1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 */ 7 8 /* 9 Module: rt61pci 10 Abstract: rt61pci device specific routines. 11 Supported chipsets: RT2561, RT2561s, RT2661. 12 */ 13 14 #include <linux/crc-itu-t.h> 15 #include <linux/delay.h> 16 #include <linux/etherdevice.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/pci.h> 21 #include <linux/eeprom_93cx6.h> 22 23 #include "rt2x00.h" 24 #include "rt2x00mmio.h" 25 #include "rt2x00pci.h" 26 #include "rt61pci.h" 27 28 /* 29 * Allow hardware encryption to be disabled. 30 */ 31 static bool modparam_nohwcrypt = false; 32 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); 33 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 34 35 /* 36 * Register access. 37 * BBP and RF register require indirect register access, 38 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. 39 * These indirect registers work with busy bits, 40 * and we will try maximal REGISTER_BUSY_COUNT times to access 41 * the register while taking a REGISTER_BUSY_DELAY us delay 42 * between each attempt. When the busy bit is still set at that time, 43 * the access attempt is considered to have failed, 44 * and we will print an error. 45 */ 46 #define WAIT_FOR_BBP(__dev, __reg) \ 47 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) 48 #define WAIT_FOR_RF(__dev, __reg) \ 49 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) 50 #define WAIT_FOR_MCU(__dev, __reg) \ 51 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \ 52 H2M_MAILBOX_CSR_OWNER, (__reg)) 53 54 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev, 55 const unsigned int word, const u8 value) 56 { 57 u32 reg; 58 59 mutex_lock(&rt2x00dev->csr_mutex); 60 61 /* 62 * Wait until the BBP becomes available, afterwards we 63 * can safely write the new data into the register. 64 */ 65 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 66 reg = 0; 67 rt2x00_set_field32(®, PHY_CSR3_VALUE, value); 68 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 69 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 70 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); 71 72 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); 73 } 74 75 mutex_unlock(&rt2x00dev->csr_mutex); 76 } 77 78 static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev, 79 const unsigned int word) 80 { 81 u32 reg; 82 u8 value; 83 84 mutex_lock(&rt2x00dev->csr_mutex); 85 86 /* 87 * Wait until the BBP becomes available, afterwards we 88 * can safely write the read request into the register. 89 * After the data has been written, we wait until hardware 90 * returns the correct value, if at any time the register 91 * doesn't become available in time, reg will be 0xffffffff 92 * which means we return 0xff to the caller. 93 */ 94 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 95 reg = 0; 96 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 97 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 98 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); 99 100 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); 101 102 WAIT_FOR_BBP(rt2x00dev, ®); 103 } 104 105 value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); 106 107 mutex_unlock(&rt2x00dev->csr_mutex); 108 109 return value; 110 } 111 112 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev, 113 const unsigned int word, const u32 value) 114 { 115 u32 reg; 116 117 mutex_lock(&rt2x00dev->csr_mutex); 118 119 /* 120 * Wait until the RF becomes available, afterwards we 121 * can safely write the new data into the register. 122 */ 123 if (WAIT_FOR_RF(rt2x00dev, ®)) { 124 reg = 0; 125 rt2x00_set_field32(®, PHY_CSR4_VALUE, value); 126 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); 127 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); 128 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); 129 130 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg); 131 rt2x00_rf_write(rt2x00dev, word, value); 132 } 133 134 mutex_unlock(&rt2x00dev->csr_mutex); 135 } 136 137 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev, 138 const u8 command, const u8 token, 139 const u8 arg0, const u8 arg1) 140 { 141 u32 reg; 142 143 mutex_lock(&rt2x00dev->csr_mutex); 144 145 /* 146 * Wait until the MCU becomes available, afterwards we 147 * can safely write the new data into the register. 148 */ 149 if (WAIT_FOR_MCU(rt2x00dev, ®)) { 150 rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); 151 rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); 152 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); 153 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); 154 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); 155 156 reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR); 157 rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); 158 rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); 159 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg); 160 } 161 162 mutex_unlock(&rt2x00dev->csr_mutex); 163 164 } 165 166 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) 167 { 168 struct rt2x00_dev *rt2x00dev = eeprom->data; 169 u32 reg; 170 171 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR); 172 173 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); 174 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); 175 eeprom->reg_data_clock = 176 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); 177 eeprom->reg_chip_select = 178 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); 179 } 180 181 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) 182 { 183 struct rt2x00_dev *rt2x00dev = eeprom->data; 184 u32 reg = 0; 185 186 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); 187 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); 188 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, 189 !!eeprom->reg_data_clock); 190 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, 191 !!eeprom->reg_chip_select); 192 193 rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg); 194 } 195 196 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 197 static const struct rt2x00debug rt61pci_rt2x00debug = { 198 .owner = THIS_MODULE, 199 .csr = { 200 .read = rt2x00mmio_register_read, 201 .write = rt2x00mmio_register_write, 202 .flags = RT2X00DEBUGFS_OFFSET, 203 .word_base = CSR_REG_BASE, 204 .word_size = sizeof(u32), 205 .word_count = CSR_REG_SIZE / sizeof(u32), 206 }, 207 .eeprom = { 208 .read = rt2x00_eeprom_read, 209 .write = rt2x00_eeprom_write, 210 .word_base = EEPROM_BASE, 211 .word_size = sizeof(u16), 212 .word_count = EEPROM_SIZE / sizeof(u16), 213 }, 214 .bbp = { 215 .read = rt61pci_bbp_read, 216 .write = rt61pci_bbp_write, 217 .word_base = BBP_BASE, 218 .word_size = sizeof(u8), 219 .word_count = BBP_SIZE / sizeof(u8), 220 }, 221 .rf = { 222 .read = rt2x00_rf_read, 223 .write = rt61pci_rf_write, 224 .word_base = RF_BASE, 225 .word_size = sizeof(u32), 226 .word_count = RF_SIZE / sizeof(u32), 227 }, 228 }; 229 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 230 231 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) 232 { 233 u32 reg; 234 235 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13); 236 return rt2x00_get_field32(reg, MAC_CSR13_VAL5); 237 } 238 239 #ifdef CONFIG_RT2X00_LIB_LEDS 240 static void rt61pci_brightness_set(struct led_classdev *led_cdev, 241 enum led_brightness brightness) 242 { 243 struct rt2x00_led *led = 244 container_of(led_cdev, struct rt2x00_led, led_dev); 245 unsigned int enabled = brightness != LED_OFF; 246 unsigned int a_mode = 247 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ); 248 unsigned int bg_mode = 249 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ); 250 251 if (led->type == LED_TYPE_RADIO) { 252 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 253 MCU_LEDCS_RADIO_STATUS, enabled); 254 255 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, 256 (led->rt2x00dev->led_mcu_reg & 0xff), 257 ((led->rt2x00dev->led_mcu_reg >> 8))); 258 } else if (led->type == LED_TYPE_ASSOC) { 259 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 260 MCU_LEDCS_LINK_BG_STATUS, bg_mode); 261 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 262 MCU_LEDCS_LINK_A_STATUS, a_mode); 263 264 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, 265 (led->rt2x00dev->led_mcu_reg & 0xff), 266 ((led->rt2x00dev->led_mcu_reg >> 8))); 267 } else if (led->type == LED_TYPE_QUALITY) { 268 /* 269 * The brightness is divided into 6 levels (0 - 5), 270 * this means we need to convert the brightness 271 * argument into the matching level within that range. 272 */ 273 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, 274 brightness / (LED_FULL / 6), 0); 275 } 276 } 277 278 static int rt61pci_blink_set(struct led_classdev *led_cdev, 279 unsigned long *delay_on, 280 unsigned long *delay_off) 281 { 282 struct rt2x00_led *led = 283 container_of(led_cdev, struct rt2x00_led, led_dev); 284 u32 reg; 285 286 reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14); 287 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); 288 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); 289 rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg); 290 291 return 0; 292 } 293 294 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev, 295 struct rt2x00_led *led, 296 enum led_type type) 297 { 298 led->rt2x00dev = rt2x00dev; 299 led->type = type; 300 led->led_dev.brightness_set = rt61pci_brightness_set; 301 led->led_dev.blink_set = rt61pci_blink_set; 302 led->flags = LED_INITIALIZED; 303 } 304 #endif /* CONFIG_RT2X00_LIB_LEDS */ 305 306 /* 307 * Configuration handlers. 308 */ 309 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev, 310 struct rt2x00lib_crypto *crypto, 311 struct ieee80211_key_conf *key) 312 { 313 /* 314 * Let the software handle the shared keys, 315 * since the hardware decryption does not work reliably, 316 * because the firmware does not know the key's keyidx. 317 */ 318 return -EOPNOTSUPP; 319 } 320 321 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev, 322 struct rt2x00lib_crypto *crypto, 323 struct ieee80211_key_conf *key) 324 { 325 struct hw_pairwise_ta_entry addr_entry; 326 struct hw_key_entry key_entry; 327 u32 mask; 328 u32 reg; 329 330 if (crypto->cmd == SET_KEY) { 331 /* 332 * rt2x00lib can't determine the correct free 333 * key_idx for pairwise keys. We have 2 registers 334 * with key valid bits. The goal is simple: read 335 * the first register. If that is full, move to 336 * the next register. 337 * When both registers are full, we drop the key. 338 * Otherwise, we use the first invalid entry. 339 */ 340 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2); 341 if (reg && reg == ~0) { 342 key->hw_key_idx = 32; 343 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3); 344 if (reg && reg == ~0) 345 return -ENOSPC; 346 } 347 348 key->hw_key_idx += reg ? ffz(reg) : 0; 349 350 /* 351 * Upload key to hardware 352 */ 353 memcpy(key_entry.key, crypto->key, 354 sizeof(key_entry.key)); 355 memcpy(key_entry.tx_mic, crypto->tx_mic, 356 sizeof(key_entry.tx_mic)); 357 memcpy(key_entry.rx_mic, crypto->rx_mic, 358 sizeof(key_entry.rx_mic)); 359 360 memset(&addr_entry, 0, sizeof(addr_entry)); 361 memcpy(&addr_entry, crypto->address, ETH_ALEN); 362 addr_entry.cipher = crypto->cipher; 363 364 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); 365 rt2x00mmio_register_multiwrite(rt2x00dev, reg, 366 &key_entry, sizeof(key_entry)); 367 368 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); 369 rt2x00mmio_register_multiwrite(rt2x00dev, reg, 370 &addr_entry, sizeof(addr_entry)); 371 372 /* 373 * Enable pairwise lookup table for given BSS idx. 374 * Without this, received frames will not be decrypted 375 * by the hardware. 376 */ 377 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4); 378 reg |= (1 << crypto->bssidx); 379 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg); 380 381 /* 382 * The driver does not support the IV/EIV generation 383 * in hardware. However it doesn't support the IV/EIV 384 * inside the ieee80211 frame either, but requires it 385 * to be provided separately for the descriptor. 386 * rt2x00lib will cut the IV/EIV data out of all frames 387 * given to us by mac80211, but we must tell mac80211 388 * to generate the IV/EIV data. 389 */ 390 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 391 } 392 393 /* 394 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate 395 * a particular key is valid. Because using the FIELD32() 396 * defines directly will cause a lot of overhead, we use 397 * a calculation to determine the correct bit directly. 