1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt73usb
21 	Abstract: rt73usb device specific routines.
22 	Supported chipsets: rt2571W & rt2671.
23  */
24 
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/usb.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00usb.h"
35 #include "rt73usb.h"
36 
37 /*
38  * Allow hardware encryption to be disabled.
39  */
40 static bool modparam_nohwcrypt;
41 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
42 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
43 
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00usb_register_read and rt2x00usb_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  * The _lock versions must be used if you already hold the csr_mutex
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 	rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 	rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 
63 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
64 			      const unsigned int word, const u8 value)
65 {
66 	u32 reg;
67 
68 	mutex_lock(&rt2x00dev->csr_mutex);
69 
70 	/*
71 	 * Wait until the BBP becomes available, afterwards we
72 	 * can safely write the new data into the register.
73 	 */
74 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
75 		reg = 0;
76 		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
77 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
78 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
79 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
80 
81 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
82 	}
83 
84 	mutex_unlock(&rt2x00dev->csr_mutex);
85 }
86 
87 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
88 			     const unsigned int word, u8 *value)
89 {
90 	u32 reg;
91 
92 	mutex_lock(&rt2x00dev->csr_mutex);
93 
94 	/*
95 	 * Wait until the BBP becomes available, afterwards we
96 	 * can safely write the read request into the register.
97 	 * After the data has been written, we wait until hardware
98 	 * returns the correct value, if at any time the register
99 	 * doesn't become available in time, reg will be 0xffffffff
100 	 * which means we return 0xff to the caller.
101 	 */
102 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
103 		reg = 0;
104 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
105 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
106 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
107 
108 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
109 
110 		WAIT_FOR_BBP(rt2x00dev, &reg);
111 	}
112 
113 	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
114 
115 	mutex_unlock(&rt2x00dev->csr_mutex);
116 }
117 
118 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
119 			     const unsigned int word, const u32 value)
120 {
121 	u32 reg;
122 
123 	mutex_lock(&rt2x00dev->csr_mutex);
124 
125 	/*
126 	 * Wait until the RF becomes available, afterwards we
127 	 * can safely write the new data into the register.
128 	 */
129 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
130 		reg = 0;
131 		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
132 		/*
133 		 * RF5225 and RF2527 contain 21 bits per RF register value,
134 		 * all others contain 20 bits.
135 		 */
136 		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
137 				   20 + (rt2x00_rf(rt2x00dev, RF5225) ||
138 					 rt2x00_rf(rt2x00dev, RF2527)));
139 		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140 		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141 
142 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
143 		rt2x00_rf_write(rt2x00dev, word, value);
144 	}
145 
146 	mutex_unlock(&rt2x00dev->csr_mutex);
147 }
148 
149 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
150 static const struct rt2x00debug rt73usb_rt2x00debug = {
151 	.owner	= THIS_MODULE,
152 	.csr	= {
153 		.read		= rt2x00usb_register_read,
154 		.write		= rt2x00usb_register_write,
155 		.flags		= RT2X00DEBUGFS_OFFSET,
156 		.word_base	= CSR_REG_BASE,
157 		.word_size	= sizeof(u32),
158 		.word_count	= CSR_REG_SIZE / sizeof(u32),
159 	},
160 	.eeprom	= {
161 		.read		= rt2x00_eeprom_read,
162 		.write		= rt2x00_eeprom_write,
163 		.word_base	= EEPROM_BASE,
164 		.word_size	= sizeof(u16),
165 		.word_count	= EEPROM_SIZE / sizeof(u16),
166 	},
167 	.bbp	= {
168 		.read		= rt73usb_bbp_read,
169 		.write		= rt73usb_bbp_write,
170 		.word_base	= BBP_BASE,
171 		.word_size	= sizeof(u8),
172 		.word_count	= BBP_SIZE / sizeof(u8),
173 	},
174 	.rf	= {
175 		.read		= rt2x00_rf_read,
176 		.write		= rt73usb_rf_write,
177 		.word_base	= RF_BASE,
178 		.word_size	= sizeof(u32),
179 		.word_count	= RF_SIZE / sizeof(u32),
180 	},
181 };
182 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
183 
184 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
185 {
186 	u32 reg;
187 
188 	rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
189 	return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
190 }
191 
192 #ifdef CONFIG_RT2X00_LIB_LEDS
193 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
194 				   enum led_brightness brightness)
195 {
196 	struct rt2x00_led *led =
197 	   container_of(led_cdev, struct rt2x00_led, led_dev);
198 	unsigned int enabled = brightness != LED_OFF;
199 	unsigned int a_mode =
200 	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
201 	unsigned int bg_mode =
202 	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
203 
204 	if (led->type == LED_TYPE_RADIO) {
205 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
206 				   MCU_LEDCS_RADIO_STATUS, enabled);
207 
208 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
209 					    0, led->rt2x00dev->led_mcu_reg,
210 					    REGISTER_TIMEOUT);
211 	} else if (led->type == LED_TYPE_ASSOC) {
212 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
213 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
214 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
216 
217 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
218 					    0, led->rt2x00dev->led_mcu_reg,
219 					    REGISTER_TIMEOUT);
220 	} else if (led->type == LED_TYPE_QUALITY) {
221 		/*
222 		 * The brightness is divided into 6 levels (0 - 5),
223 		 * this means we need to convert the brightness
224 		 * argument into the matching level within that range.
225 		 */
226 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
227 					    brightness / (LED_FULL / 6),
228 					    led->rt2x00dev->led_mcu_reg,
229 					    REGISTER_TIMEOUT);
230 	}
231 }
232 
233 static int rt73usb_blink_set(struct led_classdev *led_cdev,
234 			     unsigned long *delay_on,
235 			     unsigned long *delay_off)
236 {
237 	struct rt2x00_led *led =
238 	    container_of(led_cdev, struct rt2x00_led, led_dev);
239 	u32 reg;
240 
241 	rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
242 	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
243 	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
244 	rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
245 
246 	return 0;
247 }
248 
249 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
250 			     struct rt2x00_led *led,
251 			     enum led_type type)
252 {
253 	led->rt2x00dev = rt2x00dev;
254 	led->type = type;
255 	led->led_dev.brightness_set = rt73usb_brightness_set;
256 	led->led_dev.blink_set = rt73usb_blink_set;
257 	led->flags = LED_INITIALIZED;
258 }
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
260 
261 /*
262  * Configuration handlers.
263  */
264 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
265 				     struct rt2x00lib_crypto *crypto,
266 				     struct ieee80211_key_conf *key)
267 {
268 	struct hw_key_entry key_entry;
269 	struct rt2x00_field32 field;
270 	u32 mask;
271 	u32 reg;
272 
273 	if (crypto->cmd == SET_KEY) {
274 		/*
275 		 * rt2x00lib can't determine the correct free
276 		 * key_idx for shared keys. We have 1 register
277 		 * with key valid bits. The goal is simple, read
278 		 * the register, if that is full we have no slots
279 		 * left.
280 		 * Note that each BSS is allowed to have up to 4
281 		 * shared keys, so put a mask over the allowed
282 		 * entries.
283 		 */
284 		mask = (0xf << crypto->bssidx);
285 
286 		rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
287 		reg &= mask;
288 
289 		if (reg && reg == mask)
290 			return -ENOSPC;
291 
292 		key->hw_key_idx += reg ? ffz(reg) : 0;
293 
294 		/*
295 		 * Upload key to hardware
296 		 */
297 		memcpy(key_entry.key, crypto->key,
298 		       sizeof(key_entry.key));
299 		memcpy(key_entry.tx_mic, crypto->tx_mic,
300 		       sizeof(key_entry.tx_mic));
301 		memcpy(key_entry.rx_mic, crypto->rx_mic,
302 		       sizeof(key_entry.rx_mic));
303 
304 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
305 		rt2x00usb_register_multiwrite(rt2x00dev, reg,
306 					      &key_entry, sizeof(key_entry));
307 
308 		/*
309 		 * The cipher types are stored over 2 registers.
310 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
311 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
312 		 * Using the correct defines correctly will cause overhead,
313 		 * so just calculate the correct offset.
