1 /* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 Module: rt61pci 21 Abstract: rt61pci device specific routines. 22 Supported chipsets: RT2561, RT2561s, RT2661. 23 */ 24 25 #include <linux/crc-itu-t.h> 26 #include <linux/delay.h> 27 #include <linux/etherdevice.h> 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/slab.h> 31 #include <linux/pci.h> 32 #include <linux/eeprom_93cx6.h> 33 34 #include "rt2x00.h" 35 #include "rt2x00mmio.h" 36 #include "rt2x00pci.h" 37 #include "rt61pci.h" 38 39 /* 40 * Allow hardware encryption to be disabled. 41 */ 42 static bool modparam_nohwcrypt = false; 43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); 44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 45 46 /* 47 * Register access. 48 * BBP and RF register require indirect register access, 49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. 50 * These indirect registers work with busy bits, 51 * and we will try maximal REGISTER_BUSY_COUNT times to access 52 * the register while taking a REGISTER_BUSY_DELAY us delay 53 * between each attempt. When the busy bit is still set at that time, 54 * the access attempt is considered to have failed, 55 * and we will print an error. 56 */ 57 #define WAIT_FOR_BBP(__dev, __reg) \ 58 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) 59 #define WAIT_FOR_RF(__dev, __reg) \ 60 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) 61 #define WAIT_FOR_MCU(__dev, __reg) \ 62 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \ 63 H2M_MAILBOX_CSR_OWNER, (__reg)) 64 65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev, 66 const unsigned int word, const u8 value) 67 { 68 u32 reg; 69 70 mutex_lock(&rt2x00dev->csr_mutex); 71 72 /* 73 * Wait until the BBP becomes available, afterwards we 74 * can safely write the new data into the register. 75 */ 76 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 77 reg = 0; 78 rt2x00_set_field32(®, PHY_CSR3_VALUE, value); 79 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 80 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 81 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); 82 83 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); 84 } 85 86 mutex_unlock(&rt2x00dev->csr_mutex); 87 } 88 89 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev, 90 const unsigned int word, u8 *value) 91 { 92 u32 reg; 93 94 mutex_lock(&rt2x00dev->csr_mutex); 95 96 /* 97 * Wait until the BBP becomes available, afterwards we 98 * can safely write the read request into the register. 99 * After the data has been written, we wait until hardware 100 * returns the correct value, if at any time the register 101 * doesn't become available in time, reg will be 0xffffffff 102 * which means we return 0xff to the caller. 103 */ 104 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 105 reg = 0; 106 rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); 107 rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); 108 rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); 109 110 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); 111 112 WAIT_FOR_BBP(rt2x00dev, ®); 113 } 114 115 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); 116 117 mutex_unlock(&rt2x00dev->csr_mutex); 118 } 119 120 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev, 121 const unsigned int word, const u32 value) 122 { 123 u32 reg; 124 125 mutex_lock(&rt2x00dev->csr_mutex); 126 127 /* 128 * Wait until the RF becomes available, afterwards we 129 * can safely write the new data into the register. 130 */ 131 if (WAIT_FOR_RF(rt2x00dev, ®)) { 132 reg = 0; 133 rt2x00_set_field32(®, PHY_CSR4_VALUE, value); 134 rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); 135 rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); 136 rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); 137 138 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg); 139 rt2x00_rf_write(rt2x00dev, word, value); 140 } 141 142 mutex_unlock(&rt2x00dev->csr_mutex); 143 } 144 145 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev, 146 const u8 command, const u8 token, 147 const u8 arg0, const u8 arg1) 148 { 149 u32 reg; 150 151 mutex_lock(&rt2x00dev->csr_mutex); 152 153 /* 154 * Wait until the MCU becomes available, afterwards we 155 * can safely write the new data into the register. 156 */ 157 if (WAIT_FOR_MCU(rt2x00dev, ®)) { 158 rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); 159 rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); 160 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); 161 rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); 162 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); 163 164 rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, ®); 165 rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); 166 rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); 167 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg); 168 } 169 170 mutex_unlock(&rt2x00dev->csr_mutex); 171 172 } 173 174 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) 175 { 176 struct rt2x00_dev *rt2x00dev = eeprom->data; 177 u32 reg; 178 179 rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, ®); 180 181 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); 182 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); 183 eeprom->reg_data_clock = 184 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); 185 eeprom->reg_chip_select = 186 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); 187 } 188 189 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) 190 { 191 struct rt2x00_dev *rt2x00dev = eeprom->data; 192 u32 reg = 0; 193 194 rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); 195 rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); 196 rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, 197 !!eeprom->reg_data_clock); 198 rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, 199 !!eeprom->reg_chip_select); 200 201 rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg); 202 } 203 204 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 205 static const struct rt2x00debug rt61pci_rt2x00debug = { 206 .owner = THIS_MODULE, 207 .csr = { 208 .read = rt2x00mmio_register_read, 209 .write = rt2x00mmio_register_write, 210 .flags = RT2X00DEBUGFS_OFFSET, 211 .word_base = CSR_REG_BASE, 212 .word_size = sizeof(u32), 213 .word_count = CSR_REG_SIZE / sizeof(u32), 214 }, 215 .eeprom = { 216 .read = rt2x00_eeprom_read, 217 .write = rt2x00_eeprom_write, 218 .word_base = EEPROM_BASE, 219 .word_size = sizeof(u16), 220 .word_count = EEPROM_SIZE / sizeof(u16), 221 }, 222 .bbp = { 223 .read = rt61pci_bbp_read, 224 .write = rt61pci_bbp_write, 225 .word_base = BBP_BASE, 226 .word_size = sizeof(u8), 227 .word_count = BBP_SIZE / sizeof(u8), 228 }, 229 .rf = { 230 .read = rt2x00_rf_read, 231 .write = rt61pci_rf_write, 232 .word_base = RF_BASE, 233 .word_size = sizeof(u32), 234 .word_count = RF_SIZE / sizeof(u32), 235 }, 236 }; 237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 238 239 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) 240 { 241 u32 reg; 242 243 rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®); 244 return rt2x00_get_field32(reg, MAC_CSR13_VAL5); 245 } 246 247 #ifdef CONFIG_RT2X00_LIB_LEDS 248 static void rt61pci_brightness_set(struct led_classdev *led_cdev, 249 enum led_brightness brightness) 250 { 251 struct rt2x00_led *led = 252 container_of(led_cdev, struct rt2x00_led, led_dev); 253 unsigned int enabled = brightness != LED_OFF; 254 unsigned int a_mode = 255 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); 256 unsigned int bg_mode = 257 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); 258 259 if (led->type == LED_TYPE_RADIO) { 260 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 261 MCU_LEDCS_RADIO_STATUS, enabled); 262 263 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, 264 (led->rt2x00dev->led_mcu_reg & 0xff), 265 ((led->rt2x00dev->led_mcu_reg >> 8))); 266 } else if (led->type == LED_TYPE_ASSOC) { 267 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 268 MCU_LEDCS_LINK_BG_STATUS, bg_mode); 269 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, 270 MCU_LEDCS_LINK_A_STATUS, a_mode); 271 272 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, 273 (led->rt2x00dev->led_mcu_reg & 0xff), 274 ((led->rt2x00dev->led_mcu_reg >> 8))); 275 } else if (led->type == LED_TYPE_QUALITY) { 276 /* 277 * The brightness is divided into 6 levels (0 - 5), 278 * this means we need to convert the brightness 279 * argument into the matching level within that range. 