp_write(rt2x00dev, 75, 0xfe); 1338 rt73usb_bbp_write(rt2x00dev, 86, 0xfe); 1339 rt73usb_bbp_write(rt2x00dev, 88, 0xfe); 1340 rt73usb_bbp_write(rt2x00dev, 90, 0x0f); 1341 rt73usb_bbp_write(rt2x00dev, 99, 0x00); 1342 rt73usb_bbp_write(rt2x00dev, 102, 0x16); 1343 rt73usb_bbp_write(rt2x00dev, 107, 0x04); 1344 1345 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 1346 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); 1347 1348 if (eeprom != 0xffff && eeprom != 0x0000) { 1349 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 1350 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 1351 rt73usb_bbp_write(rt2x00dev, reg_id, value); 1352 } 1353 } 1354 1355 return 0; 1356 } 1357 1358 /* 1359 * Device state switch handlers. 1360 */ 1361 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) 1362 { 1363 /* 1364 * Initialize all registers. 1365 */ 1366 if (unlikely(rt73usb_init_registers(rt2x00dev) || 1367 rt73usb_init_bbp(rt2x00dev))) 1368 return -EIO; 1369 1370 return 0; 1371 } 1372 1373 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) 1374 { 1375 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); 1376 1377 /* 1378 * Disable synchronisation. 1379 */ 1380 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0); 1381 1382 rt2x00usb_disable_radio(rt2x00dev); 1383 } 1384 1385 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) 1386 { 1387 u32 reg, reg2; 1388 unsigned int i; 1389 char put_to_sleep; 1390 1391 put_to_sleep = (state != STATE_AWAKE); 1392 1393 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®); 1394 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); 1395 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); 1396 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); 1397 1398 /* 1399 * Device is not guaranteed to be in the requested state yet. 1400 * We must wait until the register indicates that the 1401 * device has entered the correct state. 1402 */ 1403 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1404 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®2); 1405 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); 1406 if (state == !put_to_sleep) 1407 return 0; 1408 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); 1409 msleep(10); 1410 } 1411 1412 return -EBUSY; 1413 } 1414 1415 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, 1416 enum dev_state state) 1417 { 1418 int retval = 0; 1419 1420 switch (state) { 1421 case STATE_RADIO_ON: 1422 retval = rt73usb_enable_radio(rt2x00dev); 1423 break; 1424 case STATE_RADIO_OFF: 1425 rt73usb_disable_radio(rt2x00dev); 1426 break; 1427 case STATE_RADIO_IRQ_ON: 1428 case STATE_RADIO_IRQ_OFF: 1429 /* No support, but no error either */ 1430 break; 1431 case STATE_DEEP_SLEEP: 1432 case STATE_SLEEP: 1433 case STATE_STANDBY: 1434 case STATE_AWAKE: 1435 retval = rt73usb_set_state(rt2x00dev, state); 1436 break; 1437 default: 1438 retval = -ENOTSUPP; 1439 break; 1440 } 1441 1442 if (unlikely(retval)) 1443 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1444 state, retval); 1445 1446 return retval; 1447 } 1448 1449 /* 1450 * TX descriptor initialization 1451 */ 1452 static void rt73usb_write_tx_desc(struct queue_entry *entry, 1453 struct txentry_desc *txdesc) 1454 { 1455 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1456 __le32 *txd = (__le32 *) entry->skb->data; 1457 u32 word; 1458 1459 /* 1460 * Start writing the descriptor words. 1461 */ 1462 rt2x00_desc_read(txd, 0, &word); 1463 rt2x00_set_field32(&word, TXD_W0_BURST, 1464 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1465 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1466 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1467 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1468 rt2x00_set_field32(&word, TXD_W0_ACK, 1469 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1470 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1471 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1472 rt2x00_set_field32(&word, TXD_W0_OFDM, 1473 (txdesc->rate_mode == RATE_MODE_OFDM)); 1474 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1475 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1476 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1477 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 1478 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); 1479 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, 1480 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); 1481 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); 1482 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1483 rt2x00_set_field32(&word, TXD_W0_BURST2, 1484 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1485 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); 1486 rt2x00_desc_write(txd, 0, word); 1487 1488 rt2x00_desc_read(txd, 1, &word); 1489 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); 1490 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); 1491 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1492 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1493 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1494 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1495 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); 1496 