398 */ 399 if (key->hw_key_idx < 32) { 400 mask = 1 << key->hw_key_idx; 401 402 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2); 403 if (crypto->cmd == SET_KEY) 404 reg |= mask; 405 else if (crypto->cmd == DISABLE_KEY) 406 reg &= ~mask; 407 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg); 408 } else { 409 mask = 1 << (key->hw_key_idx - 32); 410 411 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3); 412 if (crypto->cmd == SET_KEY) 413 reg |= mask; 414 else if (crypto->cmd == DISABLE_KEY) 415 reg &= ~mask; 416 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg); 417 } 418 419 return 0; 420 } 421 422 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev, 423 const unsigned int filter_flags) 424 { 425 u32 reg; 426 427 /* 428 * Start configuration steps. 429 * Note that the version error will always be dropped 430 * and broadcast frames will always be accepted since 431 * there is no filter for it at this time. 432 */ 433 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); 434 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, 435 !(filter_flags & FIF_FCSFAIL)); 436 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, 437 !(filter_flags & FIF_PLCPFAIL)); 438 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, 439 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); 440 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, 441 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 442 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, 443 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 444 !rt2x00dev->intf_ap_count); 445 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); 446 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, 447 !(filter_flags & FIF_ALLMULTI)); 448 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); 449 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 450 !(filter_flags & FIF_CONTROL)); 451 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 452 } 453 454 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev, 455 struct rt2x00_intf *intf, 456 struct rt2x00intf_conf *conf, 457 const unsigned int flags) 458 { 459 u32 reg; 460 461 if (flags & CONFIG_UPDATE_TYPE) { 462 /* 463 * Enable synchronisation. 464 */ 465 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); 466 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); 467 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 468 } 469 470 if (flags & CONFIG_UPDATE_MAC) { 471 reg = le32_to_cpu(conf->mac[1]); 472 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); 473 conf->mac[1] = cpu_to_le32(reg); 474 475 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2, 476 conf->mac, sizeof(conf->mac)); 477 } 478 479 if (flags & CONFIG_UPDATE_BSSID) { 480 reg = le32_to_cpu(conf->bssid[1]); 481 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); 482 conf->bssid[1] = cpu_to_le32(reg); 483 484 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4, 485 conf->bssid, 486 sizeof(conf->bssid)); 487 } 488 } 489 490 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev, 491 struct rt2x00lib_erp *erp, 492 u32 changed) 493 { 494 u32 reg; 495 496 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); 497 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); 498 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); 499 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 500 501 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 502 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4); 503 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); 504 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, 505 !!erp->short_preamble); 506 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); 507 } 508 509 if (changed & BSS_CHANGED_BASIC_RATES) 510 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5, 511 erp->basic_rates); 512 513 if (changed & BSS_CHANGED_BEACON_INT) { 514 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); 515 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 516 erp->beacon_int * 16); 517 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 518 } 519 520 if (changed & BSS_CHANGED_ERP_SLOT) { 521 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9); 522 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); 523 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); 524 525 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8); 526 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); 527 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); 528 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); 529 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg); 530 } 531 } 532 533 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev, 534 struct antenna_setup *ant) 535 { 536 u8 r3; 537 u8 r4; 538 u8 r77; 539 540 r3 = rt61pci_bbp_read(rt2x00dev, 3); 541 r4 = rt61pci_bbp_read(rt2x00dev, 4); 542 r77 = rt61pci_bbp_read(rt2x00dev, 77); 543 544 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325)); 545 546 /* 547 * Configure the RX antenna. 548 */ 549 switch (ant->rx) { 550 case ANTENNA_HW_DIVERSITY: 551 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 552 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 553 (rt2x00dev->curr_band != NL80211_BAND_5GHZ)); 554 break; 555 case ANTENNA_A: 556 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 557 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 558 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 559 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 560 else 561 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 562 break; 563 case ANTENNA_B: 564 default: 565 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 566 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 567 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) 568 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 569 else 570 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 571 break; 572 } 573 574 rt61pci_bbp_write(rt2x00dev, 77, r77); 575 rt61pci_bbp_write(rt2x00dev, 3, r3); 576 rt61pci_bbp_write(rt2x00dev, 4, r4); 577 } 578 579 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev, 580 struct antenna_setup *ant) 581 { 582 u8 r3; 583 u8 r4; 584 u8 r77; 585 586 r3 = rt61pci_bbp_read(rt2x00dev, 3); 587 r4 = rt61pci_bbp_read(rt2x00dev, 4); 588 r77 = rt61pci_bbp_read(rt2x00dev, 77); 589 590 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529)); 591 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 592 !rt2x00_has_cap_frame_type(rt2x00dev)); 593 594 /* 595 * Configure the RX antenna. 596 */ 597 switch (ant->rx) { 598 case ANTENNA_HW_DIVERSITY: 599 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 600 break; 601 case ANTENNA_A: 602 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 603 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 604 break; 605 case ANTENNA_B: 606 default: 607 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 608 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 609 break; 610 } 611 612 rt61pci_bbp_write(rt2x00dev, 77, r77); 613 rt61pci_bbp_write(rt2x00dev, 3, r3); 614 rt61pci_bbp_write(rt2x00dev, 4, r4); 615 } 616 617 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev, 618 const int p1, const int p2) 619 { 620 u32 reg; 621 622 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13); 623 624 rt2x00_set_field32(®, MAC_CSR13_DIR4, 0); 625 rt2x00_set_field32(®, MAC_CSR13_VAL4, p1); 626 627 rt2x00_set_field32(®, MAC_CSR13_DIR3, 0); 628 rt2x00_set_field32(®, MAC_CSR13_VAL3, !p2); 629 630 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); 631 } 632 633 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev, 634 struct antenna_setup *ant) 635 { 636 u8 r3; 637 u8 r4; 638 u8 r77; 639 640 r3 = rt61pci_bbp_read(rt2x00dev, 3); 641 r4 = rt61pci_bbp_read(rt2x00dev, 4); 642 r77 = rt61pci_bbp_read(rt2x00dev, 77); 643 644 /* 645 * Configure the RX antenna. 646 */ 647 switch (ant->rx) { 648 case ANTENNA_A: 649 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 650 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 651 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0); 652 break; 653 case ANTENNA_HW_DIVERSITY: 654 /* 655 * FIXME: Antenna selection for the rf 2529 is very confusing 656 * in the legacy driver. Just default to antenna B until the 657 * legacy code can be properly translated into rt2x00 code. 658 */ 659 case ANTENNA_B: 660 default: 661 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 662 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 663 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1); 664 break; 665 } 666 667 rt61pci_bbp_write(rt2x00dev, 77, r77); 668 rt61pci_bbp_write(rt2x00dev, 3, r3); 669 rt61pci_bbp_write(rt2x00dev, 4, r4); 670 } 671 672 struct antenna_sel { 673 u8 word; 674 /* 675 * value[0] -> non-LNA 676 * value[1] -> LNA 677 */ 678 u8 value[2]; 679 }; 680 681 static const struct antenna_sel antenna_sel_a[] = { 682 { 96, { 0x58, 0x78 } }, 683 { 104, { 0x38, 0x48 } }, 684 { 75, { 0xfe, 0x80 } }, 685 { 86, { 0xfe, 0x80 } }, 686 { 88, { 0xfe, 0x80 } }, 687 { 35, { 0x60, 0x60 } }, 688 { 97, { 0x58, 0x58 } }, 689 { 98, { 0x58, 0x58 } }, 690 }; 691 692 static const struct antenna_sel antenna_sel_bg[] = { 693 { 96, { 0x48, 0x68 } }, 694 { 104, { 0x2c, 0x3c } }, 695 { 75, { 0xfe, 0x80 } }, 696 { 86, { 0xfe, 0x80 } }, 697 { 88, { 0xfe, 0x80 } }, 698 { 35, { 0x50, 0x50 } }, 699 { 97, { 0x48, 0x48 } }, 700 { 98, { 0x48, 0x48 } }, 701 }; 702 703 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev, 704 struct antenna_setup *ant) 705 { 706 const struct antenna_sel *sel; 707 unsigned int lna; 708 unsigned int i; 709 u32 reg; 710 711 /* 712 * We should never come here because rt2x00lib is supposed 713 * to catch this and send us the correct antenna explicitely. 714 */ 715 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 716 ant->tx == ANTENNA_SW_DIVERSITY); 717 718 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 719 sel = antenna_sel_a; 720 lna = rt2x00_has_cap_external_lna_a(rt2x00dev); 721 } else { 722 sel = antenna_sel_bg; 723 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); 724 } 725 726 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) 727 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); 728 729 reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0); 730 731 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 732 rt2x00dev->curr_band == NL80211_BAND_2GHZ); 733 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 734 rt2x00dev->curr_band == NL80211_BAND_5GHZ); 735 736 rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg); 737 738 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) 739 rt61pci_config_antenna_5x(rt2x00dev, ant); 740 else if (rt2x00_rf(rt2x00dev, RF2527)) 741 rt61pci_config_antenna_2x(rt2x00dev, ant); 742 else if (rt2x00_rf(rt2x00dev, RF2529)) { 743 if (rt2x00_has_cap_double_antenna(rt2x00dev)) 744 rt61pci_config_antenna_2x(rt2x00dev, ant); 745 else 746 rt61pci_config_antenna_2529(rt2x00dev, ant); 747 } 748 } 749 750 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev, 751 struct rt2x00lib_conf *libconf) 752 { 753 u16 eeprom; 754 short lna_gain = 0; 755 756 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) { 757 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) 758 lna_gain += 14; 759 760 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); 761 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); 762 } else { 763 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) 764 lna_gain += 14; 765 766 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); 767 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); 768 } 769 770 rt2x00dev->lna_gain = lna_gain; 771 } 772 773 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, 774 struct rf_channel *rf, const int txpower) 775 { 776 u8 r3; 777 u8 r94; 778 u8 smart; 779 780 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 781 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); 782 783 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); 784 785 r3 = rt61pci_bbp_read(rt2x00dev, 3); 786 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); 787 rt61pci_bbp_write(rt2x00dev, 3, r3); 788 789 r94 = 6; 790 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) 791 r94 += txpower - MAX_TXPOWER; 792 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) 793 r94 += txpower; 794 rt61pci_bbp_write(rt2x00dev, 94, r94); 795 796 rt61pci_rf_write(rt2x00dev, 1, rf->rf1); 797 rt61pci_rf_write(rt2x00dev, 2, rf->rf2); 798 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 799 rt61pci_rf_write(rt2x00dev, 4, rf->rf4); 800 801 udelay(200); 802 803 rt61pci_rf_write(rt2x00dev, 1, rf->rf1); 804 rt61pci_rf_write(rt2x00dev, 2, rf->rf2); 805 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); 806 rt61pci_rf_write(rt2x00dev, 4, rf->rf4); 807 808 udelay(200); 809 810 rt61pci_rf_write(rt2x00dev, 1, rf->rf1); 811 rt61pci_rf_write(rt2x00dev, 2, rf->rf2); 812 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 813 rt61pci_rf_write(rt2x00dev, 4, rf->rf4); 814 815 msleep(1); 816 } 817 818 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, 819 const int txpower) 820 { 821 struct rf_channel rf; 822 823 rf.rf1 = rt2x00_rf_read(rt2x00dev, 1); 824 rf.rf2 = rt2x00_rf_read(rt2x00dev, 2); 825 rf.rf3 = rt2x00_rf_read(rt2x00dev, 3); 826 rf.rf4 = rt2x00_rf_read(rt2x00dev, 4); 827 828 rt61pci_config_channel(rt2x00dev, &rf, txpower); 829 } 830 831 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, 832 struct rt2x00lib_conf *libconf) 833 { 834 u32 reg; 835 836 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4); 837 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); 838 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); 839 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); 840 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, 841 libconf->conf->long_frame_max_tx_count); 842 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, 843 libconf->conf->short_frame_max_tx_count); 844 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); 845 } 846 847 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev, 848 struct rt2x00lib_conf *libconf) 849 { 850 enum dev_state state = 851 (libconf->conf->flags & IEEE80211_CONF_PS) ? 