280 */ 281 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, 282 brightness / (LED_FULL / 6), 0); 283 } 284 } 285 286 static int rt61pci_blink_set(struct led_classdev *led_cdev, 287 unsigned long *delay_on, 288 unsigned long *delay_off) 289 { 290 struct rt2x00_led *led = 291 container_of(led_cdev, struct rt2x00_led, led_dev); 292 u32 reg; 293 294 rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, ®); 295 rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); 296 rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); 297 rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg); 298 299 return 0; 300 } 301 302 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev, 303 struct rt2x00_led *led, 304 enum led_type type) 305 { 306 led->rt2x00dev = rt2x00dev; 307 led->type = type; 308 led->led_dev.brightness_set = rt61pci_brightness_set; 309 led->led_dev.blink_set = rt61pci_blink_set; 310 led->flags = LED_INITIALIZED; 311 } 312 #endif /* CONFIG_RT2X00_LIB_LEDS */ 313 314 /* 315 * Configuration handlers. 316 */ 317 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev, 318 struct rt2x00lib_crypto *crypto, 319 struct ieee80211_key_conf *key) 320 { 321 struct hw_key_entry key_entry; 322 struct rt2x00_field32 field; 323 u32 mask; 324 u32 reg; 325 326 if (crypto->cmd == SET_KEY) { 327 /* 328 * rt2x00lib can't determine the correct free 329 * key_idx for shared keys. We have 1 register 330 * with key valid bits. The goal is simple, read 331 * the register, if that is full we have no slots 332 * left. 333 * Note that each BSS is allowed to have up to 4 334 * shared keys, so put a mask over the allowed 335 * entries. 336 */ 337 mask = (0xf << crypto->bssidx); 338 339 rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, ®); 340 reg &= mask; 341 342 if (reg && reg == mask) 343 return -ENOSPC; 344 345 key->hw_key_idx += reg ? ffz(reg) : 0; 346 347 /* 348 * Upload key to hardware 349 */ 350 memcpy(key_entry.key, crypto->key, 351 sizeof(key_entry.key)); 352 memcpy(key_entry.tx_mic, crypto->tx_mic, 353 sizeof(key_entry.tx_mic)); 354 memcpy(key_entry.rx_mic, crypto->rx_mic, 355 sizeof(key_entry.rx_mic)); 356 357 reg = SHARED_KEY_ENTRY(key->hw_key_idx); 358 rt2x00mmio_register_multiwrite(rt2x00dev, reg, 359 &key_entry, sizeof(key_entry)); 360 361 /* 362 * The cipher types are stored over 2 registers. 363 * bssidx 0 and 1 keys are stored in SEC_CSR1 and 364 * bssidx 1 and 2 keys are stored in SEC_CSR5. 365 * Using the correct defines correctly will cause overhead, 366 * so just calculate the correct offset. 367 */ 368 if (key->hw_key_idx < 8) { 369 field.bit_offset = (3 * key->hw_key_idx); 370 field.bit_mask = 0x7 << field.bit_offset; 371 372 rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, ®); 373 rt2x00_set_field32(®, field, crypto->cipher); 374 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg); 375 } else { 376 field.bit_offset = (3 * (key->hw_key_idx - 8)); 377 field.bit_mask = 0x7 << field.bit_offset; 378 379 rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, ®); 380 rt2x00_set_field32(®, field, crypto->cipher); 381 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg); 382 } 383 384 /* 385 * The driver does not support the IV/EIV generation 386 * in hardware. However it doesn't support the IV/EIV 387 * inside the ieee80211 frame either, but requires it 388 * to be provided separately for the descriptor. 389 * rt2x00lib will cut the IV/EIV data out of all frames 390 * given to us by mac80211, but we must tell mac80211 391 * to generate the IV/EIV data. 392 */ 393 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 394 } 395 396 /* 397 * SEC_CSR0 contains only single-bit fields to indicate 398 * a particular key is valid. Because using the FIELD32() 399 * defines directly will cause a lot of overhead, we use 400 * a calculation to determine the correct bit directly. 401 */ 402 mask = 1 << key->hw_key_idx; 403 404 rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, ®); 405 if (crypto->cmd == SET_KEY) 406 reg |= mask; 407 else if (crypto->cmd == DISABLE_KEY) 408 reg &= ~mask; 409 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg); 410 411 return 0; 412 } 413 414 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev, 415 struct rt2x00lib_crypto *crypto, 416 struct ieee80211_key_conf *key) 417 { 418 struct hw_pairwise_ta_entry addr_entry; 419 struct hw_key_entry key_entry; 420 u32 mask; 421 u32 reg; 422 423 if (crypto->cmd == SET_KEY) { 424 /* 425 * rt2x00lib can't determine the correct free 426 * key_idx for pairwise keys. We have 2 registers 427 * with key valid bits. The goal is simple: read 428 * the first register. If that is full, move to 429 * the next register. 430 * When both registers are full, we drop the key. 431 * Otherwise, we use the first invalid entry. 432 */ 433 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, ®); 434 if (reg && reg == ~0) { 435 key->hw_key_idx = 32; 436 rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, ®); 437 if (reg && reg == ~0) 438 return -ENOSPC; 439 } 440 441 key->hw_key_idx += reg ? ffz(reg) : 0; 442 443 /* 444 * Upload key to hardware 445 */ 446 memcpy(key_entry.key, crypto->key, 447 sizeof(key_entry.key)); 448 memcpy(key_entry.tx_mic, crypto->tx_mic, 449 sizeof(key_entry.tx_mic)); 450 memcpy(key_entry.rx_mic, crypto->rx_mic, 451 sizeof(key_entry.rx_mic)); 452 453 memset(&addr_entry, 0, sizeof(addr_entry)); 454 memcpy(&addr_entry, crypto->address, ETH_ALEN); 455 addr_entry.cipher = crypto->cipher; 456 457 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); 458 rt2x00mmio_register_multiwrite(rt2x00dev, reg, 459 &key_entry, sizeof(key_entry)); 460 461 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); 462 rt2x00mmio_register_multiwrite(rt2x00dev, reg, 463 &addr_entry, sizeof(addr_entry)); 464 465 /* 466 * Enable pairwise lookup table for given BSS idx. 467 * Without this, received frames will not be decrypted 468 * by the hardware. 469 */ 470 rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, ®); 471 reg |= (1 << crypto->bssidx); 472 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg); 473 474 /* 475 * The driver does not support the IV/EIV generation 476 * in hardware. However it doesn't support the IV/EIV 477 * inside the ieee80211 frame either, but requires it 478 * to be provided separately for the descriptor. 479 * rt2x00lib will cut the IV/EIV data out of all frames 480 * given to us by mac80211, but we must tell mac80211 481 * to generate the IV/EIV data. 482 */ 483 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 484 } 485 486 /* 487 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate 488 * a particular key is valid. Because using the FIELD32() 489 * defines directly will cause a lot of overhead, we use 490 * a calculation to determine the correct bit directly. 491 */ 492 if (key->hw_key_idx < 32) { 493 mask = 1 << key->hw_key_idx; 494 495 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, ®); 496 if (crypto->cmd == SET_KEY) 497 reg |= mask; 498 else if (crypto->cmd == DISABLE_KEY) 499 reg &= ~mask; 500 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg); 501 } else { 502 mask = 1 << (key->hw_key_idx - 32); 503 504 rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, ®); 505 if (crypto->cmd == SET_KEY) 506 reg |= mask; 507 else if (crypto->cmd == DISABLE_KEY) 508 reg &= ~mask; 509 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg); 510 } 511 512 return 0; 513 } 514 515 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev, 516 const unsigned int filter_flags) 517 { 518 u32 reg; 519 520 /* 521 * Start configuration steps. 