314 		 */
315 		if (key->hw_key_idx < 8) {
316 			field.bit_offset = (3 * key->hw_key_idx);
317 			field.bit_mask = 0x7 << field.bit_offset;
318 
319 			rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
320 			rt2x00_set_field32(&reg, field, crypto->cipher);
321 			rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
322 		} else {
323 			field.bit_offset = (3 * (key->hw_key_idx - 8));
324 			field.bit_mask = 0x7 << field.bit_offset;
325 
326 			rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
327 			rt2x00_set_field32(&reg, field, crypto->cipher);
328 			rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
329 		}
330 
331 		/*
332 		 * The driver does not support the IV/EIV generation
333 		 * in hardware. However it doesn't support the IV/EIV
334 		 * inside the ieee80211 frame either, but requires it
335 		 * to be provided separately for the descriptor.
336 		 * rt2x00lib will cut the IV/EIV data out of all frames
337 		 * given to us by mac80211, but we must tell mac80211
338 		 * to generate the IV/EIV data.
339 		 */
340 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
341 	}
342 
343 	/*
344 	 * SEC_CSR0 contains only single-bit fields to indicate
345 	 * a particular key is valid. Because using the FIELD32()
346 	 * defines directly will cause a lot of overhead we use
347 	 * a calculation to determine the correct bit directly.
348 	 */
349 	mask = 1 << key->hw_key_idx;
350 
351 	rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
352 	if (crypto->cmd == SET_KEY)
353 		reg |= mask;
354 	else if (crypto->cmd == DISABLE_KEY)
355 		reg &= ~mask;
356 	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
357 
358 	return 0;
359 }
360 
361 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
362 				       struct rt2x00lib_crypto *crypto,
363 				       struct ieee80211_key_conf *key)
364 {
365 	struct hw_pairwise_ta_entry addr_entry;
366 	struct hw_key_entry key_entry;
367 	u32 mask;
368 	u32 reg;
369 
370 	if (crypto->cmd == SET_KEY) {
371 		/*
372 		 * rt2x00lib can't determine the correct free
373 		 * key_idx for pairwise keys. We have 2 registers
374 		 * with key valid bits. The goal is simple, read
375 		 * the first register, if that is full move to
376 		 * the next register.
377 		 * When both registers are full, we drop the key,
378 		 * otherwise we use the first invalid entry.
379 		 */
380 		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
381 		if (reg && reg == ~0) {
382 			key->hw_key_idx = 32;
383 			rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
384 			if (reg && reg == ~0)
385 				return -ENOSPC;
386 		}
387 
388 		key->hw_key_idx += reg ? ffz(reg) : 0;
389 
390 		/*
391 		 * Upload key to hardware
392 		 */
393 		memcpy(key_entry.key, crypto->key,
394 		       sizeof(key_entry.key));
395 		memcpy(key_entry.tx_mic, crypto->tx_mic,
396 		       sizeof(key_entry.tx_mic));
397 		memcpy(key_entry.rx_mic, crypto->rx_mic,
398 		       sizeof(key_entry.rx_mic));
399 
400 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
401 		rt2x00usb_register_multiwrite(rt2x00dev, reg,
402 					      &key_entry, sizeof(key_entry));
403 
404 		/*
405 		 * Send the address and cipher type to the hardware register.
406 		 */
407 		memset(&addr_entry, 0, sizeof(addr_entry));
408 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
409 		addr_entry.cipher = crypto->cipher;
410 
411 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
412 		rt2x00usb_register_multiwrite(rt2x00dev, reg,
413 					    &addr_entry, sizeof(addr_entry));
414 
415 		/*
416 		 * Enable pairwise lookup table for given BSS idx,
417 		 * without this received frames will not be decrypted
418 		 * by the hardware.
419 		 */
420 		rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
421 		reg |= (1 << crypto->bssidx);
422 		rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
423 
424 		/*
425 		 * The driver does not support the IV/EIV generation
426 		 * in hardware. However it doesn't support the IV/EIV
427 		 * inside the ieee80211 frame either, but requires it
428 		 * to be provided separately for the descriptor.
429 		 * rt2x00lib will cut the IV/EIV data out of all frames
430 		 * given to us by mac80211, but we must tell mac80211
431 		 * to generate the IV/EIV data.
432 		 */
433 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
434 	}
435 
436 	/*
437 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
438 	 * a particular key is valid. Because using the FIELD32()
439 	 * defines directly will cause a lot of overhead we use
440 	 * a calculation to determine the correct bit directly.
441 	 */
442 	if (key->hw_key_idx < 32) {
443 		mask = 1 << key->hw_key_idx;
444 
445 		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
446 		if (crypto->cmd == SET_KEY)
447 			reg |= mask;
448 		else if (crypto->cmd == DISABLE_KEY)
449 			reg &= ~mask;
450 		rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
451 	} else {
452 		mask = 1 << (key->hw_key_idx - 32);
453 
454 		rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
455 		if (crypto->cmd == SET_KEY)
456 			reg |= mask;
457 		else if (crypto->cmd == DISABLE_KEY)
458 			reg &= ~mask;
459 		rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
460 	}
461 
462 	return 0;
463 }
464 
465 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
466 				  const unsigned int filter_flags)
467 {
468 	u32 reg;
469 
470 	/*
471 	 * Start configuration steps.
472 	 * Note that the version error will always be dropped
473 	 * and broadcast frames will always be accepted since
474 	 * there is no filter for it at this time.
475 	 */
476 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
477 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
478 			   !(filter_flags & FIF_FCSFAIL));
479 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
480 			   !(filter_flags & FIF_PLCPFAIL));
481 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
482 			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
483 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
484 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
485 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
486 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
487 			   !rt2x00dev->intf_ap_count);
488 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
489 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
490 			   !(filter_flags & FIF_ALLMULTI));
491 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
492 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
493 			   !(filter_flags & FIF_CONTROL));
494 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
495 }
496 
497 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
498 				struct rt2x00_intf *intf,
499 				struct rt2x00intf_conf *conf,
500 				const unsigned int flags)
501 {
502 	u32 reg;
503 
504 	if (flags & CONFIG_UPDATE_TYPE) {
505 		/*
506 		 * Enable synchronisation.
507 		 */
508 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
509 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
510 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
511 	}
512 
513 	if (flags & CONFIG_UPDATE_MAC) {
514 		reg = le32_to_cpu(conf->mac[1]);
515 		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
516 		conf->mac[1] = cpu_to_le32(reg);
517 
518 		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
519 					    conf->mac, sizeof(conf->mac));
520 	}
521 
522 	if (flags & CONFIG_UPDATE_BSSID) {
523 		reg = le32_to_cpu(conf->bssid[1]);
524 		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
525 		conf->bssid[1] = cpu_to_le32(reg);
526 
527 		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
528 					    conf->bssid, sizeof(conf->bssid));
529 	}
530 }
531 
532 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
533 			       struct rt2x00lib_erp *erp,
534 			       u32 changed)
535 {
536 	u32 reg;
537 
538 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
539 	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
540 	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
541 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
542 
543 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
544 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
545 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
546 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
547 				   !!erp->short_preamble);
548 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
549 	}
550 
551 	if (changed & BSS_CHANGED_BASIC_RATES)
552 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
553 					 erp->basic_rates);
554 
555 	if (changed & BSS_CHANGED_BEACON_INT) {
556 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
557 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
558 				   erp->beacon_int * 16);
559 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
560 	}
561 
562 	if (changed & BSS_CHANGED_ERP_SLOT) {
563 		rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
564 		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
565 		rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
566 
567 		rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
568 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
569 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
570 		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
571 		rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
572 	}
573 }
574 
575 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
576 				      struct antenna_setup *ant)
577 {
578 	u8 r3;
579 	u8 r4;
580 	u8 r77;
581 	u8 temp;
582 
583 	rt73usb_bbp_read(rt2x00dev, 3, &r3);
584 	rt73usb_bbp_read(rt2x00dev, 4, &r4);
585 	rt73usb_bbp_read(rt2x00dev, 77, &r77);
586 
587 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
588 
589 	/*
590 	 * Configure the RX antenna.
591 	 */
592 	switch (ant->rx) {
593 	case ANTENNA_HW_DIVERSITY:
594 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
595 		temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
596 		       (rt2x00dev->curr_band != NL80211_BAND_5GHZ);
597 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
598 		break;
599 	case ANTENNA_A:
600 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
601 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
602 		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
603 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
604 		else
605 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
606 		break;
607 	case ANTENNA_B:
608 	default:
609 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
610 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
611 		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
612 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
613 		else
614 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
615 		break;
616 	}
617 
618 	rt73usb_bbp_write(rt2x00dev, 77, r77);
619 	rt73usb_bbp_write(rt2x00dev, 3, r3);
620 	rt73usb_bbp_write(rt2x00dev, 4, r4);
621 }
622 
623 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
624 				      struct antenna_setup *ant)
625 {
626 	u8 r3;
627 	u8 r4;
628 	u8 r77;
629 
630 	rt73usb_bbp_read(rt2x00dev, 3, &r3);
631 	rt73usb_bbp_read(rt2x00dev, 4, &r4);
632 	rt73usb_bbp_read(rt2x00dev, 77, &r77);
633 
634 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
635 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
636 			  !rt2x00_has_cap_frame_type(rt2x00dev));
637 
638 	/*
639 	 * Configure the RX antenna.