rt2x00_desc_write(txd, 1, word); 1497 1498 rt2x00_desc_read(txd, 2, &word); 1499 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1500 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1501 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1502 txdesc->u.plcp.length_low); 1503 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1504 txdesc->u.plcp.length_high); 1505 rt2x00_desc_write(txd, 2, word); 1506 1507 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1508 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1509 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1510 } 1511 1512 rt2x00_desc_read(txd, 5, &word); 1513 rt2x00_set_field32(&word, TXD_W5_TX_POWER, 1514 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); 1515 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); 1516 rt2x00_desc_write(txd, 5, word); 1517 1518 /* 1519 * Register descriptor details in skb frame descriptor. 1520 */ 1521 skbdesc->flags |= SKBDESC_DESC_IN_SKB; 1522 skbdesc->desc = txd; 1523 skbdesc->desc_len = TXD_DESC_SIZE; 1524 } 1525 1526 /* 1527 * TX data initialization 1528 */ 1529 static void rt73usb_write_beacon(struct queue_entry *entry, 1530 struct txentry_desc *txdesc) 1531 { 1532 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1533 unsigned int beacon_base; 1534 unsigned int padding_len; 1535 u32 orig_reg, reg; 1536 1537 /* 1538 * Disable beaconing while we are reloading the beacon data, 1539 * otherwise we might be sending out invalid data. 1540 */ 1541 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); 1542 orig_reg = reg; 1543 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1545 1546 /* 1547 * Add space for the descriptor in front of the skb. 1548 */ 1549 skb_push(entry->skb, TXD_DESC_SIZE); 1550 memset(entry->skb->data, 0, TXD_DESC_SIZE); 1551 1552 /* 1553 * Write the TX descriptor for the beacon. 1554 */ 1555 rt73usb_write_tx_desc(entry, txdesc); 1556 1557 /* 1558 * Dump beacon to userspace through debugfs. 1559 */ 1560 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); 1561 1562 /* 1563 * Write entire beacon with descriptor and padding to register. 1564 */ 1565 padding_len = roundup(entry->skb->len, 4) - entry->skb->len; 1566 if (padding_len && skb_pad(entry->skb, padding_len)) { 1567 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); 1568 /* skb freed by skb_pad() on failure */ 1569 entry->skb = NULL; 1570 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1571 return; 1572 } 1573 1574 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 1575 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, 1576 entry->skb->len + padding_len); 1577 1578 /* 1579 * Enable beaconing again. 1580 * 1581 * For Wi-Fi faily generated beacons between participating stations. 1582 * Set TBTT phase adaptive adjustment step to 8us (default 16us) 1583 */ 1584 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); 1585 1586 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1587 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1588 1589 /* 1590 * Clean up the beacon skb. 1591 */ 1592 dev_kfree_skb(entry->skb); 1593 entry->skb = NULL; 1594 } 1595 1596 static void rt73usb_clear_beacon(struct queue_entry *entry) 1597 { 1598 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1599 unsigned int beacon_base; 1600 u32 orig_reg, reg; 1601 1602 /* 1603 * Disable beaconing while we are reloading the beacon data, 1604 * otherwise we might be sending out invalid data. 1605 */ 1606 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &orig_reg); 1607 reg = orig_reg; 1608 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1609 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1610 1611 /* 1612 * Clear beacon. 1613 */ 1614 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 1615 rt2x00usb_register_write(rt2x00dev, beacon_base, 0); 1616 1617 /* 1618 * Restore beaconing state. 1619 */ 1620 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1621 } 1622 1623 static int rt73usb_get_tx_data_len(struct queue_entry *entry) 1624 { 1625 int length; 1626 1627 /* 1628 * The length _must_ be a multiple of 4, 1629 * but it must _not_ be a multiple of the USB packet size. 1630 */ 1631 length = roundup(entry->skb->len, 4); 1632 length += (4 * !(length % entry->queue->usb_maxpacket)); 1633 1634 return length; 1635 } 1636 1637 /* 1638 * RX control handlers 1639 */ 1640 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) 1641 { 1642 u8 offset = rt2x00dev->lna_gain; 1643 u8 lna; 1644 1645 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); 1646 switch (lna) { 1647 case 3: 1648 offset += 90; 1649 break; 1650 case 2: 1651 offset += 74; 1652 break; 1653 case 1: 1654 offset += 64; 1655 break; 1656 default: 1657 return 0; 1658 } 1659 1660 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 1661 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 1662 if (lna == 3 || lna == 2) 1663 offset += 10; 1664 } else { 1665 if (lna == 3) 1666 offset += 6; 1667 else if (lna == 2) 1668 offset += 8; 1669 } 1670 } 1671 1672 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; 1673 } 1674 1675 static void rt73usb_fill_rxdone(struct queue_entry *entry, 1676 struct rxdone_entry_desc *rxdesc) 1677 { 1678 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1679 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1680 __le32 *rxd = (__le32 *)entry->skb->data; 1681 u32 word0; 1682 u32 word1; 1683 1684 /* 1685 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of 1686 * frame data in rt2x00usb. 1687 */ 1688 memcpy(skbdesc->desc, rxd, skbdesc->desc_len); 1689 rxd = (__le32 *)skbdesc->desc; 1690 1691 /* 1692 * It is now safe to read the descriptor on all architectures. 