522 * Note that the version error will always be dropped 523 * and broadcast frames will always be accepted since 524 * there is no filter for it at this time. 525 */ 526 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); 527 rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, 528 !(filter_flags & FIF_FCSFAIL)); 529 rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, 530 !(filter_flags & FIF_PLCPFAIL)); 531 rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, 532 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); 533 rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, 534 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 535 rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, 536 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 537 !rt2x00dev->intf_ap_count); 538 rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); 539 rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, 540 !(filter_flags & FIF_ALLMULTI)); 541 rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); 542 rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, 543 !(filter_flags & FIF_CONTROL)); 544 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 545 } 546 547 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev, 548 struct rt2x00_intf *intf, 549 struct rt2x00intf_conf *conf, 550 const unsigned int flags) 551 { 552 u32 reg; 553 554 if (flags & CONFIG_UPDATE_TYPE) { 555 /* 556 * Enable synchronisation. 557 */ 558 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); 559 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); 560 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 561 } 562 563 if (flags & CONFIG_UPDATE_MAC) { 564 reg = le32_to_cpu(conf->mac[1]); 565 rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); 566 conf->mac[1] = cpu_to_le32(reg); 567 568 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2, 569 conf->mac, sizeof(conf->mac)); 570 } 571 572 if (flags & CONFIG_UPDATE_BSSID) { 573 reg = le32_to_cpu(conf->bssid[1]); 574 rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); 575 conf->bssid[1] = cpu_to_le32(reg); 576 577 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4, 578 conf->bssid, 579 sizeof(conf->bssid)); 580 } 581 } 582 583 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev, 584 struct rt2x00lib_erp *erp, 585 u32 changed) 586 { 587 u32 reg; 588 589 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); 590 rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); 591 rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); 592 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 593 594 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 595 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, ®); 596 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); 597 rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, 598 !!erp->short_preamble); 599 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); 600 } 601 602 if (changed & BSS_CHANGED_BASIC_RATES) 603 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5, 604 erp->basic_rates); 605 606 if (changed & BSS_CHANGED_BEACON_INT) { 607 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); 608 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 609 erp->beacon_int * 16); 610 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 611 } 612 613 if (changed & BSS_CHANGED_ERP_SLOT) { 614 rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, ®); 615 rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); 616 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); 617 618 rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, ®); 619 rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); 620 rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); 621 rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); 622 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg); 623 } 624 } 625 626 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev, 627 struct antenna_setup *ant) 628 { 629 u8 r3; 630 u8 r4; 631 u8 r77; 632 633 rt61pci_bbp_read(rt2x00dev, 3, &r3); 634 rt61pci_bbp_read(rt2x00dev, 4, &r4); 635 rt61pci_bbp_read(rt2x00dev, 77, &r77); 636 637 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325)); 638 639 /* 640 * Configure the RX antenna. 641 */ 642 switch (ant->rx) { 643 case ANTENNA_HW_DIVERSITY: 644 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 645 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 646 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ)); 647 break; 648 case ANTENNA_A: 649 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 650 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 651 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) 652 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 653 else 654 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 655 break; 656 case ANTENNA_B: 657 default: 658 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 659 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); 660 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) 661 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 662 else 663 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 664 break; 665 } 666 667 rt61pci_bbp_write(rt2x00dev, 77, r77); 668 rt61pci_bbp_write(rt2x00dev, 3, r3); 669 rt61pci_bbp_write(rt2x00dev, 4, r4); 670 } 671 672 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev, 673 struct antenna_setup *ant) 674 { 675 u8 r3; 676 u8 r4; 677 u8 r77; 678 679 rt61pci_bbp_read(rt2x00dev, 3, &r3); 680 rt61pci_bbp_read(rt2x00dev, 4, &r4); 681 rt61pci_bbp_read(rt2x00dev, 77, &r77); 682 683 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529)); 684 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 685 !rt2x00_has_cap_frame_type(rt2x00dev)); 686 687 /* 688 * Configure the RX antenna. 689 */ 690 switch (ant->rx) { 691 case ANTENNA_HW_DIVERSITY: 692 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); 693 break; 694 case ANTENNA_A: 695 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 696 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 697 break; 698 case ANTENNA_B: 699 default: 700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 702 break; 703 } 704 705 rt61pci_bbp_write(rt2x00dev, 77, r77); 706 rt61pci_bbp_write(rt2x00dev, 3, r3); 707 rt61pci_bbp_write(rt2x00dev, 4, r4); 708 } 709 710 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev, 711 const int p1, const int p2) 712 { 713 u32 reg; 714 715 rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®); 716 717 rt2x00_set_field32(®, MAC_CSR13_DIR4, 0); 718 rt2x00_set_field32(®, MAC_CSR13_VAL4, p1); 719 720 rt2x00_set_field32(®, MAC_CSR13_DIR3, 0); 721 rt2x00_set_field32(®, MAC_CSR13_VAL3, !p2); 722 723 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); 724 } 725 726 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev, 727 struct antenna_setup *ant) 728 { 729 u8 r3; 730 u8 r4; 731 u8 r77; 732 733 rt61pci_bbp_read(rt2x00dev, 3, &r3); 734 rt61pci_bbp_read(rt2x00dev, 4, &r4); 735 rt61pci_bbp_read(rt2x00dev, 77, &r77); 736 737 /* 738 * Configure the RX antenna. 