1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 */ 7 8 /* 9 Module: rt73usb 10 Abstract: rt73usb device specific routines. 11 Supported chipsets: rt2571W & rt2671. 12 */ 13 14 #include <linux/crc-itu-t.h> 15 #include <linux/delay.h> 16 #include <linux/etherdevice.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/usb.h> 21 22 #include "rt2x00.h" 23 #include "rt2x00usb.h" 24 #include "rt73usb.h" 25 26 /* 27 * Allow hardware encryption to be disabled. 28 */ 29 static bool modparam_nohwcrypt; 30 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); 31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 32 33 /* 34 * Register access. 35 * All access to the CSR registers will go through the methods 36 * rt2x00usb_register_read and rt2x00usb_register_write. 37 * BBP and RF register require indirect register access, 38 * and use the CSR registers BBPCSR and RFCSR to achieve this. 39 * These indirect registers work with busy bits, 40 * and we will try maximal REGISTER_BUSY_COUNT times to access 41 * the register while taking a REGISTER_BUSY_DELAY us delay 42 * between each attampt. When the busy bit is still set at that time, 43 * the access attempt is considered to have failed, 44 * and we will print an error. 45 * The _lock versions must be used if you already hold the csr_mutex 46 */ 47 #define WAIT_FOR_BBP(__dev, __reg) \ 48 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) 49 #define WAIT_FOR_RF(__dev, __reg) \ 50 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) 51 52 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, 53 const unsigned int word, const u8 value) 54 { 55 u32 reg; 56 57 mutex_lock(&rt2x00dev->csr_mutex); 58 59 /* 60 * Wait until the BBP becomes available, afterwards we 61 * can safely write the new data into the register. 62 */ 63 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 64 reg = 0; 65 rt2x00_set_field32(®, PHY_CSR3_VALUE, value); 66 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 67 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 68 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); 69 70 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); 71 } 72 73 mutex_unlock(&rt2x00dev->csr_mutex); 74 } 75 76 static u8 rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, 77 const unsigned int word) 78 { 79 u32 reg; 80 u8 value; 81 82 mutex_lock(&rt2x00dev->csr_mutex); 83 84 /* 85 * Wait until the BBP becomes available, afterwards we 86 * can safely write the read request into the register. 87 * After the data has been written, we wait until hardware 88 * returns the correct value, if at any time the register 89 * doesn't become available in time, reg will be 0xffffffff 90 * which means we return 0xff to the caller. 91 */ 92 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 93 reg = 0; 94 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 95 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 96 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); 97 98 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); 99 100 WAIT_FOR_BBP(rt2x00dev, ®); 101 } 102 103 value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); 104 105 mutex_unlock(&rt2x00dev->csr_mutex); 106 107 return value; 108 } 109 110 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, 111 const unsigned int word, const u32 value) 112 { 113 u32 reg; 114 115 mutex_lock(&rt2x00dev->csr_mutex); 116 117 /* 118 * Wait until the RF becomes available, afterwards we 119 * can safely write the new data into the register. 120 */ 121 if (WAIT_FOR_RF(rt2x00dev, ®)) { 122 reg = 0; 123 rt2x00_set_field32(®, PHY_CSR4_VALUE, value); 124 /* 125 * RF5225 and RF2527 contain 21 bits per RF register value, 126 * all others contain 20 bits. 127 */ 128 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 129 20 + (rt2x00_rf(rt2x00dev, RF5225) || 130 rt2x00_rf(rt2x00dev, RF2527))); 131 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); 132 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); 133 134 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); 135 rt2x00_rf_write(rt2x00dev, word, value); 136 } 137 138 mutex_unlock(&rt2x00dev->csr_mutex); 139 } 140 141 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 142 static const struct rt2x00debug rt73usb_rt2x00debug = { 143 .owner = THIS_MODULE, 144 .csr = { 145 .read = rt2x00usb_register_read, 146 .write = rt2x00usb_register_write, 147 .flags = RT2X00DEBUGFS_OFFSET, 148 .word_base = CSR_REG_BASE, 149 .word_size = sizeof(u32), 150 .word_count = CSR_REG_SIZE / sizeof(u32), 151 }, 152 .eeprom = { 153 .read = rt2x00_eeprom_read, 154 .write = rt2x00_eeprom_write, 155 .word_base = EEPROM_BASE, 156 .word_size = sizeof(u16), 157 .word_count = EEPROM_SIZE / sizeof(u16), 158 }, 159 .bbp = { 160 .read = rt73usb_bbp_read, 161 .write = rt73usb_bbp_write, 162 .word_base = BBP_BASE, 163 .word_size = sizeof(u8), 164 .word_count = BBP_SIZE / sizeof(u8), 165 }, 166 .rf = { 167 .read = rt2x00_rf_read, 168 .write = rt73usb_rf_write, 169 .word_base = RF_BASE, 170 .word_size = sizeof(u32), 171 .word_count = RF_SIZE / sizeof(u32), 172 }, 173 }; 174 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 175 176 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) 177 { 178 u32 reg; 179 180 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13); 181 return rt2x00_get_field32(reg, MAC_CSR13_VAL7); 182 } 183 184 #ifdef CONFIG_RT2X00_LIB_LEDS 185 static void rt73usb_brightness_set(struct led_classdev *led_cdev, 186 enum led_brightness brightness) 187 { 188 struct rt2x00_led *led = 189 container_of(led_cdev, struct rt2x00_led, led_dev); 190 unsigned int enabled = brightness != LED_OFF; 191 unsigned int a_mode = 192 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ); 193 unsigned int bg_mode = 194 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ); 195 196 if (led->type == LED_TYPE_RADIO) { 197 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 198 MCU_LEDCS_RADIO_STATUS, enabled); 199 200 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 201 0, led->rt2x00dev->led_mcu_reg, 202 REGISTER_TIMEOUT); 203 } else if (led->type == LED_TYPE_ASSOC) { 204 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 205 MCU_LEDCS_LINK_BG_STATUS, bg_mode); 206 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 207 MCU_LEDCS_LINK_A_STATUS, a_mode); 208 209 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 210 0, led->rt2x00dev->led_mcu_reg, 211 REGISTER_TIMEOUT); 212 } else if (led->type == LED_TYPE_QUALITY) { 213 /* 214 * The brightness is divided into 6 levels (0 - 5), 215 * this means we need to convert the brightness 216 * argument into the matching level within that range. 217 */ 218 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 219 brightness / (LED_FULL / 6), 220 led->rt2x00dev->led_mcu_reg, 221 REGISTER_TIMEOUT); 222 } 223 } 224 225 static int rt73usb_blink_set(struct led_classdev *led_cdev, 226 unsigned long *delay_on, 227 unsigned long *delay_off) 228 { 229 struct rt2x00_led *led = 230 container_of(led_cdev, struct rt2x00_led, led_dev); 231 u32 reg; 232 233 reg = rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14); 234 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); 235 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); 236 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg); 237 238 return 0; 239 } 240 241 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev, 242 struct rt2x00_led *led, 243 enum led_type type) 244 { 245 led->rt2x00dev = rt2x00dev; 246 led->type = type; 247 led->led_dev.brightness_set = rt73usb_brightness_set; 248 led->led_dev.blink_set = rt73usb_blink_set; 249 led->flags = LED_INITIALIZED; 250 } 251 #endif /* CONFIG_RT2X00_LIB_LEDS */ 252 253 /* 254 * Configuration handlers. 255 */ 256 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev, 257 struct rt2x00lib_crypto *crypto, 258 struct ieee80211_key_conf *key) 259 { 260 struct hw_key_entry key_entry; 261 struct rt2x00_field32 field; 262 u32 mask; 263 u32 reg; 264 265 if (crypto->cmd == SET_KEY) { 266 /* 267 * rt2x00lib can't determine the correct free 268 * key_idx for shared keys. We have 1 register 269 * with key valid bits. The goal is simple, read 270 * the register, if that is full we have no slots 271 * left. 272 * Note that each BSS is allowed to have up to 4 273 * shared keys, so put a mask over the allowed 274 * entries. 275 */ 276 mask = (0xf << crypto->bssidx); 277 278 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0); 279 reg &= mask; 280 281 if (reg && reg == mask) 282 return -ENOSPC; 283 284 key->hw_key_idx += reg ? ffz(reg) : 0; 285 286 /* 287 * Upload key to hardware 288 */ 289 memcpy(key_entry.key, crypto->key, 290 sizeof(key_entry.key)); 291 memcpy(key_entry.tx_mic, crypto->tx_mic, 292 sizeof(key_entry.tx_mic)); 293 memcpy(key_entry.rx_mic, crypto->rx_mic, 294 sizeof(key_entry.rx_mic)); 295 296 reg = SHARED_KEY_ENTRY(key->hw_key_idx); 297 rt2x00usb_register_multiwrite(rt2x00dev, reg, 298 &key_entry, sizeof(key_entry)); 299 300 /* 301 * The cipher types are stored over 2 registers. 302 * bssidx 0 and 1 keys are stored in SEC_CSR1 and 303 * bssidx 1 and 2 keys are stored in SEC_CSR5. 304 * Using the correct defines correctly will cause overhead, 305 * so just calculate the correct offset. 306 */ 307 if (key->hw_key_idx < 8) { 308 field.bit_offset = (3 * key->hw_key_idx); 309 field.bit_mask = 0x7 << field.bit_offset; 310 311 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR1); 312 rt2x00_set_field32(®, field, crypto->cipher); 313 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg); 314 } else { 315 field.bit_offset = (3 * (key->hw_key_idx - 8)); 316 field.bit_mask = 0x7 << field.bit_offset; 317 318 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR5); 319 rt2x00_set_field32(®, field, crypto->cipher); 320 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg); 321 } 322 323 /* 324 * The driver does not support the IV/EIV generation 325 * in hardware. However it doesn't support the IV/EIV 326 * inside the ieee80211 frame either, but requires it 327 * to be provided separately for the descriptor. 328 * rt2x00lib will cut the IV/EIV data out of all frames 329 * given to us by mac80211, but we must tell mac80211 330 * to generate the IV/EIV data. 331 */ 332 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 333 } 334 335 /* 336 * SEC_CSR0 contains only single-bit fields to indicate 337 * a particular key is valid. Because using the FIELD32() 338 * defines directly will cause a lot of overhead we use 339 * a calculation to determine the correct bit directly. 