640 	 */
641 	switch (ant->rx) {
642 	case ANTENNA_HW_DIVERSITY:
643 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
644 		break;
645 	case ANTENNA_A:
646 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
647 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
648 		break;
649 	case ANTENNA_B:
650 	default:
651 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
652 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653 		break;
654 	}
655 
656 	rt73usb_bbp_write(rt2x00dev, 77, r77);
657 	rt73usb_bbp_write(rt2x00dev, 3, r3);
658 	rt73usb_bbp_write(rt2x00dev, 4, r4);
659 }
660 
661 struct antenna_sel {
662 	u8 word;
663 	/*
664 	 * value[0] -> non-LNA
665 	 * value[1] -> LNA
666 	 */
667 	u8 value[2];
668 };
669 
670 static const struct antenna_sel antenna_sel_a[] = {
671 	{ 96,  { 0x58, 0x78 } },
672 	{ 104, { 0x38, 0x48 } },
673 	{ 75,  { 0xfe, 0x80 } },
674 	{ 86,  { 0xfe, 0x80 } },
675 	{ 88,  { 0xfe, 0x80 } },
676 	{ 35,  { 0x60, 0x60 } },
677 	{ 97,  { 0x58, 0x58 } },
678 	{ 98,  { 0x58, 0x58 } },
679 };
680 
681 static const struct antenna_sel antenna_sel_bg[] = {
682 	{ 96,  { 0x48, 0x68 } },
683 	{ 104, { 0x2c, 0x3c } },
684 	{ 75,  { 0xfe, 0x80 } },
685 	{ 86,  { 0xfe, 0x80 } },
686 	{ 88,  { 0xfe, 0x80 } },
687 	{ 35,  { 0x50, 0x50 } },
688 	{ 97,  { 0x48, 0x48 } },
689 	{ 98,  { 0x48, 0x48 } },
690 };
691 
692 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
693 			       struct antenna_setup *ant)
694 {
695 	const struct antenna_sel *sel;
696 	unsigned int lna;
697 	unsigned int i;
698 	u32 reg;
699 
700 	/*
701 	 * We should never come here because rt2x00lib is supposed
702 	 * to catch this and send us the correct antenna explicitely.
703 	 */
704 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
705 	       ant->tx == ANTENNA_SW_DIVERSITY);
706 
707 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
708 		sel = antenna_sel_a;
709 		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
710 	} else {
711 		sel = antenna_sel_bg;
712 		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
713 	}
714 
715 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
716 		rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
717 
718 	rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
719 
720 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
721 			   (rt2x00dev->curr_band == NL80211_BAND_2GHZ));
722 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
723 			   (rt2x00dev->curr_band == NL80211_BAND_5GHZ));
724 
725 	rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
726 
727 	if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
728 		rt73usb_config_antenna_5x(rt2x00dev, ant);
729 	else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
730 		rt73usb_config_antenna_2x(rt2x00dev, ant);
731 }
732 
733 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
734 				    struct rt2x00lib_conf *libconf)
735 {
736 	u16 eeprom;
737 	short lna_gain = 0;
738 
739 	if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
740 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
741 			lna_gain += 14;
742 
743 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
744 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
745 	} else {
746 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
747 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
748 	}
749 
750 	rt2x00dev->lna_gain = lna_gain;
751 }
752 
753 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
754 				   struct rf_channel *rf, const int txpower)
755 {
756 	u8 r3;
757 	u8 r94;
758 	u8 smart;
759 
760 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
761 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
762 
763 	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
764 
765 	rt73usb_bbp_read(rt2x00dev, 3, &r3);
766 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
767 	rt73usb_bbp_write(rt2x00dev, 3, r3);
768 
769 	r94 = 6;
770 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
771 		r94 += txpower - MAX_TXPOWER;
772 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
773 		r94 += txpower;
774 	rt73usb_bbp_write(rt2x00dev, 94, r94);
775 
776 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
777 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
778 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
779 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
780 
781 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
782 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
783 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
784 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
785 
786 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
787 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
788 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
789 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
790 
791 	udelay(10);
792 }
793 
794 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
795 				   const int txpower)
796 {
797 	struct rf_channel rf;
798 
799 	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
800 	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
801 	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
802 	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
803 
804 	rt73usb_config_channel(rt2x00dev, &rf, txpower);
805 }
806 
807 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
808 				       struct rt2x00lib_conf *libconf)
809 {
810 	u32 reg;
811 
812 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
813 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
814 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
815 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
816 	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
817 			   libconf->conf->long_frame_max_tx_count);
818 	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
819 			   libconf->conf->short_frame_max_tx_count);
820 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
821 }
822 
823 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
824 				struct rt2x00lib_conf *libconf)
825 {
826 	enum dev_state state =
827 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
828 		STATE_SLEEP : STATE_AWAKE;
829 	u32 reg;
830 
831 	if (state == STATE_SLEEP) {
832 		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
833 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
834 				   rt2x00dev->beacon_int - 10);
835 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
836 				   libconf->conf->listen_interval - 1);
837 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
838 
839 		/* We must first disable autowake before it can be enabled */
840 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
841 		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
842 
843 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
844 		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
845 
846 		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
847 					    USB_MODE_SLEEP, REGISTER_TIMEOUT);
848 	} else {
849 		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
850 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
851 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
852 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
853 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
854 		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
855 
856 		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
857 					    USB_MODE_WAKEUP, REGISTER_TIMEOUT);
858 	}
859 }
860 
861 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
862 			   struct rt2x00lib_conf *libconf,
863 			   const unsigned int flags)
864 {
865 	/* Always recalculate LNA gain before changing configuration */
866 	rt73usb_config_lna_gain(rt2x00dev, libconf);
867 
868 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
869 		rt73usb_config_channel(rt2x00dev, &libconf->rf,
870 				       libconf->conf->power_level);
871 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
872 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
873 		rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
874 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
875 		rt73usb_config_retry_limit(rt2x00dev, libconf);
876 	if (flags & IEEE80211_CONF_CHANGE_PS)
877 		rt73usb_config_ps(rt2x00dev, libconf);
878 }
879 
880 /*
881  * Link tuning
882  */
883 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
884 			       struct link_qual *qual)
885 {
886 	u32 reg;
887 
888 	/*
889 	 * Update FCS error count from register.
890 	 */
891 	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
892 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
893 
894 	/*
895 	 * Update False CCA count from register.
896 	 */
897 	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
898 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
899 }
900 
901 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
902 				   struct link_qual *qual, u8 vgc_level)
903 {
904 	if (qual->vgc_level != vgc_level) {
905 		rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
906 		qual->vgc_level = vgc_level;
907 		qual->vgc_level_reg = vgc_level;
908 	}
909 }
910 
911 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
912 				struct link_qual *qual)
913 {
914 	rt73usb_set_vgc(rt2x00dev, qual, 0x20);
915 }
916 
917 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
918 			       struct link_qual *qual, const u32 count)
919 {
920 	u8 up_bound;
921 	u8 low_bound;
922 
923 	/*
924 	 * Determine r17 bounds.
925 	 */
926 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
927 		low_bound = 0x28;
928 		up_bound = 0x48;
929 
930 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
931 			low_bound += 0x10;
932 			up_bound += 0x10;
933 		}
934 	} else {
935 		if (qual->rssi > -82) {
936 			low_bound = 0x1c;
937 			up_bound = 0x40;
938 		} else if (qual->rssi > -84) {
939 			low_bound = 0x1c;
940 			up_bound = 0x20;
941 		} else {
942 			low_bound = 0x1c;
943 			up_bound = 0x1c;
944 		}
945 
946 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
947 			low_bound += 0x14;
948 			up_bound += 0x10;
949 		}
950 	}
951 
952 	/*
953 	 * If we are not associated, we should go straight to the
954 	 * dynamic CCA tuning.