739 */ 740 switch (ant->rx) { 741 case ANTENNA_A: 742 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 743 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); 744 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0); 745 break; 746 case ANTENNA_HW_DIVERSITY: 747 /* 748 * FIXME: Antenna selection for the rf 2529 is very confusing 749 * in the legacy driver. Just default to antenna B until the 750 * legacy code can be properly translated into rt2x00 code. 751 */ 752 case ANTENNA_B: 753 default: 754 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); 755 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); 756 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1); 757 break; 758 } 759 760 rt61pci_bbp_write(rt2x00dev, 77, r77); 761 rt61pci_bbp_write(rt2x00dev, 3, r3); 762 rt61pci_bbp_write(rt2x00dev, 4, r4); 763 } 764 765 struct antenna_sel { 766 u8 word; 767 /* 768 * value[0] -> non-LNA 769 * value[1] -> LNA 770 */ 771 u8 value[2]; 772 }; 773 774 static const struct antenna_sel antenna_sel_a[] = { 775 { 96, { 0x58, 0x78 } }, 776 { 104, { 0x38, 0x48 } }, 777 { 75, { 0xfe, 0x80 } }, 778 { 86, { 0xfe, 0x80 } }, 779 { 88, { 0xfe, 0x80 } }, 780 { 35, { 0x60, 0x60 } }, 781 { 97, { 0x58, 0x58 } }, 782 { 98, { 0x58, 0x58 } }, 783 }; 784 785 static const struct antenna_sel antenna_sel_bg[] = { 786 { 96, { 0x48, 0x68 } }, 787 { 104, { 0x2c, 0x3c } }, 788 { 75, { 0xfe, 0x80 } }, 789 { 86, { 0xfe, 0x80 } }, 790 { 88, { 0xfe, 0x80 } }, 791 { 35, { 0x50, 0x50 } }, 792 { 97, { 0x48, 0x48 } }, 793 { 98, { 0x48, 0x48 } }, 794 }; 795 796 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev, 797 struct antenna_setup *ant) 798 { 799 const struct antenna_sel *sel; 800 unsigned int lna; 801 unsigned int i; 802 u32 reg; 803 804 /* 805 * We should never come here because rt2x00lib is supposed 806 * to catch this and send us the correct antenna explicitely. 807 */ 808 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 809 ant->tx == ANTENNA_SW_DIVERSITY); 810 811 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { 812 sel = antenna_sel_a; 813 lna = rt2x00_has_cap_external_lna_a(rt2x00dev); 814 } else { 815 sel = antenna_sel_bg; 816 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); 817 } 818 819 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) 820 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); 821 822 rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, ®); 823 824 rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, 825 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); 826 rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, 827 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); 828 829 rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg); 830 831 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) 832 rt61pci_config_antenna_5x(rt2x00dev, ant); 833 else if (rt2x00_rf(rt2x00dev, RF2527)) 834 rt61pci_config_antenna_2x(rt2x00dev, ant); 835 else if (rt2x00_rf(rt2x00dev, RF2529)) { 836 if (rt2x00_has_cap_double_antenna(rt2x00dev)) 837 rt61pci_config_antenna_2x(rt2x00dev, ant); 838 else 839 rt61pci_config_antenna_2529(rt2x00dev, ant); 840 } 841 } 842 843 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev, 844 struct rt2x00lib_conf *libconf) 845 { 846 u16 eeprom; 847 short lna_gain = 0; 848 849 if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) { 850 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) 851 lna_gain += 14; 852 853 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); 854 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); 855 } else { 856 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) 857 lna_gain += 14; 858 859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); 860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); 861 } 862 863 rt2x00dev->lna_gain = lna_gain; 864 } 865 866 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, 867 struct rf_channel *rf, const int txpower) 868 { 869 u8 r3; 870 u8 r94; 871 u8 smart; 872 873 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 874 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); 875 876 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); 877 878 rt61pci_bbp_read(rt2x00dev, 3, &r3); 879 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); 880 rt61pci_bbp_write(rt2x00dev, 3, r3); 881 882 r94 = 6; 883 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) 884 r94 += txpower - MAX_TXPOWER; 885 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) 886 r94 += txpower; 887 rt61pci_bbp_write(rt2x00dev, 94, r94); 888 889 rt61pci_rf_write(rt2x00dev, 1, rf->rf1); 890 rt61pci_rf_write(rt2x00dev, 2, rf->rf2); 891 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 892 rt61pci_rf_write(rt2x00dev, 4, rf->rf4); 893 894 udelay(200); 895 896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1); 897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2); 898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); 899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4); 900 901 udelay(200); 902 903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1); 904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2); 905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); 906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4); 907 908 msleep(1); 909 } 910 911 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, 912 const int txpower) 913 { 914 struct rf_channel rf; 915 916 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); 917 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); 918 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); 919 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); 920 921 rt61pci_config_channel(rt2x00dev, &rf, txpower); 922 } 923 924 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, 925 struct rt2x00lib_conf *libconf) 926 { 927 u32 reg; 928 929 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, ®); 930 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); 931 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); 932 rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); 933 rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, 934 libconf->conf->long_frame_max_tx_count); 935 rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, 936 libconf->conf->short_frame_max_tx_count); 937 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); 938 } 939 940 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev, 941 struct rt2x00lib_conf *libconf) 942 { 943 enum dev_state state = 944 (libconf->conf->flags & IEEE80211_CONF_PS) ? 945 STATE_SLEEP : STATE_AWAKE; 946 u32 reg; 947 948 if (state == STATE_SLEEP) { 949 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, ®); 950 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 951 rt2x00dev->beacon_int - 10); 952 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 953 libconf->conf->listen_interval - 1); 954 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); 955 956 /* We must first disable autowake before it can be enabled */ 957 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 958 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); 959 960 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); 961 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); 962 963 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 964 0x00000005); 965 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c); 966 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060); 967 968 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0); 969 } else { 970 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, ®); 971 rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); 972 rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); 973 rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); 974 rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); 975 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); 976 977 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 978 0x00000007); 979 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018); 980 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020); 981 982 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0); 983 } 984 } 985 986 static void rt61pci_config(struct rt2x00_dev *rt2x00dev, 987 struct rt2x00lib_conf *libconf, 988 const unsigned int flags) 989 { 990 /* Always recalculate LNA gain before changing configuration */ 991 rt61pci_config_lna_gain(rt2x00dev, libconf); 992 993 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 994 rt61pci_config_channel(rt2x00dev, &libconf->rf, 995 libconf->conf->power_level); 996 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 997 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 998 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level); 999 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 1000 rt61pci_config_retry_limit(rt2x00dev, libconf); 1001 if (flags & IEEE80211_CONF_CHANGE_PS) 1002 rt61pci_config_ps(rt2x00dev, libconf); 1003 } 1004 1005 /* 1006 * Link tuning 1007 */ 1008 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev, 1009 struct link_qual *qual) 1010 { 1011 u32 reg; 1012 1013 /* 1014 * Update FCS error count from register. 