340 */ 341 mask = 1 << key->hw_key_idx; 342 343 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0); 344 if (crypto->cmd == SET_KEY) 345 reg |= mask; 346 else if (crypto->cmd == DISABLE_KEY) 347 reg &= ~mask; 348 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg); 349 350 return 0; 351 } 352 353 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev, 354 struct rt2x00lib_crypto *crypto, 355 struct ieee80211_key_conf *key) 356 { 357 struct hw_pairwise_ta_entry addr_entry; 358 struct hw_key_entry key_entry; 359 u32 mask; 360 u32 reg; 361 362 if (crypto->cmd == SET_KEY) { 363 /* 364 * rt2x00lib can't determine the correct free 365 * key_idx for pairwise keys. We have 2 registers 366 * with key valid bits. The goal is simple, read 367 * the first register, if that is full move to 368 * the next register. 369 * When both registers are full, we drop the key, 370 * otherwise we use the first invalid entry. 371 */ 372 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2); 373 if (reg && reg == ~0) { 374 key->hw_key_idx = 32; 375 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3); 376 if (reg && reg == ~0) 377 return -ENOSPC; 378 } 379 380 key->hw_key_idx += reg ? ffz(reg) : 0; 381 382 /* 383 * Upload key to hardware 384 */ 385 memcpy(key_entry.key, crypto->key, 386 sizeof(key_entry.key)); 387 memcpy(key_entry.tx_mic, crypto->tx_mic, 388 sizeof(key_entry.tx_mic)); 389 memcpy(key_entry.rx_mic, crypto->rx_mic, 390 sizeof(key_entry.rx_mic)); 391 392 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); 393 rt2x00usb_register_multiwrite(rt2x00dev, reg, 394 &key_entry, sizeof(key_entry)); 395 396 /* 397 * Send the address and cipher type to the hardware register. 398 */ 399 memset(&addr_entry, 0, sizeof(addr_entry)); 400 memcpy(&addr_entry, crypto->address, ETH_ALEN); 401 addr_entry.cipher = crypto->cipher; 402 403 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); 404 rt2x00usb_register_multiwrite(rt2x00dev, reg, 405 &addr_entry, sizeof(addr_entry)); 406 407 /* 408 * Enable pairwise lookup table for given BSS idx, 409 * without this received frames will not be decrypted 410 * by the hardware. 411 */ 412 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR4); 413 reg |= (1 << crypto->bssidx); 414 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg); 415 416 /* 417 * The driver does not support the IV/EIV generation 418 * in hardware. However it doesn't support the IV/EIV 419 * inside the ieee80211 frame either, but requires it 420 * to be provided separately for the descriptor. 421 * rt2x00lib will cut the IV/EIV data out of all frames 422 * given to us by mac80211, but we must tell mac80211 423 * to generate the IV/EIV data. 424 */ 425 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 426 } 427 428 /* 429 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate 430 * a particular key is valid. Because using the FIELD32() 431 * defines directly will cause a lot of overhead we use 432 * a calculation to determine the correct bit directly. 433 */ 434 if (key->hw_key_idx < 32) { 435 mask = 1 << key->hw_key_idx; 436 437 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2); 438 if (crypto->cmd == SET_KEY) 439 reg |= mask; 440 else if (crypto->cmd == DISABLE_KEY) 441 reg &= ~mask; 442 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg); 443 } else { 444 mask = 1 << (key->hw_key_idx - 32); 445 446 reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3); 447 if (crypto->cmd == SET_KEY) 448 reg |= mask; 449 else if (crypto->cmd == DISABLE_KEY) 450 reg &= ~mask; 451 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg); 452 } 453 454 return 0; 455 } 456 457 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev, 458 const unsigned int filter_flags) 459 { 460 u32 reg; 461 462 /* 463 * Start configuration steps. 464 * Note that the version error will always be dropped 465 * and broadcast frames will always be accepted since 466 * there is no filter for it at this time. 467 */ 468 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 469 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, 470 !(filter_flags & FIF_FCSFAIL)); 471 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, 472 !(filter_flags & FIF_PLCPFAIL)); 473 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, 474 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); 475 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, 476 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 477 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, 478 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 479 !rt2x00dev->intf_ap_count); 480 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); 481 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, 482 !(filter_flags & FIF_ALLMULTI)); 483 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); 484 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 485 !(filter_flags & FIF_CONTROL)); 486 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 487 } 488 489 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, 490 struct rt2x00_intf *intf, 491 struct rt2x00intf_conf *conf, 492 const unsigned int flags) 493 { 494 u32 reg; 495 496 if (flags & CONFIG_UPDATE_TYPE) { 497 /* 498 * Enable synchronisation. 499 */ 500 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 501 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); 502 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 503 } 504 505 if (flags & CONFIG_UPDATE_MAC) { 506 reg = le32_to_cpu(conf->mac[1]); 507 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); 508 conf->mac[1] = cpu_to_le32(reg); 509 510 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2, 511 conf->mac, sizeof(conf->mac)); 512 } 513 514 if (flags & CONFIG_UPDATE_BSSID) { 515 reg = le32_to_cpu(conf->bssid[1]); 516 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); 517 conf->bssid[1] = cpu_to_le32(reg); 518 519 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4, 520 conf->bssid, sizeof(conf->bssid)); 521 } 522 } 523 524 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev, 525 struct rt2x00lib_erp *erp, 526 u32 changed) 527 { 528 u32 reg; 529 530 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 531 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); 532 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); 533 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 534 535 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 536 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4); 537 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); 538 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, 539 !!erp->short_preamble); 540 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); 541 } 542 543 if (changed & BSS_CHANGED_BASIC_RATES) 544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, 545 erp->basic_rates); 546 547 if (changed & BSS_CHANGED_BEACON_INT) { 548 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 549 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 550 erp->beacon_int * 16); 551 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 552 } 553 554 if (changed & BSS_CHANGED_ERP_SLOT) { 555 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9); 556 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); 557 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); 558 559 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR8); 560 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); 561 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); 562 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); 563 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg); 564 } 565 } 566 567 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, 568 struct antenna_setup *ant) 569 { 570 u8 r3; 571 u8 r4; 572 u8 r77; 573 u8 temp; 574 575 r3 = rt73usb_bbp_read(rt2x00dev, 3); 576 r4 = rt73usb_bbp_read(rt2x00dev, 4); 577 r77 = rt73usb_bbp_read(rt2x00dev, 77); 578 579 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); 580 581 /* 582 * Configure the RX antenna. 583 */ 584 switch (ant->rx) { 585 case ANTENNA_HW_DIVERSITY: 586 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 587 temp = !rt2x00_has_cap_frame_type(rt2x00dev) && 588 (rt2x00dev->curr_band != NL80211_BAND_5GHZ); 589 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); 590 break; 591 case ANTENNA_A: 592 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 593 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 594 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 595 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 596 else 597 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 598 break; 599 case ANTENNA_B: 600 default: 601 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 602 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 603 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 604 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 605 else 606 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 607 break; 608 } 609 610 rt73usb_bbp_write(rt2x00dev, 77, r77); 611 rt73usb_bbp_write(rt2x00dev, 3, r3); 612 rt73usb_bbp_write(rt2x00dev, 4, r4); 613 } 614 615 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, 616 struct antenna_setup *ant) 617 { 618 u8 r3; 619 u8 r4; 620 u8 r77; 621 622 r3 = rt73usb_bbp_read(rt2x00dev, 3); 623 r4 = rt73usb_bbp_read(rt2x00dev, 4); 624 r77 = rt73usb_bbp_read(rt2x00dev, 77); 625 626 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); 627 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 628 !rt2x00_has_cap_frame_type(rt2x00dev)); 629 630 /* 631 * Configure the RX antenna. 632 */ 633 switch (ant->rx) { 634 case ANTENNA_HW_DIVERSITY: 635 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 636 break; 637 case ANTENNA_A: 638 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 639 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 640 break; 641 case ANTENNA_B: 642 default: 643 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 644 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 645 break; 646 } 647 648 rt73usb_bbp_write(rt2x00dev, 77, r77); 649 rt73usb_bbp_write(rt2x00dev, 3, r3); 650 rt73usb_bbp_write(rt2x00dev, 4, r4); 651 } 652 653 struct antenna_sel { 654 u8 word; 655 /* 656 * value[0] -> non-LNA 657 * value[1] -> LNA 658 */ 659 u8 value[2]; 660 }; 661 662 static const struct antenna_sel antenna_sel_a[] = { 663 { 96, { 0x58, 0x78 } }, 664 { 104, { 0x38, 0x48 } }, 665 { 75, { 0xfe, 0x80 } }, 666 { 86, { 0xfe, 0x80 } }, 667 { 88, { 0xfe, 0x80 } }, 668 { 35, { 0x60, 0x60 } }, 669 { 97, { 0x58, 0x58 } }, 670 { 98, { 0x58, 0x58 } }, 671 }; 672 673 static const struct antenna_sel antenna_sel_bg[] = { 674 { 96, { 0x48, 0x68 } }, 675 { 104, { 0x2c, 0x3c } }, 676 { 75, { 0xfe, 0x80 } }, 677 { 86, { 0xfe, 0x80 } }, 678 { 88, { 0xfe, 0x80 } }, 679 { 35, { 0x50, 0x50 } }, 680 { 97, { 0x48, 0x48 } }, 681 { 98, { 0x48, 0x48 } }, 682 }; 683 684 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev, 685 struct antenna_setup *ant) 686 { 687 const struct antenna_sel *sel; 688 unsigned int lna; 689 unsigned int i; 690 u32 reg; 691 692 /* 693 * We should never come here because rt2x00lib is supposed 694 * to catch this and send us the correct antenna explicitely. 