852 STATE_SLEEP : STATE_AWAKE; 853 u32 reg; 854 855 if (state == STATE_SLEEP) { 856 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11); 857 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 858 rt2x00dev->beacon_int - 10); 859 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 860 libconf->conf->listen_interval - 1); 861 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); 862 863 /* We must first disable autowake before it can be enabled */ 864 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 865 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); 866 867 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); 868 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); 869 870 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 871 0x00000005); 872 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c); 873 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060); 874 875 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0); 876 } else { 877 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11); 878 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); 879 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); 880 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 881 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); 882 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); 883 884 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 885 0x00000007); 886 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018); 887 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020); 888 889 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0); 890 } 891 } 892 893 static void rt61pci_config(struct rt2x00_dev *rt2x00dev, 894 struct rt2x00lib_conf *libconf, 895 const unsigned int flags) 896 { 897 /* Always recalculate LNA gain before changing configuration */ 898 rt61pci_config_lna_gain(rt2x00dev, libconf); 899 900 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 901 rt61pci_config_channel(rt2x00dev, &libconf->rf, 902 libconf->conf->power_level); 903 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 904 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 905 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level); 906 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 907 rt61pci_config_retry_limit(rt2x00dev, libconf); 908 if (flags & IEEE80211_CONF_CHANGE_PS) 909 rt61pci_config_ps(rt2x00dev, libconf); 910 } 911 912 /* 913 * Link tuning 914 */ 915 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev, 916 struct link_qual *qual) 917 { 918 u32 reg; 919 920 /* 921 * Update FCS error count from register. 922 */ 923 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0); 924 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); 925 926 /* 927 * Update False CCA count from register. 928 */ 929 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1); 930 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); 931 } 932 933 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev, 934 struct link_qual *qual, u8 vgc_level) 935 { 936 if (qual->vgc_level != vgc_level) { 937 rt61pci_bbp_write(rt2x00dev, 17, vgc_level); 938 qual->vgc_level = vgc_level; 939 qual->vgc_level_reg = vgc_level; 940 } 941 } 942 943 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev, 944 struct link_qual *qual) 945 { 946 rt61pci_set_vgc(rt2x00dev, qual, 0x20); 947 } 948 949 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev, 950 struct link_qual *qual, const u32 count) 951 { 952 u8 up_bound; 953 u8 low_bound; 954 955 /* 956 * Determine r17 bounds. 957 */ 958 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 959 low_bound = 0x28; 960 up_bound = 0x48; 961 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 962 low_bound += 0x10; 963 up_bound += 0x10; 964 } 965 } else { 966 low_bound = 0x20; 967 up_bound = 0x40; 968 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { 969 low_bound += 0x10; 970 up_bound += 0x10; 971 } 972 } 973 974 /* 975 * If we are not associated, we should go straight to the 976 * dynamic CCA tuning. 977 */ 978 if (!rt2x00dev->intf_associated) 979 goto dynamic_cca_tune; 980 981 /* 982 * Special big-R17 for very short distance 983 */ 984 if (qual->rssi >= -35) { 985 rt61pci_set_vgc(rt2x00dev, qual, 0x60); 986 return; 987 } 988 989 /* 990 * Special big-R17 for short distance 991 */ 992 if (qual->rssi >= -58) { 993 rt61pci_set_vgc(rt2x00dev, qual, up_bound); 994 return; 995 } 996 997 /* 998 * Special big-R17 for middle-short distance 999 */ 1000 if (qual->rssi >= -66) { 1001 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10); 1002 return; 1003 } 1004 1005 /* 1006 * Special mid-R17 for middle distance 1007 */ 1008 if (qual->rssi >= -74) { 1009 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08); 1010 return; 1011 } 1012 1013 /* 1014 * Special case: Change up_bound based on the rssi. 1015 * Lower up_bound when rssi is weaker then -74 dBm. 1016 */ 1017 up_bound -= 2 * (-74 - qual->rssi); 1018 if (low_bound > up_bound) 1019 up_bound = low_bound; 1020 1021 if (qual->vgc_level > up_bound) { 1022 rt61pci_set_vgc(rt2x00dev, qual, up_bound); 1023 return; 1024 } 1025 1026 dynamic_cca_tune: 1027 1028 /* 1029 * r17 does not yet exceed upper limit, continue and base 1030 * the r17 tuning on the false CCA count. 1031 */ 1032 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) 1033 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); 1034 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) 1035 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); 1036 } 1037 1038 /* 1039 * Queue handlers. 1040 */ 1041 static void rt61pci_start_queue(struct data_queue *queue) 1042 { 1043 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1044 u32 reg; 1045 1046 switch (queue->qid) { 1047 case QID_RX: 1048 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); 1049 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1050 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 1051 break; 1052 case QID_BEACON: 1053 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); 1054 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); 1055 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); 1056 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1057 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1058 break; 1059 default: 1060 break; 1061 } 1062 } 1063 1064 static void rt61pci_kick_queue(struct data_queue *queue) 1065 { 1066 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1067 u32 reg; 1068 1069 switch (queue->qid) { 1070 case QID_AC_VO: 1071 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1072 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1); 1073 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1074 break; 1075 case QID_AC_VI: 1076 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1077 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1); 1078 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1079 break; 1080 case QID_AC_BE: 1081 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1082 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1); 1083 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1084 break; 1085 case QID_AC_BK: 1086 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1087 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1); 1088 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1089 break; 1090 default: 1091 break; 1092 } 1093 } 1094 1095 static void rt61pci_stop_queue(struct data_queue *queue) 1096 { 1097 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1098 u32 reg; 1099 1100 switch (queue->qid) { 1101 case QID_AC_VO: 1102 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1103 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1); 1104 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1105 break; 1106 case QID_AC_VI: 1107 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1108 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1); 1109 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1110 break; 1111 case QID_AC_BE: 1112 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1113 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1); 1114 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1115 break; 1116 case QID_AC_BK: 1117 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); 1118 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1); 1119 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1120 break; 1121 case QID_RX: 1122 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); 1123 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); 1124 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 1125 break; 1126 case QID_BEACON: 1127 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); 1128 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1129 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1130 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1131 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1132 1133 /* 1134 * Wait for possibly running tbtt tasklets. 1135 */ 1136 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1137 break; 1138 default: 1139 break; 1140 } 1141 } 1142 1143 /* 1144 * Firmware functions 1145 */ 1146 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) 1147 { 1148 u16 chip; 1149 char *fw_name; 1150 1151 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip); 1152 switch (chip) { 1153 case RT2561_PCI_ID: 1154 fw_name = FIRMWARE_RT2561; 1155 break; 1156 case RT2561s_PCI_ID: 1157 fw_name = FIRMWARE_RT2561s; 1158 break; 1159 case RT2661_PCI_ID: 1160 fw_name = FIRMWARE_RT2661; 1161 break; 1162 default: 1163 fw_name = NULL; 1164 break; 1165 } 1166 1167 return fw_name; 1168 } 1169 1170 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev, 1171 const u8 *data, const size_t len) 1172 { 1173 u16 fw_crc; 1174 u16 crc; 1175 1176 /* 1177 * Only support 8kb firmware files. 1178 */ 1179 if (len != 8192) 1180 return FW_BAD_LENGTH; 1181 1182 /* 1183 * The last 2 bytes in the firmware array are the crc checksum itself. 1184 * This means that we should never pass those 2 bytes to the crc 1185 * algorithm. 1186 */ 1187 fw_crc = (data[len - 2] << 8 | data[len - 1]); 1188 1189 /* 1190 * Use the crc itu-t algorithm. 1191 */ 1192 crc = crc_itu_t(0, data, len - 2); 1193 crc = crc_itu_t_byte(crc, 0); 1194 crc = crc_itu_t_byte(crc, 0); 1195 1196 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; 1197 } 1198 1199 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, 1200 const u8 *data, const size_t len) 1201 { 1202 int i; 1203 u32 reg; 1204 1205 /* 1206 * Wait for stable hardware. 1207 */ 1208 for (i = 0; i < 100; i++) { 1209 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0); 1210 if (reg) 1211 break; 1212 msleep(1); 1213 } 1214 1215 if (!reg) { 1216 rt2x00_err(rt2x00dev, "Unstable hardware\n"); 1217 return -EBUSY; 1218 } 1219 1220 /* 1221 * Prepare MCU and mailbox for firmware loading. 1222 */ 1223 reg = 0; 1224 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); 1225 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1226 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); 1227 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); 1228 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0); 1229 1230 /* 1231 * Write firmware to device. 