1693 */ 1694 rt2x00_desc_read(rxd, 0, &word0); 1695 rt2x00_desc_read(rxd, 1, &word1); 1696 1697 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1698 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1699 1700 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); 1701 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); 1702 1703 if (rxdesc->cipher != CIPHER_NONE) { 1704 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); 1705 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); 1706 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 1707 1708 _rt2x00_desc_read(rxd, 4, &rxdesc->icv); 1709 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; 1710 1711 /* 1712 * Hardware has stripped IV/EIV data from 802.11 frame during 1713 * decryption. It has provided the data separately but rt2x00lib 1714 * should decide if it should be reinserted. 1715 */ 1716 rxdesc->flags |= RX_FLAG_IV_STRIPPED; 1717 1718 /* 1719 * The hardware has already checked the Michael Mic and has 1720 * stripped it from the frame. Signal this to mac80211. 1721 */ 1722 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 1723 1724 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 1725 rxdesc->flags |= RX_FLAG_DECRYPTED; 1726 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 1727 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 1728 } 1729 1730 /* 1731 * Obtain the status about this packet. 1732 * When frame was received with an OFDM bitrate, 1733 * the signal is the PLCP value. If it was received with 1734 * a CCK bitrate the signal is the rate in 100kbit/s. 1735 */ 1736 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 1737 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1); 1738 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1739 1740 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1741 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1742 else 1743 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1744 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1745 rxdesc->dev_flags |= RXDONE_MY_BSS; 1746 1747 /* 1748 * Set skb pointers, and update frame information. 1749 */ 1750 skb_pull(entry->skb, entry->queue->desc_size); 1751 skb_trim(entry->skb, rxdesc->size); 1752 } 1753 1754 /* 1755 * Device probe functions. 1756 */ 1757 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1758 { 1759 u16 word; 1760 u8 *mac; 1761 s8 value; 1762 1763 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); 1764 1765 /* 1766 * Start validation of the data that has been read. 1767 */ 1768 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1769 if (!is_valid_ether_addr(mac)) { 1770 eth_random_addr(mac); 1771 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); 1772 } 1773 1774 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); 1775 if (word == 0xffff) { 1776 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1777 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1778 ANTENNA_B); 1779 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1780 ANTENNA_B); 1781 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); 1782 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1783 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1784 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); 1785 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1786 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 1787 } 1788 1789 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); 1790 if (word == 0xffff) { 1791 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); 1792 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1793 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 1794 } 1795 1796 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); 1797 if (word == 0xffff) { 1798 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); 1799 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); 1800 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); 1801 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); 1802 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); 1803 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); 1804 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); 1805 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); 1806 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, 1807 LED_MODE_DEFAULT); 1808 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); 1809 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); 1810 } 1811 1812 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); 1813 if (word == 0xffff) { 1814 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); 1815 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); 1816 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); 1817 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); 