955 	 */
956 	if (!rt2x00dev->intf_associated)
957 		goto dynamic_cca_tune;
958 
959 	/*
960 	 * Special big-R17 for very short distance
961 	 */
962 	if (qual->rssi > -35) {
963 		rt73usb_set_vgc(rt2x00dev, qual, 0x60);
964 		return;
965 	}
966 
967 	/*
968 	 * Special big-R17 for short distance
969 	 */
970 	if (qual->rssi >= -58) {
971 		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
972 		return;
973 	}
974 
975 	/*
976 	 * Special big-R17 for middle-short distance
977 	 */
978 	if (qual->rssi >= -66) {
979 		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
980 		return;
981 	}
982 
983 	/*
984 	 * Special mid-R17 for middle distance
985 	 */
986 	if (qual->rssi >= -74) {
987 		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
988 		return;
989 	}
990 
991 	/*
992 	 * Special case: Change up_bound based on the rssi.
993 	 * Lower up_bound when rssi is weaker then -74 dBm.
994 	 */
995 	up_bound -= 2 * (-74 - qual->rssi);
996 	if (low_bound > up_bound)
997 		up_bound = low_bound;
998 
999 	if (qual->vgc_level > up_bound) {
1000 		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1001 		return;
1002 	}
1003 
1004 dynamic_cca_tune:
1005 
1006 	/*
1007 	 * r17 does not yet exceed upper limit, continue and base
1008 	 * the r17 tuning on the false CCA count.
1009 	 */
1010 	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1011 		rt73usb_set_vgc(rt2x00dev, qual,
1012 				min_t(u8, qual->vgc_level + 4, up_bound));
1013 	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1014 		rt73usb_set_vgc(rt2x00dev, qual,
1015 				max_t(u8, qual->vgc_level - 4, low_bound));
1016 }
1017 
1018 /*
1019  * Queue handlers.
1020  */
1021 static void rt73usb_start_queue(struct data_queue *queue)
1022 {
1023 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1024 	u32 reg;
1025 
1026 	switch (queue->qid) {
1027 	case QID_RX:
1028 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1029 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1030 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1031 		break;
1032 	case QID_BEACON:
1033 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1034 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1035 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1036 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1037 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1038 		break;
1039 	default:
1040 		break;
1041 	}
1042 }
1043 
1044 static void rt73usb_stop_queue(struct data_queue *queue)
1045 {
1046 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1047 	u32 reg;
1048 
1049 	switch (queue->qid) {
1050 	case QID_RX:
1051 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1052 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1053 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1054 		break;
1055 	case QID_BEACON:
1056 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1057 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1058 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1059 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1060 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1061 		break;
1062 	default:
1063 		break;
1064 	}
1065 }
1066 
1067 /*
1068  * Firmware functions
1069  */
1070 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1071 {
1072 	return FIRMWARE_RT2571;
1073 }
1074 
1075 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1076 				  const u8 *data, const size_t len)
1077 {
1078 	u16 fw_crc;
1079 	u16 crc;
1080 
1081 	/*
1082 	 * Only support 2kb firmware files.
1083 	 */
1084 	if (len != 2048)
1085 		return FW_BAD_LENGTH;
1086 
1087 	/*
1088 	 * The last 2 bytes in the firmware array are the crc checksum itself,
1089 	 * this means that we should never pass those 2 bytes to the crc
1090 	 * algorithm.
1091 	 */
1092 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1093 
1094 	/*
1095 	 * Use the crc itu-t algorithm.
1096 	 */
1097 	crc = crc_itu_t(0, data, len - 2);
1098 	crc = crc_itu_t_byte(crc, 0);
1099 	crc = crc_itu_t_byte(crc, 0);
1100 
1101 	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1102 }
1103 
1104 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1105 				 const u8 *data, const size_t len)
1106 {
1107 	unsigned int i;
1108 	int status;
1109 	u32 reg;
1110 
1111 	/*
1112 	 * Wait for stable hardware.
1113 	 */
1114 	for (i = 0; i < 100; i++) {
1115 		rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1116 		if (reg)
1117 			break;
1118 		msleep(1);
1119 	}
1120 
1121 	if (!reg) {
1122 		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1123 		return -EBUSY;
1124 	}
1125 
1126 	/*
1127 	 * Write firmware to device.
1128 	 */
1129 	rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1130 
1131 	/*
1132 	 * Send firmware request to device to load firmware,
1133 	 * we need to specify a long timeout time.
1134 	 */
1135 	status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1136 					     0, USB_MODE_FIRMWARE,
1137 					     REGISTER_TIMEOUT_FIRMWARE);
1138 	if (status < 0) {
1139 		rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1140 		return status;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Initialization functions.
1148  */
1149 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1150 {
1151 	u32 reg;
1152 
1153 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1154 	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1155 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1156 	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1157 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1158 
1159 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1160 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1161 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1162 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1163 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1164 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1165 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1166 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1167 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1168 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1169 
1170 	/*
1171 	 * CCK TXD BBP registers
1172 	 */
1173 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1174 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1175 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1176 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1177 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1178 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1179 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1180 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1181 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1182 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1183 
1184 	/*
1185 	 * OFDM TXD BBP registers
1186 	 */
1187 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1188 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1189 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1190 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1191 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1192 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1193 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1194 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1195 
1196 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1197 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1198 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1199 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1200 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1201 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1202 
1203 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1204 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1205 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1206 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1207 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1208 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1209 
1210 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1211 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1212 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1213 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1214 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1215 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1216 	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1217 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1218 
1219 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1220 
1221 	rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1222 	rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1223 	rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1224 
1225 	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1226 
1227 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1228 		return -EBUSY;
1229 
1230 	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1231 
1232 	/*
1233 	 * Invalidate all Shared Keys (SEC_CSR0),
1234 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1235 	 */
1236 	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1237 	rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1238 	rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1239 
1240 	reg = 0x000023b0;
1241 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1242 		rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1243 	rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1244 
1245 	rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1246 	rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1247 	rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1248 
1249 	rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1250 	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1251 	rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1252 
1253 	/*
1254 	 * Clear all beacons
1255 	 * For the Beacon base registers we only need to clear
1256 	 * the first byte since that byte contains the VALID and OWNER
1257 	 * bits which (when set to 0) will invalidate the entire beacon.
1258 	 */
1259 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1260 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1261 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1262 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1263 
1264 	/*
1265 	 * We must clear the error counters.
1266 	 * These registers are cleared on read,
1267 	 * so we may pass a useless variable to store the value.
1268 	 */
1269 	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1270 	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1271 	rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1272 
1273 	/*
1274 	 * Reset MAC and BBP registers.
1275 	 */
1276 	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1277 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1278 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1279 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1280 
1281 	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1282 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1283 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1284 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1285 
1286 	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1287 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1288 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1289 
1290 	return 0;
1291 }
1292 
1293 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1294 {
1295 	unsigned int i;
1296 	u8 value;
1297 
1298 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1299 		rt73usb_bbp_read(rt2x00dev, 0, &value);
1300 		if ((value != 0xff) && (value != 0x00))
1301 			return 0;
1302 		udelay(REGISTER_BUSY_DELAY);
1303 	}
1304 
1305 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1306 	return -EACCES;
1307 }
1308 
1309 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1310 {
1311 	unsigned int i;
1312 	u16 eeprom;
1313 	u8 reg_id;
1314 	u8 value;
1315 
1316 	if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1317 		return -EACCES;
1318 
1319 	rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1320 	rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1321 	rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1322 	rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1323 	rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1324 	rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1325 	rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1326 	rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1327 	rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1328 	rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1329 	rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1330 	rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1331 	rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1332 	rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1333 	rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1334 	rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1335 	rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1336 	rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1337 	rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1338 	rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1339 	rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1340 	rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1341 	rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1342 	rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1343 	rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1344 
1345 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1346 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1347 
1348 		if (eeprom != 0xffff && eeprom != 0x0000) {
1349 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1350 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1351 			rt73usb_bbp_write(rt2x00dev, reg_id, value);
1352 		}
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /*
1359  * Device state switch handlers.
1360  */
1361 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1362 {
1363 	/*
1364 	 * Initialize all registers.
1365 	 */
1366 	if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1367 		     rt73usb_init_bbp(rt2x00dev)))
1368 		return -EIO;
1369 
1370 	return 0;
1371 }
1372 
1373 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1374 {
1375 	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1376 
1377 	/*
1378 	 * Disable synchronisation.