695 */ 696 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 697 ant->tx == ANTENNA_SW_DIVERSITY); 698 699 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 700 sel = antenna_sel_a; 701 lna = rt2x00_has_cap_external_lna_a(rt2x00dev); 702 } else { 703 sel = antenna_sel_bg; 704 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); 705 } 706 707 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) 708 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); 709 710 reg = rt2x00usb_register_read(rt2x00dev, PHY_CSR0); 711 712 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 713 (rt2x00dev->curr_band == NL80211_BAND_2GHZ)); 714 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 715 (rt2x00dev->curr_band == NL80211_BAND_5GHZ)); 716 717 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg); 718 719 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225)) 720 rt73usb_config_antenna_5x(rt2x00dev, ant); 721 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527)) 722 rt73usb_config_antenna_2x(rt2x00dev, ant); 723 } 724 725 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev, 726 struct rt2x00lib_conf *libconf) 727 { 728 u16 eeprom; 729 short lna_gain = 0; 730 731 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) { 732 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) 733 lna_gain += 14; 734 735 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); 736 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); 737 } else { 738 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); 739 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); 740 } 741 742 rt2x00dev->lna_gain = lna_gain; 743 } 744 745 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, 746 struct rf_channel *rf, const int txpower) 747 { 748 u8 r3; 749 u8 r94; 750 u8 smart; 751 752 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 753 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); 754 755 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); 756 757 r3 = rt73usb_bbp_read(rt2x00dev, 3); 758 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); 759 rt73usb_bbp_write(rt2x00dev, 3, r3); 760 761 r94 = 6; 762 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) 763 r94 += txpower - MAX_TXPOWER; 764 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) 765 r94 += txpower; 766 rt73usb_bbp_write(rt2x00dev, 94, r94); 767 768 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 769 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 770 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 771 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 772 773 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 774 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 775 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); 776 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 777 778 rt73usb_rf_write(rt2x00dev, 1, rf->rf1); 779 rt73usb_rf_write(rt2x00dev, 2, rf->rf2); 780 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 781 rt73usb_rf_write(rt2x00dev, 4, rf->rf4); 782 783 udelay(10); 784 } 785 786 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, 787 const int txpower) 788 { 789 struct rf_channel rf; 790 791 rf.rf1 = rt2x00_rf_read(rt2x00dev, 1); 792 rf.rf2 = rt2x00_rf_read(rt2x00dev, 2); 793 rf.rf3 = rt2x00_rf_read(rt2x00dev, 3); 794 rf.rf4 = rt2x00_rf_read(rt2x00dev, 4); 795 796 rt73usb_config_channel(rt2x00dev, &rf, txpower); 797 } 798 799 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev, 800 struct rt2x00lib_conf *libconf) 801 { 802 u32 reg; 803 804 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4); 805 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); 806 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); 807 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); 808 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, 809 libconf->conf->long_frame_max_tx_count); 810 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, 811 libconf->conf->short_frame_max_tx_count); 812 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); 813 } 814 815 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev, 816 struct rt2x00lib_conf *libconf) 817 { 818 enum dev_state state = 819 (libconf->conf->flags & IEEE80211_CONF_PS) ? 820 STATE_SLEEP : STATE_AWAKE; 821 u32 reg; 822 823 if (state == STATE_SLEEP) { 824 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11); 825 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 826 rt2x00dev->beacon_int - 10); 827 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 828 libconf->conf->listen_interval - 1); 829 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); 830 831 /* We must first disable autowake before it can be enabled */ 832 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 833 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 834 835 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); 836 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 837 838 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, 839 USB_MODE_SLEEP, REGISTER_TIMEOUT); 840 } else { 841 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11); 842 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); 843 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); 844 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 845 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); 846 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); 847 848 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, 849 USB_MODE_WAKEUP, REGISTER_TIMEOUT); 850 } 851 } 852 853 static void rt73usb_config(struct rt2x00_dev *rt2x00dev, 854 struct rt2x00lib_conf *libconf, 855 const unsigned int flags) 856 { 857 /* Always recalculate LNA gain before changing configuration */ 858 rt73usb_config_lna_gain(rt2x00dev, libconf); 859 860 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 861 rt73usb_config_channel(rt2x00dev, &libconf->rf, 862 libconf->conf->power_level); 863 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 864 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 865 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); 866 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 867 rt73usb_config_retry_limit(rt2x00dev, libconf); 868 if (flags & IEEE80211_CONF_CHANGE_PS) 869 rt73usb_config_ps(rt2x00dev, libconf); 870 } 871 872 /* 873 * Link tuning 874 */ 875 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, 876 struct link_qual *qual) 877 { 878 u32 reg; 879 880 /* 881 * Update FCS error count from register. 882 */ 883 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0); 884 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); 885 886 /* 887 * Update False CCA count from register. 888 */ 889 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1); 890 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); 891 } 892 893 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev, 894 struct link_qual *qual, u8 vgc_level) 895 { 896 if (qual->vgc_level != vgc_level) { 897 rt73usb_bbp_write(rt2x00dev, 17, vgc_level); 898 qual->vgc_level = vgc_level; 899 qual->vgc_level_reg = vgc_level; 900 } 901 } 902 903 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev, 904 struct link_qual *qual) 905 { 906 rt73usb_set_vgc(rt2x00dev, qual, 0x20); 907 } 908 909 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev, 910 struct link_qual *qual, const u32 count) 911 { 912 u8 up_bound; 913 u8 low_bound; 914 915 /* 916 * Determine r17 bounds. 917 */ 918 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 919 low_bound = 0x28; 920 up_bound = 0x48; 921 922 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 923 low_bound += 0x10; 924 up_bound += 0x10; 925 } 926 } else { 927 if (qual->rssi > -82) { 928 low_bound = 0x1c; 929 up_bound = 0x40; 930 } else if (qual->rssi > -84) { 931 low_bound = 0x1c; 932 up_bound = 0x20; 933 } else { 934 low_bound = 0x1c; 935 up_bound = 0x1c; 936 } 937 938 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { 939 low_bound += 0x14; 940 up_bound += 0x10; 941 } 942 } 943 944 /* 945 * If we are not associated, we should go straight to the 946 * dynamic CCA tuning. 947 */ 948 if (!rt2x00dev->intf_associated) 949 goto dynamic_cca_tune; 950 951 /* 952 * Special big-R17 for very short distance 953 */ 954 if (qual->rssi > -35) { 955 rt73usb_set_vgc(rt2x00dev, qual, 0x60); 956 return; 957 } 958 959 /* 960 * Special big-R17 for short distance 961 */ 962 if (qual->rssi >= -58) { 963 rt73usb_set_vgc(rt2x00dev, qual, up_bound); 964 return; 965 } 966 967 /* 968 * Special big-R17 for middle-short distance 969 */ 970 if (qual->rssi >= -66) { 971 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10); 972 return; 973 } 974 975 /* 976 * Special mid-R17 for middle distance 977 */ 978 if (qual->rssi >= -74) { 979 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08); 980 return; 981 } 982 983 /* 984 * Special case: Change up_bound based on the rssi. 985 * Lower up_bound when rssi is weaker then -74 dBm. 986 */ 987 up_bound -= 2 * (-74 - qual->rssi); 988 if (low_bound > up_bound) 989 up_bound = low_bound; 990 991 if (qual->vgc_level > up_bound) { 992 rt73usb_set_vgc(rt2x00dev, qual, up_bound); 993 return; 994 } 995 996 dynamic_cca_tune: 997 998 /* 999 * r17 does not yet exceed upper limit, continue and base 1000 * the r17 tuning on the false CCA count. 1001 */ 1002 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) 1003 rt73usb_set_vgc(rt2x00dev, qual, 1004 min_t(u8, qual->vgc_level + 4, up_bound)); 1005 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) 1006 rt73usb_set_vgc(rt2x00dev, qual, 1007 max_t(u8, qual->vgc_level - 4, low_bound)); 1008 } 1009 1010 /* 1011 * Queue handlers. 