1015 */ 1016 rt2x00mmio_register_read(rt2x00dev, STA_CSR0, ®); 1017 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); 1018 1019 /* 1020 * Update False CCA count from register. 1021 */ 1022 rt2x00mmio_register_read(rt2x00dev, STA_CSR1, ®); 1023 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); 1024 } 1025 1026 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev, 1027 struct link_qual *qual, u8 vgc_level) 1028 { 1029 if (qual->vgc_level != vgc_level) { 1030 rt61pci_bbp_write(rt2x00dev, 17, vgc_level); 1031 qual->vgc_level = vgc_level; 1032 qual->vgc_level_reg = vgc_level; 1033 } 1034 } 1035 1036 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev, 1037 struct link_qual *qual) 1038 { 1039 rt61pci_set_vgc(rt2x00dev, qual, 0x20); 1040 } 1041 1042 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev, 1043 struct link_qual *qual, const u32 count) 1044 { 1045 u8 up_bound; 1046 u8 low_bound; 1047 1048 /* 1049 * Determine r17 bounds. 1050 */ 1051 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { 1052 low_bound = 0x28; 1053 up_bound = 0x48; 1054 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { 1055 low_bound += 0x10; 1056 up_bound += 0x10; 1057 } 1058 } else { 1059 low_bound = 0x20; 1060 up_bound = 0x40; 1061 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { 1062 low_bound += 0x10; 1063 up_bound += 0x10; 1064 } 1065 } 1066 1067 /* 1068 * If we are not associated, we should go straight to the 1069 * dynamic CCA tuning. 1070 */ 1071 if (!rt2x00dev->intf_associated) 1072 goto dynamic_cca_tune; 1073 1074 /* 1075 * Special big-R17 for very short distance 1076 */ 1077 if (qual->rssi >= -35) { 1078 rt61pci_set_vgc(rt2x00dev, qual, 0x60); 1079 return; 1080 } 1081 1082 /* 1083 * Special big-R17 for short distance 1084 */ 1085 if (qual->rssi >= -58) { 1086 rt61pci_set_vgc(rt2x00dev, qual, up_bound); 1087 return; 1088 } 1089 1090 /* 1091 * Special big-R17 for middle-short distance 1092 */ 1093 if (qual->rssi >= -66) { 1094 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10); 1095 return; 1096 } 1097 1098 /* 1099 * Special mid-R17 for middle distance 1100 */ 1101 if (qual->rssi >= -74) { 1102 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08); 1103 return; 1104 } 1105 1106 /* 1107 * Special case: Change up_bound based on the rssi. 1108 * Lower up_bound when rssi is weaker then -74 dBm. 1109 */ 1110 up_bound -= 2 * (-74 - qual->rssi); 1111 if (low_bound > up_bound) 1112 up_bound = low_bound; 1113 1114 if (qual->vgc_level > up_bound) { 1115 rt61pci_set_vgc(rt2x00dev, qual, up_bound); 1116 return; 1117 } 1118 1119 dynamic_cca_tune: 1120 1121 /* 1122 * r17 does not yet exceed upper limit, continue and base 1123 * the r17 tuning on the false CCA count. 1124 */ 1125 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) 1126 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); 1127 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) 1128 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); 1129 } 1130 1131 /* 1132 * Queue handlers. 1133 */ 1134 static void rt61pci_start_queue(struct data_queue *queue) 1135 { 1136 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1137 u32 reg; 1138 1139 switch (queue->qid) { 1140 case QID_RX: 1141 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); 1142 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1143 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 1144 break; 1145 case QID_BEACON: 1146 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); 1147 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); 1148 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); 1149 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 1150 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1151 break; 1152 default: 1153 break; 1154 } 1155 } 1156 1157 static void rt61pci_kick_queue(struct data_queue *queue) 1158 { 1159 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1160 u32 reg; 1161 1162 switch (queue->qid) { 1163 case QID_AC_VO: 1164 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1165 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1); 1166 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1167 break; 1168 case QID_AC_VI: 1169 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1170 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1); 1171 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1172 break; 1173 case QID_AC_BE: 1174 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1175 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1); 1176 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1177 break; 1178 case QID_AC_BK: 1179 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1180 rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1); 1181 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1182 break; 1183 default: 1184 break; 1185 } 1186 } 1187 1188 static void rt61pci_stop_queue(struct data_queue *queue) 1189 { 1190 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 1191 u32 reg; 1192 1193 switch (queue->qid) { 1194 case QID_AC_VO: 1195 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1196 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1); 1197 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1198 break; 1199 case QID_AC_VI: 1200 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1201 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1); 1202 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1203 break; 1204 case QID_AC_BE: 1205 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1206 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1); 1207 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1208 break; 1209 case QID_AC_BK: 1210 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); 1211 rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1); 1212 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); 1213 break; 1214 case QID_RX: 1215 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); 1216 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); 1217 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 1218 break; 1219 case QID_BEACON: 1220 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); 1221 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1222 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1223 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1224 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1225 1226 /* 1227 * Wait for possibly running tbtt tasklets. 1228 */ 1229 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1230 break; 1231 default: 1232 break; 1233 } 1234 } 1235 1236 /* 1237 * Firmware functions 1238 */ 1239 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) 1240 { 1241 u16 chip; 1242 char *fw_name; 1243 1244 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip); 1245 switch (chip) { 1246 case RT2561_PCI_ID: 1247 fw_name = FIRMWARE_RT2561; 1248 break; 1249 case RT2561s_PCI_ID: 1250 fw_name = FIRMWARE_RT2561s; 1251 break; 1252 case RT2661_PCI_ID: 1253 fw_name = FIRMWARE_RT2661; 1254 break; 1255 default: 1256 fw_name = NULL; 1257 break; 1258 } 1259 1260 return fw_name; 1261 } 1262 1263 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev, 1264 const u8 *data, const size_t len) 1265 { 1266 u16 fw_crc; 1267 u16 crc; 1268 1269 /* 1270 * Only support 8kb firmware files. 