1232 */ 1233 reg = 0; 1234 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); 1235 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); 1236 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1237 1238 rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, 1239 data, len); 1240 1241 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); 1242 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1243 1244 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); 1245 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1246 1247 for (i = 0; i < 100; i++) { 1248 reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR); 1249 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) 1250 break; 1251 msleep(1); 1252 } 1253 1254 if (i == 100) { 1255 rt2x00_err(rt2x00dev, "MCU Control register not ready\n"); 1256 return -EBUSY; 1257 } 1258 1259 /* 1260 * Hardware needs another millisecond before it is ready. 1261 */ 1262 msleep(1); 1263 1264 /* 1265 * Reset MAC and BBP registers. 1266 */ 1267 reg = 0; 1268 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); 1269 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); 1270 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1271 1272 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); 1273 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); 1274 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); 1275 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1276 1277 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); 1278 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); 1279 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1280 1281 return 0; 1282 } 1283 1284 /* 1285 * Initialization functions. 1286 */ 1287 static bool rt61pci_get_entry_state(struct queue_entry *entry) 1288 { 1289 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1290 u32 word; 1291 1292 if (entry->queue->qid == QID_RX) { 1293 word = rt2x00_desc_read(entry_priv->desc, 0); 1294 1295 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); 1296 } else { 1297 word = rt2x00_desc_read(entry_priv->desc, 0); 1298 1299 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 1300 rt2x00_get_field32(word, TXD_W0_VALID)); 1301 } 1302 } 1303 1304 static void rt61pci_clear_entry(struct queue_entry *entry) 1305 { 1306 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1307 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1308 u32 word; 1309 1310 if (entry->queue->qid == QID_RX) { 1311 word = rt2x00_desc_read(entry_priv->desc, 5); 1312 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, 1313 skbdesc->skb_dma); 1314 rt2x00_desc_write(entry_priv->desc, 5, word); 1315 1316 word = rt2x00_desc_read(entry_priv->desc, 0); 1317 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); 1318 rt2x00_desc_write(entry_priv->desc, 0, word); 1319 } else { 1320 word = rt2x00_desc_read(entry_priv->desc, 0); 1321 rt2x00_set_field32(&word, TXD_W0_VALID, 0); 1322 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); 1323 rt2x00_desc_write(entry_priv->desc, 0, word); 1324 } 1325 } 1326 1327 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev) 1328 { 1329 struct queue_entry_priv_mmio *entry_priv; 1330 u32 reg; 1331 1332 /* 1333 * Initialize registers. 1334 */ 1335 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0); 1336 rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, 1337 rt2x00dev->tx[0].limit); 1338 rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, 1339 rt2x00dev->tx[1].limit); 1340 rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, 1341 rt2x00dev->tx[2].limit); 1342 rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, 1343 rt2x00dev->tx[3].limit); 1344 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg); 1345 1346 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1); 1347 rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, 1348 rt2x00dev->tx[0].desc_size / 4); 1349 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg); 1350 1351 entry_priv = rt2x00dev->tx[0].entries[0].priv_data; 1352 reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR); 1353 rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, 1354 entry_priv->desc_dma); 1355 rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg); 1356 1357 entry_priv = rt2x00dev->tx[1].entries[0].priv_data; 1358 reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR); 1359 rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, 1360 entry_priv->desc_dma); 1361 rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg); 1362 1363 entry_priv = rt2x00dev->tx[2].entries[0].priv_data; 1364 reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR); 1365 rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, 1366 entry_priv->desc_dma); 1367 rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg); 1368 1369 entry_priv = rt2x00dev->tx[3].entries[0].priv_data; 1370 reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR); 1371 rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, 1372 entry_priv->desc_dma); 1373 rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg); 1374 1375 reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR); 1376 rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit); 1377 rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, 1378 rt2x00dev->rx->desc_size / 4); 1379 rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); 1380 rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg); 1381 1382 entry_priv = rt2x00dev->rx->entries[0].priv_data; 1383 reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR); 1384 rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, 1385 entry_priv->desc_dma); 1386 rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg); 1387 1388 reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR); 1389 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2); 1390 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2); 1391 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2); 1392 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2); 1393 rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg); 1394 1395 reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR); 1396 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1); 1397 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1); 1398 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1); 1399 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1); 1400 rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg); 1401 1402 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR); 1403 rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1); 1404 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); 1405 1406 return 0; 1407 } 1408 1409 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) 1410 { 1411 u32 reg; 1412 1413 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); 1414 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); 1415 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1416 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); 1417 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 1418 1419 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1); 1420 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ 1421 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); 1422 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ 1423 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); 1424 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ 1425 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); 1426 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ 1427 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); 1428 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg); 1429 1430 /* 1431 * CCK TXD BBP registers 1432 */ 1433 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2); 1434 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); 1435 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); 1436 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); 1437 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); 1438 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); 1439 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); 1440 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); 1441 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); 1442 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg); 1443 1444 /* 1445 * OFDM TXD BBP registers 1446 */ 1447 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3); 1448 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); 1449 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); 1450 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); 1451 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); 1452 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); 1453 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); 1454 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg); 1455 1456 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7); 1457 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); 1458 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); 1459 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); 1460 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); 1461 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg); 1462 1463 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8); 1464 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); 1465 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); 1466 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); 1467 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); 1468 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg); 1469 1470 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); 1471 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); 1472 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1473 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); 1474 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1475 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1476 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); 1477 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1478 1479 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); 1480 1481 rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); 1482 1483 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9); 1484 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); 1485 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); 1486 1487 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c); 1488 1489 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 1490 return -EBUSY; 1491 1492 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); 1493 1494 /* 1495 * Invalidate all Shared Keys (SEC_CSR0), 1496 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) 1497 */ 1498 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000); 1499 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000); 1500 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000); 1501 1502 rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); 1503 rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); 1504 rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606); 1505 rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); 1506 1507 rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); 1508 1509 rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); 1510 1511 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); 1512 1513 /* 1514 * Clear all beacons 1515 * For the Beacon base registers we only need to clear 1516 * the first byte since that byte contains the VALID and OWNER 1517 * bits which (when set to 0) will invalidate the entire beacon. 1518 */ 1519 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0); 1520 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0); 1521 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0); 1522 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0); 1523 1524 /* 1525 * We must clear the error counters. 1526 * These registers are cleared on read, 1527 * so we may pass a useless variable to store the value. 1528 */ 1529 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0); 1530 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1); 1531 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2); 1532 1533 /* 1534 * Reset MAC and BBP registers. 