xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt61pci.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt61pci
21 	Abstract: rt61pci device specific routines.
22 	Supported chipsets: RT2561, RT2561s, RT2661.
23  */
24 
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
33 
34 #include "rt2x00.h"
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
38 
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static bool modparam_nohwcrypt = false;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 
46 /*
47  * Register access.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attempt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 				H2M_MAILBOX_CSR_OWNER, (__reg))
64 
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66 			      const unsigned int word, const u8 value)
67 {
68 	u32 reg;
69 
70 	mutex_lock(&rt2x00dev->csr_mutex);
71 
72 	/*
73 	 * Wait until the BBP becomes available, afterwards we
74 	 * can safely write the new data into the register.
75 	 */
76 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 		reg = 0;
78 		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82 
83 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
84 	}
85 
86 	mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88 
89 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
90 			     const unsigned int word, u8 *value)
91 {
92 	u32 reg;
93 
94 	mutex_lock(&rt2x00dev->csr_mutex);
95 
96 	/*
97 	 * Wait until the BBP becomes available, afterwards we
98 	 * can safely write the read request into the register.
99 	 * After the data has been written, we wait until hardware
100 	 * returns the correct value, if at any time the register
101 	 * doesn't become available in time, reg will be 0xffffffff
102 	 * which means we return 0xff to the caller.
103 	 */
104 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105 		reg = 0;
106 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109 
110 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
111 
112 		WAIT_FOR_BBP(rt2x00dev, &reg);
113 	}
114 
115 	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116 
117 	mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119 
120 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
121 			     const unsigned int word, const u32 value)
122 {
123 	u32 reg;
124 
125 	mutex_lock(&rt2x00dev->csr_mutex);
126 
127 	/*
128 	 * Wait until the RF becomes available, afterwards we
129 	 * can safely write the new data into the register.
130 	 */
131 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
132 		reg = 0;
133 		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
134 		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
135 		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
136 		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
137 
138 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
139 		rt2x00_rf_write(rt2x00dev, word, value);
140 	}
141 
142 	mutex_unlock(&rt2x00dev->csr_mutex);
143 }
144 
145 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
146 				const u8 command, const u8 token,
147 				const u8 arg0, const u8 arg1)
148 {
149 	u32 reg;
150 
151 	mutex_lock(&rt2x00dev->csr_mutex);
152 
153 	/*
154 	 * Wait until the MCU becomes available, afterwards we
155 	 * can safely write the new data into the register.
156 	 */
157 	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
158 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
159 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
160 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
161 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
162 		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
163 
164 		rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
165 		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
166 		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
167 		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
168 	}
169 
170 	mutex_unlock(&rt2x00dev->csr_mutex);
171 
172 }
173 
174 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
175 {
176 	struct rt2x00_dev *rt2x00dev = eeprom->data;
177 	u32 reg;
178 
179 	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
180 
181 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
182 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
183 	eeprom->reg_data_clock =
184 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
185 	eeprom->reg_chip_select =
186 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
187 }
188 
189 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
190 {
191 	struct rt2x00_dev *rt2x00dev = eeprom->data;
192 	u32 reg = 0;
193 
194 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
195 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
196 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
197 			   !!eeprom->reg_data_clock);
198 	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
199 			   !!eeprom->reg_chip_select);
200 
201 	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
202 }
203 
204 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
205 static const struct rt2x00debug rt61pci_rt2x00debug = {
206 	.owner	= THIS_MODULE,
207 	.csr	= {
208 		.read		= rt2x00mmio_register_read,
209 		.write		= rt2x00mmio_register_write,
210 		.flags		= RT2X00DEBUGFS_OFFSET,
211 		.word_base	= CSR_REG_BASE,
212 		.word_size	= sizeof(u32),
213 		.word_count	= CSR_REG_SIZE / sizeof(u32),
214 	},
215 	.eeprom	= {
216 		.read		= rt2x00_eeprom_read,
217 		.write		= rt2x00_eeprom_write,
218 		.word_base	= EEPROM_BASE,
219 		.word_size	= sizeof(u16),
220 		.word_count	= EEPROM_SIZE / sizeof(u16),
221 	},
222 	.bbp	= {
223 		.read		= rt61pci_bbp_read,
224 		.write		= rt61pci_bbp_write,
225 		.word_base	= BBP_BASE,
226 		.word_size	= sizeof(u8),
227 		.word_count	= BBP_SIZE / sizeof(u8),
228 	},
229 	.rf	= {
230 		.read		= rt2x00_rf_read,
231 		.write		= rt61pci_rf_write,
232 		.word_base	= RF_BASE,
233 		.word_size	= sizeof(u32),
234 		.word_count	= RF_SIZE / sizeof(u32),
235 	},
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238 
239 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
240 {
241 	u32 reg;
242 
243 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
244 	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
245 }
246 
247 #ifdef CONFIG_RT2X00_LIB_LEDS
248 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
249 				   enum led_brightness brightness)
250 {
251 	struct rt2x00_led *led =
252 	    container_of(led_cdev, struct rt2x00_led, led_dev);
253 	unsigned int enabled = brightness != LED_OFF;
254 	unsigned int a_mode =
255 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
256 	unsigned int bg_mode =
257 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
258 
259 	if (led->type == LED_TYPE_RADIO) {
260 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
261 				   MCU_LEDCS_RADIO_STATUS, enabled);
262 
263 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
264 				    (led->rt2x00dev->led_mcu_reg & 0xff),
265 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
266 	} else if (led->type == LED_TYPE_ASSOC) {
267 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
268 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
269 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
271 
272 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
273 				    (led->rt2x00dev->led_mcu_reg & 0xff),
274 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
275 	} else if (led->type == LED_TYPE_QUALITY) {
276 		/*
277 		 * The brightness is divided into 6 levels (0 - 5),
278 		 * this means we need to convert the brightness
279 		 * argument into the matching level within that range.
280 		 */
281 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
282 				    brightness / (LED_FULL / 6), 0);
283 	}
284 }
285 
286 static int rt61pci_blink_set(struct led_classdev *led_cdev,
287 			     unsigned long *delay_on,
288 			     unsigned long *delay_off)
289 {
290 	struct rt2x00_led *led =
291 	    container_of(led_cdev, struct rt2x00_led, led_dev);
292 	u32 reg;
293 
294 	rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
295 	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
296 	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
297 	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
298 
299 	return 0;
300 }
301 
302 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
303 			     struct rt2x00_led *led,
304 			     enum led_type type)
305 {
306 	led->rt2x00dev = rt2x00dev;
307 	led->type = type;
308 	led->led_dev.brightness_set = rt61pci_brightness_set;
309 	led->led_dev.blink_set = rt61pci_blink_set;
310 	led->flags = LED_INITIALIZED;
311 }
312 #endif /* CONFIG_RT2X00_LIB_LEDS */
313 
314 /*
315  * Configuration handlers.
316  */
317 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
318 				     struct rt2x00lib_crypto *crypto,
319 				     struct ieee80211_key_conf *key)
320 {
321 	struct hw_key_entry key_entry;
322 	struct rt2x00_field32 field;
323 	u32 mask;
324 	u32 reg;
325 
326 	if (crypto->cmd == SET_KEY) {
327 		/*
328 		 * rt2x00lib can't determine the correct free
329 		 * key_idx for shared keys. We have 1 register
330 		 * with key valid bits. The goal is simple, read
331 		 * the register, if that is full we have no slots
332 		 * left.
333 		 * Note that each BSS is allowed to have up to 4
334 		 * shared keys, so put a mask over the allowed
335 		 * entries.
336 		 */
337 		mask = (0xf << crypto->bssidx);
338 
339 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
340 		reg &= mask;
341 
342 		if (reg && reg == mask)
343 			return -ENOSPC;
344 
345 		key->hw_key_idx += reg ? ffz(reg) : 0;
346 
347 		/*
348 		 * Upload key to hardware
349 		 */
350 		memcpy(key_entry.key, crypto->key,
351 		       sizeof(key_entry.key));
352 		memcpy(key_entry.tx_mic, crypto->tx_mic,
353 		       sizeof(key_entry.tx_mic));
354 		memcpy(key_entry.rx_mic, crypto->rx_mic,
355 		       sizeof(key_entry.rx_mic));
356 
357 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
358 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
359 					       &key_entry, sizeof(key_entry));
360 
361 		/*
362 		 * The cipher types are stored over 2 registers.
363 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
364 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
365 		 * Using the correct defines correctly will cause overhead,
366 		 * so just calculate the correct offset.
367 		 */
368 		if (key->hw_key_idx < 8) {
369 			field.bit_offset = (3 * key->hw_key_idx);
370 			field.bit_mask = 0x7 << field.bit_offset;
371 
372 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
373 			rt2x00_set_field32(&reg, field, crypto->cipher);
374 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
375 		} else {
376 			field.bit_offset = (3 * (key->hw_key_idx - 8));
377 			field.bit_mask = 0x7 << field.bit_offset;
378 
379 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
380 			rt2x00_set_field32(&reg, field, crypto->cipher);
381 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
382 		}
383 
384 		/*
385 		 * The driver does not support the IV/EIV generation
386 		 * in hardware. However it doesn't support the IV/EIV
387 		 * inside the ieee80211 frame either, but requires it
388 		 * to be provided separately for the descriptor.