1271 */ 1272 if (len != 8192) 1273 return FW_BAD_LENGTH; 1274 1275 /* 1276 * The last 2 bytes in the firmware array are the crc checksum itself. 1277 * This means that we should never pass those 2 bytes to the crc 1278 * algorithm. 1279 */ 1280 fw_crc = (data[len - 2] << 8 | data[len - 1]); 1281 1282 /* 1283 * Use the crc itu-t algorithm. 1284 */ 1285 crc = crc_itu_t(0, data, len - 2); 1286 crc = crc_itu_t_byte(crc, 0); 1287 crc = crc_itu_t_byte(crc, 0); 1288 1289 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; 1290 } 1291 1292 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, 1293 const u8 *data, const size_t len) 1294 { 1295 int i; 1296 u32 reg; 1297 1298 /* 1299 * Wait for stable hardware. 1300 */ 1301 for (i = 0; i < 100; i++) { 1302 rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, ®); 1303 if (reg) 1304 break; 1305 msleep(1); 1306 } 1307 1308 if (!reg) { 1309 rt2x00_err(rt2x00dev, "Unstable hardware\n"); 1310 return -EBUSY; 1311 } 1312 1313 /* 1314 * Prepare MCU and mailbox for firmware loading. 1315 */ 1316 reg = 0; 1317 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); 1318 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1319 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); 1320 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); 1321 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0); 1322 1323 /* 1324 * Write firmware to device. 1325 */ 1326 reg = 0; 1327 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); 1328 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); 1329 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1330 1331 rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, 1332 data, len); 1333 1334 rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); 1335 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1336 1337 rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); 1338 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); 1339 1340 for (i = 0; i < 100; i++) { 1341 rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, ®); 1342 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) 1343 break; 1344 msleep(1); 1345 } 1346 1347 if (i == 100) { 1348 rt2x00_err(rt2x00dev, "MCU Control register not ready\n"); 1349 return -EBUSY; 1350 } 1351 1352 /* 1353 * Hardware needs another millisecond before it is ready. 1354 */ 1355 msleep(1); 1356 1357 /* 1358 * Reset MAC and BBP registers. 1359 */ 1360 reg = 0; 1361 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); 1362 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); 1363 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1364 1365 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); 1366 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); 1367 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); 1368 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1369 1370 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); 1371 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); 1372 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1373 1374 return 0; 1375 } 1376 1377 /* 1378 * Initialization functions. 1379 */ 1380 static bool rt61pci_get_entry_state(struct queue_entry *entry) 1381 { 1382 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1383 u32 word; 1384 1385 if (entry->queue->qid == QID_RX) { 1386 rt2x00_desc_read(entry_priv->desc, 0, &word); 1387 1388 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); 1389 } else { 1390 rt2x00_desc_read(entry_priv->desc, 0, &word); 1391 1392 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 1393 rt2x00_get_field32(word, TXD_W0_VALID)); 1394 } 1395 } 1396 1397 static void rt61pci_clear_entry(struct queue_entry *entry) 1398 { 1399 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1400 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1401 u32 word; 1402 1403 if (entry->queue->qid == QID_RX) { 1404 rt2x00_desc_read(entry_priv->desc, 5, &word); 1405 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, 1406 skbdesc->skb_dma); 1407 rt2x00_desc_write(entry_priv->desc, 5, word); 1408 1409 rt2x00_desc_read(entry_priv->desc, 0, &word); 1410 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); 1411 rt2x00_desc_write(entry_priv->desc, 0, word); 1412 } else { 1413 rt2x00_desc_read(entry_priv->desc, 0, &word); 1414 rt2x00_set_field32(&word, TXD_W0_VALID, 0); 1415 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); 1416 rt2x00_desc_write(entry_priv->desc, 0, word); 1417 } 1418 } 1419 1420 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev) 1421 { 1422 struct queue_entry_priv_mmio *entry_priv; 1423 u32 reg; 1424 1425 /* 1426 * Initialize registers. 1427 */ 1428 rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, ®); 1429 rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, 1430 rt2x00dev->tx[0].limit); 1431 rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, 1432 rt2x00dev->tx[1].limit); 1433 rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, 1434 rt2x00dev->tx[2].limit); 1435 rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, 1436 rt2x00dev->tx[3].limit); 1437 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg); 1438 1439 rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, ®); 1440 rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, 1441 rt2x00dev->tx[0].desc_size / 4); 1442 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg); 1443 1444 entry_priv = rt2x00dev->tx[0].entries[0].priv_data; 1445 rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, ®); 1446 rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, 1447 entry_priv->desc_dma); 1448 rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg); 1449 1450 entry_priv = rt2x00dev->tx[1].entries[0].priv_data; 1451 rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, ®); 1452 rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, 1453 entry_priv->desc_dma); 1454 rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg); 1455 1456 entry_priv = rt2x00dev->tx[2].entries[0].priv_data; 1457 rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, ®); 1458 rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, 1459 entry_priv->desc_dma); 1460 rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg); 1461 1462 entry_priv = rt2x00dev->tx[3].entries[0].priv_data; 1463 rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, ®); 1464 rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, 1465 entry_priv->desc_dma); 1466 rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg); 1467 1468 rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, ®); 1469 rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit); 1470 rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, 1471 rt2x00dev->rx->desc_size / 4); 1472 rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); 1473 rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg); 1474 1475 entry_priv = rt2x00dev->rx->entries[0].priv_data; 1476 rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, ®); 1477 rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, 1478 entry_priv->desc_dma); 1479 rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg); 1480 1481 rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, ®); 1482 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2); 1483 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2); 1484 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2); 1485 rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2); 1486 rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg); 1487 1488 rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®); 1489 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1); 1490 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1); 1491 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1); 1492 rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1); 