1012 */ 1013 static void rt73usb_start_queue(struct data_queue *queue) 1014 { 1015 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1016 u32 reg; 1017 1018 switch (queue->qid) { 1019 case QID_RX: 1020 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 1021 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1022 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1023 break; 1024 case QID_BEACON: 1025 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1026 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); 1027 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); 1028 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1029 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1030 break; 1031 default: 1032 break; 1033 } 1034 } 1035 1036 static void rt73usb_stop_queue(struct data_queue *queue) 1037 { 1038 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1039 u32 reg; 1040 1041 switch (queue->qid) { 1042 case QID_RX: 1043 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 1044 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); 1045 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1046 break; 1047 case QID_BEACON: 1048 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1049 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1050 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1051 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1052 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1053 break; 1054 default: 1055 break; 1056 } 1057 } 1058 1059 /* 1060 * Firmware functions 1061 */ 1062 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) 1063 { 1064 return FIRMWARE_RT2571; 1065 } 1066 1067 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev, 1068 const u8 *data, const size_t len) 1069 { 1070 u16 fw_crc; 1071 u16 crc; 1072 1073 /* 1074 * Only support 2kb firmware files. 1075 */ 1076 if (len != 2048) 1077 return FW_BAD_LENGTH; 1078 1079 /* 1080 * The last 2 bytes in the firmware array are the crc checksum itself, 1081 * this means that we should never pass those 2 bytes to the crc 1082 * algorithm. 1083 */ 1084 fw_crc = (data[len - 2] << 8 | data[len - 1]); 1085 1086 /* 1087 * Use the crc itu-t algorithm. 1088 */ 1089 crc = crc_itu_t(0, data, len - 2); 1090 crc = crc_itu_t_byte(crc, 0); 1091 crc = crc_itu_t_byte(crc, 0); 1092 1093 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; 1094 } 1095 1096 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, 1097 const u8 *data, const size_t len) 1098 { 1099 unsigned int i; 1100 int status; 1101 u32 reg; 1102 1103 /* 1104 * Wait for stable hardware. 1105 */ 1106 for (i = 0; i < 100; i++) { 1107 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0); 1108 if (reg) 1109 break; 1110 msleep(1); 1111 } 1112 1113 if (!reg) { 1114 rt2x00_err(rt2x00dev, "Unstable hardware\n"); 1115 return -EBUSY; 1116 } 1117 1118 /* 1119 * Write firmware to device. 1120 */ 1121 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); 1122 1123 /* 1124 * Send firmware request to device to load firmware, 1125 * we need to specify a long timeout time. 1126 */ 1127 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 1128 0, USB_MODE_FIRMWARE, 1129 REGISTER_TIMEOUT_FIRMWARE); 1130 if (status < 0) { 1131 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n"); 1132 return status; 1133 } 1134 1135 return 0; 1136 } 1137 1138 /* 1139 * Initialization functions. 1140 */ 1141 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) 1142 { 1143 u32 reg; 1144 1145 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0); 1146 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); 1147 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1148 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); 1149 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); 1150 1151 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR1); 1152 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ 1153 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); 1154 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ 1155 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); 1156 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ 1157 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); 1158 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ 1159 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); 1160 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg); 1161 1162 /* 1163 * CCK TXD BBP registers 1164 */ 1165 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR2); 1166 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); 1167 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); 1168 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); 1169 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); 1170 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); 1171 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); 1172 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); 1173 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); 1174 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg); 1175 1176 /* 1177 * OFDM TXD BBP registers 1178 */ 1179 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR3); 1180 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); 1181 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); 1182 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); 1183 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); 1184 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); 1185 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); 1186 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg); 1187 1188 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR7); 1189 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); 1190 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); 1191 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); 1192 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); 1193 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg); 1194 1195 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR8); 1196 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); 1197 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); 1198 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); 1199 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); 1200 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg); 1201 1202 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1203 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); 1204 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1205 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); 1206 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1207 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1208 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); 1209 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1210 1211 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); 1212 1213 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR6); 1214 rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); 1215 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg); 1216 1217 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); 1218 1219 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 1220 return -EBUSY; 1221 1222 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); 1223 1224 /* 1225 * Invalidate all Shared Keys (SEC_CSR0), 1226 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) 1227 */ 1228 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); 1229 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); 1230 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); 1231 1232 reg = 0x000023b0; 1233 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)) 1234 rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); 1235 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg); 1236 1237 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); 1238 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); 1239 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); 1240 1241 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9); 1242 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); 1243 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); 1244 1245 /* 1246 * Clear all beacons 1247 * For the Beacon base registers we only need to clear 1248 * the first byte since that byte contains the VALID and OWNER 1249 * bits which (when set to 0) will invalidate the entire beacon. 1250 */ 1251 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); 1252 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); 1253 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); 1254 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); 1255 1256 /* 1257 * We must clear the error counters. 1258 * These registers are cleared on read, 1259 * so we may pass a useless variable to store the value. 1260 */ 1261 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0); 1262 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1); 1263 reg = rt2x00usb_register_read(rt2x00dev, STA_CSR2); 1264 1265 /* 1266 * Reset MAC and BBP registers. 1267 */ 1268 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); 1269 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); 1270 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); 1271 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1272 1273 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); 1274 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); 1275 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); 1276 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1277 1278 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1); 1279 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); 1280 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); 1281 1282 return 0; 1283 } 1284 1285 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 1286 { 1287 unsigned int i; 1288 u8 value; 1289 1290 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 1291 value = rt73usb_bbp_read(rt2x00dev, 0); 1292 if ((value != 0xff) && (value != 0x00)) 1293 return 0; 1294 udelay(REGISTER_BUSY_DELAY); 1295 } 1296 1297 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 1298 return -EACCES; 1299 } 1300 1301 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) 1302 { 1303 unsigned int i; 1304 u16 eeprom; 1305 u8 reg_id; 1306 u8 value; 1307 1308 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev))) 1309 return -EACCES; 1310 1311 rt73usb_bbp_write(rt2x00dev, 3, 0x80); 1312 rt73usb_bbp_write(rt2x00dev, 15, 0x30); 1313 rt73usb_bbp_write(rt2x00dev, 21, 0xc8); 1314 rt73usb_bbp_write(rt2x00dev, 22, 0x38); 1315 rt73usb_bbp_write(rt2x00dev, 23, 0x06); 1316 rt73usb_bbp_write(rt2x00dev, 24, 0xfe); 1317 rt73usb_bbp_write(rt2x00dev, 25, 0x0a); 1318 rt73usb_bbp_write(rt2x00dev, 26, 0x0d); 1319 rt73usb_bbp_write(rt2x00dev, 32, 0x0b); 1320 rt73usb_bbp_write(rt2x00dev, 34, 0x12); 1321 rt73usb_bbp_write(rt2x00dev, 37, 0x07); 1322 rt73usb_bbp_write(rt2x00dev, 39, 0xf8); 1323 rt73usb_bbp_write(rt2x00dev, 41, 0x60); 1324 rt73usb_bbp_write(rt2x00dev, 53, 0x10); 1325 rt73usb_bbp_write(rt2x00dev, 54, 0x18); 1326 rt73usb_bbp_write(rt2x00dev, 60, 0x10); 1327 rt73usb_bbp_write(rt2x00dev, 61, 0x04); 1328 rt73usb_bbp_write(rt2x00dev, 62, 0x04); 1329 rt73usb_bbp_write(rt2x00dev, 75, 0xfe); 1330 rt73usb_bbp_write(rt2x00dev, 86, 0xfe); 1331 rt73usb_bbp_write(rt2x00dev, 88, 0xfe); 1332 rt73usb_bbp_write(rt2x00dev, 90, 0x0f); 1333 rt73usb_bbp_write(rt2x00dev, 99, 0x00); 1334 rt73usb_bbp_write(rt2x00dev, 102, 0x16); 1335 rt73usb_bbp_write(rt2x00dev, 107, 0x04); 1336 1337 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 1338 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); 1339 1340 if (eeprom != 0xffff && eeprom != 0x0000) { 1341 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 1342 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 1343 rt73usb_bbp_write(rt2x00dev, reg_id, value); 1344 } 1345 } 1346 1347 return 0; 1348 } 1349 1350 /* 1351 * Device state switch handlers. 