389 		 * rt2x00lib will cut the IV/EIV data out of all frames
390 		 * given to us by mac80211, but we must tell mac80211
391 		 * to generate the IV/EIV data.
392 		 */
393 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
394 	}
395 
396 	/*
397 	 * SEC_CSR0 contains only single-bit fields to indicate
398 	 * a particular key is valid. Because using the FIELD32()
399 	 * defines directly will cause a lot of overhead, we use
400 	 * a calculation to determine the correct bit directly.
401 	 */
402 	mask = 1 << key->hw_key_idx;
403 
404 	rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
405 	if (crypto->cmd == SET_KEY)
406 		reg |= mask;
407 	else if (crypto->cmd == DISABLE_KEY)
408 		reg &= ~mask;
409 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
410 
411 	return 0;
412 }
413 
414 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
415 				       struct rt2x00lib_crypto *crypto,
416 				       struct ieee80211_key_conf *key)
417 {
418 	struct hw_pairwise_ta_entry addr_entry;
419 	struct hw_key_entry key_entry;
420 	u32 mask;
421 	u32 reg;
422 
423 	if (crypto->cmd == SET_KEY) {
424 		/*
425 		 * rt2x00lib can't determine the correct free
426 		 * key_idx for pairwise keys. We have 2 registers
427 		 * with key valid bits. The goal is simple: read
428 		 * the first register. If that is full, move to
429 		 * the next register.
430 		 * When both registers are full, we drop the key.
431 		 * Otherwise, we use the first invalid entry.
432 		 */
433 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
434 		if (reg && reg == ~0) {
435 			key->hw_key_idx = 32;
436 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
437 			if (reg && reg == ~0)
438 				return -ENOSPC;
439 		}
440 
441 		key->hw_key_idx += reg ? ffz(reg) : 0;
442 
443 		/*
444 		 * Upload key to hardware
445 		 */
446 		memcpy(key_entry.key, crypto->key,
447 		       sizeof(key_entry.key));
448 		memcpy(key_entry.tx_mic, crypto->tx_mic,
449 		       sizeof(key_entry.tx_mic));
450 		memcpy(key_entry.rx_mic, crypto->rx_mic,
451 		       sizeof(key_entry.rx_mic));
452 
453 		memset(&addr_entry, 0, sizeof(addr_entry));
454 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
455 		addr_entry.cipher = crypto->cipher;
456 
457 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
458 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
459 					       &key_entry, sizeof(key_entry));
460 
461 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
462 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
463 					       &addr_entry, sizeof(addr_entry));
464 
465 		/*
466 		 * Enable pairwise lookup table for given BSS idx.
467 		 * Without this, received frames will not be decrypted
468 		 * by the hardware.
469 		 */
470 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
471 		reg |= (1 << crypto->bssidx);
472 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
473 
474 		/*
475 		 * The driver does not support the IV/EIV generation
476 		 * in hardware. However it doesn't support the IV/EIV
477 		 * inside the ieee80211 frame either, but requires it
478 		 * to be provided separately for the descriptor.
479 		 * rt2x00lib will cut the IV/EIV data out of all frames
480 		 * given to us by mac80211, but we must tell mac80211
481 		 * to generate the IV/EIV data.
482 		 */
483 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
484 	}
485 
486 	/*
487 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
488 	 * a particular key is valid. Because using the FIELD32()
489 	 * defines directly will cause a lot of overhead, we use
490 	 * a calculation to determine the correct bit directly.
491 	 */
492 	if (key->hw_key_idx < 32) {
493 		mask = 1 << key->hw_key_idx;
494 
495 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
496 		if (crypto->cmd == SET_KEY)
497 			reg |= mask;
498 		else if (crypto->cmd == DISABLE_KEY)
499 			reg &= ~mask;
500 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
501 	} else {
502 		mask = 1 << (key->hw_key_idx - 32);
503 
504 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
505 		if (crypto->cmd == SET_KEY)
506 			reg |= mask;
507 		else if (crypto->cmd == DISABLE_KEY)
508 			reg &= ~mask;
509 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
510 	}
511 
512 	return 0;
513 }
514 
515 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
516 				  const unsigned int filter_flags)
517 {
518 	u32 reg;
519 
520 	/*
521 	 * Start configuration steps.
522 	 * Note that the version error will always be dropped
523 	 * and broadcast frames will always be accepted since
524 	 * there is no filter for it at this time.
525 	 */
526 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
527 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
528 			   !(filter_flags & FIF_FCSFAIL));
529 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
530 			   !(filter_flags & FIF_PLCPFAIL));
531 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
532 			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
533 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
534 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
535 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
536 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
537 			   !rt2x00dev->intf_ap_count);
538 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
539 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
540 			   !(filter_flags & FIF_ALLMULTI));
541 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
542 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
543 			   !(filter_flags & FIF_CONTROL));
544 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
545 }
546 
547 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
548 				struct rt2x00_intf *intf,
549 				struct rt2x00intf_conf *conf,
550 				const unsigned int flags)
551 {
552 	u32 reg;
553 
554 	if (flags & CONFIG_UPDATE_TYPE) {
555 		/*
556 		 * Enable synchronisation.
557 		 */
558 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
559 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
560 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
561 	}
562 
563 	if (flags & CONFIG_UPDATE_MAC) {
564 		reg = le32_to_cpu(conf->mac[1]);
565 		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
566 		conf->mac[1] = cpu_to_le32(reg);
567 
568 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
569 					       conf->mac, sizeof(conf->mac));
570 	}
571 
572 	if (flags & CONFIG_UPDATE_BSSID) {
573 		reg = le32_to_cpu(conf->bssid[1]);
574 		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
575 		conf->bssid[1] = cpu_to_le32(reg);
576 
577 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
578 					       conf->bssid,
579 					       sizeof(conf->bssid));
580 	}
581 }
582 
583 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
584 			       struct rt2x00lib_erp *erp,
585 			       u32 changed)
586 {
587 	u32 reg;
588 
589 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
590 	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
591 	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
592 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
593 
594 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
595 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
596 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
597 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
598 				   !!erp->short_preamble);
599 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
600 	}
601 
602 	if (changed & BSS_CHANGED_BASIC_RATES)
603 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
604 					  erp->basic_rates);
605 
606 	if (changed & BSS_CHANGED_BEACON_INT) {
607 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
608 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
609 				   erp->beacon_int * 16);
610 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
611 	}
612 
613 	if (changed & BSS_CHANGED_ERP_SLOT) {
614 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
615 		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
616 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
617 
618 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
619 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
620 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
621 		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
622 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
623 	}
624 }
625 
626 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
627 				      struct antenna_setup *ant)
628 {
629 	u8 r3;
630 	u8 r4;
631 	u8 r77;
632 
633 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
634 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
635 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
636 
637 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
638 
639 	/*
640 	 * Configure the RX antenna.
641 	 */
642 	switch (ant->rx) {
643 	case ANTENNA_HW_DIVERSITY:
644 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
645 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
646 				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
647 		break;
648 	case ANTENNA_A:
649 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
650 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
651 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
652 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
653 		else
654 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
655 		break;
656 	case ANTENNA_B:
657 	default:
658 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
659 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
660 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
661 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
662 		else
663 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
664 		break;
665 	}
666 
667 	rt61pci_bbp_write(rt2x00dev, 77, r77);
668 	rt61pci_bbp_write(rt2x00dev, 3, r3);
669 	rt61pci_bbp_write(rt2x00dev, 4, r4);
670 }
671 
672 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
673 				      struct antenna_setup *ant)
674 {
675 	u8 r3;
676 	u8 r4;
677 	u8 r77;
678 
679 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
680 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
681 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
682 
683 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
684 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
685 			  !rt2x00_has_cap_frame_type(rt2x00dev));
686 
687 	/*
688 	 * Configure the RX antenna.
689 	 */
690 	switch (ant->rx) {
691 	case ANTENNA_HW_DIVERSITY:
692 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
693 		break;
694 	case ANTENNA_A:
695 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
696 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
697 		break;
698 	case ANTENNA_B:
699 	default:
700 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
702 		break;
703 	}
704 
705 	rt61pci_bbp_write(rt2x00dev, 77, r77);
706 	rt61pci_bbp_write(rt2x00dev, 3, r3);
707 	rt61pci_bbp_write(rt2x00dev, 4, r4);
708 }
709 
710 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
711 					   const int p1, const int p2)
712 {
713 	u32 reg;
714 
715 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
716 
717 	rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
718 	rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
719 
720 	rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
721 	rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
722 
723 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
724 }
725 
726 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
727 					struct antenna_setup *ant)
728 {
729 	u8 r3;
730 	u8 r4;
731 	u8 r77;
732 
733 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
734 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
735 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
736 
737 	/*
738 	 * Configure the RX antenna.
739 	 */
740 	switch (ant->rx) {
741 	case ANTENNA_A:
742 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
743 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
744 		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
745 		break;
746 	case ANTENNA_HW_DIVERSITY:
747 		/*
748 		 * FIXME: Antenna selection for the rf 2529 is very confusing
749 		 * in the legacy driver. Just default to antenna B until the
750 		 * legacy code can be properly translated into rt2x00 code.