1535 */ 1536 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); 1537 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); 1538 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); 1539 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1540 1541 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); 1542 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); 1543 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); 1544 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1545 1546 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); 1547 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); 1548 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1549 1550 return 0; 1551 } 1552 1553 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 1554 { 1555 unsigned int i; 1556 u8 value; 1557 1558 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1559 value = rt61pci_bbp_read(rt2x00dev, 0); 1560 if ((value != 0xff) && (value != 0x00)) 1561 return 0; 1562 udelay(REGISTER_BUSY_DELAY); 1563 } 1564 1565 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 1566 return -EACCES; 1567 } 1568 1569 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) 1570 { 1571 unsigned int i; 1572 u16 eeprom; 1573 u8 reg_id; 1574 u8 value; 1575 1576 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev))) 1577 return -EACCES; 1578 1579 rt61pci_bbp_write(rt2x00dev, 3, 0x00); 1580 rt61pci_bbp_write(rt2x00dev, 15, 0x30); 1581 rt61pci_bbp_write(rt2x00dev, 21, 0xc8); 1582 rt61pci_bbp_write(rt2x00dev, 22, 0x38); 1583 rt61pci_bbp_write(rt2x00dev, 23, 0x06); 1584 rt61pci_bbp_write(rt2x00dev, 24, 0xfe); 1585 rt61pci_bbp_write(rt2x00dev, 25, 0x0a); 1586 rt61pci_bbp_write(rt2x00dev, 26, 0x0d); 1587 rt61pci_bbp_write(rt2x00dev, 34, 0x12); 1588 rt61pci_bbp_write(rt2x00dev, 37, 0x07); 1589 rt61pci_bbp_write(rt2x00dev, 39, 0xf8); 1590 rt61pci_bbp_write(rt2x00dev, 41, 0x60); 1591 rt61pci_bbp_write(rt2x00dev, 53, 0x10); 1592 rt61pci_bbp_write(rt2x00dev, 54, 0x18); 1593 rt61pci_bbp_write(rt2x00dev, 60, 0x10); 1594 rt61pci_bbp_write(rt2x00dev, 61, 0x04); 1595 rt61pci_bbp_write(rt2x00dev, 62, 0x04); 1596 rt61pci_bbp_write(rt2x00dev, 75, 0xfe); 1597 rt61pci_bbp_write(rt2x00dev, 86, 0xfe); 1598 rt61pci_bbp_write(rt2x00dev, 88, 0xfe); 1599 rt61pci_bbp_write(rt2x00dev, 90, 0x0f); 1600 rt61pci_bbp_write(rt2x00dev, 99, 0x00); 1601 rt61pci_bbp_write(rt2x00dev, 102, 0x16); 1602 rt61pci_bbp_write(rt2x00dev, 107, 0x04); 1603 1604 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 1605 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); 1606 1607 if (eeprom != 0xffff && eeprom != 0x0000) { 1608 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 1609 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 1610 rt61pci_bbp_write(rt2x00dev, reg_id, value); 1611 } 1612 } 1613 1614 return 0; 1615 } 1616 1617 /* 1618 * Device state switch handlers. 1619 */ 1620 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, 1621 enum dev_state state) 1622 { 1623 int mask = (state == STATE_RADIO_IRQ_OFF); 1624 u32 reg; 1625 unsigned long flags; 1626 1627 /* 1628 * When interrupts are being enabled, the interrupt registers 1629 * should clear the register to assure a clean state. 1630 */ 1631 if (state == STATE_RADIO_IRQ_ON) { 1632 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR); 1633 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); 1634 1635 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR); 1636 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); 1637 } 1638 1639 /* 1640 * Only toggle the interrupts bits we are going to use. 1641 * Non-checked interrupt bits are disabled by default. 1642 */ 1643 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); 1644 1645 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); 1646 rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask); 1647 rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask); 1648 rt2x00_set_field32(®, INT_MASK_CSR_BEACON_DONE, mask); 1649 rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask); 1650 rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); 1651 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 1652 1653 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR); 1654 rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask); 1655 rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask); 1656 rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask); 1657 rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask); 1658 rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask); 1659 rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask); 1660 rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask); 1661 rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask); 1662 rt2x00_set_field32(®, MCU_INT_MASK_CSR_TWAKEUP, mask); 1663 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); 1664 1665 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); 1666 1667 if (state == STATE_RADIO_IRQ_OFF) { 1668 /* 1669 * Ensure that all tasklets are finished. 1670 */ 1671 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1672 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1673 tasklet_kill(&rt2x00dev->autowake_tasklet); 1674 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1675 } 1676 } 1677 1678 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) 1679 { 1680 u32 reg; 1681 1682 /* 1683 * Initialize all registers. 1684 */ 1685 if (unlikely(rt61pci_init_queues(rt2x00dev) || 1686 rt61pci_init_registers(rt2x00dev) || 1687 rt61pci_init_bbp(rt2x00dev))) 1688 return -EIO; 1689 1690 /* 1691 * Enable RX. 1692 */ 1693 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR); 1694 rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1); 1695 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); 1696 1697 return 0; 1698 } 1699 1700 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) 1701 { 1702 /* 1703 * Disable power 1704 */ 1705 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818); 1706 } 1707 1708 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) 1709 { 1710 u32 reg, reg2; 1711 unsigned int i; 1712 char put_to_sleep; 1713 1714 put_to_sleep = (state != STATE_AWAKE); 1715 1716 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12); 1717 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); 1718 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); 1719 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); 1720 1721 /* 1722 * Device is not guaranteed to be in the requested state yet. 1723 * We must wait until the register indicates that the 1724 * device has entered the correct state. 1725 */ 1726 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1727 reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12); 1728 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); 1729 if (state == !put_to_sleep) 1730 return 0; 1731 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); 1732 msleep(10); 1733 } 1734 1735 return -EBUSY; 1736 } 1737 1738 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, 1739 enum dev_state state) 1740 { 1741 int retval = 0; 1742 1743 switch (state) { 1744 case STATE_RADIO_ON: 1745 retval = rt61pci_enable_radio(rt2x00dev); 1746 break; 1747 case STATE_RADIO_OFF: 1748 rt61pci_disable_radio(rt2x00dev); 1749 break; 1750 case STATE_RADIO_IRQ_ON: 1751 case STATE_RADIO_IRQ_OFF: 1752 rt61pci_toggle_irq(rt2x00dev, state); 1753 break; 1754 case STATE_DEEP_SLEEP: 1755 case STATE_SLEEP: 1756 case STATE_STANDBY: 1757 case STATE_AWAKE: 1758 retval = rt61pci_set_state(rt2x00dev, state); 1759 break; 1760 default: 1761 retval = -ENOTSUPP; 1762 break; 1763 } 1764 1765 if (unlikely(retval)) 1766 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1767 state, retval); 1768 1769 return retval; 1770 } 1771 1772 /* 1773 * TX descriptor initialization 1774 */ 1775 static void rt61pci_write_tx_desc(struct queue_entry *entry, 1776 struct txentry_desc *txdesc) 1777 { 1778 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1779 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1780 __le32 *txd = entry_priv->desc; 1781 u32 word; 1782 1783 /* 1784 * Start writing the descriptor words. 1785 */ 1786 word = rt2x00_desc_read(txd, 1); 1787 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); 1788 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); 1789 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1790 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1791 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1792 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1793 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); 1794 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); 1795 rt2x00_desc_write(txd, 1, word); 1796 1797 word = rt2x00_desc_read(txd, 2); 1798 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1799 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1800 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1801 txdesc->u.plcp.length_low); 1802 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1803 txdesc->u.plcp.length_high); 1804 rt2x00_desc_write(txd, 2, word); 1805 1806 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1807 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1808 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1809 } 1810 1811 word = rt2x00_desc_read(txd, 5); 1812 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid); 1813 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx); 1814 rt2x00_set_field32(&word, TXD_W5_TX_POWER, 1815 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); 1816 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); 1817 rt2x00_desc_write(txd, 5, word); 1818 1819 if (entry->queue->qid != QID_BEACON) { 1820 word = rt2x00_desc_read(txd, 6); 1821 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, 1822 skbdesc->skb_dma); 1823 rt2x00_desc_write(txd, 6, word); 1824 1825 word = rt2x00_desc_read(txd, 11); 1826 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, 1827 txdesc->length); 1828 rt2x00_desc_write(txd, 11, word); 1829 } 1830 1831 /* 1832 * Writing TXD word 0 must the last to prevent a race condition with 1833 * the device, whereby the device may take hold of the TXD before we 1834 * finished updating it. 1835 */ 1836 word = rt2x00_desc_read(txd, 0); 1837 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); 1838 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1839 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1840 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1841 rt2x00_set_field32(&word, TXD_W0_ACK, 1842 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1843 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1844 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1845 rt2x00_set_field32(&word, TXD_W0_OFDM, 1846 (txdesc->rate_mode == RATE_MODE_OFDM)); 1847 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1848 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1849 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1850 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 1851 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); 1852 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, 1853 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); 1854 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); 1855 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1856 rt2x00_set_field32(&word, TXD_W0_BURST, 1857 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1858 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); 1859 rt2x00_desc_write(txd, 0, word); 1860 1861 /* 1862 * Register descriptor details in skb frame descriptor. 1863 */ 1864 skbdesc->desc = txd; 1865 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE : 1866 TXD_DESC_SIZE; 1867 } 1868 1869 /* 1870 * TX data initialization 1871 */ 1872 static void rt61pci_write_beacon(struct queue_entry *entry, 1873 struct txentry_desc *txdesc) 1874 { 1875 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1876 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1877 unsigned int beacon_base; 1878 unsigned int padding_len; 1879 u32 orig_reg, reg; 1880 1881 /* 1882 * Disable beaconing while we are reloading the beacon data, 1883 * otherwise we might be sending out invalid data. 1884 */ 1885 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); 1886 orig_reg = reg; 1887 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1888 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1889 1890 /* 1891 * Write the TX descriptor for the beacon. 1892 */ 1893 rt61pci_write_tx_desc(entry, txdesc); 1894 1895 /* 1896 * Dump beacon to userspace through debugfs. 1897 */ 1898 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); 1899 1900 /* 1901 * Write entire beacon with descriptor and padding to register. 1902 */ 1903 padding_len = roundup(entry->skb->len, 4) - entry->skb->len; 1904 if (padding_len && skb_pad(entry->skb, padding_len)) { 1905 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); 1906 /* skb freed by skb_pad() on failure */ 1907 entry->skb = NULL; 1908 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1909 return; 1910 } 1911 1912 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 1913 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base, 1914 entry_priv->desc, TXINFO_SIZE); 1915 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE, 1916 entry->skb->data, 1917 entry->skb->len + padding_len); 1918 1919 /* 1920 * Enable beaconing again. 