1352 */ 1353 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) 1354 { 1355 /* 1356 * Initialize all registers. 1357 */ 1358 if (unlikely(rt73usb_init_registers(rt2x00dev) || 1359 rt73usb_init_bbp(rt2x00dev))) 1360 return -EIO; 1361 1362 return 0; 1363 } 1364 1365 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) 1366 { 1367 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); 1368 1369 /* 1370 * Disable synchronisation. 1371 */ 1372 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0); 1373 1374 rt2x00usb_disable_radio(rt2x00dev); 1375 } 1376 1377 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) 1378 { 1379 u32 reg, reg2; 1380 unsigned int i; 1381 char put_to_sleep; 1382 1383 put_to_sleep = (state != STATE_AWAKE); 1384 1385 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR12); 1386 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); 1387 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); 1388 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); 1389 1390 /* 1391 * Device is not guaranteed to be in the requested state yet. 1392 * We must wait until the register indicates that the 1393 * device has entered the correct state. 1394 */ 1395 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1396 reg2 = rt2x00usb_register_read(rt2x00dev, MAC_CSR12); 1397 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); 1398 if (state == !put_to_sleep) 1399 return 0; 1400 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); 1401 msleep(10); 1402 } 1403 1404 return -EBUSY; 1405 } 1406 1407 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, 1408 enum dev_state state) 1409 { 1410 int retval = 0; 1411 1412 switch (state) { 1413 case STATE_RADIO_ON: 1414 retval = rt73usb_enable_radio(rt2x00dev); 1415 break; 1416 case STATE_RADIO_OFF: 1417 rt73usb_disable_radio(rt2x00dev); 1418 break; 1419 case STATE_RADIO_IRQ_ON: 1420 case STATE_RADIO_IRQ_OFF: 1421 /* No support, but no error either */ 1422 break; 1423 case STATE_DEEP_SLEEP: 1424 case STATE_SLEEP: 1425 case STATE_STANDBY: 1426 case STATE_AWAKE: 1427 retval = rt73usb_set_state(rt2x00dev, state); 1428 break; 1429 default: 1430 retval = -ENOTSUPP; 1431 break; 1432 } 1433 1434 if (unlikely(retval)) 1435 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1436 state, retval); 1437 1438 return retval; 1439 } 1440 1441 /* 1442 * TX descriptor initialization 1443 */ 1444 static void rt73usb_write_tx_desc(struct queue_entry *entry, 1445 struct txentry_desc *txdesc) 1446 { 1447 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1448 __le32 *txd = (__le32 *) entry->skb->data; 1449 u32 word; 1450 1451 /* 1452 * Start writing the descriptor words. 1453 */ 1454 word = rt2x00_desc_read(txd, 0); 1455 rt2x00_set_field32(&word, TXD_W0_BURST, 1456 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1457 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1458 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1459 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1460 rt2x00_set_field32(&word, TXD_W0_ACK, 1461 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1462 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1463 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1464 rt2x00_set_field32(&word, TXD_W0_OFDM, 1465 (txdesc->rate_mode == RATE_MODE_OFDM)); 1466 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1467 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1468 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1469 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 1470 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); 1471 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, 1472 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); 1473 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); 1474 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1475 rt2x00_set_field32(&word, TXD_W0_BURST2, 1476 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1477 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); 1478 rt2x00_desc_write(txd, 0, word); 1479 1480 word = rt2x00_desc_read(txd, 1); 1481 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); 1482 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); 1483 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1484 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1485 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1486 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1487 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); 1488 rt2x00_desc_write(txd, 1, word); 1489 1490 word = rt2x00_desc_read(txd, 2); 1491 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1492 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1493 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1494 txdesc->u.plcp.length_low); 1495 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1496 txdesc->u.plcp.length_high); 1497 rt2x00_desc_write(txd, 2, word); 1498 1499 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1500 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1501 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1502 } 1503 1504 word = rt2x00_desc_read(txd, 5); 1505 rt2x00_set_field32(&word, TXD_W5_TX_POWER, 1506 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); 1507 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); 1508 rt2x00_desc_write(txd, 5, word); 1509 1510 /* 1511 * Register descriptor details in skb frame descriptor. 1512 */ 1513 skbdesc->flags |= SKBDESC_DESC_IN_SKB; 1514 skbdesc->desc = txd; 1515 skbdesc->desc_len = TXD_DESC_SIZE; 1516 } 1517 1518 /* 1519 * TX data initialization 1520 */ 1521 static void rt73usb_write_beacon(struct queue_entry *entry, 1522 struct txentry_desc *txdesc) 1523 { 1524 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1525 unsigned int beacon_base; 1526 unsigned int padding_len; 1527 u32 orig_reg, reg; 1528 1529 /* 1530 * Disable beaconing while we are reloading the beacon data, 1531 * otherwise we might be sending out invalid data. 1532 */ 1533 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1534 orig_reg = reg; 1535 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1536 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1537 1538 /* 1539 * Add space for the descriptor in front of the skb. 1540 */ 1541 skb_push(entry->skb, TXD_DESC_SIZE); 1542 memset(entry->skb->data, 0, TXD_DESC_SIZE); 1543 1544 /* 1545 * Write the TX descriptor for the beacon. 1546 */ 1547 rt73usb_write_tx_desc(entry, txdesc); 1548 1549 /* 1550 * Dump beacon to userspace through debugfs. 1551 */ 1552 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); 1553 1554 /* 1555 * Write entire beacon with descriptor and padding to register. 1556 */ 1557 padding_len = roundup(entry->skb->len, 4) - entry->skb->len; 1558 if (padding_len && skb_pad(entry->skb, padding_len)) { 1559 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); 1560 /* skb freed by skb_pad() on failure */ 1561 entry->skb = NULL; 1562 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1563 return; 1564 } 1565 1566 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 1567 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, 1568 entry->skb->len + padding_len); 1569 1570 /* 1571 * Enable beaconing again. 1572 * 1573 * For Wi-Fi faily generated beacons between participating stations. 1574 * Set TBTT phase adaptive adjustment step to 8us (default 16us) 1575 */ 1576 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); 1577 1578 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1579 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1580 1581 /* 1582 * Clean up the beacon skb. 1583 */ 1584 dev_kfree_skb(entry->skb); 1585 entry->skb = NULL; 1586 } 1587 1588 static void rt73usb_clear_beacon(struct queue_entry *entry) 1589 { 1590 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1591 unsigned int beacon_base; 1592 u32 orig_reg, reg; 1593 1594 /* 1595 * Disable beaconing while we are reloading the beacon data, 1596 * otherwise we might be sending out invalid data. 1597 */ 1598 orig_reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9); 1599 reg = orig_reg; 1600 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1601 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); 1602 1603 /* 1604 * Clear beacon. 1605 */ 1606 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 1607 rt2x00usb_register_write(rt2x00dev, beacon_base, 0); 1608 1609 /* 1610 * Restore beaconing state. 1611 */ 1612 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1613 } 1614 1615 static int rt73usb_get_tx_data_len(struct queue_entry *entry) 1616 { 1617 int length; 1618 1619 /* 1620 * The length _must_ be a multiple of 4, 1621 * but it must _not_ be a multiple of the USB packet size. 1622 */ 1623 length = roundup(entry->skb->len, 4); 1624 length += (4 * !