751 		 */
752 	case ANTENNA_B:
753 	default:
754 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
755 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
756 		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
757 		break;
758 	}
759 
760 	rt61pci_bbp_write(rt2x00dev, 77, r77);
761 	rt61pci_bbp_write(rt2x00dev, 3, r3);
762 	rt61pci_bbp_write(rt2x00dev, 4, r4);
763 }
764 
765 struct antenna_sel {
766 	u8 word;
767 	/*
768 	 * value[0] -> non-LNA
769 	 * value[1] -> LNA
770 	 */
771 	u8 value[2];
772 };
773 
774 static const struct antenna_sel antenna_sel_a[] = {
775 	{ 96,  { 0x58, 0x78 } },
776 	{ 104, { 0x38, 0x48 } },
777 	{ 75,  { 0xfe, 0x80 } },
778 	{ 86,  { 0xfe, 0x80 } },
779 	{ 88,  { 0xfe, 0x80 } },
780 	{ 35,  { 0x60, 0x60 } },
781 	{ 97,  { 0x58, 0x58 } },
782 	{ 98,  { 0x58, 0x58 } },
783 };
784 
785 static const struct antenna_sel antenna_sel_bg[] = {
786 	{ 96,  { 0x48, 0x68 } },
787 	{ 104, { 0x2c, 0x3c } },
788 	{ 75,  { 0xfe, 0x80 } },
789 	{ 86,  { 0xfe, 0x80 } },
790 	{ 88,  { 0xfe, 0x80 } },
791 	{ 35,  { 0x50, 0x50 } },
792 	{ 97,  { 0x48, 0x48 } },
793 	{ 98,  { 0x48, 0x48 } },
794 };
795 
796 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
797 			       struct antenna_setup *ant)
798 {
799 	const struct antenna_sel *sel;
800 	unsigned int lna;
801 	unsigned int i;
802 	u32 reg;
803 
804 	/*
805 	 * We should never come here because rt2x00lib is supposed
806 	 * to catch this and send us the correct antenna explicitely.
807 	 */
808 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
809 	       ant->tx == ANTENNA_SW_DIVERSITY);
810 
811 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
812 		sel = antenna_sel_a;
813 		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
814 	} else {
815 		sel = antenna_sel_bg;
816 		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
817 	}
818 
819 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
820 		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
821 
822 	rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
823 
824 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
825 			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
826 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
827 			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
828 
829 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
830 
831 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
832 		rt61pci_config_antenna_5x(rt2x00dev, ant);
833 	else if (rt2x00_rf(rt2x00dev, RF2527))
834 		rt61pci_config_antenna_2x(rt2x00dev, ant);
835 	else if (rt2x00_rf(rt2x00dev, RF2529)) {
836 		if (rt2x00_has_cap_double_antenna(rt2x00dev))
837 			rt61pci_config_antenna_2x(rt2x00dev, ant);
838 		else
839 			rt61pci_config_antenna_2529(rt2x00dev, ant);
840 	}
841 }
842 
843 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
844 				    struct rt2x00lib_conf *libconf)
845 {
846 	u16 eeprom;
847 	short lna_gain = 0;
848 
849 	if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
850 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
851 			lna_gain += 14;
852 
853 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
854 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
855 	} else {
856 		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
857 			lna_gain += 14;
858 
859 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
860 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
861 	}
862 
863 	rt2x00dev->lna_gain = lna_gain;
864 }
865 
866 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
867 				   struct rf_channel *rf, const int txpower)
868 {
869 	u8 r3;
870 	u8 r94;
871 	u8 smart;
872 
873 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
874 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
875 
876 	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
877 
878 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
879 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
880 	rt61pci_bbp_write(rt2x00dev, 3, r3);
881 
882 	r94 = 6;
883 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
884 		r94 += txpower - MAX_TXPOWER;
885 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
886 		r94 += txpower;
887 	rt61pci_bbp_write(rt2x00dev, 94, r94);
888 
889 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
890 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
891 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
892 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
893 
894 	udelay(200);
895 
896 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
899 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
900 
901 	udelay(200);
902 
903 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
906 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907 
908 	msleep(1);
909 }
910 
911 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
912 				   const int txpower)
913 {
914 	struct rf_channel rf;
915 
916 	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
917 	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
918 	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
919 	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
920 
921 	rt61pci_config_channel(rt2x00dev, &rf, txpower);
922 }
923 
924 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
925 				    struct rt2x00lib_conf *libconf)
926 {
927 	u32 reg;
928 
929 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
930 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
931 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
932 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
933 	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
934 			   libconf->conf->long_frame_max_tx_count);
935 	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
936 			   libconf->conf->short_frame_max_tx_count);
937 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
938 }
939 
940 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
941 				struct rt2x00lib_conf *libconf)
942 {
943 	enum dev_state state =
944 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
945 		STATE_SLEEP : STATE_AWAKE;
946 	u32 reg;
947 
948 	if (state == STATE_SLEEP) {
949 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
950 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
951 				   rt2x00dev->beacon_int - 10);
952 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
953 				   libconf->conf->listen_interval - 1);
954 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
955 
956 		/* We must first disable autowake before it can be enabled */
957 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
958 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
959 
960 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
961 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
962 
963 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
964 					  0x00000005);
965 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
966 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
967 
968 		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
969 	} else {
970 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
971 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
972 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
973 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
974 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
975 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
976 
977 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
978 					  0x00000007);
979 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
980 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
981 
982 		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
983 	}
984 }
985 
986 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
987 			   struct rt2x00lib_conf *libconf,
988 			   const unsigned int flags)
989 {
990 	/* Always recalculate LNA gain before changing configuration */
991 	rt61pci_config_lna_gain(rt2x00dev, libconf);
992 
993 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
994 		rt61pci_config_channel(rt2x00dev, &libconf->rf,
995 				       libconf->conf->power_level);
996 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
997 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
998 		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
999 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1000 		rt61pci_config_retry_limit(rt2x00dev, libconf);
1001 	if (flags & IEEE80211_CONF_CHANGE_PS)
1002 		rt61pci_config_ps(rt2x00dev, libconf);
1003 }
1004 
1005 /*
1006  * Link tuning
1007  */
1008 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1009 			       struct link_qual *qual)
1010 {
1011 	u32 reg;
1012 
1013 	/*
1014 	 * Update FCS error count from register.
1015 	 */
1016 	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1017 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1018 
1019 	/*
1020 	 * Update False CCA count from register.
1021 	 */
1022 	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1023 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1024 }
1025 
1026 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1027 				   struct link_qual *qual, u8 vgc_level)
1028 {
1029 	if (qual->vgc_level != vgc_level) {
1030 		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1031 		qual->vgc_level = vgc_level;
1032 		qual->vgc_level_reg = vgc_level;
1033 	}
1034 }
1035 
1036 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1037 				struct link_qual *qual)
1038 {
1039 	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1040 }
1041 
1042 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1043 			       struct link_qual *qual, const u32 count)
1044 {
1045 	u8 up_bound;
1046 	u8 low_bound;
1047 
1048 	/*
1049 	 * Determine r17 bounds.
1050 	 */
1051 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1052 		low_bound = 0x28;
1053 		up_bound = 0x48;
1054 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1055 			low_bound += 0x10;
1056 			up_bound += 0x10;
1057 		}
1058 	} else {
1059 		low_bound = 0x20;
1060 		up_bound = 0x40;
1061 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1062 			low_bound += 0x10;
1063 			up_bound += 0x10;
1064 		}
1065 	}
1066 
1067 	/*
1068 	 * If we are not associated, we should go straight to the
1069 	 * dynamic CCA tuning.
1070 	 */
1071 	if (!rt2x00dev->intf_associated)
1072 		goto dynamic_cca_tune;
1073 
1074 	/*
1075 	 * Special big-R17 for very short distance
1076 	 */
1077 	if (qual->rssi >= -35) {
1078 		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1079 		return;
1080 	}
1081 
1082 	/*
1083 	 * Special big-R17 for short distance
1084 	 */
1085 	if (qual->rssi >= -58) {
1086 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * Special big-R17 for middle-short distance
1092 	 */
1093 	if (qual->rssi >= -66) {
1094 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1095 		return;
1096 	}
1097 
1098 	/*
1099 	 * Special mid-R17 for middle distance
1100 	 */
1101 	if (qual->rssi >= -74) {
1102 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1103 		return;
1104 	}
1105 
1106 	/*
1107 	 * Special case: Change up_bound based on the rssi.
1108 	 * Lower up_bound when rssi is weaker then -74 dBm.
1109 	 */
1110 	up_bound -= 2 * (-74 - qual->rssi);
1111 	if (low_bound > up_bound)
1112 		up_bound = low_bound;
1113 
1114 	if (qual->vgc_level > up_bound) {
1115 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1116 		return;
1117 	}
1118 
1119 dynamic_cca_tune:
1120 
1121 	/*
1122 	 * r17 does not yet exceed upper limit, continue and base
1123 	 * the r17 tuning on the false CCA count.
1124 	 */
1125 	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1126 		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1127 	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1128 		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1129 }
1130 
1131 /*
1132  * Queue handlers.