1921 * 1922 * For Wi-Fi faily generated beacons between participating 1923 * stations. Set TBTT phase adaptive adjustment step to 8us. 1924 */ 1925 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); 1926 1927 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1928 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1929 1930 /* 1931 * Clean up beacon skb. 1932 */ 1933 dev_kfree_skb_any(entry->skb); 1934 entry->skb = NULL; 1935 } 1936 1937 static void rt61pci_clear_beacon(struct queue_entry *entry) 1938 { 1939 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1940 u32 orig_reg, reg; 1941 1942 /* 1943 * Disable beaconing while we are reloading the beacon data, 1944 * otherwise we might be sending out invalid data. 1945 */ 1946 orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); 1947 reg = orig_reg; 1948 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1949 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1950 1951 /* 1952 * Clear beacon. 1953 */ 1954 rt2x00mmio_register_write(rt2x00dev, 1955 HW_BEACON_OFFSET(entry->entry_idx), 0); 1956 1957 /* 1958 * Restore global beaconing state. 1959 */ 1960 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 1961 } 1962 1963 /* 1964 * RX control handlers 1965 */ 1966 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) 1967 { 1968 u8 offset = rt2x00dev->lna_gain; 1969 u8 lna; 1970 1971 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); 1972 switch (lna) { 1973 case 3: 1974 offset += 90; 1975 break; 1976 case 2: 1977 offset += 74; 1978 break; 1979 case 1: 1980 offset += 64; 1981 break; 1982 default: 1983 return 0; 1984 } 1985 1986 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { 1987 if (lna == 3 || lna == 2) 1988 offset += 10; 1989 } 1990 1991 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; 1992 } 1993 1994 static void rt61pci_fill_rxdone(struct queue_entry *entry, 1995 struct rxdone_entry_desc *rxdesc) 1996 { 1997 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1998 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1999 u32 word0; 2000 u32 word1; 2001 2002 word0 = rt2x00_desc_read(entry_priv->desc, 0); 2003 word1 = rt2x00_desc_read(entry_priv->desc, 1); 2004 2005 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 2006 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 2007 2008 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); 2009 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); 2010 2011 if (rxdesc->cipher != CIPHER_NONE) { 2012 rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2); 2013 rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3); 2014 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 2015 2016 rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4); 2017 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; 2018 2019 /* 2020 * Hardware has stripped IV/EIV data from 802.11 frame during 2021 * decryption. It has provided the data separately but rt2x00lib 2022 * should decide if it should be reinserted. 2023 */ 2024 rxdesc->flags |= RX_FLAG_IV_STRIPPED; 2025 2026 /* 2027 * The hardware has already checked the Michael Mic and has 2028 * stripped it from the frame. Signal this to mac80211. 2029 */ 2030 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 2031 2032 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 2033 rxdesc->flags |= RX_FLAG_DECRYPTED; 2034 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 2035 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 2036 } 2037 2038 /* 2039 * Obtain the status about this packet. 2040 * When frame was received with an OFDM bitrate, 2041 * the signal is the PLCP value. If it was received with 2042 * a CCK bitrate the signal is the rate in 100kbit/s. 2043 */ 2044 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 2045 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1); 2046 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 2047 2048 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 2049 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 2050 else 2051 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 2052 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 2053 rxdesc->dev_flags |= RXDONE_MY_BSS; 2054 } 2055 2056 /* 2057 * Interrupt functions. 2058 */ 2059 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) 2060 { 2061 struct data_queue *queue; 2062 struct queue_entry *entry; 2063 struct queue_entry *entry_done; 2064 struct queue_entry_priv_mmio *entry_priv; 2065 struct txdone_entry_desc txdesc; 2066 u32 word; 2067 u32 reg; 2068 int type; 2069 int index; 2070 int i; 2071 2072 /* 2073 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO 2074 * at most X times and also stop processing once the TX_STA_FIFO_VALID 2075 * flag is not set anymore. 2076 * 2077 * The legacy drivers use X=TX_RING_SIZE but state in a comment 2078 * that the TX_STA_FIFO stack has a size of 16. We stick to our 2079 * tx ring size for now. 2080 */ 2081 for (i = 0; i < rt2x00dev->tx->limit; i++) { 2082 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4); 2083 if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) 2084 break; 2085 2086 /* 2087 * Skip this entry when it contains an invalid 2088 * queue identication number. 2089 */ 2090 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE); 2091 queue = rt2x00queue_get_tx_queue(rt2x00dev, type); 2092 if (unlikely(!queue)) 2093 continue; 2094 2095 /* 2096 * Skip this entry when it contains an invalid 2097 * index number. 2098 */ 2099 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); 2100 if (unlikely(index >= queue->limit)) 2101 continue; 2102 2103 entry = &queue->entries[index]; 2104 entry_priv = entry->priv_data; 2105 word = rt2x00_desc_read(entry_priv->desc, 0); 2106 2107 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 2108 !rt2x00_get_field32(word, TXD_W0_VALID)) 2109 return; 2110 2111 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); 2112 while (entry != entry_done) { 2113 /* Catch up. 2114 * Just report any entries we missed as failed. 2115 */ 2116 rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n", 2117 entry_done->entry_idx); 2118 2119 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN); 2120 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); 2121 } 2122 2123 /* 2124 * Obtain the status about this packet. 2125 */ 2126 txdesc.flags = 0; 2127 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) { 2128 case 0: /* Success, maybe with retry */ 2129 __set_bit(TXDONE_SUCCESS, &txdesc.flags); 2130 break; 2131 case 6: /* Failure, excessive retries */ 2132 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); 2133 fallthrough; /* this is a failed frame! */ 2134 default: /* Failure */ 2135 __set_bit(TXDONE_FAILURE, &txdesc.flags); 2136 } 2137 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); 2138 2139 /* 2140 * the frame was retried at least once 2141 * -> hw used fallback rates 2142 */ 2143 if (txdesc.retry) 2144 __set_bit(TXDONE_FALLBACK, &txdesc.flags); 2145 2146 rt2x00lib_txdone(entry, &txdesc); 2147 } 2148 } 2149 2150 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev) 2151 { 2152 struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf }; 2153 2154 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); 2155 } 2156 2157 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, 2158 struct rt2x00_field32 irq_field) 2159 { 2160 u32 reg; 2161 2162 /* 2163 * Enable a single interrupt. The interrupt mask register 2164 * access needs locking. 2165 */ 2166 spin_lock_irq(&rt2x00dev->irqmask_lock); 2167 2168 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); 2169 rt2x00_set_field32(®, irq_field, 0); 2170 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 2171 2172 spin_unlock_irq(&rt2x00dev->irqmask_lock); 2173 } 2174 2175 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev, 2176 struct rt2x00_field32 irq_field) 2177 { 2178 u32 reg; 2179 2180 /* 2181 * Enable a single MCU interrupt. The interrupt mask register 2182 * access needs locking. 2183 */ 2184 spin_lock_irq(&rt2x00dev->irqmask_lock); 2185 2186 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR); 2187 rt2x00_set_field32(®, irq_field, 0); 2188 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); 2189 2190 spin_unlock_irq(&rt2x00dev->irqmask_lock); 2191 } 2192 2193 static void rt61pci_txstatus_tasklet(struct tasklet_struct *t) 2194 { 2195 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, 2196 txstatus_tasklet); 2197 2198 rt61pci_txdone(rt2x00dev); 2199 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2200 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE); 2201 } 2202 2203 static void rt61pci_tbtt_tasklet(struct tasklet_struct *t) 2204 { 2205 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet); 2206 rt2x00lib_beacondone(rt2x00dev); 2207 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2208 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE); 2209 } 2210 2211 static void rt61pci_rxdone_tasklet(struct tasklet_struct *t) 2212 { 2213 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, 2214 rxdone_tasklet); 2215 if (rt2x00mmio_rxdone(rt2x00dev)) 2216 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 2217 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2218 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE); 2219 } 2220 2221 static void rt61pci_autowake_tasklet(struct tasklet_struct *t) 2222 { 2223 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, 2224 autowake_tasklet); 2225 rt61pci_wakeup(rt2x00dev); 2226 rt2x00mmio_register_write(rt2x00dev, 2227 M2H_CMD_DONE_CSR, 0xffffffff); 2228 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2229 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP); 2230 } 2231 2232 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) 2233 { 2234 struct rt2x00_dev *rt2x00dev = dev_instance; 2235 u32 reg_mcu, mask_mcu; 2236 u32 reg, mask; 2237 2238 /* 2239 * Get the interrupt sources & saved to local variable. 2240 * Write register value back to clear pending interrupts. 2241 */ 2242 reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR); 2243 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu); 2244 2245 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR); 2246 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); 2247 2248 if (!reg && !reg_mcu) 2249 return IRQ_NONE; 2250 2251 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2252 return IRQ_HANDLED; 2253 2254 /* 2255 * Schedule tasklets for interrupt handling. 2256 */ 2257 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) 2258 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 2259 2260 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) 2261 tasklet_schedule(&rt2x00dev->txstatus_tasklet); 2262 2263 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE)) 2264 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); 2265 2266 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP)) 2267 tasklet_schedule(&rt2x00dev->autowake_tasklet); 2268 2269 /* 2270 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits 2271 * for interrupts and interrupt masks we can just use the value of 2272 * INT_SOURCE_CSR to create the interrupt mask. 2273 */ 2274 mask = reg; 2275 mask_mcu = reg_mcu; 2276 2277 /* 2278 * Disable all interrupts for which a tasklet was scheduled right now, 2279 * the tasklet will reenable the appropriate interrupts. 2280 */ 2281 spin_lock(&rt2x00dev->irqmask_lock); 2282 2283 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); 2284 reg |= mask; 2285 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 2286 2287 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR); 2288 reg |= mask_mcu; 2289 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); 2290 2291 spin_unlock(&rt2x00dev->irqmask_lock); 2292 2293 return IRQ_HANDLED; 2294 } 2295 2296 /* 2297 * Device probe functions. 2298 */ 2299 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) 2300 { 2301 struct eeprom_93cx6 eeprom; 2302 u32 reg; 2303 u16 word; 2304 u8 *mac; 2305 s8 value; 2306 2307 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR); 2308 2309 eeprom.data = rt2x00dev; 2310 eeprom.register_read = rt61pci_eepromregister_read; 2311 eeprom.register_write = rt61pci_eepromregister_write; 2312 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? 