1493 rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg); 1494 1495 rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, ®); 1496 rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1); 1497 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); 1498 1499 return 0; 1500 } 1501 1502 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) 1503 { 1504 u32 reg; 1505 1506 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); 1507 rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); 1508 rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); 1509 rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); 1510 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); 1511 1512 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, ®); 1513 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ 1514 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); 1515 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ 1516 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); 1517 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ 1518 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); 1519 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ 1520 rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); 1521 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg); 1522 1523 /* 1524 * CCK TXD BBP registers 1525 */ 1526 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, ®); 1527 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); 1528 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); 1529 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); 1530 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); 1531 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); 1532 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); 1533 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); 1534 rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); 1535 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg); 1536 1537 /* 1538 * OFDM TXD BBP registers 1539 */ 1540 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, ®); 1541 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); 1542 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); 1543 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); 1544 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); 1545 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); 1546 rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); 1547 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg); 1548 1549 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, ®); 1550 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); 1551 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); 1552 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); 1553 rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); 1554 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg); 1555 1556 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, ®); 1557 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); 1558 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); 1559 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); 1560 rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); 1561 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg); 1562 1563 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); 1564 rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); 1565 rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); 1566 rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); 1567 rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); 1568 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1569 rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); 1570 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1571 1572 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); 1573 1574 rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); 1575 1576 rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, ®); 1577 rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); 1578 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); 1579 1580 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c); 1581 1582 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 1583 return -EBUSY; 1584 1585 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); 1586 1587 /* 1588 * Invalidate all Shared Keys (SEC_CSR0), 1589 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) 1590 */ 1591 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000); 1592 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000); 1593 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000); 1594 1595 rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); 1596 rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); 1597 rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606); 1598 rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); 1599 1600 rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); 1601 1602 rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); 1603 1604 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); 1605 1606 /* 1607 * Clear all beacons 1608 * For the Beacon base registers we only need to clear 1609 * the first byte since that byte contains the VALID and OWNER 1610 * bits which (when set to 0) will invalidate the entire beacon. 1611 */ 1612 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0); 1613 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0); 1614 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0); 1615 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0); 1616 1617 /* 1618 * We must clear the error counters. 1619 * These registers are cleared on read, 1620 * so we may pass a useless variable to store the value. 1621 */ 1622 rt2x00mmio_register_read(rt2x00dev, STA_CSR0, ®); 1623 rt2x00mmio_register_read(rt2x00dev, STA_CSR1, ®); 1624 rt2x00mmio_register_read(rt2x00dev, STA_CSR2, ®); 1625 1626 /* 1627 * Reset MAC and BBP registers. 1628 */ 1629 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); 1630 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); 1631 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); 1632 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1633 1634 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); 1635 rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); 1636 rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); 1637 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1638 1639 rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); 1640 rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); 1641 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); 1642 1643 return 0; 1644 } 1645 1646 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 1647 { 1648 unsigned int i; 1649 u8 value; 1650 1651 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1652 rt61pci_bbp_read(rt2x00dev, 0, &value); 1653 if ((value != 0xff) && (value != 0x00)) 1654 return 0; 1655 udelay(REGISTER_BUSY_DELAY); 1656 } 1657 1658 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 1659 return -EACCES; 1660 } 1661 1662 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) 1663 { 1664 unsigned int i; 1665 u16 eeprom; 1666 u8 reg_id; 1667 u8 value; 1668 1669 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev))) 1670 return -EACCES; 1671 1672 rt61pci_bbp_write(rt2x00dev, 3, 0x00); 1673 rt61pci_bbp_write(rt2x00dev, 15, 0x30); 1674 rt61pci_bbp_write(rt2x00dev, 21, 0xc8); 1675 rt61pci_bbp_write(rt2x00dev, 22, 0x38); 1676 rt61pci_bbp_write(rt2x00dev, 23, 0x06); 1677 rt61pci_bbp_write(rt2x00dev, 24, 0xfe); 1678 rt61pci_bbp_write(rt2x00dev, 25, 0x0a); 1679 rt61pci_bbp_write(rt2x00dev, 26, 0x0d); 1680 rt61pci_bbp_write(rt2x00dev, 34, 0x12); 1681 rt61pci_bbp_write(rt2x00dev, 37, 0x07); 1682 rt61pci_bbp_write(rt2x00dev, 39, 0xf8); 1683 rt61pci_bbp_write(rt2x00dev, 41, 0x60); 1684 rt61pci_bbp_write(rt2x00dev, 53, 0x10); 1685 rt61pci_bbp_write(rt2x00dev, 54, 0x18); 1686 rt61pci_bbp_write(rt2x00dev, 60, 0x10); 1687 rt61pci_bbp_write(rt2x00dev, 61, 0x04); 1688 rt61pci_bbp_write(rt2x00dev, 62, 0x04); 1689 rt61pci_bbp_write(rt2x00dev, 75, 0xfe); 1690 rt61pci_bbp_write(rt2x00dev, 86, 0xfe); 1691 rt61pci_bbp_write(rt2x00dev, 88, 0xfe); 1692 rt61pci_bbp_write(rt2x00dev, 90, 0x0f); 1693 rt61pci_bbp_write(rt2x00dev, 99, 0x00); 1694 rt61pci_bbp_write(rt2x00dev, 102, 0x16); 1695 rt61pci_bbp_write(rt2x00dev, 107, 0x04); 1696 1697 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 1698 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); 1699 1700 if (eeprom != 0xffff && eeprom != 0x0000) { 1701 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 1702 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 1703 rt61pci_bbp_write(rt2x00dev, reg_id, value); 1704 } 1705 } 1706 1707 return 0; 1708 } 1709 1710 /* 1711 * Device state switch handlers. 