1133  */
1134 static void rt61pci_start_queue(struct data_queue *queue)
1135 {
1136 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1137 	u32 reg;
1138 
1139 	switch (queue->qid) {
1140 	case QID_RX:
1141 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1142 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1143 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1144 		break;
1145 	case QID_BEACON:
1146 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1147 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1148 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1149 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1150 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1151 		break;
1152 	default:
1153 		break;
1154 	}
1155 }
1156 
1157 static void rt61pci_kick_queue(struct data_queue *queue)
1158 {
1159 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1160 	u32 reg;
1161 
1162 	switch (queue->qid) {
1163 	case QID_AC_VO:
1164 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1165 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1166 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1167 		break;
1168 	case QID_AC_VI:
1169 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1170 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1171 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1172 		break;
1173 	case QID_AC_BE:
1174 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1175 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1176 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1177 		break;
1178 	case QID_AC_BK:
1179 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1180 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1181 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1182 		break;
1183 	default:
1184 		break;
1185 	}
1186 }
1187 
1188 static void rt61pci_stop_queue(struct data_queue *queue)
1189 {
1190 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1191 	u32 reg;
1192 
1193 	switch (queue->qid) {
1194 	case QID_AC_VO:
1195 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1196 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1197 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1198 		break;
1199 	case QID_AC_VI:
1200 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1201 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1202 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1203 		break;
1204 	case QID_AC_BE:
1205 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1206 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1207 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1208 		break;
1209 	case QID_AC_BK:
1210 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1211 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1212 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1213 		break;
1214 	case QID_RX:
1215 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1216 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1217 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1218 		break;
1219 	case QID_BEACON:
1220 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1221 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1222 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1223 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1224 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1225 
1226 		/*
1227 		 * Wait for possibly running tbtt tasklets.
1228 		 */
1229 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1230 		break;
1231 	default:
1232 		break;
1233 	}
1234 }
1235 
1236 /*
1237  * Firmware functions
1238  */
1239 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1240 {
1241 	u16 chip;
1242 	char *fw_name;
1243 
1244 	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1245 	switch (chip) {
1246 	case RT2561_PCI_ID:
1247 		fw_name = FIRMWARE_RT2561;
1248 		break;
1249 	case RT2561s_PCI_ID:
1250 		fw_name = FIRMWARE_RT2561s;
1251 		break;
1252 	case RT2661_PCI_ID:
1253 		fw_name = FIRMWARE_RT2661;
1254 		break;
1255 	default:
1256 		fw_name = NULL;
1257 		break;
1258 	}
1259 
1260 	return fw_name;
1261 }
1262 
1263 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1264 				  const u8 *data, const size_t len)
1265 {
1266 	u16 fw_crc;
1267 	u16 crc;
1268 
1269 	/*
1270 	 * Only support 8kb firmware files.
1271 	 */
1272 	if (len != 8192)
1273 		return FW_BAD_LENGTH;
1274 
1275 	/*
1276 	 * The last 2 bytes in the firmware array are the crc checksum itself.
1277 	 * This means that we should never pass those 2 bytes to the crc
1278 	 * algorithm.
1279 	 */
1280 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1281 
1282 	/*
1283 	 * Use the crc itu-t algorithm.
1284 	 */
1285 	crc = crc_itu_t(0, data, len - 2);
1286 	crc = crc_itu_t_byte(crc, 0);
1287 	crc = crc_itu_t_byte(crc, 0);
1288 
1289 	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1290 }
1291 
1292 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1293 				 const u8 *data, const size_t len)
1294 {
1295 	int i;
1296 	u32 reg;
1297 
1298 	/*
1299 	 * Wait for stable hardware.
1300 	 */
1301 	for (i = 0; i < 100; i++) {
1302 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1303 		if (reg)
1304 			break;
1305 		msleep(1);
1306 	}
1307 
1308 	if (!reg) {
1309 		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1310 		return -EBUSY;
1311 	}
1312 
1313 	/*
1314 	 * Prepare MCU and mailbox for firmware loading.
1315 	 */
1316 	reg = 0;
1317 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1318 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1319 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1320 	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1321 	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1322 
1323 	/*
1324 	 * Write firmware to device.
1325 	 */
1326 	reg = 0;
1327 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1328 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1329 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1330 
1331 	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1332 				       data, len);
1333 
1334 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1335 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1336 
1337 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1338 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339 
1340 	for (i = 0; i < 100; i++) {
1341 		rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1342 		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1343 			break;
1344 		msleep(1);
1345 	}
1346 
1347 	if (i == 100) {
1348 		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1349 		return -EBUSY;
1350 	}
1351 
1352 	/*
1353 	 * Hardware needs another millisecond before it is ready.
1354 	 */
1355 	msleep(1);
1356 
1357 	/*
1358 	 * Reset MAC and BBP registers.
1359 	 */
1360 	reg = 0;
1361 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1362 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1363 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1364 
1365 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1366 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1367 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1368 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1369 
1370 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1371 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1372 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1373 
1374 	return 0;
1375 }
1376 
1377 /*
1378  * Initialization functions.
1379  */
1380 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1381 {
1382 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1383 	u32 word;
1384 
1385 	if (entry->queue->qid == QID_RX) {
1386 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1387 
1388 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1389 	} else {
1390 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1391 
1392 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1393 		        rt2x00_get_field32(word, TXD_W0_VALID));
1394 	}
1395 }
1396 
1397 static void rt61pci_clear_entry(struct queue_entry *entry)
1398 {
1399 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1400 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1401 	u32 word;
1402 
1403 	if (entry->queue->qid == QID_RX) {
1404 		rt2x00_desc_read(entry_priv->desc, 5, &word);
1405 		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1406 				   skbdesc->skb_dma);
1407 		rt2x00_desc_write(entry_priv->desc, 5, word);
1408 
1409 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1410 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1411 		rt2x00_desc_write(entry_priv->desc, 0, word);
1412 	} else {
1413 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1414 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1415 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1416 		rt2x00_desc_write(entry_priv->desc, 0, word);
1417 	}
1418 }
1419 
1420 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1421 {
1422 	struct queue_entry_priv_mmio *entry_priv;
1423 	u32 reg;
1424 
1425 	/*
1426 	 * Initialize registers.
1427 	 */
1428 	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1429 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1430 			   rt2x00dev->tx[0].limit);
1431 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1432 			   rt2x00dev->tx[1].limit);
1433 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1434 			   rt2x00dev->tx[2].limit);
1435 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1436 			   rt2x00dev->tx[3].limit);
1437 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1438 
1439 	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1440 	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1441 			   rt2x00dev->tx[0].desc_size / 4);
1442 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1443 
1444 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1445 	rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1446 	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1447 			   entry_priv->desc_dma);
1448 	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1449 
1450 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1451 	rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1452 	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1453 			   entry_priv->desc_dma);
1454 	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1455 
1456 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1457 	rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1458 	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1459 			   entry_priv->desc_dma);
1460 	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1461 
1462 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1463 	rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1464 	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1465 			   entry_priv->desc_dma);
1466 	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1467 
1468 	rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1469 	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1470 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1471 			   rt2x00dev->rx->desc_size / 4);
1472 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1473 	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1474 
1475 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1476 	rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1477 	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1478 			   entry_priv->desc_dma);
1479 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1480 
1481 	rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1482 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1483 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1484 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1485 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1486 	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1487 
1488 	rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1489 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1490 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1491 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1492 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1493 	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1494 
1495 	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1496 	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1497 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1498 
1499 	return 0;
1500 }
1501 
1502 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1503 {
1504 	u32 reg;
1505 
1506 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1507 	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1508 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1509 	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1510 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1511 
1512 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1513 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1514 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1515 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1516 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1517 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1518 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1519 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1520 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1521 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1522 
1523 	/*
1524 	 * CCK TXD BBP registers
1525 	 */
1526 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1527 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1528 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1529 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1530 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1531 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1532 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1533 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1534 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1535 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1536 
1537 	/*
1538 	 * OFDM TXD BBP registers
1539 	 */
1540 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1541 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1542 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1543 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1544 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1545 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1546 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1547 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1548 
1549 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1550 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1551 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1552 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1553 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1554 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1555 
1556 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1557 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1558 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1559 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1560 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1561 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1562 
1563 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1564 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1565 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1566 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1567 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1568 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1569 	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1570 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1571 
1572 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1573 
1574 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1575 
1576 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1577 	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1578 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1579 
1580 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1581 
1582 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1583 		return -EBUSY;
1584 
1585 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1586 
1587 	/*
1588 	 * Invalidate all Shared Keys (SEC_CSR0),
1589 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1590 	 */
1591 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1592 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1593 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1594 
1595 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1596 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1597 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1598 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1599 
1600 	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1601 
1602 	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1603 
1604 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1605 
1606 	/*
1607 	 * Clear all beacons
1608 	 * For the Beacon base registers we only need to clear
1609 	 * the first byte since that byte contains the VALID and OWNER
1610 	 * bits which (when set to 0) will invalidate the entire beacon.
1611 	 */
1612 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1613 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1614 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1615 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1616 
1617 	/*
1618 	 * We must clear the error counters.
1619 	 * These registers are cleared on read,
1620 	 * so we may pass a useless variable to store the value.
1621 	 */
1622 	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1623 	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1624 	rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1625 
1626 	/*
1627 	 * Reset MAC and BBP registers.