1818 } 1819 1820 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); 1821 if (word == 0xffff) { 1822 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 1823 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 1824 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 1825 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); 1826 } else { 1827 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); 1828 if (value < -10 || value > 10) 1829 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 1830 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); 1831 if (value < -10 || value > 10) 1832 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 1833 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 1834 } 1835 1836 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); 1837 if (word == 0xffff) { 1838 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 1839 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 1840 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 1841 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); 1842 } else { 1843 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); 1844 if (value < -10 || value > 10) 1845 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 1846 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); 1847 if (value < -10 || value > 10) 1848 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 1849 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 1850 } 1851 1852 return 0; 1853 } 1854 1855 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) 1856 { 1857 u32 reg; 1858 u16 value; 1859 u16 eeprom; 1860 1861 /* 1862 * Read EEPROM word for configuration. 1863 */ 1864 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); 1865 1866 /* 1867 * Identify RF chipset. 1868 */ 1869 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1870 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); 1871 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), 1872 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); 1873 1874 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) { 1875 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); 1876 return -ENODEV; 1877 } 1878 1879 if (!rt2x00_rf(rt2x00dev, RF5226) && 1880 !rt2x00_rf(rt2x00dev, RF2528) && 1881 !rt2x00_rf(rt2x00dev, RF5225) && 1882 !rt2x00_rf(rt2x00dev, RF2527)) { 1883 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1884 return -ENODEV; 1885 } 1886 1887 /* 1888 * Identify default antenna configuration. 1889 */ 1890 rt2x00dev->default_ant.tx = 1891 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1892 rt2x00dev->default_ant.rx = 1893 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1894 1895 /* 1896 * Read the Frame type. 1897 */ 1898 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) 1899 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); 1900 1901 /* 1902 * Detect if this device has an hardware controlled radio. 1903 */ 1904 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1905 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1906 1907 /* 1908 * Read frequency offset. 1909 */ 1910 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); 1911 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); 1912 1913 /* 1914 * Read external LNA informations. 1915 */ 1916 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); 1917 1918 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { 1919 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); 1920 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); 1921 } 1922 1923 /* 1924 * Store led settings, for correct led behaviour. 1925 */ 1926 #ifdef CONFIG_RT2X00_LIB_LEDS 1927 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); 1928 1929 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1930 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); 1931 if (value == LED_MODE_SIGNAL_STRENGTH) 1932 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual, 1933 LED_TYPE_QUALITY); 1934 1935 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); 1936 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, 1937 rt2x00_get_field16(eeprom, 1938 EEPROM_LED_POLARITY_GPIO_0)); 1939 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, 1940 rt2x00_get_field16(eeprom, 1941 EEPROM_LED_POLARITY_GPIO_1)); 1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, 1943 rt2x00_get_field16(eeprom, 1944 EEPROM_LED_POLARITY_GPIO_2)); 1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, 1946 rt2x00_get_field16(eeprom, 1947 EEPROM_LED_POLARITY_GPIO_3)); 1948 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, 1949 rt2x00_get_field16(eeprom, 1950 EEPROM_LED_POLARITY_GPIO_4)); 1951 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, 1952 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); 1953 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, 1954 rt2x00_get_field16(eeprom, 1955 EEPROM_LED_POLARITY_RDY_G)); 1956 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, 1957 rt2x00_get_field16(eeprom, 1958 EEPROM_LED_POLARITY_RDY_A)); 1959 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1960 1961 return 0; 1962 } 1963 1964 /* 1965 * RF value list for RF2528 1966 * Supports: 2.4 GHz 1967 */ 1968 static const struct rf_channel