(length % entry->queue->usb_maxpacket)); 1625 1626 return length; 1627 } 1628 1629 /* 1630 * RX control handlers 1631 */ 1632 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) 1633 { 1634 u8 offset = rt2x00dev->lna_gain; 1635 u8 lna; 1636 1637 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); 1638 switch (lna) { 1639 case 3: 1640 offset += 90; 1641 break; 1642 case 2: 1643 offset += 74; 1644 break; 1645 case 1: 1646 offset += 64; 1647 break; 1648 default: 1649 return 0; 1650 } 1651 1652 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 1653 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 1654 if (lna == 3 || lna == 2) 1655 offset += 10; 1656 } else { 1657 if (lna == 3) 1658 offset += 6; 1659 else if (lna == 2) 1660 offset += 8; 1661 } 1662 } 1663 1664 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; 1665 } 1666 1667 static void rt73usb_fill_rxdone(struct queue_entry *entry, 1668 struct rxdone_entry_desc *rxdesc) 1669 { 1670 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1671 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1672 __le32 *rxd = (__le32 *)entry->skb->data; 1673 u32 word0; 1674 u32 word1; 1675 1676 /* 1677 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of 1678 * frame data in rt2x00usb. 1679 */ 1680 memcpy(skbdesc->desc, rxd, skbdesc->desc_len); 1681 rxd = (__le32 *)skbdesc->desc; 1682 1683 /* 1684 * It is now safe to read the descriptor on all architectures. 1685 */ 1686 word0 = rt2x00_desc_read(rxd, 0); 1687 word1 = rt2x00_desc_read(rxd, 1); 1688 1689 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1690 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1691 1692 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); 1693 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); 1694 1695 if (rxdesc->cipher != CIPHER_NONE) { 1696 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2); 1697 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3); 1698 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 1699 1700 rxdesc->icv = _rt2x00_desc_read(rxd, 4); 1701 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; 1702 1703 /* 1704 * Hardware has stripped IV/EIV data from 802.11 frame during 1705 * decryption. It has provided the data separately but rt2x00lib 1706 * should decide if it should be reinserted. 1707 */ 1708 rxdesc->flags |= RX_FLAG_IV_STRIPPED; 1709 1710 /* 1711 * The hardware has already checked the Michael Mic and has 1712 * stripped it from the frame. Signal this to mac80211. 1713 */ 1714 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 1715 1716 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 1717 rxdesc->flags |= RX_FLAG_DECRYPTED; 1718 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 1719 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 1720 } 1721 1722 /* 1723 * Obtain the status about this packet. 1724 * When frame was received with an OFDM bitrate, 1725 * the signal is the PLCP value. If it was received with 1726 * a CCK bitrate the signal is the rate in 100kbit/s. 1727 */ 1728 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 1729 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1); 1730 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1731 1732 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1733 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1734 else 1735 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1736 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1737 rxdesc->dev_flags |= RXDONE_MY_BSS; 1738 1739 /* 1740 * Set skb pointers, and update frame information. 1741 */ 1742 skb_pull(entry->skb, entry->queue->desc_size); 1743 skb_trim(entry->skb, rxdesc->size); 1744 } 1745 1746 /* 1747 * Device probe functions. 1748 */ 1749 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1750 { 1751 u16 word; 1752 u8 *mac; 1753 s8 value; 1754 1755 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); 1756 1757 /* 1758 * Start validation of the data that has been read. 1759 */ 1760 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1761 rt2x00lib_set_mac_address(rt2x00dev, mac); 1762 1763 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1764 if (word == 0xffff) { 1765 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1766 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1767 ANTENNA_B); 1768 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1769 ANTENNA_B); 1770 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); 1771 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1772 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1773 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); 1774 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1775 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 1776 } 1777 1778 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 1779 if (word == 0xffff) { 1780 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); 1781 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1782 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 1783 } 1784 1785 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); 1786 if (word == 0xffff) { 1787 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); 1788 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); 1789 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); 1790 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); 1791 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); 1792 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); 1793 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); 1794 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); 1795 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, 1796 LED_MODE_DEFAULT); 1797 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); 1798 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); 1799 } 1800 1801 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); 1802 if (word == 0xffff) { 1803 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); 1804 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); 1805 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); 1806 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); 1807 } 1808 1809 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); 1810 if (word == 0xffff) { 1811 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 1812 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 1813 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 1814 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); 1815 } else { 1816 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); 1817 if (value < -10 || value > 10) 1818 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 1819 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); 1820 if (value < -10 || value > 10) 1821 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 1822 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 1823 } 1824 1825 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); 1826 if (word == 0xffff) { 1827 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 1828 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 1829 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 1830 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); 1831 } else { 1832 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); 1833 if (value < -10 || value > 10) 1834 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 1835 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); 1836 if (value < -10 || value > 10) 1837 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 1838 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 1839 } 1840 1841 return 0; 1842 } 1843 1844 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) 1845 { 1846 u32 reg; 1847 u16 value; 1848 u16 eeprom; 1849 1850 /* 1851 * Read EEPROM word for configuration. 1852 */ 1853 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1854 1855 /* 1856 * Identify RF chipset. 1857 */ 1858 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1859 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0); 1860 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), 1861 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); 1862 1863 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) { 1864 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); 1865 return -ENODEV; 1866 } 1867 1868 if (!rt2x00_rf(rt2x00dev, RF5226) && 1869 !rt2x00_rf(rt2x00dev, RF2528) && 1870 !rt2x00_rf(rt2x00dev, RF5225) && 1871 !rt2x00_rf(rt2x00dev, RF2527)) { 1872 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1873 return -ENODEV; 1874 } 1875 1876 /* 1877 * Identify default antenna configuration. 1878 */ 1879 rt2x00dev->default_ant.tx = 1880 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1881 rt2x00dev->default_ant.rx = 1882 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1883 1884 /* 1885 * Read the Frame type. 1886 */ 1887 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) 1888 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); 1889 1890 /* 1891 * Detect if this device has an hardware controlled radio. 1892 */ 1893 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1894 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1895 1896 /* 1897 * Read frequency offset. 1898 */ 1899 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); 1900 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); 1901 1902 /* 1903 * Read external LNA informations. 1904 */ 1905 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 1906 1907 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { 1908 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); 1909 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); 1910 } 1911 1912 /* 1913 * Store led settings, for correct led behaviour. 