1628 	 */
1629 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1630 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1631 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1632 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1633 
1634 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1635 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1636 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1637 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1638 
1639 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1640 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1641 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1642 
1643 	return 0;
1644 }
1645 
1646 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1647 {
1648 	unsigned int i;
1649 	u8 value;
1650 
1651 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1652 		rt61pci_bbp_read(rt2x00dev, 0, &value);
1653 		if ((value != 0xff) && (value != 0x00))
1654 			return 0;
1655 		udelay(REGISTER_BUSY_DELAY);
1656 	}
1657 
1658 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1659 	return -EACCES;
1660 }
1661 
1662 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1663 {
1664 	unsigned int i;
1665 	u16 eeprom;
1666 	u8 reg_id;
1667 	u8 value;
1668 
1669 	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1670 		return -EACCES;
1671 
1672 	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1673 	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1674 	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1675 	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1676 	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1677 	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1678 	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1679 	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1680 	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1681 	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1682 	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1683 	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1684 	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1685 	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1686 	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1687 	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1688 	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1689 	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1690 	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1691 	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1692 	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1693 	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1694 	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1695 	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1696 
1697 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1698 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1699 
1700 		if (eeprom != 0xffff && eeprom != 0x0000) {
1701 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1702 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1703 			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1704 		}
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Device state switch handlers.
1712  */
1713 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1714 			       enum dev_state state)
1715 {
1716 	int mask = (state == STATE_RADIO_IRQ_OFF);
1717 	u32 reg;
1718 	unsigned long flags;
1719 
1720 	/*
1721 	 * When interrupts are being enabled, the interrupt registers
1722 	 * should clear the register to assure a clean state.
1723 	 */
1724 	if (state == STATE_RADIO_IRQ_ON) {
1725 		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1726 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1727 
1728 		rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1729 		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1730 	}
1731 
1732 	/*
1733 	 * Only toggle the interrupts bits we are going to use.
1734 	 * Non-checked interrupt bits are disabled by default.
1735 	 */
1736 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1737 
1738 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1739 	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1740 	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1741 	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1742 	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1743 	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1744 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1745 
1746 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1747 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1748 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1749 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1750 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1751 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1752 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1753 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1754 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1755 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1756 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1757 
1758 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1759 
1760 	if (state == STATE_RADIO_IRQ_OFF) {
1761 		/*
1762 		 * Ensure that all tasklets are finished.
1763 		 */
1764 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1765 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1766 		tasklet_kill(&rt2x00dev->autowake_tasklet);
1767 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1768 	}
1769 }
1770 
1771 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1772 {
1773 	u32 reg;
1774 
1775 	/*
1776 	 * Initialize all registers.
1777 	 */
1778 	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1779 		     rt61pci_init_registers(rt2x00dev) ||
1780 		     rt61pci_init_bbp(rt2x00dev)))
1781 		return -EIO;
1782 
1783 	/*
1784 	 * Enable RX.
1785 	 */
1786 	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1787 	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1788 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1789 
1790 	return 0;
1791 }
1792 
1793 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1794 {
1795 	/*
1796 	 * Disable power
1797 	 */
1798 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1799 }
1800 
1801 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1802 {
1803 	u32 reg, reg2;
1804 	unsigned int i;
1805 	char put_to_sleep;
1806 
1807 	put_to_sleep = (state != STATE_AWAKE);
1808 
1809 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1810 	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1811 	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1812 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1813 
1814 	/*
1815 	 * Device is not guaranteed to be in the requested state yet.
1816 	 * We must wait until the register indicates that the
1817 	 * device has entered the correct state.
1818 	 */
1819 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1820 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1821 		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1822 		if (state == !put_to_sleep)
1823 			return 0;
1824 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1825 		msleep(10);
1826 	}
1827 
1828 	return -EBUSY;
1829 }
1830 
1831 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1832 				    enum dev_state state)
1833 {
1834 	int retval = 0;
1835 
1836 	switch (state) {
1837 	case STATE_RADIO_ON:
1838 		retval = rt61pci_enable_radio(rt2x00dev);
1839 		break;
1840 	case STATE_RADIO_OFF:
1841 		rt61pci_disable_radio(rt2x00dev);
1842 		break;
1843 	case STATE_RADIO_IRQ_ON:
1844 	case STATE_RADIO_IRQ_OFF:
1845 		rt61pci_toggle_irq(rt2x00dev, state);
1846 		break;
1847 	case STATE_DEEP_SLEEP:
1848 	case STATE_SLEEP:
1849 	case STATE_STANDBY:
1850 	case STATE_AWAKE:
1851 		retval = rt61pci_set_state(rt2x00dev, state);
1852 		break;
1853 	default:
1854 		retval = -ENOTSUPP;
1855 		break;
1856 	}
1857 
1858 	if (unlikely(retval))
1859 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1860 			   state, retval);
1861 
1862 	return retval;
1863 }
1864 
1865 /*
1866  * TX descriptor initialization
1867  */
1868 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1869 				  struct txentry_desc *txdesc)
1870 {
1871 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1872 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1873 	__le32 *txd = entry_priv->desc;
1874 	u32 word;
1875 
1876 	/*
1877 	 * Start writing the descriptor words.
1878 	 */
1879 	rt2x00_desc_read(txd, 1, &word);
1880 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1881 	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1882 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1883 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1884 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1885 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1886 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1887 	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1888 	rt2x00_desc_write(txd, 1, word);
1889 
1890 	rt2x00_desc_read(txd, 2, &word);
1891 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1892 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1893 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1894 			   txdesc->u.plcp.length_low);
1895 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1896 			   txdesc->u.plcp.length_high);
1897 	rt2x00_desc_write(txd, 2, word);
1898 
1899 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1900 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1901 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1902 	}
1903 
1904 	rt2x00_desc_read(txd, 5, &word);
1905 	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1906 	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1907 			   skbdesc->entry->entry_idx);
1908 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1909 			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1910 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1911 	rt2x00_desc_write(txd, 5, word);
1912 
1913 	if (entry->queue->qid != QID_BEACON) {
1914 		rt2x00_desc_read(txd, 6, &word);
1915 		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1916 				   skbdesc->skb_dma);
1917 		rt2x00_desc_write(txd, 6, word);
1918 
1919 		rt2x00_desc_read(txd, 11, &word);
1920 		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1921 				   txdesc->length);
1922 		rt2x00_desc_write(txd, 11, word);
1923 	}
1924 
1925 	/*
1926 	 * Writing TXD word 0 must the last to prevent a race condition with
1927 	 * the device, whereby the device may take hold of the TXD before we
1928 	 * finished updating it.
1929 	 */
1930 	rt2x00_desc_read(txd, 0, &word);
1931 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1932 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1933 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1934 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1935 	rt2x00_set_field32(&word, TXD_W0_ACK,
1936 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1937 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1938 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1939 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1940 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1941 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1942 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1943 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1944 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1945 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1946 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1947 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1948 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1949 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1950 	rt2x00_set_field32(&word, TXD_W0_BURST,
1951 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1952 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1953 	rt2x00_desc_write(txd, 0, word);
1954 
1955 	/*
1956 	 * Register descriptor details in skb frame descriptor.
1957 	 */
1958 	skbdesc->desc = txd;
1959 	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1960 			    TXD_DESC_SIZE;
1961 }
1962 
1963 /*
1964  * TX data initialization
1965  */
1966 static void rt61pci_write_beacon(struct queue_entry *entry,
1967 				 struct txentry_desc *txdesc)
1968 {
1969 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1970 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1971 	unsigned int beacon_base;
1972 	unsigned int padding_len;
1973 	u32 orig_reg, reg;
1974 
1975 	/*
1976 	 * Disable beaconing while we are reloading the beacon data,
1977 	 * otherwise we might be sending out invalid data.
1978 	 */
1979 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1980 	orig_reg = reg;
1981 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1982 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1983 
1984 	/*
1985 	 * Write the TX descriptor for the beacon.
1986 	 */
1987 	rt61pci_write_tx_desc(entry, txdesc);
1988 
1989 	/*
1990 	 * Dump beacon to userspace through debugfs.
1991 	 */
1992 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1993 
1994 	/*
1995 	 * Write entire beacon with descriptor and padding to register.
1996 	 */
1997 	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1998 	if (padding_len && skb_pad(entry->skb, padding_len)) {
1999 		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2000 		/* skb freed by skb_pad() on failure */
2001 		entry->skb = NULL;
2002 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2003 		return;
2004 	}
2005 
2006 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2007 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2008 				       entry_priv->desc, TXINFO_SIZE);
2009 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2010 				       entry->skb->data,
2011 				       entry->skb->len + padding_len);
2012 
2013 	/*
2014 	 * Enable beaconing again.
2015 	 *
2016 	 * For Wi-Fi faily generated beacons between participating
2017 	 * stations. Set TBTT phase adaptive adjustment step to 8us.
2018 	 */
2019 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2020 
2021 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2022 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2023 
2024 	/*
2025 	 * Clean up beacon skb.
2026 	 */
2027 	dev_kfree_skb_any(entry->skb);
2028 	entry->skb = NULL;
2029 }
2030 
2031 static void rt61pci_clear_beacon(struct queue_entry *entry)
2032 {
2033 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2034 	u32 orig_reg, reg;
2035 
2036 	/*
2037 	 * Disable beaconing while we are reloading the beacon data,
2038 	 * otherwise we might be sending out invalid data.