1379 	 */
1380 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1381 
1382 	rt2x00usb_disable_radio(rt2x00dev);
1383 }
1384 
1385 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1386 {
1387 	u32 reg, reg2;
1388 	unsigned int i;
1389 	char put_to_sleep;
1390 
1391 	put_to_sleep = (state != STATE_AWAKE);
1392 
1393 	rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1394 	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1395 	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1396 	rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1397 
1398 	/*
1399 	 * Device is not guaranteed to be in the requested state yet.
1400 	 * We must wait until the register indicates that the
1401 	 * device has entered the correct state.
1402 	 */
1403 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1404 		rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1405 		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1406 		if (state == !put_to_sleep)
1407 			return 0;
1408 		rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1409 		msleep(10);
1410 	}
1411 
1412 	return -EBUSY;
1413 }
1414 
1415 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1416 				    enum dev_state state)
1417 {
1418 	int retval = 0;
1419 
1420 	switch (state) {
1421 	case STATE_RADIO_ON:
1422 		retval = rt73usb_enable_radio(rt2x00dev);
1423 		break;
1424 	case STATE_RADIO_OFF:
1425 		rt73usb_disable_radio(rt2x00dev);
1426 		break;
1427 	case STATE_RADIO_IRQ_ON:
1428 	case STATE_RADIO_IRQ_OFF:
1429 		/* No support, but no error either */
1430 		break;
1431 	case STATE_DEEP_SLEEP:
1432 	case STATE_SLEEP:
1433 	case STATE_STANDBY:
1434 	case STATE_AWAKE:
1435 		retval = rt73usb_set_state(rt2x00dev, state);
1436 		break;
1437 	default:
1438 		retval = -ENOTSUPP;
1439 		break;
1440 	}
1441 
1442 	if (unlikely(retval))
1443 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1444 			   state, retval);
1445 
1446 	return retval;
1447 }
1448 
1449 /*
1450  * TX descriptor initialization
1451  */
1452 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1453 				  struct txentry_desc *txdesc)
1454 {
1455 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1456 	__le32 *txd = (__le32 *) entry->skb->data;
1457 	u32 word;
1458 
1459 	/*
1460 	 * Start writing the descriptor words.
1461 	 */
1462 	rt2x00_desc_read(txd, 0, &word);
1463 	rt2x00_set_field32(&word, TXD_W0_BURST,
1464 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1465 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1466 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1467 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1468 	rt2x00_set_field32(&word, TXD_W0_ACK,
1469 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1470 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1471 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1472 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1473 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1474 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1475 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1476 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1477 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1478 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1479 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1480 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1481 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1482 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1483 	rt2x00_set_field32(&word, TXD_W0_BURST2,
1484 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1485 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1486 	rt2x00_desc_write(txd, 0, word);
1487 
1488 	rt2x00_desc_read(txd, 1, &word);
1489 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1490 	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1491 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1492 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1493 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1494 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1495 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1496 	rt2x00_desc_write(txd, 1, word);
1497 
1498 	rt2x00_desc_read(txd, 2, &word);
1499 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1500 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1501 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1502 			   txdesc->u.plcp.length_low);
1503 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1504 			   txdesc->u.plcp.length_high);
1505 	rt2x00_desc_write(txd, 2, word);
1506 
1507 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1508 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1509 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1510 	}
1511 
1512 	rt2x00_desc_read(txd, 5, &word);
1513 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1514 			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1515 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1516 	rt2x00_desc_write(txd, 5, word);
1517 
1518 	/*
1519 	 * Register descriptor details in skb frame descriptor.
1520 	 */
1521 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1522 	skbdesc->desc = txd;
1523 	skbdesc->desc_len = TXD_DESC_SIZE;
1524 }
1525 
1526 /*
1527  * TX data initialization
1528  */
1529 static void rt73usb_write_beacon(struct queue_entry *entry,
1530 				 struct txentry_desc *txdesc)
1531 {
1532 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1533 	unsigned int beacon_base;
1534 	unsigned int padding_len;
1535 	u32 orig_reg, reg;
1536 
1537 	/*
1538 	 * Disable beaconing while we are reloading the beacon data,
1539 	 * otherwise we might be sending out invalid data.
1540 	 */
1541 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1542 	orig_reg = reg;
1543 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1544 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1545 
1546 	/*
1547 	 * Add space for the descriptor in front of the skb.
1548 	 */
1549 	skb_push(entry->skb, TXD_DESC_SIZE);
1550 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1551 
1552 	/*
1553 	 * Write the TX descriptor for the beacon.
1554 	 */
1555 	rt73usb_write_tx_desc(entry, txdesc);
1556 
1557 	/*
1558 	 * Dump beacon to userspace through debugfs.
1559 	 */
1560 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1561 
1562 	/*
1563 	 * Write entire beacon with descriptor and padding to register.
1564 	 */
1565 	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1566 	if (padding_len && skb_pad(entry->skb, padding_len)) {
1567 		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1568 		/* skb freed by skb_pad() on failure */
1569 		entry->skb = NULL;
1570 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1571 		return;
1572 	}
1573 
1574 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1575 	rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1576 				      entry->skb->len + padding_len);
1577 
1578 	/*
1579 	 * Enable beaconing again.
1580 	 *
1581 	 * For Wi-Fi faily generated beacons between participating stations.
1582 	 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1583 	 */
1584 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1585 
1586 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1587 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1588 
1589 	/*
1590 	 * Clean up the beacon skb.
1591 	 */
1592 	dev_kfree_skb(entry->skb);
1593 	entry->skb = NULL;
1594 }
1595 
1596 static void rt73usb_clear_beacon(struct queue_entry *entry)
1597 {
1598 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1599 	unsigned int beacon_base;
1600 	u32 orig_reg, reg;
1601 
1602 	/*
1603 	 * Disable beaconing while we are reloading the beacon data,
1604 	 * otherwise we might be sending out invalid data.
1605 	 */
1606 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
1607 	reg = orig_reg;
1608 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1609 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1610 
1611 	/*
1612 	 * Clear beacon.
1613 	 */
1614 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1615 	rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1616 
1617 	/*
1618 	 * Restore beaconing state.
1619 	 */
1620 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1621 }
1622 
1623 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1624 {
1625 	int length;
1626 
1627 	/*
1628 	 * The length _must_ be a multiple of 4,
1629 	 * but it must _not_ be a multiple of the USB packet size.
1630 	 */
1631 	length = roundup(entry->skb->len, 4);
1632 	length += (4 * !(length % entry->queue->usb_maxpacket));
1633 
1634 	return length;
1635 }
1636 
1637 /*
1638  * RX control handlers
1639  */
1640 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1641 {
1642 	u8 offset = rt2x00dev->lna_gain;
1643 	u8 lna;
1644 
1645 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1646 	switch (lna) {
1647 	case 3:
1648 		offset += 90;
1649 		break;
1650 	case 2:
1651 		offset += 74;
1652 		break;
1653 	case 1:
1654 		offset += 64;
1655 		break;
1656 	default:
1657 		return 0;
1658 	}
1659 
1660 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1661 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1662 			if (lna == 3 || lna == 2)
1663 				offset += 10;
1664 		} else {
1665 			if (lna == 3)
1666 				offset += 6;
1667 			else if (lna == 2)
1668 				offset += 8;
1669 		}
1670 	}
1671 
1672 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1673 }
1674 
1675 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1676 				struct rxdone_entry_desc *rxdesc)
1677 {
1678 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1679 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1680 	__le32 *rxd = (__le32 *)entry->skb->data;
1681 	u32 word0;
1682 	u32 word1;
1683 
1684 	/*
1685 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1686 	 * frame data in rt2x00usb.
1687 	 */
1688 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1689 	rxd = (__le32 *)skbdesc->desc;
1690 
1691 	/*
1692 	 * It is now safe to read the descriptor on all architectures.
1693 	 */
1694 	rt2x00_desc_read(rxd, 0, &word0);
1695 	rt2x00_desc_read(rxd, 1, &word1);
1696 
1697 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1698 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1699 
1700 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1701 	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1702 
1703 	if (rxdesc->cipher != CIPHER_NONE) {
1704 		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1705 		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1706 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1707 
1708 		_rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1709 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1710 
1711 		/*
1712 		 * Hardware has stripped IV/EIV data from 802.11 frame during
1713 		 * decryption. It has provided the data separately but rt2x00lib
1714 		 * should decide if it should be reinserted.
1715 		 */
1716 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1717 
1718 		/*
1719 		 * The hardware has already checked the Michael Mic and has
1720 		 * stripped it from the frame. Signal this to mac80211.
1721 		 */
1722 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1723 
1724 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1725 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1726 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1727 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1728 	}
1729 
1730 	/*
1731 	 * Obtain the status about this packet.