2313 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; 2314 eeprom.reg_data_in = 0; 2315 eeprom.reg_data_out = 0; 2316 eeprom.reg_data_clock = 0; 2317 eeprom.reg_chip_select = 0; 2318 2319 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, 2320 EEPROM_SIZE / sizeof(u16)); 2321 2322 /* 2323 * Start validation of the data that has been read. 2324 */ 2325 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 2326 rt2x00lib_set_mac_address(rt2x00dev, mac); 2327 2328 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 2329 if (word == 0xffff) { 2330 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 2331 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 2332 ANTENNA_B); 2333 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 2334 ANTENNA_B); 2335 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); 2336 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 2337 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 2338 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); 2339 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 2340 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 2341 } 2342 2343 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 2344 if (word == 0xffff) { 2345 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); 2346 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); 2347 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0); 2348 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0); 2349 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); 2350 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); 2351 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); 2352 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 2353 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 2354 } 2355 2356 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); 2357 if (word == 0xffff) { 2358 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, 2359 LED_MODE_DEFAULT); 2360 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); 2361 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); 2362 } 2363 2364 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); 2365 if (word == 0xffff) { 2366 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); 2367 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); 2368 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); 2369 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); 2370 } 2371 2372 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); 2373 if (word == 0xffff) { 2374 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 2375 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 2376 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 2377 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); 2378 } else { 2379 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); 2380 if (value < -10 || value > 10) 2381 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 2382 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); 2383 if (value < -10 || value > 10) 2384 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 2385 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 2386 } 2387 2388 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); 2389 if (word == 0xffff) { 2390 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 2391 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 2392 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 2393 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); 2394 } else { 2395 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); 2396 if (value < -10 || value > 10) 2397 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 2398 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); 2399 if (value < -10 || value > 10) 2400 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 2401 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 2402 } 2403 2404 return 0; 2405 } 2406 2407 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) 2408 { 2409 u32 reg; 2410 u16 value; 2411 u16 eeprom; 2412 2413 /* 2414 * Read EEPROM word for configuration. 2415 */ 2416 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 2417 2418 /* 2419 * Identify RF chipset. 2420 */ 2421 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 2422 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0); 2423 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), 2424 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); 2425 2426 if (!rt2x00_rf(rt2x00dev, RF5225) && 2427 !rt2x00_rf(rt2x00dev, RF5325) && 2428 !rt2x00_rf(rt2x00dev, RF2527) && 2429 !rt2x00_rf(rt2x00dev, RF2529)) { 2430 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 2431 return -ENODEV; 2432 } 2433 2434 /* 2435 * Determine number of antennas. 2436 */ 2437 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) 2438 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags); 2439 2440 /* 2441 * Identify default antenna configuration. 2442 */ 2443 rt2x00dev->default_ant.tx = 2444 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 2445 rt2x00dev->default_ant.rx = 2446 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 2447 2448 /* 2449 * Read the Frame type. 2450 */ 2451 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) 2452 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); 2453 2454 /* 2455 * Detect if this device has a hardware controlled radio. 2456 */ 2457 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 2458 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 2459 2460 /* 2461 * Read frequency offset and RF programming sequence. 2462 */ 2463 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); 2464 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) 2465 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags); 2466 2467 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); 2468 2469 /* 2470 * Read external LNA informations. 2471 */ 2472 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 2473 2474 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) 2475 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); 2476 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) 2477 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); 2478 2479 /* 2480 * When working with a RF2529 chip without double antenna, 2481 * the antenna settings should be gathered from the NIC 2482 * eeprom word. 2483 */ 2484 if (rt2x00_rf(rt2x00dev, RF2529) && 2485 !rt2x00_has_cap_double_antenna(rt2x00dev)) { 2486 rt2x00dev->default_ant.rx = 2487 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED); 2488 rt2x00dev->default_ant.tx = 2489 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED); 2490 2491 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) 2492 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY; 2493 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) 2494 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY; 2495 } 2496 2497 /* 2498 * Store led settings, for correct led behaviour. 2499 * If the eeprom value is invalid, 2500 * switch to default led mode. 2501 */ 2502 #ifdef CONFIG_RT2X00_LIB_LEDS 2503 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); 2504 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); 2505 2506 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 2507 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); 2508 if (value == LED_MODE_SIGNAL_STRENGTH) 2509 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual, 2510 LED_TYPE_QUALITY); 2511 2512 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); 2513 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, 2514 rt2x00_get_field16(eeprom, 2515 EEPROM_LED_POLARITY_GPIO_0)); 2516 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, 2517 rt2x00_get_field16(eeprom, 2518 EEPROM_LED_POLARITY_GPIO_1)); 2519 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, 2520 rt2x00_get_field16(eeprom, 2521 EEPROM_LED_POLARITY_GPIO_2)); 2522 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, 2523 rt2x00_get_field16(eeprom, 2524 EEPROM_LED_POLARITY_GPIO_3)); 2525 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, 2526 rt2x00_get_field16(eeprom, 2527 EEPROM_LED_POLARITY_GPIO_4)); 2528 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, 2529 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); 2530 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, 2531 rt2x00_get_field16(eeprom, 2532 EEPROM_LED_POLARITY_RDY_G)); 2533 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, 2534 rt2x00_get_field16(eeprom, 2535 EEPROM_LED_POLARITY_RDY_A)); 2536 #endif /* CONFIG_RT2X00_LIB_LEDS */ 2537 2538 return 0; 2539 } 2540 2541 /* 2542 * RF value list for RF5225 & RF5325 2543 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled 2544 */ 2545 static const struct rf_channel rf_vals_noseq[] = { 2546 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, 2547 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, 2548 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, 2549 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, 2550 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, 2551 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, 2552 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, 2553 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, 2554 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, 2555 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, 2556 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, 2557 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, 2558 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, 2559 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, 2560 2561 /* 802.11 UNI / HyperLan 2 */ 2562 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, 2563 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, 2564 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, 2565 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, 2566 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, 2567 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, 2568 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, 2569 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, 2570 2571 /* 802.11 HyperLan 2 */ 2572 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, 2573 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, 2574 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, 2575 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, 2576 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, 2577 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, 2578 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, 2579 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, 2580 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, 2581 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, 2582 2583 /* 802.11 UNII */ 2584 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, 2585 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, 2586 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, 2587 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, 2588 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, 2589 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, 2590 2591 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2592 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, 2593 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, 2594 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, 2595 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, 2596 }; 2597 2598 /* 2599 * RF value list for RF5225 & RF5325 2600 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled 2601 */ 2602 static const struct rf_channel rf_vals_seq[] = { 2603 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, 2604 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, 2605 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, 2606 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, 2607 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, 2608 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, 2609 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, 2610 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, 2611 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, 2612 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, 2613 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, 2614 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, 2615 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, 2616 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, 2617 2618 /* 802.11 UNI / HyperLan 2 */ 2619 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 }, 2620 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 }, 2621 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b }, 2622 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b }, 2623 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 }, 2624 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 }, 2625 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 }, 2626 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b }, 2627 2628 /* 802.11 HyperLan 2 */ 2629 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 }, 2630 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 }, 2631 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 }, 2632 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 }, 2633 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 }, 2634 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 }, 2635 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b }, 2636 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b }, 2637 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 }, 2638 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 }, 2639 2640 /* 802.11 UNII */ 2641 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 }, 2642 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b }, 2643 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b }, 2644 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 }, 2645 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 }, 2646 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 }, 2647 2648 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2649 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b }, 2650 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 }, 2651 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b }, 2652 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 }, 2653 }; 2654 2655 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 2656 { 2657 struct hw_mode_spec *spec = &rt2x00dev->spec; 2658 struct channel_info *info; 2659 char *tx_power; 2660 unsigned int i; 2661 2662 /* 2663 * Disable powersaving as default. 