rf_vals_bg_2528[] = { 1969 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, 1970 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, 1971 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, 1972 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, 1973 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, 1974 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, 1975 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, 1976 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, 1977 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, 1978 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, 1979 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, 1980 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, 1981 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, 1982 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, 1983 }; 1984 1985 /* 1986 * RF value list for RF5226 1987 * Supports: 2.4 GHz & 5.2 GHz 1988 */ 1989 static const struct rf_channel rf_vals_5226[] = { 1990 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, 1991 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, 1992 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, 1993 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, 1994 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, 1995 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, 1996 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, 1997 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, 1998 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, 1999 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, 2000 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, 2001 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, 2002 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, 2003 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, 2004 2005 /* 802.11 UNI / HyperLan 2 */ 2006 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, 2007 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, 2008 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, 2009 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, 2010 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, 2011 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, 2012 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, 2013 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, 2014 2015 /* 802.11 HyperLan 2 */ 2016 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, 2017 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, 2018 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, 2019 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, 2020 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, 2021 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, 2022 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, 2023 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, 2024 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, 2025 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, 2026 2027 /* 802.11 UNII */ 2028 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, 2029 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, 2030 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, 2031 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, 2032 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, 2033 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, 2034 2035 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2036 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, 2037 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, 2038 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, 2039 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, 2040 }; 2041 2042 /* 2043 * RF value list for RF5225 & RF2527 2044 * Supports: 2.4 GHz & 5.2 GHz 2045 */ 2046 static const struct rf_channel rf_vals_5225_2527[] = { 2047 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, 2048 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, 2049 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, 2050 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, 2051 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, 2052 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, 2053 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, 2054 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, 2055 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, 2056 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, 2057 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, 2058 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, 2059 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, 2060 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, 2061 2062 /* 802.11 UNI / HyperLan 2 */ 2063 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, 2064 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, 2065 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, 2066 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, 2067 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, 2068 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, 2069 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, 2070 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, 2071 2072 /* 