1732 	 * When frame was received with an OFDM bitrate,
1733 	 * the signal is the PLCP value. If it was received with
1734 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1735 	 */
1736 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1737 	rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1738 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1739 
1740 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1741 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1742 	else
1743 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1744 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1745 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1746 
1747 	/*
1748 	 * Set skb pointers, and update frame information.
1749 	 */
1750 	skb_pull(entry->skb, entry->queue->desc_size);
1751 	skb_trim(entry->skb, rxdesc->size);
1752 }
1753 
1754 /*
1755  * Device probe functions.
1756  */
1757 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1758 {
1759 	u16 word;
1760 	u8 *mac;
1761 	s8 value;
1762 
1763 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1764 
1765 	/*
1766 	 * Start validation of the data that has been read.
1767 	 */
1768 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1769 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1770 
1771 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1772 	if (word == 0xffff) {
1773 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1774 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1775 				   ANTENNA_B);
1776 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1777 				   ANTENNA_B);
1778 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1779 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1780 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1781 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1782 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1783 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1784 	}
1785 
1786 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1787 	if (word == 0xffff) {
1788 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1789 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1790 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1791 	}
1792 
1793 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1794 	if (word == 0xffff) {
1795 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1796 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1797 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1798 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1799 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1800 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1801 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1802 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1803 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1804 				   LED_MODE_DEFAULT);
1805 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1806 		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1807 	}
1808 
1809 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1810 	if (word == 0xffff) {
1811 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1812 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1813 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1814 		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1815 	}
1816 
1817 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1818 	if (word == 0xffff) {
1819 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1820 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1821 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1822 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1823 	} else {
1824 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1825 		if (value < -10 || value > 10)
1826 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1827 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1828 		if (value < -10 || value > 10)
1829 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1830 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1831 	}
1832 
1833 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1834 	if (word == 0xffff) {
1835 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1836 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1837 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1838 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1839 	} else {
1840 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1841 		if (value < -10 || value > 10)
1842 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1843 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1844 		if (value < -10 || value > 10)
1845 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1846 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1853 {
1854 	u32 reg;
1855 	u16 value;
1856 	u16 eeprom;
1857 
1858 	/*
1859 	 * Read EEPROM word for configuration.
1860 	 */
1861 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1862 
1863 	/*
1864 	 * Identify RF chipset.
1865 	 */
1866 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1867 	rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1868 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1869 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1870 
1871 	if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1872 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1873 		return -ENODEV;
1874 	}
1875 
1876 	if (!rt2x00_rf(rt2x00dev, RF5226) &&
1877 	    !rt2x00_rf(rt2x00dev, RF2528) &&
1878 	    !rt2x00_rf(rt2x00dev, RF5225) &&
1879 	    !rt2x00_rf(rt2x00dev, RF2527)) {
1880 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1881 		return -ENODEV;
1882 	}
1883 
1884 	/*
1885 	 * Identify default antenna configuration.
1886 	 */
1887 	rt2x00dev->default_ant.tx =
1888 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1889 	rt2x00dev->default_ant.rx =
1890 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1891 
1892 	/*
1893 	 * Read the Frame type.
1894 	 */
1895 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1896 		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1897 
1898 	/*
1899 	 * Detect if this device has an hardware controlled radio.
1900 	 */
1901 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1902 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1903 
1904 	/*
1905 	 * Read frequency offset.
1906 	 */
1907 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1908 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1909 
1910 	/*
1911 	 * Read external LNA informations.
1912 	 */
1913 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1914 
1915 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1916 		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1917 		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1918 	}
1919 
1920 	/*
1921 	 * Store led settings, for correct led behaviour.
1922 	 */
1923 #ifdef CONFIG_RT2X00_LIB_LEDS
1924 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1925 
1926 	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1927 	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1928 	if (value == LED_MODE_SIGNAL_STRENGTH)
1929 		rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1930 				 LED_TYPE_QUALITY);
1931 
1932 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1933 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1934 			   rt2x00_get_field16(eeprom,
1935 					      EEPROM_LED_POLARITY_GPIO_0));
1936 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1937 			   rt2x00_get_field16(eeprom,
1938 					      EEPROM_LED_POLARITY_GPIO_1));
1939 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1940 			   rt2x00_get_field16(eeprom,
1941 					      EEPROM_LED_POLARITY_GPIO_2));
1942 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1943 			   rt2x00_get_field16(eeprom,
1944 					      EEPROM_LED_POLARITY_GPIO_3));
1945 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1946 			   rt2x00_get_field16(eeprom,
1947 					      EEPROM_LED_POLARITY_GPIO_4));
1948 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1949 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1950 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1951 			   rt2x00_get_field16(eeprom,
1952 					      EEPROM_LED_POLARITY_RDY_G));
1953 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1954 			   rt2x00_get_field16(eeprom,
1955 					      EEPROM_LED_POLARITY_RDY_A));
1956 #endif /* CONFIG_RT2X00_LIB_LEDS */
1957 
1958 	return 0;
1959 }
1960 
1961 /*
1962  * RF value list for RF2528
1963  * Supports: 2.4 GHz
1964  */
1965 static const struct rf_channel rf_vals_bg_2528[] = {
1966 	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1967 	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1968 	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1969 	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1970 	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1971 	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1972 	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1973 	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1974 	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1975 	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1976 	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1977 	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1978 	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1979 	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1980 };
1981 
1982 /*
1983  * RF value list for RF5226
1984  * Supports: 2.4 GHz & 5.2 GHz
1985  */
1986 static const struct rf_channel rf_vals_5226[] = {
1987 	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1988 	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1989 	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1990 	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1991 	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1992 	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1993 	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1994 	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1995 	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1996 	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1997 	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1998 	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1999 	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2000 	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2001 
2002 	/* 802.11 UNI / HyperLan 2 */
2003 	{ 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2004 	{ 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2005 	{ 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2006 	{ 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2007 	{ 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2008 	{ 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2009 	{ 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2010 	{ 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2011 
2012 	/* 802.11 HyperLan 2 */
2013 	{ 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2014 	{ 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2015 	{ 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2016 	{ 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2017 	{ 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2018 	{ 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2019 	{ 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2020 	{ 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2021 	{ 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2022 	{ 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2023 
2024 	/* 802.11 UNII */
2025 	{ 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2026 	{ 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2027 	{ 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2028 	{ 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2029 	{ 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2030 	{ 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2031 
2032 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2033 	{ 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2034 	{ 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2035 	{ 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2036 	{ 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2037 };
2038 
2039 /*
2040  * RF value list for RF5225 & RF2527
2041  * Supports: 2.4 GHz & 5.2 GHz
2042  */
2043 static const struct rf_channel rf_vals_5225_2527[] = {
2044 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2045 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2046 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2047 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2048 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2049 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2050 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2051 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2052 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2053 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2054 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2055 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2056 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2057 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2058 
2059 	/* 802.11 UNI / HyperLan 2 */
2060 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2061 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2062 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2063 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2064 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2065 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2066 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2067 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2068 
2069 	/* 802.11 HyperLan 2 */
2070 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2071 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2072 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2073 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2074 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2075 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2076 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2077 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2078 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2079 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2080 
2081 	/* 802.11 UNII */
2082 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2083 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2084 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2085 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2086 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2087 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2088 
2089 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2090 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2091 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2092 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2093 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2094 };
2095 
2096 
2097 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2098 {
2099 	struct hw_mode_spec *spec = &rt2x00dev->spec;
2100 	struct channel_info *info;
2101 	char *tx_power;
2102 	unsigned int i;
2103 
2104 	/*
2105 	 * Initialize all hw fields.
2106 	 *
2107 	 * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
2108 	 * capable of sending the buffered frames out after the DTIM
2109 	 * transmission using rt2x00lib_beacondone. This will send out
2110 	 * multicast and broadcast traffic immediately instead of buffering it
2111 	 * infinitly and thus dropping it after some time.
2112 	 */
2113 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2114 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2115 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2116 
2117 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2118 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2119 				rt2x00_eeprom_addr(rt2x00dev,
2120 						   EEPROM_MAC_ADDR_0));
2121 
2122 	/*
2123 	 * Initialize hw_mode information.