2039 	 */
2040 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
2041 	reg = orig_reg;
2042 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2043 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2044 
2045 	/*
2046 	 * Clear beacon.
2047 	 */
2048 	rt2x00mmio_register_write(rt2x00dev,
2049 				  HW_BEACON_OFFSET(entry->entry_idx), 0);
2050 
2051 	/*
2052 	 * Restore global beaconing state.
2053 	 */
2054 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2055 }
2056 
2057 /*
2058  * RX control handlers
2059  */
2060 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2061 {
2062 	u8 offset = rt2x00dev->lna_gain;
2063 	u8 lna;
2064 
2065 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2066 	switch (lna) {
2067 	case 3:
2068 		offset += 90;
2069 		break;
2070 	case 2:
2071 		offset += 74;
2072 		break;
2073 	case 1:
2074 		offset += 64;
2075 		break;
2076 	default:
2077 		return 0;
2078 	}
2079 
2080 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2081 		if (lna == 3 || lna == 2)
2082 			offset += 10;
2083 	}
2084 
2085 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2086 }
2087 
2088 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2089 				struct rxdone_entry_desc *rxdesc)
2090 {
2091 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2092 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2093 	u32 word0;
2094 	u32 word1;
2095 
2096 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
2097 	rt2x00_desc_read(entry_priv->desc, 1, &word1);
2098 
2099 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2100 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2101 
2102 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2103 	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2104 
2105 	if (rxdesc->cipher != CIPHER_NONE) {
2106 		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2107 		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2108 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2109 
2110 		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2111 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2112 
2113 		/*
2114 		 * Hardware has stripped IV/EIV data from 802.11 frame during
2115 		 * decryption. It has provided the data separately but rt2x00lib
2116 		 * should decide if it should be reinserted.
2117 		 */
2118 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2119 
2120 		/*
2121 		 * The hardware has already checked the Michael Mic and has
2122 		 * stripped it from the frame. Signal this to mac80211.
2123 		 */
2124 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2125 
2126 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2127 			rxdesc->flags |= RX_FLAG_DECRYPTED;
2128 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2129 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2130 	}
2131 
2132 	/*
2133 	 * Obtain the status about this packet.
2134 	 * When frame was received with an OFDM bitrate,
2135 	 * the signal is the PLCP value. If it was received with
2136 	 * a CCK bitrate the signal is the rate in 100kbit/s.
2137 	 */
2138 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2139 	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2140 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2141 
2142 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2143 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2144 	else
2145 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2146 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2147 		rxdesc->dev_flags |= RXDONE_MY_BSS;
2148 }
2149 
2150 /*
2151  * Interrupt functions.
2152  */
2153 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2154 {
2155 	struct data_queue *queue;
2156 	struct queue_entry *entry;
2157 	struct queue_entry *entry_done;
2158 	struct queue_entry_priv_mmio *entry_priv;
2159 	struct txdone_entry_desc txdesc;
2160 	u32 word;
2161 	u32 reg;
2162 	int type;
2163 	int index;
2164 	int i;
2165 
2166 	/*
2167 	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2168 	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2169 	 * flag is not set anymore.
2170 	 *
2171 	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2172 	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2173 	 * tx ring size for now.
2174 	 */
2175 	for (i = 0; i < rt2x00dev->tx->limit; i++) {
2176 		rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2177 		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2178 			break;
2179 
2180 		/*
2181 		 * Skip this entry when it contains an invalid
2182 		 * queue identication number.
2183 		 */
2184 		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2185 		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2186 		if (unlikely(!queue))
2187 			continue;
2188 
2189 		/*
2190 		 * Skip this entry when it contains an invalid
2191 		 * index number.
2192 		 */
2193 		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2194 		if (unlikely(index >= queue->limit))
2195 			continue;
2196 
2197 		entry = &queue->entries[index];
2198 		entry_priv = entry->priv_data;
2199 		rt2x00_desc_read(entry_priv->desc, 0, &word);
2200 
2201 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2202 		    !rt2x00_get_field32(word, TXD_W0_VALID))
2203 			return;
2204 
2205 		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2206 		while (entry != entry_done) {
2207 			/* Catch up.
2208 			 * Just report any entries we missed as failed.
2209 			 */
2210 			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2211 				    entry_done->entry_idx);
2212 
2213 			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2214 			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2215 		}
2216 
2217 		/*
2218 		 * Obtain the status about this packet.
2219 		 */
2220 		txdesc.flags = 0;
2221 		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2222 		case 0: /* Success, maybe with retry */
2223 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2224 			break;
2225 		case 6: /* Failure, excessive retries */
2226 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2227 			/* Don't break, this is a failed frame! */
2228 		default: /* Failure */
2229 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2230 		}
2231 		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2232 
2233 		/*
2234 		 * the frame was retried at least once
2235 		 * -> hw used fallback rates
2236 		 */
2237 		if (txdesc.retry)
2238 			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2239 
2240 		rt2x00lib_txdone(entry, &txdesc);
2241 	}
2242 }
2243 
2244 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2245 {
2246 	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2247 
2248 	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2249 }
2250 
2251 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2252 					    struct rt2x00_field32 irq_field)
2253 {
2254 	u32 reg;
2255 
2256 	/*
2257 	 * Enable a single interrupt. The interrupt mask register
2258 	 * access needs locking.
2259 	 */
2260 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2261 
2262 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2263 	rt2x00_set_field32(&reg, irq_field, 0);
2264 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2265 
2266 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2267 }
2268 
2269 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2270 					 struct rt2x00_field32 irq_field)
2271 {
2272 	u32 reg;
2273 
2274 	/*
2275 	 * Enable a single MCU interrupt. The interrupt mask register
2276 	 * access needs locking.
2277 	 */
2278 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2279 
2280 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2281 	rt2x00_set_field32(&reg, irq_field, 0);
2282 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2283 
2284 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2285 }
2286 
2287 static void rt61pci_txstatus_tasklet(unsigned long data)
2288 {
2289 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2290 	rt61pci_txdone(rt2x00dev);
2291 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2292 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2293 }
2294 
2295 static void rt61pci_tbtt_tasklet(unsigned long data)
2296 {
2297 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2298 	rt2x00lib_beacondone(rt2x00dev);
2299 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2300 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2301 }
2302 
2303 static void rt61pci_rxdone_tasklet(unsigned long data)
2304 {
2305 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2306 	if (rt2x00mmio_rxdone(rt2x00dev))
2307 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2308 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2309 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2310 }
2311 
2312 static void rt61pci_autowake_tasklet(unsigned long data)
2313 {
2314 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2315 	rt61pci_wakeup(rt2x00dev);
2316 	rt2x00mmio_register_write(rt2x00dev,
2317 				  M2H_CMD_DONE_CSR, 0xffffffff);
2318 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2319 		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2320 }
2321 
2322 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2323 {
2324 	struct rt2x00_dev *rt2x00dev = dev_instance;
2325 	u32 reg_mcu, mask_mcu;
2326 	u32 reg, mask;
2327 
2328 	/*
2329 	 * Get the interrupt sources & saved to local variable.
2330 	 * Write register value back to clear pending interrupts.
2331 	 */
2332 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2333 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2334 
2335 	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2336 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2337 
2338 	if (!reg && !reg_mcu)
2339 		return IRQ_NONE;
2340 
2341 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2342 		return IRQ_HANDLED;
2343 
2344 	/*
2345 	 * Schedule tasklets for interrupt handling.
2346 	 */
2347 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2348 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2349 
2350 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2351 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2352 
2353 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2354 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2355 
2356 	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2357 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
2358 
2359 	/*
2360 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2361 	 * for interrupts and interrupt masks we can just use the value of
2362 	 * INT_SOURCE_CSR to create the interrupt mask.
2363 	 */
2364 	mask = reg;
2365 	mask_mcu = reg_mcu;
2366 
2367 	/*
2368 	 * Disable all interrupts for which a tasklet was scheduled right now,
2369 	 * the tasklet will reenable the appropriate interrupts.
2370 	 */
2371 	spin_lock(&rt2x00dev->irqmask_lock);
2372 
2373 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2374 	reg |= mask;
2375 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2376 
2377 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2378 	reg |= mask_mcu;
2379 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2380 
2381 	spin_unlock(&rt2x00dev->irqmask_lock);
2382 
2383 	return IRQ_HANDLED;
2384 }
2385 
2386 /*
2387  * Device probe functions.
2388  */
2389 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2390 {
2391 	struct eeprom_93cx6 eeprom;
2392 	u32 reg;
2393 	u16 word;
2394 	u8 *mac;
2395 	s8 value;
2396 
2397 	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2398 
2399 	eeprom.data = rt2x00dev;
2400 	eeprom.register_read = rt61pci_eepromregister_read;
2401 	eeprom.register_write = rt61pci_eepromregister_write;
2402 	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2403 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2404 	eeprom.reg_data_in = 0;
2405 	eeprom.reg_data_out = 0;
2406 	eeprom.reg_data_clock = 0;
2407 	eeprom.reg_chip_select = 0;
2408 
2409 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2410 			       EEPROM_SIZE / sizeof(u16));
2411 
2412 	/*
2413 	 * Start validation of the data that has been read.