802.11 HyperLan 2 */ 2073 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, 2074 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, 2075 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, 2076 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, 2077 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, 2078 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, 2079 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, 2080 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, 2081 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, 2082 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, 2083 2084 /* 802.11 UNII */ 2085 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, 2086 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, 2087 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, 2088 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, 2089 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, 2090 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, 2091 2092 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2093 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, 2094 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, 2095 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, 2096 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, 2097 }; 2098 2099 2100 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 2101 { 2102 struct hw_mode_spec *spec = &rt2x00dev->spec; 2103 struct channel_info *info; 2104 char *tx_power; 2105 unsigned int i; 2106 2107 /* 2108 * Initialize all hw fields. 2109 * 2110 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are 2111 * capable of sending the buffered frames out after the DTIM 2112 * transmission using rt2x00lib_beacondone. This will send out 2113 * multicast and broadcast traffic immediately instead of buffering it 2114 * infinitly and thus dropping it after some time. 2115 */ 2116 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 2117 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 2118 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 2119 2120 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 2121 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 2122 rt2x00_eeprom_addr(rt2x00dev, 2123 EEPROM_MAC_ADDR_0)); 2124 2125 /* 2126 * Initialize hw_mode information. 2127 */ 2128 spec->supported_bands = SUPPORT_BAND_2GHZ; 2129 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 2130 2131 if (rt2x00_rf(rt2x00dev, RF2528)) { 2132 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); 2133 spec->channels = rf_vals_bg_2528; 2134 } else if (rt2x00_rf(rt2x00dev, RF5226)) { 2135 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2136 spec->num_channels = ARRAY_SIZE(rf_vals_5226); 2137 spec->channels = rf_vals_5226; 2138 } else if (rt2x00_rf(rt2x00dev, RF2527)) { 2139 spec->num_channels = 14; 2140 spec->channels = rf_vals_5225_2527; 2141 } else if (rt2x00_rf(rt2x00dev, RF5225)) { 2142 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2143 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); 2144 spec->channels = rf_vals_5225_2527; 2145 } 2146 2147 /* 2148 * Create channel information array 2149 */ 2150 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 2151 if (!info) 2152 return -ENOMEM; 2153 2154 spec->channels_info = info; 2155 2156 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); 2157 for (i = 0; i < 14; i++) { 2158 info[i].max_power = MAX_TXPOWER; 2159 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 2160 } 2161 2162 if (spec->num_channels > 14) { 2163 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); 2164 for (i = 14; i < spec->num_channels; i++) { 2165 info[i].max_power = MAX_TXPOWER; 2166 info[i].default_power1 = 2167 TXPOWER_FROM_DEV(tx_power[i - 14]); 2168 } 2169 } 2170 2171 return 0; 2172 } 2173 2174 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) 2175 { 2176 int retval; 2177 u32 reg; 2178 2179 /* 2180 * Allocate eeprom data. 2181 */ 2182 retval = rt73usb_validate_eeprom(rt2x00dev); 2183 if (retval) 2184 return retval; 2185 2186 retval = rt73usb_init_eeprom(rt2x00dev); 2187 if (retval) 2188 return retval; 2189 2190 /* 2191 * Enable rfkill polling by setting GPIO direction of the 2192 * rfkill switch GPIO pin correctly. 2193 */ 2194 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®); 2195 rt2x00_set_field32(®, MAC_CSR13_DIR7, 0); 2196 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg); 2197 2198 /* 2199 * Initialize hw specifications. 2200 */ 2201 retval = rt73usb_probe_hw_mode(rt2x00dev); 2202 if (retval) 2203 return retval; 2204 2205 /* 2206 * This device has multiple filters for control frames, 2207 * but has no a separate filter for PS Poll frames. 2208 */ 2209 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); 2210 2211 /* 2212 * This device requires firmware. 2213 */ 2214 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); 2215 if (!modparam_nohwcrypt) 2216 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 2217 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 2218 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); 2219 2220 /* 2221 * Set the rssi offset. 2222 */ 2223 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 2224 2225 return 0; 2226 } 2227 2228 /* 2229 * IEEE80211 stack callback functions. 