2124 	 */
2125 	spec->supported_bands = SUPPORT_BAND_2GHZ;
2126 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2127 
2128 	if (rt2x00_rf(rt2x00dev, RF2528)) {
2129 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2130 		spec->channels = rf_vals_bg_2528;
2131 	} else if (rt2x00_rf(rt2x00dev, RF5226)) {
2132 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2133 		spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2134 		spec->channels = rf_vals_5226;
2135 	} else if (rt2x00_rf(rt2x00dev, RF2527)) {
2136 		spec->num_channels = 14;
2137 		spec->channels = rf_vals_5225_2527;
2138 	} else if (rt2x00_rf(rt2x00dev, RF5225)) {
2139 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2140 		spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2141 		spec->channels = rf_vals_5225_2527;
2142 	}
2143 
2144 	/*
2145 	 * Create channel information array
2146 	 */
2147 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2148 	if (!info)
2149 		return -ENOMEM;
2150 
2151 	spec->channels_info = info;
2152 
2153 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2154 	for (i = 0; i < 14; i++) {
2155 		info[i].max_power = MAX_TXPOWER;
2156 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2157 	}
2158 
2159 	if (spec->num_channels > 14) {
2160 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2161 		for (i = 14; i < spec->num_channels; i++) {
2162 			info[i].max_power = MAX_TXPOWER;
2163 			info[i].default_power1 =
2164 					TXPOWER_FROM_DEV(tx_power[i - 14]);
2165 		}
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2172 {
2173 	int retval;
2174 	u32 reg;
2175 
2176 	/*
2177 	 * Allocate eeprom data.
2178 	 */
2179 	retval = rt73usb_validate_eeprom(rt2x00dev);
2180 	if (retval)
2181 		return retval;
2182 
2183 	retval = rt73usb_init_eeprom(rt2x00dev);
2184 	if (retval)
2185 		return retval;
2186 
2187 	/*
2188 	 * Enable rfkill polling by setting GPIO direction of the
2189 	 * rfkill switch GPIO pin correctly.
2190 	 */
2191 	rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
2192 	rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2193 	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2194 
2195 	/*
2196 	 * Initialize hw specifications.
2197 	 */
2198 	retval = rt73usb_probe_hw_mode(rt2x00dev);
2199 	if (retval)
2200 		return retval;
2201 
2202 	/*
2203 	 * This device has multiple filters for control frames,
2204 	 * but has no a separate filter for PS Poll frames.
2205 	 */
2206 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2207 
2208 	/*
2209 	 * This device requires firmware.
2210 	 */
2211 	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2212 	if (!modparam_nohwcrypt)
2213 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2214 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2215 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2216 
2217 	/*
2218 	 * Set the rssi offset.
2219 	 */
2220 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2221 
2222 	return 0;
2223 }
2224 
2225 /*
2226  * IEEE80211 stack callback functions.
2227  */
2228 static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2229 			   struct ieee80211_vif *vif, u16 queue_idx,
2230 			   const struct ieee80211_tx_queue_params *params)
2231 {
2232 	struct rt2x00_dev *rt2x00dev = hw->priv;
2233 	struct data_queue *queue;
2234 	struct rt2x00_field32 field;
2235 	int retval;
2236 	u32 reg;
2237 	u32 offset;
2238 
2239 	/*
2240 	 * First pass the configuration through rt2x00lib, that will
2241 	 * update the queue settings and validate the input. After that
2242 	 * we are free to update the registers based on the value
2243 	 * in the queue parameter.
2244 	 */
2245 	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2246 	if (retval)
2247 		return retval;
2248 
2249 	/*
2250 	 * We only need to perform additional register initialization
2251 	 * for WMM queues/
2252 	 */
2253 	if (queue_idx >= 4)
2254 		return 0;
2255 
2256 	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2257 
2258 	/* Update WMM TXOP register */
2259 	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2260 	field.bit_offset = (queue_idx & 1) * 16;
2261 	field.bit_mask = 0xffff << field.bit_offset;
2262 
2263 	rt2x00usb_register_read(rt2x00dev, offset, &reg);
2264 	rt2x00_set_field32(&reg, field, queue->txop);
2265 	rt2x00usb_register_write(rt2x00dev, offset, reg);
2266 
2267 	/* Update WMM registers */
2268 	field.bit_offset = queue_idx * 4;
2269 	field.bit_mask = 0xf << field.bit_offset;
2270 
2271 	rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2272 	rt2x00_set_field32(&reg, field, queue->aifs);
2273 	rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2274 
2275 	rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2276 	rt2x00_set_field32(&reg, field, queue->cw_min);
2277 	rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2278 
2279 	rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2280 	rt2x00_set_field32(&reg, field, queue->cw_max);
2281 	rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2282 
2283 	return 0;
2284 }
2285 
2286 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2287 {
2288 	struct rt2x00_dev *rt2x00dev = hw->priv;
2289 	u64 tsf;
2290 	u32 reg;
2291 
2292 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2293 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2294 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2295 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2296 
2297 	return tsf;
2298 }
2299 
2300 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2301 	.tx			= rt2x00mac_tx,
2302 	.start			= rt2x00mac_start,
2303 	.stop			= rt2x00mac_stop,
2304 	.add_interface		= rt2x00mac_add_interface,
2305 	.remove_interface	= rt2x00mac_remove_interface,
2306 	.config			= rt2x00mac_config,
2307 	.configure_filter	= rt2x00mac_configure_filter,
2308 	.set_tim		= rt2x00mac_set_tim,
2309 	.set_key		= rt2x00mac_set_key,
2310 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2311 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2312 	.get_stats		= rt2x00mac_get_stats,
2313 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2314 	.conf_tx		= rt73usb_conf_tx,
2315 	.get_tsf		= rt73usb_get_tsf,
2316 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2317 	.flush			= rt2x00mac_flush,
2318 	.set_antenna		= rt2x00mac_set_antenna,
2319 	.get_antenna		= rt2x00mac_get_antenna,
2320 	.get_ringparam		= rt2x00mac_get_ringparam,
2321 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2322 };
2323 
2324 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2325 	.probe_hw		= rt73usb_probe_hw,
2326 	.get_firmware_name	= rt73usb_get_firmware_name,
2327 	.check_firmware		= rt73usb_check_firmware,
2328 	.load_firmware		= rt73usb_load_firmware,
2329 	.initialize		= rt2x00usb_initialize,
2330 	.uninitialize		= rt2x00usb_uninitialize,
2331 	.clear_entry		= rt2x00usb_clear_entry,
2332 	.set_device_state	= rt73usb_set_device_state,
2333 	.rfkill_poll		= rt73usb_rfkill_poll,
2334 	.link_stats		= rt73usb_link_stats,
2335 	.reset_tuner		= rt73usb_reset_tuner,
2336 	.link_tuner		= rt73usb_link_tuner,
2337 	.watchdog		= rt2x00usb_watchdog,
2338 	.start_queue		= rt73usb_start_queue,
2339 	.kick_queue		= rt2x00usb_kick_queue,
2340 	.stop_queue		= rt73usb_stop_queue,
2341 	.flush_queue		= rt2x00usb_flush_queue,
2342 	.write_tx_desc		= rt73usb_write_tx_desc,
2343 	.write_beacon		= rt73usb_write_beacon,
2344 	.clear_beacon		= rt73usb_clear_beacon,
2345 	.get_tx_data_len	= rt73usb_get_tx_data_len,
2346 	.fill_rxdone		= rt73usb_fill_rxdone,
2347 	.config_shared_key	= rt73usb_config_shared_key,
2348 	.config_pairwise_key	= rt73usb_config_pairwise_key,
2349 	.config_filter		= rt73usb_config_filter,
2350 	.config_intf		= rt73usb_config_intf,
2351 	.config_erp		= rt73usb_config_erp,
2352 	.config_ant		= rt73usb_config_ant,
2353 	.config			= rt73usb_config,
2354 };
2355 
2356 static void rt73usb_queue_init(struct data_queue *queue)
2357 {
2358 	switch (queue->qid) {
2359 	case QID_RX:
2360 		queue->limit = 32;
2361 		queue->data_size = DATA_FRAME_SIZE;
2362 		queue->desc_size = RXD_DESC_SIZE;
2363 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2364 		break;
2365 
2366 	case QID_AC_VO:
2367 	case QID_AC_VI:
2368 	case QID_AC_BE:
2369 	case QID_AC_BK:
2370 		queue->limit = 32;
2371 		queue->data_size = DATA_FRAME_SIZE;
2372 		queue->desc_size = TXD_DESC_SIZE;
2373 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2374 		break;
2375 
2376 	case QID_BEACON:
2377 		queue->limit = 4;
2378 		queue->data_size = MGMT_FRAME_SIZE;
2379 		queue->desc_size = TXINFO_SIZE;
2380 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2381 		break;
2382 
2383 	case QID_ATIM:
2384 		/* fallthrough */
2385 	default:
2386 		BUG();
2387 		break;
2388 	}
2389 }
2390 
2391 static const struct rt2x00_ops rt73usb_ops = {
2392 	.name			= KBUILD_MODNAME,
2393 	.max_ap_intf		= 4,
2394 	.eeprom_size		= EEPROM_SIZE,
2395 	.rf_size		= RF_SIZE,
2396 	.tx_queues		= NUM_TX_QUEUES,
2397 	.queue_init		= rt73usb_queue_init,
2398 	.lib			= &rt73usb_rt2x00_ops,
2399 	.hw			= &rt73usb_mac80211_ops,
2400 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2401 	.debugfs		= &rt73usb_rt2x00debug,
2402 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2403 };
2404 
2405 /*
2406  * rt73usb module information.