2414 	 */
2415 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2416 	if (!is_valid_ether_addr(mac)) {
2417 		eth_random_addr(mac);
2418 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2419 	}
2420 
2421 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2422 	if (word == 0xffff) {
2423 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2424 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2425 				   ANTENNA_B);
2426 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2427 				   ANTENNA_B);
2428 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2429 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2430 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2431 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2432 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2433 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2434 	}
2435 
2436 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2437 	if (word == 0xffff) {
2438 		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2439 		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2440 		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2441 		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2442 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2443 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2444 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2445 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2446 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2447 	}
2448 
2449 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2450 	if (word == 0xffff) {
2451 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2452 				   LED_MODE_DEFAULT);
2453 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2454 		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2455 	}
2456 
2457 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2458 	if (word == 0xffff) {
2459 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2460 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2461 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2462 		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2463 	}
2464 
2465 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2466 	if (word == 0xffff) {
2467 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2468 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2469 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2470 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2471 	} else {
2472 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2473 		if (value < -10 || value > 10)
2474 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2475 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2476 		if (value < -10 || value > 10)
2477 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479 	}
2480 
2481 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2482 	if (word == 0xffff) {
2483 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2484 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2485 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2486 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2487 	} else {
2488 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2489 		if (value < -10 || value > 10)
2490 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2491 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2492 		if (value < -10 || value > 10)
2493 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2501 {
2502 	u32 reg;
2503 	u16 value;
2504 	u16 eeprom;
2505 
2506 	/*
2507 	 * Read EEPROM word for configuration.
2508 	 */
2509 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2510 
2511 	/*
2512 	 * Identify RF chipset.
2513 	 */
2514 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2515 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2516 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2517 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2518 
2519 	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2520 	    !rt2x00_rf(rt2x00dev, RF5325) &&
2521 	    !rt2x00_rf(rt2x00dev, RF2527) &&
2522 	    !rt2x00_rf(rt2x00dev, RF2529)) {
2523 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2524 		return -ENODEV;
2525 	}
2526 
2527 	/*
2528 	 * Determine number of antennas.
2529 	 */
2530 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2531 		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2532 
2533 	/*
2534 	 * Identify default antenna configuration.
2535 	 */
2536 	rt2x00dev->default_ant.tx =
2537 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2538 	rt2x00dev->default_ant.rx =
2539 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2540 
2541 	/*
2542 	 * Read the Frame type.
2543 	 */
2544 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2545 		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2546 
2547 	/*
2548 	 * Detect if this device has a hardware controlled radio.
2549 	 */
2550 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2551 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2552 
2553 	/*
2554 	 * Read frequency offset and RF programming sequence.
2555 	 */
2556 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2557 	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2558 		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2559 
2560 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2561 
2562 	/*
2563 	 * Read external LNA informations.
2564 	 */
2565 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2566 
2567 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2568 		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2569 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2570 		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2571 
2572 	/*
2573 	 * When working with a RF2529 chip without double antenna,
2574 	 * the antenna settings should be gathered from the NIC
2575 	 * eeprom word.
2576 	 */
2577 	if (rt2x00_rf(rt2x00dev, RF2529) &&
2578 	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2579 		rt2x00dev->default_ant.rx =
2580 		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2581 		rt2x00dev->default_ant.tx =
2582 		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2583 
2584 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2585 			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2586 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2587 			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2588 	}
2589 
2590 	/*
2591 	 * Store led settings, for correct led behaviour.
2592 	 * If the eeprom value is invalid,
2593 	 * switch to default led mode.
2594 	 */
2595 #ifdef CONFIG_RT2X00_LIB_LEDS
2596 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2597 	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2598 
2599 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2600 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2601 	if (value == LED_MODE_SIGNAL_STRENGTH)
2602 		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2603 				 LED_TYPE_QUALITY);
2604 
2605 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2606 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2607 			   rt2x00_get_field16(eeprom,
2608 					      EEPROM_LED_POLARITY_GPIO_0));
2609 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2610 			   rt2x00_get_field16(eeprom,
2611 					      EEPROM_LED_POLARITY_GPIO_1));
2612 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2613 			   rt2x00_get_field16(eeprom,
2614 					      EEPROM_LED_POLARITY_GPIO_2));
2615 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2616 			   rt2x00_get_field16(eeprom,
2617 					      EEPROM_LED_POLARITY_GPIO_3));
2618 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2619 			   rt2x00_get_field16(eeprom,
2620 					      EEPROM_LED_POLARITY_GPIO_4));
2621 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2622 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2623 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2624 			   rt2x00_get_field16(eeprom,
2625 					      EEPROM_LED_POLARITY_RDY_G));
2626 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2627 			   rt2x00_get_field16(eeprom,
2628 					      EEPROM_LED_POLARITY_RDY_A));
2629 #endif /* CONFIG_RT2X00_LIB_LEDS */
2630 
2631 	return 0;
2632 }
2633 
2634 /*
2635  * RF value list for RF5225 & RF5325
2636  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2637  */
2638 static const struct rf_channel rf_vals_noseq[] = {
2639 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2640 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2641 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2642 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2643 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2644 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2645 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2646 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2647 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2648 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2649 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2650 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2651 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2652 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2653 
2654 	/* 802.11 UNI / HyperLan 2 */
2655 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2656 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2657 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2658 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2659 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2660 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2661 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2662 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2663 
2664 	/* 802.11 HyperLan 2 */
2665 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2666 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2667 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2668 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2669 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2670 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2671 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2672 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2673 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2674 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2675 
2676 	/* 802.11 UNII */
2677 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2678 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2679 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2680 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2681 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2682 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2683 
2684 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2685 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2686 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2687 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2688 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2689 };
2690 
2691 /*
2692  * RF value list for RF5225 & RF5325
2693  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2694  */
2695 static const struct rf_channel rf_vals_seq[] = {
2696 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2697 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2698 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2699 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2700 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2701 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2702 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2703 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2704 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2705 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2706 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2707 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2708 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2709 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2710 
2711 	/* 802.11 UNI / HyperLan 2 */
2712 	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2713 	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2714 	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2715 	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2716 	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2717 	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2718 	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2719 	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2720 
2721 	/* 802.11 HyperLan 2 */
2722 	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2723 	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2724 	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2725 	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2726 	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2727 	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2728 	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2729 	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2730 	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2731 	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2732 
2733 	/* 802.11 UNII */
2734 	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2735 	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2736 	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2737 	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2738 	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2739 	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2740 
2741 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2742 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2743 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2744 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2745 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2746 };
2747 
2748 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2749 {
2750 	struct hw_mode_spec *spec = &rt2x00dev->spec;
2751 	struct channel_info *info;
2752 	char *tx_power;
2753 	unsigned int i;
2754 
2755 	/*
2756 	 * Disable powersaving as default.
2757 	 */
2758 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2759 
2760 	/*
2761 	 * Initialize all hw fields.
2762 	 */
2763 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2764 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2765 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2766 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2767 
2768 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2769 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2770 				rt2x00_eeprom_addr(rt2x00dev,
2771 						   EEPROM_MAC_ADDR_0));
2772 
2773 	/*
2774 	 * As rt61 has a global fallback table we cannot specify
2775 	 * more then one tx rate per frame but since the hw will
2776 	 * try several rates (based on the fallback table) we should
2777 	 * initialize max_report_rates to the maximum number of rates
2778 	 * we are going to try. Otherwise mac80211 will truncate our
2779 	 * reported tx rates and the rc algortihm will end up with
2780 	 * incorrect data.
2781 	 */
2782 	rt2x00dev->hw->max_rates = 1;
2783 	rt2x00dev->hw->max_report_rates = 7;
2784 	rt2x00dev->hw->max_rate_tries = 1;
2785 
2786 	/*
2787 	 * Initialize hw_mode information.
2788 	 */
2789 	spec->supported_bands = SUPPORT_BAND_2GHZ;
2790 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2791 
2792 	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2793 		spec->num_channels = 14;
2794 		spec->channels = rf_vals_noseq;
2795 	} else {
2796 		spec->num_channels = 14;
2797 		spec->channels = rf_vals_seq;
2798 	}
2799 
2800 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2801 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2802 		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2803 	}
2804 
2805 	/*
2806 	 * Create channel information array
2807 	 */
2808 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2809 	if (!info)
2810 		return -ENOMEM;
2811 
2812 	spec->channels_info = info;
2813 
2814 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2815 	for (i = 0; i < 14; i++) {
2816 		info[i].max_power = MAX_TXPOWER;
2817 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2818 	}
2819 
2820 	if (spec->num_channels > 14) {
2821 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2822 		for (i = 14; i < spec->num_channels; i++) {
2823 			info[i].max_power = MAX_TXPOWER;
2824 			info[i].default_power1 =
2825 					TXPOWER_FROM_DEV(tx_power[i - 14]);
2826 		}
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2833 {
2834 	int retval;
2835 	u32 reg;
2836 
2837 	/*
2838 	 * Disable power saving.
2839 	 */
2840 	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2841 
2842 	/*
2843 	 * Allocate eeprom data.
2844 	 */
2845 	retval = rt61pci_validate_eeprom(rt2x00dev);
2846 	if (retval)
2847 		return retval;
2848 
2849 	retval = rt61pci_init_eeprom(rt2x00dev);
2850 	if (retval)
2851 		return retval;
2852 
2853 	/*
2854 	 * Enable rfkill polling by setting GPIO direction of the
2855 	 * rfkill switch GPIO pin correctly.