2230 */ 2231 static int rt73usb_conf_tx(struct ieee80211_hw *hw, 2232 struct ieee80211_vif *vif, u16 queue_idx, 2233 const struct ieee80211_tx_queue_params *params) 2234 { 2235 struct rt2x00_dev *rt2x00dev = hw->priv; 2236 struct data_queue *queue; 2237 struct rt2x00_field32 field; 2238 int retval; 2239 u32 reg; 2240 u32 offset; 2241 2242 /* 2243 * First pass the configuration through rt2x00lib, that will 2244 * update the queue settings and validate the input. After that 2245 * we are free to update the registers based on the value 2246 * in the queue parameter. 2247 */ 2248 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); 2249 if (retval) 2250 return retval; 2251 2252 /* 2253 * We only need to perform additional register initialization 2254 * for WMM queues/ 2255 */ 2256 if (queue_idx >= 4) 2257 return 0; 2258 2259 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 2260 2261 /* Update WMM TXOP register */ 2262 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); 2263 field.bit_offset = (queue_idx & 1) * 16; 2264 field.bit_mask = 0xffff << field.bit_offset; 2265 2266 rt2x00usb_register_read(rt2x00dev, offset, ®); 2267 rt2x00_set_field32(®, field, queue->txop); 2268 rt2x00usb_register_write(rt2x00dev, offset, reg); 2269 2270 /* Update WMM registers */ 2271 field.bit_offset = queue_idx * 4; 2272 field.bit_mask = 0xf << field.bit_offset; 2273 2274 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, ®); 2275 rt2x00_set_field32(®, field, queue->aifs); 2276 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg); 2277 2278 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, ®); 2279 rt2x00_set_field32(®, field, queue->cw_min); 2280 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg); 2281 2282 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, ®); 2283 rt2x00_set_field32(®, field, queue->cw_max); 2284 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg); 2285 2286 return 0; 2287 } 2288 2289 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 2290 { 2291 struct rt2x00_dev *rt2x00dev = hw->priv; 2292 u64 tsf; 2293 u32 reg; 2294 2295 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, ®); 2296 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; 2297 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, ®); 2298 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); 2299 2300 return tsf; 2301 } 2302 2303 static const struct ieee80211_ops rt73usb_mac80211_ops = { 2304 .tx = rt2x00mac_tx, 2305 .start = rt2x00mac_start, 2306 .stop = rt2x00mac_stop, 2307 .add_interface = rt2x00mac_add_interface, 2308 .remove_interface = rt2x00mac_remove_interface, 2309 .config = rt2x00mac_config, 2310 .configure_filter = rt2x00mac_configure_filter, 2311 .set_tim = rt2x00mac_set_tim, 2312 .set_key = rt2x00mac_set_key, 2313 .sw_scan_start = rt2x00mac_sw_scan_start, 2314 .sw_scan_complete = rt2x00mac_sw_scan_complete, 2315 .get_stats = rt2x00mac_get_stats, 2316 .bss_info_changed = rt2x00mac_bss_info_changed, 2317 .conf_tx = rt73usb_conf_tx, 2318 .get_tsf = rt73usb_get_tsf, 2319 .rfkill_poll = rt2x00mac_rfkill_poll, 2320 .flush = rt2x00mac_flush, 2321 .set_antenna = rt2x00mac_set_antenna, 2322 .get_antenna = rt2x00mac_get_antenna, 2323 .get_ringparam = rt2x00mac_get_ringparam, 2324 .tx_frames_pending = rt2x00mac_tx_frames_pending, 2325 }; 2326 2327 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { 2328 .probe_hw = rt73usb_probe_hw, 2329 .get_firmware_name = rt73usb_get_firmware_name, 2330 .check_firmware = rt73usb_check_firmware, 2331 .load_firmware = rt73usb_load_firmware, 2332 .initialize = rt2x00usb_initialize, 2333 .uninitialize = rt2x00usb_uninitialize, 2334 .clear_entry = rt2x00usb_clear_entry, 2335 .set_device_state = rt73usb_set_device_state, 2336 .rfkill_poll = rt73usb_rfkill_poll, 2337 .link_stats = rt73usb_link_stats, 2338 .reset_tuner = rt73usb_reset_tuner, 2339 .link_tuner = rt73usb_link_tuner, 2340 .watchdog = rt2x00usb_watchdog, 2341 .start_queue = rt73usb_start_queue, 2342 .kick_queue = rt2x00usb_kick_queue, 2343 .stop_queue = rt73usb_stop_queue, 2344 .flush_queue = rt2x00usb_flush_queue, 2345 .write_tx_desc = rt73usb_write_tx_desc, 2346 .write_beacon = rt73usb_write_beacon, 2347 .clear_beacon = rt73usb_clear_beacon, 2348 .get_tx_data_len = rt73usb_get_tx_data_len, 2349 .fill_rxdone = rt73usb_fill_rxdone, 2350 .config_shared_key = rt73usb_config_shared_key, 2351 .config_pairwise_key = rt73usb_config_pairwise_key, 2352 .config_filter = rt73usb_config_filter, 2353 .config_intf = rt73usb_config_intf, 2354 .config_erp = rt73usb_config_erp, 2355 .config_ant = rt73usb_config_ant, 2356 .config = rt73usb_config, 2357 }; 2358 2359 static void rt73usb_queue_init(struct data_queue *queue) 2360 { 2361 switch (queue->qid) { 2362 case QID_RX: 2363 queue->limit = 32; 2364 queue->data_size = DATA_FRAME_SIZE; 2365 queue->desc_size = RXD_DESC_SIZE; 2366 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2367 break; 2368 2369 case QID_AC_VO: 2370 case QID_AC_VI: 2371 case QID_AC_BE: 2372 case QID_AC_BK: 2373 queue->limit = 32; 2374 queue->data_size = DATA_FRAME_SIZE; 2375 queue->desc_size = TXD_DESC_SIZE; 2376 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2377 