2407  */
2408 static struct usb_device_id rt73usb_device_table[] = {
2409 	/* AboCom */
2410 	{ USB_DEVICE(0x07b8, 0xb21b) },
2411 	{ USB_DEVICE(0x07b8, 0xb21c) },
2412 	{ USB_DEVICE(0x07b8, 0xb21d) },
2413 	{ USB_DEVICE(0x07b8, 0xb21e) },
2414 	{ USB_DEVICE(0x07b8, 0xb21f) },
2415 	/* AL */
2416 	{ USB_DEVICE(0x14b2, 0x3c10) },
2417 	/* Amigo */
2418 	{ USB_DEVICE(0x148f, 0x9021) },
2419 	{ USB_DEVICE(0x0eb0, 0x9021) },
2420 	/* AMIT  */
2421 	{ USB_DEVICE(0x18c5, 0x0002) },
2422 	/* Askey */
2423 	{ USB_DEVICE(0x1690, 0x0722) },
2424 	/* ASUS */
2425 	{ USB_DEVICE(0x0b05, 0x1723) },
2426 	{ USB_DEVICE(0x0b05, 0x1724) },
2427 	/* Belkin */
2428 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050B ver. 3.x */
2429 	{ USB_DEVICE(0x050d, 0x705a) },
2430 	{ USB_DEVICE(0x050d, 0x905b) },
2431 	{ USB_DEVICE(0x050d, 0x905c) },
2432 	/* Billionton */
2433 	{ USB_DEVICE(0x1631, 0xc019) },
2434 	{ USB_DEVICE(0x08dd, 0x0120) },
2435 	/* Buffalo */
2436 	{ USB_DEVICE(0x0411, 0x00d8) },
2437 	{ USB_DEVICE(0x0411, 0x00d9) },
2438 	{ USB_DEVICE(0x0411, 0x00e6) },
2439 	{ USB_DEVICE(0x0411, 0x00f4) },
2440 	{ USB_DEVICE(0x0411, 0x0116) },
2441 	{ USB_DEVICE(0x0411, 0x0119) },
2442 	{ USB_DEVICE(0x0411, 0x0137) },
2443 	/* CEIVA */
2444 	{ USB_DEVICE(0x178d, 0x02be) },
2445 	/* CNet */
2446 	{ USB_DEVICE(0x1371, 0x9022) },
2447 	{ USB_DEVICE(0x1371, 0x9032) },
2448 	/* Conceptronic */
2449 	{ USB_DEVICE(0x14b2, 0x3c22) },
2450 	/* Corega */
2451 	{ USB_DEVICE(0x07aa, 0x002e) },
2452 	/* D-Link */
2453 	{ USB_DEVICE(0x07d1, 0x3c03) },
2454 	{ USB_DEVICE(0x07d1, 0x3c04) },
2455 	{ USB_DEVICE(0x07d1, 0x3c06) },
2456 	{ USB_DEVICE(0x07d1, 0x3c07) },
2457 	/* Edimax */
2458 	{ USB_DEVICE(0x7392, 0x7318) },
2459 	{ USB_DEVICE(0x7392, 0x7618) },
2460 	/* EnGenius */
2461 	{ USB_DEVICE(0x1740, 0x3701) },
2462 	/* Gemtek */
2463 	{ USB_DEVICE(0x15a9, 0x0004) },
2464 	/* Gigabyte */
2465 	{ USB_DEVICE(0x1044, 0x8008) },
2466 	{ USB_DEVICE(0x1044, 0x800a) },
2467 	/* Huawei-3Com */
2468 	{ USB_DEVICE(0x1472, 0x0009) },
2469 	/* Hercules */
2470 	{ USB_DEVICE(0x06f8, 0xe002) },
2471 	{ USB_DEVICE(0x06f8, 0xe010) },
2472 	{ USB_DEVICE(0x06f8, 0xe020) },
2473 	/* Linksys */
2474 	{ USB_DEVICE(0x13b1, 0x0020) },
2475 	{ USB_DEVICE(0x13b1, 0x0023) },
2476 	{ USB_DEVICE(0x13b1, 0x0028) },
2477 	/* MSI */
2478 	{ USB_DEVICE(0x0db0, 0x4600) },
2479 	{ USB_DEVICE(0x0db0, 0x6877) },
2480 	{ USB_DEVICE(0x0db0, 0x6874) },
2481 	{ USB_DEVICE(0x0db0, 0xa861) },
2482 	{ USB_DEVICE(0x0db0, 0xa874) },
2483 	/* Ovislink */
2484 	{ USB_DEVICE(0x1b75, 0x7318) },
2485 	/* Ralink */
2486 	{ USB_DEVICE(0x04bb, 0x093d) },
2487 	{ USB_DEVICE(0x148f, 0x2573) },
2488 	{ USB_DEVICE(0x148f, 0x2671) },
2489 	{ USB_DEVICE(0x0812, 0x3101) },
2490 	/* Qcom */
2491 	{ USB_DEVICE(0x18e8, 0x6196) },
2492 	{ USB_DEVICE(0x18e8, 0x6229) },
2493 	{ USB_DEVICE(0x18e8, 0x6238) },
2494 	/* Samsung */
2495 	{ USB_DEVICE(0x04e8, 0x4471) },
2496 	/* Senao */
2497 	{ USB_DEVICE(0x1740, 0x7100) },
2498 	/* Sitecom */
2499 	{ USB_DEVICE(0x0df6, 0x0024) },
2500 	{ USB_DEVICE(0x0df6, 0x0027) },
2501 	{ USB_DEVICE(0x0df6, 0x002f) },
2502 	{ USB_DEVICE(0x0df6, 0x90ac) },
2503 	{ USB_DEVICE(0x0df6, 0x9712) },
2504 	/* Surecom */
2505 	{ USB_DEVICE(0x0769, 0x31f3) },
2506 	/* Tilgin */
2507 	{ USB_DEVICE(0x6933, 0x5001) },
2508 	/* Philips */
2509 	{ USB_DEVICE(0x0471, 0x200a) },
2510 	/* Planex */
2511 	{ USB_DEVICE(0x2019, 0xab01) },
2512 	{ USB_DEVICE(0x2019, 0xab50) },
2513 	/* WideTell */
2514 	{ USB_DEVICE(0x7167, 0x3840) },
2515 	/* Zcom */
2516 	{ USB_DEVICE(0x0cde, 0x001c) },
2517 	/* ZyXEL */
2518 	{ USB_DEVICE(0x0586, 0x3415) },
2519 	{ 0, }
2520 };
2521 
2522 MODULE_AUTHOR(DRV_PROJECT);
2523 MODULE_VERSION(DRV_VERSION);
2524 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2525 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2526 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2527 MODULE_FIRMWARE(FIRMWARE_RT2571);
2528 MODULE_LICENSE("GPL");
2529 
2530 static int rt73usb_probe(struct usb_interface *usb_intf,
2531 			 const struct usb_device_id *id)
2532 {
2533 	return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2534 }
2535 
2536 static struct usb_driver rt73usb_driver = {
2537 	.name		= KBUILD_MODNAME,
2538 	.id_table	= rt73usb_device_table,
2539 	.probe		= rt73usb_probe,
2540 	.disconnect	= rt2x00usb_disconnect,
2541 	.suspend	= rt2x00usb_suspend,
2542 	.resume		= rt2x00usb_resume,
2543 	.reset_resume	= rt2x00usb_resume,
2544 	.disable_hub_initiated_lpm = 1,
2545 };
2546 
2547 module_usb_driver(rt73usb_driver);
2548