2664 */ 2665 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; 2666 2667 /* 2668 * Initialize all hw fields. 2669 */ 2670 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 2671 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 2672 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); 2673 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 2674 2675 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 2676 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 2677 rt2x00_eeprom_addr(rt2x00dev, 2678 EEPROM_MAC_ADDR_0)); 2679 2680 /* 2681 * As rt61 has a global fallback table we cannot specify 2682 * more then one tx rate per frame but since the hw will 2683 * try several rates (based on the fallback table) we should 2684 * initialize max_report_rates to the maximum number of rates 2685 * we are going to try. Otherwise mac80211 will truncate our 2686 * reported tx rates and the rc algortihm will end up with 2687 * incorrect data. 2688 */ 2689 rt2x00dev->hw->max_rates = 1; 2690 rt2x00dev->hw->max_report_rates = 7; 2691 rt2x00dev->hw->max_rate_tries = 1; 2692 2693 /* 2694 * Initialize hw_mode information. 2695 */ 2696 spec->supported_bands = SUPPORT_BAND_2GHZ; 2697 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 2698 2699 if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) { 2700 spec->num_channels = 14; 2701 spec->channels = rf_vals_noseq; 2702 } else { 2703 spec->num_channels = 14; 2704 spec->channels = rf_vals_seq; 2705 } 2706 2707 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) { 2708 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2709 spec->num_channels = ARRAY_SIZE(rf_vals_seq); 2710 } 2711 2712 /* 2713 * Create channel information array 2714 */ 2715 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 2716 if (!info) 2717 return -ENOMEM; 2718 2719 spec->channels_info = info; 2720 2721 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); 2722 for (i = 0; i < 14; i++) { 2723 info[i].max_power = MAX_TXPOWER; 2724 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 2725 } 2726 2727 if (spec->num_channels > 14) { 2728 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); 2729 for (i = 14; i < spec->num_channels; i++) { 2730 info[i].max_power = MAX_TXPOWER; 2731 info[i].default_power1 = 2732 TXPOWER_FROM_DEV(tx_power[i - 14]); 2733 } 2734 } 2735 2736 return 0; 2737 } 2738 2739 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev) 2740 { 2741 int retval; 2742 u32 reg; 2743 2744 /* 2745 * Disable power saving. 2746 */ 2747 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); 2748 2749 /* 2750 * Allocate eeprom data. 2751 */ 2752 retval = rt61pci_validate_eeprom(rt2x00dev); 2753 if (retval) 2754 return retval; 2755 2756 retval = rt61pci_init_eeprom(rt2x00dev); 2757 if (retval) 2758 return retval; 2759 2760 /* 2761 * Enable rfkill polling by setting GPIO direction of the 2762 * rfkill switch GPIO pin correctly. 2763 */ 2764 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13); 2765 rt2x00_set_field32(®, MAC_CSR13_DIR5, 1); 2766 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); 2767 2768 /* 2769 * Initialize hw specifications. 2770 */ 2771 retval = rt61pci_probe_hw_mode(rt2x00dev); 2772 if (retval) 2773 return retval; 2774 2775 /* 2776 * This device has multiple filters for control frames, 2777 * but has no a separate filter for PS Poll frames. 2778 */ 2779 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); 2780 2781 /* 2782 * This device requires firmware and DMA mapped skbs. 2783 */ 2784 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); 2785 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); 2786 if (!modparam_nohwcrypt) 2787 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 2788 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 2789 2790 /* 2791 * Set the rssi offset. 2792 */ 2793 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 2794 2795 return 0; 2796 } 2797 2798 /* 2799 * IEEE80211 stack callback functions. 2800 */ 2801 static int rt61pci_conf_tx(struct ieee80211_hw *hw, 2802 struct ieee80211_vif *vif, 2803 unsigned int link_id, u16 queue_idx, 2804 const struct ieee80211_tx_queue_params *params) 2805 { 2806 struct rt2x00_dev *rt2x00dev = hw->priv; 2807 struct data_queue *queue; 2808 struct rt2x00_field32 field; 2809 int retval; 2810 u32 reg; 2811 u32 offset; 2812 2813 /* 2814 * First pass the configuration through rt2x00lib, that will 2815 * update the queue settings and validate the input. After that 2816 * we are free to update the registers based on the value 2817 * in the queue parameter. 2818 */ 2819 retval = rt2x00mac_conf_tx(hw, vif, link_id, queue_idx, params); 2820 if (retval) 2821 return retval; 2822 2823 /* 2824 * We only need to perform additional register initialization 2825 * for WMM queues. 2826 */ 2827 if (queue_idx >= 4) 2828 return 0; 2829 2830 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 2831 2832 /* Update WMM TXOP register */ 2833 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); 2834 field.bit_offset = (queue_idx & 1) * 16; 2835 field.bit_mask = 0xffff << field.bit_offset; 2836 2837 reg = rt2x00mmio_register_read(rt2x00dev, offset); 2838 rt2x00_set_field32(®, field, queue->txop); 2839 rt2x00mmio_register_write(rt2x00dev, offset, reg); 2840 2841 /* Update WMM registers */ 2842 field.bit_offset = queue_idx * 4; 2843 field.bit_mask = 0xf << field.bit_offset; 2844 2845 reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR); 2846 rt2x00_set_field32(®, field, queue->aifs); 2847 rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg); 2848 2849 reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR); 2850 rt2x00_set_field32(®, field, queue->cw_min); 2851 rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg); 2852 2853 reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR); 2854 rt2x00_set_field32(®, field, queue->cw_max); 2855 rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg); 2856 2857 return 0; 2858 } 2859 2860 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 2861 { 2862 struct rt2x00_dev *rt2x00dev = hw->priv; 2863 u64 tsf; 2864 u32 reg; 2865 2866 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13); 2867 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; 2868 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12); 2869 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); 2870 2871 return tsf; 2872 } 2873 2874 static const struct ieee80211_ops rt61pci_mac80211_ops = { 2875 .tx = rt2x00mac_tx, 2876 .start = rt2x00mac_start, 2877 .stop = rt2x00mac_stop, 2878 .add_interface = rt2x00mac_add_interface, 2879 .remove_interface = rt2x00mac_remove_interface, 2880 .config = rt2x00mac_config, 2881 .configure_filter = rt2x00mac_configure_filter, 2882 .set_key = rt2x00mac_set_key, 2883 .sw_scan_start = rt2x00mac_sw_scan_start, 2884 .sw_scan_complete = rt2x00mac_sw_scan_complete, 2885 .get_stats = rt2x00mac_get_stats, 2886 .bss_info_changed = rt2x00mac_bss_info_changed, 2887 .conf_tx = rt61pci_conf_tx, 2888 .get_tsf = rt61pci_get_tsf, 2889 .rfkill_poll = rt2x00mac_rfkill_poll, 2890 .flush = rt2x00mac_flush, 2891 .set_antenna = rt2x00mac_set_antenna, 2892 .get_antenna = rt2x00mac_get_antenna, 2893 .get_ringparam = rt2x00mac_get_ringparam, 2894 .tx_frames_pending = rt2x00mac_tx_frames_pending, 2895 }; 2896 2897 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { 2898 .irq_handler = rt61pci_interrupt, 2899 .txstatus_tasklet = rt61pci_txstatus_tasklet, 2900 .tbtt_tasklet = rt61pci_tbtt_tasklet, 2901 .rxdone_tasklet = rt61pci_rxdone_tasklet, 2902 .autowake_tasklet = rt61pci_autowake_tasklet, 2903 .probe_hw = rt61pci_probe_hw, 2904 .get_firmware_name = rt61pci_get_firmware_name, 2905 .check_firmware = rt61pci_check_firmware, 2906 .load_firmware = rt61pci_load_firmware, 2907 .initialize = rt2x00mmio_initialize, 2908 .uninitialize = rt2x00mmio_uninitialize, 2909 .get_entry_state = rt61pci_get_entry_state, 2910 .clear_entry = rt61pci_clear_entry, 2911 .set_device_state = rt61pci_set_device_state, 2912 .rfkill_poll = rt61pci_rfkill_poll, 2913 .link_stats = rt61pci_link_stats, 2914 .reset_tuner = rt61pci_reset_tuner, 2915 .link_tuner = rt61pci_link_tuner, 2916 .start_queue = rt61pci_start_queue, 2917 .kick_queue = rt61pci_kick_queue, 2918 .stop_queue = rt61pci_stop_queue, 2919 .flush_queue = rt2x00mmio_flush_queue, 2920 .write_tx_desc = rt61pci_write_tx_desc, 2921 .write_beacon = rt61pci_write_beacon, 2922 .clear_beacon = rt61pci_clear_beacon, 2923 .fill_rxdone = rt61pci_fill_rxdone, 2924 .config_shared_key = rt61pci_config_shared_key, 2925 .config_pairwise_key = rt61pci_config_pairwise_key, 2926 .config_filter = rt61pci_config_filter, 2927 .config_intf = rt61pci_config_intf, 2928 .config_erp = rt61pci_config_erp, 2929 .config_ant = rt61pci_config_ant, 2930 .config = rt61pci_config, 2931 }; 2932 2933 static void rt61pci_queue_init(struct data_queue *queue) 2934 { 2935 switch (queue->qid) { 2936 case QID_RX: 2937 queue->limit = 32; 2938 queue->data_size = DATA_FRAME_SIZE; 2939 queue->desc_size = RXD_DESC_SIZE; 2940 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 2941 break; 2942 2943 case QID_AC_VO: 2944 case QID_AC_VI: 2945 case QID_AC_BE: 2946 case QID_AC_BK: 2947 queue->limit = 32; 2948 queue->data_size = DATA_FRAME_SIZE; 2949 queue->desc_size = TXD_DESC_SIZE; 2950 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 2951 break; 2952 2953 case QID_BEACON: 2954 queue->limit = 4; 2955 queue->data_size = 0; /* No DMA required for beacons */ 2956 queue->desc_size = TXINFO_SIZE; 2957 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 2958 break; 2959 2960 case QID_ATIM: 2961 default: 2962 BUG(); 2963 break; 2964 } 2965 } 2966 2967 static const struct rt2x00_ops rt61pci_ops = { 2968 .name = KBUILD_MODNAME, 2969 .max_ap_intf = 4, 2970 .eeprom_size = EEPROM_SIZE, 2971 .rf_size = RF_SIZE, 2972 .tx_queues = NUM_TX_QUEUES, 2973 .queue_init = rt61pci_queue_init, 2974 .lib = &rt61pci_rt2x00_ops, 2975 .hw = &rt61pci_mac80211_ops, 2976 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 2977 .debugfs = &rt61pci_rt2x00debug, 2978 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 2979 }; 2980 2981 /* 2982 * RT61pci module information. 2983 */ 2984 static const struct pci_device_id rt61pci_device_table[] = { 2985 /* RT2561s */ 2986 { PCI_DEVICE(0x1814, 0x0301) }, 2987 /* RT2561 v2 */ 2988 { PCI_DEVICE(0x1814, 0x0302) }, 2989 /* RT2661 */ 2990 { PCI_DEVICE(0x1814, 0x0401) }, 2991 { 0, } 2992 }; 2993 2994 MODULE_AUTHOR(DRV_PROJECT); 2995 MODULE_VERSION(DRV_VERSION); 2996 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); 2997 MODULE_DEVICE_TABLE(pci, rt61pci_device_table); 2998 MODULE_FIRMWARE(FIRMWARE_RT2561); 2999 MODULE_FIRMWARE(FIRMWARE_RT2561s); 3000 MODULE_FIRMWARE(FIRMWARE_RT2661); 3001 MODULE_LICENSE("GPL"); 3002 3003 static int rt61pci_probe(struct pci_dev *pci_dev, 3004 const struct pci_device_id *id) 3005 { 3006 return rt2x00pci_probe(pci_dev, &rt61pci_ops); 3007 } 3008 3009 static struct pci_driver rt61pci_driver = { 3010 .name = KBUILD_MODNAME, 3011 .id_table = rt61pci_device_table, 3012 .probe = rt61pci_probe, 3013 .remove = rt2x00pci_remove, 3014 .driver.pm = &rt2x00pci_pm_ops, 3015 }; 3016 3017 module_pci_driver(rt61pci_driver); 3018