1914 */ 1915 #ifdef CONFIG_RT2X00_LIB_LEDS 1916 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); 1917 1918 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1919 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); 1920 if (value == LED_MODE_SIGNAL_STRENGTH) 1921 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual, 1922 LED_TYPE_QUALITY); 1923 1924 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); 1925 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, 1926 rt2x00_get_field16(eeprom, 1927 EEPROM_LED_POLARITY_GPIO_0)); 1928 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, 1929 rt2x00_get_field16(eeprom, 1930 EEPROM_LED_POLARITY_GPIO_1)); 1931 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, 1932 rt2x00_get_field16(eeprom, 1933 EEPROM_LED_POLARITY_GPIO_2)); 1934 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, 1935 rt2x00_get_field16(eeprom, 1936 EEPROM_LED_POLARITY_GPIO_3)); 1937 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, 1938 rt2x00_get_field16(eeprom, 1939 EEPROM_LED_POLARITY_GPIO_4)); 1940 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, 1941 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); 1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, 1943 rt2x00_get_field16(eeprom, 1944 EEPROM_LED_POLARITY_RDY_G)); 1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, 1946 rt2x00_get_field16(eeprom, 1947 EEPROM_LED_POLARITY_RDY_A)); 1948 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1949 1950 return 0; 1951 } 1952 1953 /* 1954 * RF value list for RF2528 1955 * Supports: 2.4 GHz 1956 */ 1957 static const struct rf_channel rf_vals_bg_2528[] = { 1958 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, 1959 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, 1960 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, 1961 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, 1962 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, 1963 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, 1964 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, 1965 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, 1966 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, 1967 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, 1968 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, 1969 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, 1970 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, 1971 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, 1972 }; 1973 1974 /* 1975 * RF value list for RF5226 1976 * Supports: 2.4 GHz & 5.2 GHz 1977 */ 1978 static const struct rf_channel rf_vals_5226[] = { 1979 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, 1980 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, 1981 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, 1982 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, 1983 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, 1984 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, 1985 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, 1986 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, 1987 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, 1988 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, 1989 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, 1990 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, 1991 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, 1992 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, 1993 1994 /* 802.11 UNI / HyperLan 2 */ 1995 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, 1996 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, 1997 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, 1998 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, 1999 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, 2000 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, 2001 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, 2002 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, 2003 2004 /* 802.11 HyperLan 2 */ 2005 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, 2006 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, 2007 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, 2008 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, 2009 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, 2010 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, 2011 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, 2012 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, 2013 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, 2014 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, 2015 2016 /* 802.11 UNII */ 2017 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, 2018 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, 2019 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, 2020 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, 2021 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, 2022 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, 2023 2024 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2025 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, 2026 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, 2027 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, 2028 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, 2029 }; 2030 2031 /* 2032 * RF value list for RF5225 & RF2527 2033 * Supports: 2.4 GHz & 5.2 GHz 2034 */ 2035 static const struct rf_channel rf_vals_5225_2527[] = { 2036 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, 2037 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, 2038 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, 2039 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, 2040 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, 2041 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, 2042 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, 2043 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, 2044 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, 2045 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, 2046 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, 2047 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, 2048 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, 2049 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, 2050 2051 /* 802.11 UNI / HyperLan 2 */ 2052 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, 2053 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, 2054 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, 2055 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, 2056 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, 2057 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, 2058 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, 2059 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, 2060 2061 /* 802.11 HyperLan 2 */ 2062 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, 2063 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, 2064 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, 2065 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, 2066 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, 2067 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, 2068 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, 2069 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, 2070 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, 2071 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, 2072 2073 /* 802.11 UNII */ 2074 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, 2075 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, 2076 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, 2077 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, 2078 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, 2079 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, 2080 2081 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2082 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, 2083 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, 2084 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, 2085 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, 2086 }; 2087 2088 2089 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 2090 { 2091 struct hw_mode_spec *spec = &rt2x00dev->spec; 2092 struct channel_info *info; 2093 char *tx_power; 2094 unsigned int i; 2095 2096 /* 2097 * Initialize all hw fields. 2098 * 2099 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are 2100 * capable of sending the buffered frames out after the DTIM 2101 * transmission using rt2x00lib_beacondone. This will send out 2102 * multicast and broadcast traffic immediately instead of buffering it 2103 * infinitly and thus dropping it after some time. 2104 */ 2105 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 2106 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 2107 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 2108 2109 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 2110 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 2111 rt2x00_eeprom_addr(rt2x00dev, 2112 EEPROM_MAC_ADDR_0)); 2113 2114 /* 2115 * Initialize hw_mode information. 2116 */ 2117 spec->supported_bands = SUPPORT_BAND_2GHZ; 2118 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 2119 2120 if (rt2x00_rf(rt2x00dev, RF2528)) { 2121 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); 2122 spec->channels = rf_vals_bg_2528; 2123 } else if (rt2x00_rf(rt2x00dev, RF5226)) { 2124 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2125 spec->num_channels = ARRAY_SIZE(rf_vals_5226); 2126 spec->channels = rf_vals_5226; 2127 } else if (rt2x00_rf(rt2x00dev, RF2527)) { 2128 spec->num_channels = 14; 2129 spec->channels = rf_vals_5225_2527; 2130 } else if (rt2x00_rf(rt2x00dev, RF5225)) { 2131 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2132 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); 2133 spec->channels = rf_vals_5225_2527; 2134 } 2135 2136 /* 2137 * Create channel information array 2138 */ 2139 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 2140 if (!info) 2141 return -ENOMEM; 2142 2143 spec->channels_info = info; 2144 2145 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); 2146 for (i = 0; i < 14; i++) { 2147 info[i].max_power = MAX_TXPOWER; 2148 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 2149 } 2150 2151 if (spec->num_channels > 14) { 2152 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); 2153 for (i = 14; i < spec->num_channels; i++) { 2154 info[i].max_power = MAX_TXPOWER; 2155 info[i].default_power1 = 2156 TXPOWER_FROM_DEV(tx_power[i - 14]); 2157 } 2158 } 2159 2160 return 0; 2161 } 2162 2163 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) 2164 { 2165 int retval; 2166 u32 reg; 2167 2168 /* 2169 * Allocate eeprom data. 2170 */ 2171 retval = rt73usb_validate_eeprom(rt2x00dev); 2172 if (retval) 2173 return retval; 2174 2175 retval = rt73usb_init_eeprom(rt2x00dev); 2176 if (retval) 2177 return retval; 2178 2179 /* 2180 * Enable rfkill polling by setting GPIO direction of the 2181 * rfkill switch GPIO pin correctly. 2182 */ 2183 reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13); 2184 rt2x00_set_field32(®, MAC_CSR13_DIR7, 0); 2185 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg); 2186 2187 /* 2188 * Initialize hw specifications. 2189 */ 2190 retval = rt73usb_probe_hw_mode(rt2x00dev); 2191 if (retval) 2192 return retval; 2193 2194 /* 2195 * This device has multiple filters for control frames, 2196 * but has no a separate filter for PS Poll frames. 2197 */ 2198 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); 2199 2200 /* 2201 * This device requires firmware. 2202 */ 2203 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); 2204 if (!modparam_nohwcrypt) 2205 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 2206 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 2207 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); 2208 2209 /* 2210 * Set the rssi offset. 