2856 	 */
2857 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2858 	rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2859 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2860 
2861 	/*
2862 	 * Initialize hw specifications.
2863 	 */
2864 	retval = rt61pci_probe_hw_mode(rt2x00dev);
2865 	if (retval)
2866 		return retval;
2867 
2868 	/*
2869 	 * This device has multiple filters for control frames,
2870 	 * but has no a separate filter for PS Poll frames.
2871 	 */
2872 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2873 
2874 	/*
2875 	 * This device requires firmware and DMA mapped skbs.
2876 	 */
2877 	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2878 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2879 	if (!modparam_nohwcrypt)
2880 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2881 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2882 
2883 	/*
2884 	 * Set the rssi offset.
2885 	 */
2886 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2887 
2888 	return 0;
2889 }
2890 
2891 /*
2892  * IEEE80211 stack callback functions.
2893  */
2894 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2895 			   struct ieee80211_vif *vif, u16 queue_idx,
2896 			   const struct ieee80211_tx_queue_params *params)
2897 {
2898 	struct rt2x00_dev *rt2x00dev = hw->priv;
2899 	struct data_queue *queue;
2900 	struct rt2x00_field32 field;
2901 	int retval;
2902 	u32 reg;
2903 	u32 offset;
2904 
2905 	/*
2906 	 * First pass the configuration through rt2x00lib, that will
2907 	 * update the queue settings and validate the input. After that
2908 	 * we are free to update the registers based on the value
2909 	 * in the queue parameter.
2910 	 */
2911 	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2912 	if (retval)
2913 		return retval;
2914 
2915 	/*
2916 	 * We only need to perform additional register initialization
2917 	 * for WMM queues.
2918 	 */
2919 	if (queue_idx >= 4)
2920 		return 0;
2921 
2922 	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2923 
2924 	/* Update WMM TXOP register */
2925 	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2926 	field.bit_offset = (queue_idx & 1) * 16;
2927 	field.bit_mask = 0xffff << field.bit_offset;
2928 
2929 	rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2930 	rt2x00_set_field32(&reg, field, queue->txop);
2931 	rt2x00mmio_register_write(rt2x00dev, offset, reg);
2932 
2933 	/* Update WMM registers */
2934 	field.bit_offset = queue_idx * 4;
2935 	field.bit_mask = 0xf << field.bit_offset;
2936 
2937 	rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2938 	rt2x00_set_field32(&reg, field, queue->aifs);
2939 	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2940 
2941 	rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2942 	rt2x00_set_field32(&reg, field, queue->cw_min);
2943 	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2944 
2945 	rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2946 	rt2x00_set_field32(&reg, field, queue->cw_max);
2947 	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2948 
2949 	return 0;
2950 }
2951 
2952 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2953 {
2954 	struct rt2x00_dev *rt2x00dev = hw->priv;
2955 	u64 tsf;
2956 	u32 reg;
2957 
2958 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2959 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2960 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2961 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2962 
2963 	return tsf;
2964 }
2965 
2966 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2967 	.tx			= rt2x00mac_tx,
2968 	.start			= rt2x00mac_start,
2969 	.stop			= rt2x00mac_stop,
2970 	.add_interface		= rt2x00mac_add_interface,
2971 	.remove_interface	= rt2x00mac_remove_interface,
2972 	.config			= rt2x00mac_config,
2973 	.configure_filter	= rt2x00mac_configure_filter,
2974 	.set_key		= rt2x00mac_set_key,
2975 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2976 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2977 	.get_stats		= rt2x00mac_get_stats,
2978 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2979 	.conf_tx		= rt61pci_conf_tx,
2980 	.get_tsf		= rt61pci_get_tsf,
2981 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2982 	.flush			= rt2x00mac_flush,
2983 	.set_antenna		= rt2x00mac_set_antenna,
2984 	.get_antenna		= rt2x00mac_get_antenna,
2985 	.get_ringparam		= rt2x00mac_get_ringparam,
2986 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2987 };
2988 
2989 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2990 	.irq_handler		= rt61pci_interrupt,
2991 	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
2992 	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
2993 	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
2994 	.autowake_tasklet	= rt61pci_autowake_tasklet,
2995 	.probe_hw		= rt61pci_probe_hw,
2996 	.get_firmware_name	= rt61pci_get_firmware_name,
2997 	.check_firmware		= rt61pci_check_firmware,
2998 	.load_firmware		= rt61pci_load_firmware,
2999 	.initialize		= rt2x00mmio_initialize,
3000 	.uninitialize		= rt2x00mmio_uninitialize,
3001 	.get_entry_state	= rt61pci_get_entry_state,
3002 	.clear_entry		= rt61pci_clear_entry,
3003 	.set_device_state	= rt61pci_set_device_state,
3004 	.rfkill_poll		= rt61pci_rfkill_poll,
3005 	.link_stats		= rt61pci_link_stats,
3006 	.reset_tuner		= rt61pci_reset_tuner,
3007 	.link_tuner		= rt61pci_link_tuner,
3008 	.start_queue		= rt61pci_start_queue,
3009 	.kick_queue		= rt61pci_kick_queue,
3010 	.stop_queue		= rt61pci_stop_queue,
3011 	.flush_queue		= rt2x00mmio_flush_queue,
3012 	.write_tx_desc		= rt61pci_write_tx_desc,
3013 	.write_beacon		= rt61pci_write_beacon,
3014 	.clear_beacon		= rt61pci_clear_beacon,
3015 	.fill_rxdone		= rt61pci_fill_rxdone,
3016 	.config_shared_key	= rt61pci_config_shared_key,
3017 	.config_pairwise_key	= rt61pci_config_pairwise_key,
3018 	.config_filter		= rt61pci_config_filter,
3019 	.config_intf		= rt61pci_config_intf,
3020 	.config_erp		= rt61pci_config_erp,
3021 	.config_ant		= rt61pci_config_ant,
3022 	.config			= rt61pci_config,
3023 };
3024 
3025 static void rt61pci_queue_init(struct data_queue *queue)
3026 {
3027 	switch (queue->qid) {
3028 	case QID_RX:
3029 		queue->limit = 32;
3030 		queue->data_size = DATA_FRAME_SIZE;
3031 		queue->desc_size = RXD_DESC_SIZE;
3032 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3033 		break;
3034 
3035 	case QID_AC_VO:
3036 	case QID_AC_VI:
3037 	case QID_AC_BE:
3038 	case QID_AC_BK:
3039 		queue->limit = 32;
3040 		queue->data_size = DATA_FRAME_SIZE;
3041 		queue->desc_size = TXD_DESC_SIZE;
3042 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3043 		break;
3044 
3045 	case QID_BEACON:
3046 		queue->limit = 4;
3047 		queue->data_size = 0; /* No DMA required for beacons */
3048 		queue->desc_size = TXINFO_SIZE;
3049 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3050 		break;
3051 
3052 	case QID_ATIM:
3053 		/* fallthrough */
3054 	default:
3055 		BUG();
3056 		break;
3057 	}
3058 }
3059 
3060 static const struct rt2x00_ops rt61pci_ops = {
3061 	.name			= KBUILD_MODNAME,
3062 	.max_ap_intf		= 4,
3063 	.eeprom_size		= EEPROM_SIZE,
3064 	.rf_size		= RF_SIZE,
3065 	.tx_queues		= NUM_TX_QUEUES,
3066 	.queue_init		= rt61pci_queue_init,
3067 	.lib			= &rt61pci_rt2x00_ops,
3068 	.hw			= &rt61pci_mac80211_ops,
3069 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3070 	.debugfs		= &rt61pci_rt2x00debug,
3071 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3072 };
3073 
3074 /*
3075  * RT61pci module information.
3076  */
3077 static const struct pci_device_id rt61pci_device_table[] = {
3078 	/* RT2561s */
3079 	{ PCI_DEVICE(0x1814, 0x0301) },
3080 	/* RT2561 v2 */
3081 	{ PCI_DEVICE(0x1814, 0x0302) },
3082 	/* RT2661 */
3083 	{ PCI_DEVICE(0x1814, 0x0401) },
3084 	{ 0, }
3085 };
3086 
3087 MODULE_AUTHOR(DRV_PROJECT);
3088 MODULE_VERSION(DRV_VERSION);
3089 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3090 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3091 			"PCI & PCMCIA chipset based cards");
3092 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3093 MODULE_FIRMWARE(FIRMWARE_RT2561);
3094 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3095 MODULE_FIRMWARE(FIRMWARE_RT2661);
3096 MODULE_LICENSE("GPL");
3097 
3098 static int rt61pci_probe(struct pci_dev *pci_dev,
3099 			 const struct pci_device_id *id)
3100 {
3101 	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3102 }
3103 
3104 static struct pci_driver rt61pci_driver = {
3105 	.name		= KBUILD_MODNAME,
3106 	.id_table	= rt61pci_device_table,
3107 	.probe		= rt61pci_probe,
3108 	.remove		= rt2x00pci_remove,
3109 	.suspend	= rt2x00pci_suspend,
3110 	.resume		= rt2x00pci_resume,
3111 };
3112 
3113 module_pci_driver(rt61pci_driver);
3114