break; 2378 2379 case QID_BEACON: 2380 queue->limit = 4; 2381 queue->data_size = MGMT_FRAME_SIZE; 2382 queue->desc_size = TXINFO_SIZE; 2383 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2384 break; 2385 2386 case QID_ATIM: 2387 /* fallthrough */ 2388 default: 2389 BUG(); 2390 break; 2391 } 2392 } 2393 2394 static const struct rt2x00_ops rt73usb_ops = { 2395 .name = KBUILD_MODNAME, 2396 .max_ap_intf = 4, 2397 .eeprom_size = EEPROM_SIZE, 2398 .rf_size = RF_SIZE, 2399 .tx_queues = NUM_TX_QUEUES, 2400 .queue_init = rt73usb_queue_init, 2401 .lib = &rt73usb_rt2x00_ops, 2402 .hw = &rt73usb_mac80211_ops, 2403 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 2404 .debugfs = &rt73usb_rt2x00debug, 2405 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 2406 }; 2407 2408 /* 2409 * rt73usb module information. 2410 */ 2411 static struct usb_device_id rt73usb_device_table[] = { 2412 /* AboCom */ 2413 { USB_DEVICE(0x07b8, 0xb21b) }, 2414 { USB_DEVICE(0x07b8, 0xb21c) }, 2415 { USB_DEVICE(0x07b8, 0xb21d) }, 2416 { USB_DEVICE(0x07b8, 0xb21e) }, 2417 { USB_DEVICE(0x07b8, 0xb21f) }, 2418 /* AL */ 2419 { USB_DEVICE(0x14b2, 0x3c10) }, 2420 /* Amigo */ 2421 { USB_DEVICE(0x148f, 0x9021) }, 2422 { USB_DEVICE(0x0eb0, 0x9021) }, 2423 /* AMIT */ 2424 { USB_DEVICE(0x18c5, 0x0002) }, 2425 /* Askey */ 2426 { USB_DEVICE(0x1690, 0x0722) }, 2427 /* ASUS */ 2428 { USB_DEVICE(0x0b05, 0x1723) }, 2429 { USB_DEVICE(0x0b05, 0x1724) }, 2430 /* Belkin */ 2431 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */ 2432 { USB_DEVICE(0x050d, 0x705a) }, 2433 { USB_DEVICE(0x050d, 0x905b) }, 2434 { USB_DEVICE(0x050d, 0x905c) }, 2435 /* Billionton */ 2436 { USB_DEVICE(0x1631, 0xc019) }, 2437 { USB_DEVICE(0x08dd, 0x0120) }, 2438 /* Buffalo */ 2439 { USB_DEVICE(0x0411, 0x00d8) }, 2440 { USB_DEVICE(0x0411, 0x00d9) }, 2441 { USB_DEVICE(0x0411, 0x00e6) }, 2442 { USB_DEVICE(0x0411, 0x00f4) }, 2443 { USB_DEVICE(0x0411, 0x0116) }, 2444 { USB_DEVICE(0x0411, 0x0119) }, 2445 { USB_DEVICE(0x0411, 0x0137) }, 2446 /* CEIVA */ 2447 { USB_DEVICE(0x178d, 0x02be) }, 2448 /* CNet */ 2449 { USB_DEVICE(0x1371, 0x9022) }, 2450 { USB_DEVICE(0x1371, 0x9032) }, 2451 /* Conceptronic */ 2452 { USB_DEVICE(0x14b2, 0x3c22) }, 2453 /* Corega */ 2454 { USB_DEVICE(0x07aa, 0x002e) }, 2455 /* D-Link */ 2456 { USB_DEVICE(0x07d1, 0x3c03) }, 2457 { USB_DEVICE(0x07d1, 0x3c04) }, 2458 { USB_DEVICE(0x07d1, 0x3c06) }, 2459 { USB_DEVICE(0x07d1, 0x3c07) }, 2460 /* Edimax */ 2461 { USB_DEVICE(0x7392, 0x7318) }, 2462 { USB_DEVICE(0x7392, 0x7618) }, 2463 /* EnGenius */ 2464 { USB_DEVICE(0x1740, 0x3701) }, 2465 /* Gemtek */ 2466 { USB_DEVICE(0x15a9, 0x0004) }, 2467 /* Gigabyte */ 2468 { USB_DEVICE(0x1044, 0x8008) }, 2469 { USB_DEVICE(0x1044, 0x800a) }, 2470 /* Huawei-3Com */ 2471 { USB_DEVICE(0x1472, 0x0009) }, 2472 /* Hercules */ 2473 { USB_DEVICE(0x06f8, 0xe002) }, 2474 { USB_DEVICE(0x06f8, 0xe010) }, 2475 { USB_DEVICE(0x06f8, 0xe020) }, 2476 /* Linksys */ 2477 { USB_DEVICE(0x13b1, 0x0020) }, 2478 { USB_DEVICE(0x13b1, 0x0023) }, 2479 { USB_DEVICE(0x13b1, 0x0028) }, 2480 /* MSI */ 2481 { USB_DEVICE(0x0db0, 0x4600) }, 2482 { USB_DEVICE(0x0db0, 0x6877) }, 2483 { USB_DEVICE(0x0db0, 0x6874) }, 2484 { USB_DEVICE(0x0db0, 0xa861) }, 2485 { USB_DEVICE(0x0db0, 0xa874) }, 2486 /* Ovislink */ 2487 { USB_DEVICE(0x1b75, 0x7318) }, 2488 /* Ralink */ 2489 { USB_DEVICE(0x04bb, 0x093d) }, 2490 { USB_DEVICE(0x148f, 0x2573) }, 2491 { USB_DEVICE(0x148f, 0x2671) }, 2492 { USB_DEVICE(0x0812, 0x3101) }, 2493 /* Qcom */ 2494 { USB_DEVICE(0x18e8, 0x6196) }, 2495 { USB_DEVICE(0x18e8, 0x6229) }, 2496 { USB_DEVICE(0x18e8, 0x6238) }, 2497 /* Samsung */ 2498 { USB_DEVICE(0x04e8, 0x4471) }, 2499 /* Senao */ 2500 { USB_DEVICE(0x1740, 0x7100) }, 2501 /* Sitecom */ 2502 { USB_DEVICE(0x0df6, 0x0024) }, 2503 { USB_DEVICE(0x0df6, 0x0027) }, 2504 { USB_DEVICE(0x0df6, 0x002f) }, 2505 { USB_DEVICE(0x0df6, 0x90ac) }, 2506 { USB_DEVICE(0x0df6, 0x9712) }, 2507 /* Surecom */ 2508 { USB_DEVICE(0x0769, 0x31f3) }, 2509 /* Tilgin */ 2510 { USB_DEVICE(0x6933, 0x5001) }, 2511 /* Philips */ 2512 { USB_DEVICE(0x0471, 0x200a) }, 2513 /* Planex */ 2514 { USB_DEVICE(0x2019, 0xab01) }, 2515 { USB_DEVICE(0x2019, 0xab50) }, 2516 /* WideTell */ 2517 { USB_DEVICE(0x7167, 0x3840) }, 2518 /* Zcom */ 2519 { USB_DEVICE(0x0cde, 0x001c) }, 2520 /* ZyXEL */ 2521 { USB_DEVICE(0x0586, 0x3415) }, 2522 { 0, } 2523 }; 2524 2525 MODULE_AUTHOR(DRV_PROJECT); 2526 MODULE_VERSION(DRV_VERSION); 2527 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); 2528 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); 2529 MODULE_DEVICE_TABLE(usb, rt73usb_device_table); 2530 MODULE_FIRMWARE(FIRMWARE_RT2571); 2531 MODULE_LICENSE("GPL"); 2532 2533 static int rt73usb_probe(struct usb_interface *usb_intf, 2534 const struct usb_device_id *id) 2535 { 2536 return rt2x00usb_probe(usb_intf, &rt73usb_ops); 2537 } 2538 2539 static struct usb_driver rt73usb_driver = { 2540 .name = KBUILD_MODNAME, 2541 .id_table = rt73usb_device_table, 2542 .probe = rt73usb_probe, 2543 .disconnect = rt2x00usb_disconnect, 2544 .suspend = rt2x00usb_suspend, 2545 .resume = rt2x00usb_resume, 2546 .reset_resume = rt2x00usb_resume, 2547 .disable_hub_initiated_lpm = 1, 2548 }; 2549 2550 module_usb_driver(rt73usb_driver); 2551