2211 */ 2212 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 2213 2214 return 0; 2215 } 2216 2217 /* 2218 * IEEE80211 stack callback functions. 2219 */ 2220 static int rt73usb_conf_tx(struct ieee80211_hw *hw, 2221 struct ieee80211_vif *vif, u16 queue_idx, 2222 const struct ieee80211_tx_queue_params *params) 2223 { 2224 struct rt2x00_dev *rt2x00dev = hw->priv; 2225 struct data_queue *queue; 2226 struct rt2x00_field32 field; 2227 int retval; 2228 u32 reg; 2229 u32 offset; 2230 2231 /* 2232 * First pass the configuration through rt2x00lib, that will 2233 * update the queue settings and validate the input. After that 2234 * we are free to update the registers based on the value 2235 * in the queue parameter. 2236 */ 2237 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); 2238 if (retval) 2239 return retval; 2240 2241 /* 2242 * We only need to perform additional register initialization 2243 * for WMM queues/ 2244 */ 2245 if (queue_idx >= 4) 2246 return 0; 2247 2248 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 2249 2250 /* Update WMM TXOP register */ 2251 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); 2252 field.bit_offset = (queue_idx & 1) * 16; 2253 field.bit_mask = 0xffff << field.bit_offset; 2254 2255 reg = rt2x00usb_register_read(rt2x00dev, offset); 2256 rt2x00_set_field32(®, field, queue->txop); 2257 rt2x00usb_register_write(rt2x00dev, offset, reg); 2258 2259 /* Update WMM registers */ 2260 field.bit_offset = queue_idx * 4; 2261 field.bit_mask = 0xf << field.bit_offset; 2262 2263 reg = rt2x00usb_register_read(rt2x00dev, AIFSN_CSR); 2264 rt2x00_set_field32(®, field, queue->aifs); 2265 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg); 2266 2267 reg = rt2x00usb_register_read(rt2x00dev, CWMIN_CSR); 2268 rt2x00_set_field32(®, field, queue->cw_min); 2269 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg); 2270 2271 reg = rt2x00usb_register_read(rt2x00dev, CWMAX_CSR); 2272 rt2x00_set_field32(®, field, queue->cw_max); 2273 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg); 2274 2275 return 0; 2276 } 2277 2278 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 2279 { 2280 struct rt2x00_dev *rt2x00dev = hw->priv; 2281 u64 tsf; 2282 u32 reg; 2283 2284 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR13); 2285 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; 2286 reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR12); 2287 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); 2288 2289 return tsf; 2290 } 2291 2292 static const struct ieee80211_ops rt73usb_mac80211_ops = { 2293 .tx = rt2x00mac_tx, 2294 .start = rt2x00mac_start, 2295 .stop = rt2x00mac_stop, 2296 .add_interface = rt2x00mac_add_interface, 2297 .remove_interface = rt2x00mac_remove_interface, 2298 .config = rt2x00mac_config, 2299 .configure_filter = rt2x00mac_configure_filter, 2300 .set_tim = rt2x00mac_set_tim, 2301 .set_key = rt2x00mac_set_key, 2302 .sw_scan_start = rt2x00mac_sw_scan_start, 2303 .sw_scan_complete = rt2x00mac_sw_scan_complete, 2304 .get_stats = rt2x00mac_get_stats, 2305 .bss_info_changed = rt2x00mac_bss_info_changed, 2306 .conf_tx = rt73usb_conf_tx, 2307 .get_tsf = rt73usb_get_tsf, 2308 .rfkill_poll = rt2x00mac_rfkill_poll, 2309 .flush = rt2x00mac_flush, 2310 .set_antenna = rt2x00mac_set_antenna, 2311 .get_antenna = rt2x00mac_get_antenna, 2312 .get_ringparam = rt2x00mac_get_ringparam, 2313 .tx_frames_pending = rt2x00mac_tx_frames_pending, 2314 }; 2315 2316 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { 2317 .probe_hw = rt73usb_probe_hw, 2318 .get_firmware_name = rt73usb_get_firmware_name, 2319 .check_firmware = rt73usb_check_firmware, 2320 .load_firmware = rt73usb_load_firmware, 2321 .initialize = rt2x00usb_initialize, 2322 .uninitialize = rt2x00usb_uninitialize, 2323 .clear_entry = rt2x00usb_clear_entry, 2324 .set_device_state = rt73usb_set_device_state, 2325 .rfkill_poll = rt73usb_rfkill_poll, 2326 .link_stats = rt73usb_link_stats, 2327 .reset_tuner = rt73usb_reset_tuner, 2328 .link_tuner = rt73usb_link_tuner, 2329 .watchdog = rt2x00usb_watchdog, 2330 .start_queue = rt73usb_start_queue, 2331 .kick_queue = rt2x00usb_kick_queue, 2332 .stop_queue = rt73usb_stop_queue, 2333 .flush_queue = rt2x00usb_flush_queue, 2334 .write_tx_desc = rt73usb_write_tx_desc, 2335 .write_beacon = rt73usb_write_beacon, 2336 .clear_beacon = rt73usb_clear_beacon, 2337 .get_tx_data_len = rt73usb_get_tx_data_len, 2338 .fill_rxdone = rt73usb_fill_rxdone, 2339 .config_shared_key = rt73usb_config_shared_key, 2340 .config_pairwise_key = rt73usb_config_pairwise_key, 2341 .config_filter = rt73usb_config_filter, 2342 .config_intf = rt73usb_config_intf, 2343 .config_erp = rt73usb_config_erp, 2344 .config_ant = rt73usb_config_ant, 2345 .config = rt73usb_config, 2346 }; 2347 2348 static void rt73usb_queue_init(struct data_queue *queue) 2349 { 2350 switch (queue->qid) { 2351 case QID_RX: 2352 queue->limit = 32; 2353 queue->data_size = DATA_FRAME_SIZE; 2354 queue->desc_size = RXD_DESC_SIZE; 2355 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2356 break; 2357 2358 case QID_AC_VO: 2359 case QID_AC_VI: 2360 case QID_AC_BE: 2361 case QID_AC_BK: 2362 queue->limit = 32; 2363 queue->data_size = DATA_FRAME_SIZE; 2364 queue->desc_size = TXD_DESC_SIZE; 2365 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2366 break; 2367 2368 case QID_BEACON: 2369 queue->limit = 4; 2370 queue->data_size = MGMT_FRAME_SIZE; 2371 queue->desc_size = TXINFO_SIZE; 2372 queue->priv_size = sizeof(struct queue_entry_priv_usb); 2373 break; 2374 2375 case QID_ATIM: 2376 /* fallthrough */ 2377 default: 2378 BUG(); 2379 break; 2380 } 2381 } 2382 2383 static const struct rt2x00_ops rt73usb_ops = { 2384 .name = KBUILD_MODNAME, 2385 .max_ap_intf = 4, 2386 .eeprom_size = EEPROM_SIZE, 2387 .rf_size = RF_SIZE, 2388 .tx_queues = NUM_TX_QUEUES, 2389 .queue_init = rt73usb_queue_init, 2390 .lib = &rt73usb_rt2x00_ops, 2391 .hw = &rt73usb_mac80211_ops, 2392 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 2393 .debugfs = &rt73usb_rt2x00debug, 2394 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 2395 }; 2396 2397 /* 2398 * rt73usb module information. 2399 */ 2400 static const struct usb_device_id rt73usb_device_table[] = { 2401 /* AboCom */ 2402 { USB_DEVICE(0x07b8, 0xb21b) }, 2403 { USB_DEVICE(0x07b8, 0xb21c) }, 2404 { USB_DEVICE(0x07b8, 0xb21d) }, 2405 { USB_DEVICE(0x07b8, 0xb21e) }, 2406 { USB_DEVICE(0x07b8, 0xb21f) }, 2407 /* AL */ 2408 { USB_DEVICE(0x14b2, 0x3c10) }, 2409 /* Amigo */ 2410 { USB_DEVICE(0x148f, 0x9021) }, 2411 { USB_DEVICE(0x0eb0, 0x9021) }, 2412 /* AMIT */ 2413 { USB_DEVICE(0x18c5, 0x0002) }, 2414 /* Askey */ 2415 { USB_DEVICE(0x1690, 0x0722) }, 2416 /* ASUS */ 2417 { USB_DEVICE(0x0b05, 0x1723) }, 2418 { USB_DEVICE(0x0b05, 0x1724) }, 2419 /* Belkin */ 2420 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */ 2421 { USB_DEVICE(0x050d, 0x705a) }, 2422 { USB_DEVICE(0x050d, 0x905b) }, 2423 { USB_DEVICE(0x050d, 0x905c) }, 2424 /* Billionton */ 2425 { USB_DEVICE(0x1631, 0xc019) }, 2426 { USB_DEVICE(0x08dd, 0x0120) }, 2427 /* Buffalo */ 2428 { USB_DEVICE(0x0411, 0x00d8) }, 2429 { USB_DEVICE(0x0411, 0x00d9) }, 2430 { USB_DEVICE(0x0411, 0x00e6) }, 2431 { USB_DEVICE(0x0411, 0x00f4) }, 2432 { USB_DEVICE(0x0411, 0x0116) }, 2433 { USB_DEVICE(0x0411, 0x0119) }, 2434 { USB_DEVICE(0x0411, 0x0137) }, 2435 /* CEIVA */ 2436 { USB_DEVICE(0x178d, 0x02be) }, 2437 /* CNet */ 2438 { USB_DEVICE(0x1371, 0x9022) }, 2439 { USB_DEVICE(0x1371, 0x9032) }, 2440 /* Conceptronic */ 2441 { USB_DEVICE(0x14b2, 0x3c22) }, 2442 /* Corega */ 2443 { USB_DEVICE(0x07aa, 0x002e) }, 2444 /* D-Link */ 2445 { USB_DEVICE(0x07d1, 0x3c03) }, 2446 { USB_DEVICE(0x07d1, 0x3c04) }, 2447 { USB_DEVICE(0x07d1, 0x3c06) }, 2448 { USB_DEVICE(0x07d1, 0x3c07) }, 2449 /* Edimax */ 2450 { USB_DEVICE(0x7392, 0x7318) }, 2451 { USB_DEVICE(0x7392, 0x7618) }, 2452 /* EnGenius */ 2453 { USB_DEVICE(0x1740, 0x3701) }, 2454 /* Gemtek */ 2455 { USB_DEVICE(0x15a9, 0x0004) }, 2456 /* Gigabyte */ 2457 { USB_DEVICE(0x1044, 0x8008) }, 2458 { USB_DEVICE(0x1044, 0x800a) }, 2459 /* Huawei-3Com */ 2460 { USB_DEVICE(0x1472, 0x0009) }, 2461 /* Hercules */ 2462 { USB_DEVICE(0x06f8, 0xe002) }, 2463 { USB_DEVICE(0x06f8, 0xe010) }, 2464 { USB_DEVICE(0x06f8, 0xe020) }, 2465 /* Linksys */ 2466 { USB_DEVICE(0x13b1, 0x0020) }, 2467 { USB_DEVICE(0x13b1, 0x0023) }, 2468 { USB_DEVICE(0x13b1, 0x0028) }, 2469 /* MSI */ 2470 { USB_DEVICE(0x0db0, 0x4600) }, 2471 { USB_DEVICE(0x0db0, 0x6877) }, 2472 { USB_DEVICE(0x0db0, 0x6874) }, 2473 { USB_DEVICE(0x0db0, 0xa861) }, 2474 { USB_DEVICE(0x0db0, 0xa874) }, 2475 /* Ovislink */ 2476 { USB_DEVICE(0x1b75, 0x7318) }, 2477 /* Ralink */ 2478 { USB_DEVICE(0x04bb, 0x093d) }, 2479 { USB_DEVICE(0x148f, 0x2573) }, 2480 { USB_DEVICE(0x148f, 0x2671) }, 2481 { USB_DEVICE(0x0812, 0x3101) }, 2482 /* Qcom */ 2483 { USB_DEVICE(0x18e8, 0x6196) }, 2484 { USB_DEVICE(0x18e8, 0x6229) }, 2485 { USB_DEVICE(0x18e8, 0x6238) }, 2486 /* Samsung */ 2487 { USB_DEVICE(0x04e8, 0x4471) }, 2488 /* Senao */ 2489 { USB_DEVICE(0x1740, 0x7100) }, 2490 /* Sitecom */ 2491 { USB_DEVICE(0x0df6, 0x0024) }, 2492 { USB_DEVICE(0x0df6, 0x0027) }, 2493 { USB_DEVICE(0x0df6, 0x002f) }, 2494 { USB_DEVICE(0x0df6, 0x90ac) }, 2495 { USB_DEVICE(0x0df6, 0x9712) }, 2496 /* Surecom */ 2497 { USB_DEVICE(0x0769, 0x31f3) }, 2498 /* Tilgin */ 2499 { USB_DEVICE(0x6933, 0x5001) }, 2500 /* Philips */ 2501 { USB_DEVICE(0x0471, 0x200a) }, 2502 /* Planex */ 2503 { USB_DEVICE(0x2019, 0xab01) }, 2504 { USB_DEVICE(0x2019, 0xab50) }, 2505 /* WideTell */ 2506 { USB_DEVICE(0x7167, 0x3840) }, 2507 /* Zcom */ 2508 { USB_DEVICE(0x0cde, 0x001c) }, 2509 /* ZyXEL */ 2510 { USB_DEVICE(0x0586, 0x3415) }, 2511 { 0, } 2512 }; 2513 2514 MODULE_AUTHOR(DRV_PROJECT); 2515 MODULE_VERSION(DRV_VERSION); 2516 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); 2517 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); 2518 MODULE_DEVICE_TABLE(usb, rt73usb_device_table); 2519 MODULE_FIRMWARE(FIRMWARE_RT2571); 2520 MODULE_LICENSE("GPL"); 2521 2522 static int rt73usb_probe(struct usb_interface *usb_intf, 2523 const struct usb_device_id *id) 2524 { 2525 return rt2x00usb_probe(usb_intf, &rt73usb_ops); 2526 } 2527 2528 static struct usb_driver rt73usb_driver = { 2529 .name = KBUILD_MODNAME, 2530 .id_table = rt73usb_device_table, 2531 .probe = rt73usb_probe, 2532 .disconnect = rt2x00usb_disconnect, 2533 .suspend = rt2x00usb_suspend, 2534 .resume = rt2x00usb_resume, 2535 .reset_resume = rt2x00usb_resume, 2536 .disable_hub_initiated_lpm = 1, 2537 }; 2538 2539 module_usb_driver(rt73usb_driver); 2540