1712 */ 1713 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, 1714 enum dev_state state) 1715 { 1716 int mask = (state == STATE_RADIO_IRQ_OFF); 1717 u32 reg; 1718 unsigned long flags; 1719 1720 /* 1721 * When interrupts are being enabled, the interrupt registers 1722 * should clear the register to assure a clean state. 1723 */ 1724 if (state == STATE_RADIO_IRQ_ON) { 1725 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); 1726 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); 1727 1728 rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®); 1729 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); 1730 } 1731 1732 /* 1733 * Only toggle the interrupts bits we are going to use. 1734 * Non-checked interrupt bits are disabled by default. 1735 */ 1736 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); 1737 1738 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); 1739 rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask); 1740 rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask); 1741 rt2x00_set_field32(®, INT_MASK_CSR_BEACON_DONE, mask); 1742 rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask); 1743 rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); 1744 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 1745 1746 rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); 1747 rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask); 1748 rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask); 1749 rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask); 1750 rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask); 1751 rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask); 1752 rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask); 1753 rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask); 1754 rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask); 1755 rt2x00_set_field32(®, MCU_INT_MASK_CSR_TWAKEUP, mask); 1756 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); 1757 1758 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); 1759 1760 if (state == STATE_RADIO_IRQ_OFF) { 1761 /* 1762 * Ensure that all tasklets are finished. 1763 */ 1764 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1765 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1766 tasklet_kill(&rt2x00dev->autowake_tasklet); 1767 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1768 } 1769 } 1770 1771 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) 1772 { 1773 u32 reg; 1774 1775 /* 1776 * Initialize all registers. 1777 */ 1778 if (unlikely(rt61pci_init_queues(rt2x00dev) || 1779 rt61pci_init_registers(rt2x00dev) || 1780 rt61pci_init_bbp(rt2x00dev))) 1781 return -EIO; 1782 1783 /* 1784 * Enable RX. 1785 */ 1786 rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, ®); 1787 rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1); 1788 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); 1789 1790 return 0; 1791 } 1792 1793 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) 1794 { 1795 /* 1796 * Disable power 1797 */ 1798 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818); 1799 } 1800 1801 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) 1802 { 1803 u32 reg, reg2; 1804 unsigned int i; 1805 char put_to_sleep; 1806 1807 put_to_sleep = (state != STATE_AWAKE); 1808 1809 rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, ®); 1810 rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); 1811 rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); 1812 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); 1813 1814 /* 1815 * Device is not guaranteed to be in the requested state yet. 1816 * We must wait until the register indicates that the 1817 * device has entered the correct state. 1818 */ 1819 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1820 rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, ®2); 1821 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); 1822 if (state == !put_to_sleep) 1823 return 0; 1824 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); 1825 msleep(10); 1826 } 1827 1828 return -EBUSY; 1829 } 1830 1831 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, 1832 enum dev_state state) 1833 { 1834 int retval = 0; 1835 1836 switch (state) { 1837 case STATE_RADIO_ON: 1838 retval = rt61pci_enable_radio(rt2x00dev); 1839 break; 1840 case STATE_RADIO_OFF: 1841 rt61pci_disable_radio(rt2x00dev); 1842 break; 1843 case STATE_RADIO_IRQ_ON: 1844 case STATE_RADIO_IRQ_OFF: 1845 rt61pci_toggle_irq(rt2x00dev, state); 1846 break; 1847 case STATE_DEEP_SLEEP: 1848 case STATE_SLEEP: 1849 case STATE_STANDBY: 1850 case STATE_AWAKE: 1851 retval = rt61pci_set_state(rt2x00dev, state); 1852 break; 1853 default: 1854 retval = -ENOTSUPP; 1855 break; 1856 } 1857 1858 if (unlikely(retval)) 1859 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1860 state, retval); 1861 1862 return retval; 1863 } 1864 1865 /* 1866 * TX descriptor initialization 1867 */ 1868 static void rt61pci_write_tx_desc(struct queue_entry *entry, 1869 struct txentry_desc *txdesc) 1870 { 1871 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1872 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1873 __le32 *txd = entry_priv->desc; 1874 u32 word; 1875 1876 /* 1877 * Start writing the descriptor words. 1878 */ 1879 rt2x00_desc_read(txd, 1, &word); 1880 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); 1881 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); 1882 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1883 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1884 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1885 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1886 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); 1887 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); 1888 rt2x00_desc_write(txd, 1, word); 1889 1890 rt2x00_desc_read(txd, 2, &word); 1891 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1892 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1893 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1894 txdesc->u.plcp.length_low); 1895 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1896 txdesc->u.plcp.length_high); 1897 rt2x00_desc_write(txd, 2, word); 1898 1899 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1900 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1901 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1902 } 1903 1904 rt2x00_desc_read(txd, 5, &word); 1905 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid); 1906 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, 1907 skbdesc->entry->entry_idx); 1908 rt2x00_set_field32(&word, TXD_W5_TX_POWER, 1909 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); 1910 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); 1911 rt2x00_desc_write(txd, 5, word); 1912 1913 if (entry->queue->qid != QID_BEACON) { 1914 rt2x00_desc_read(txd, 6, &word); 1915 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, 1916 skbdesc->skb_dma); 1917 rt2x00_desc_write(txd, 6, word); 1918 1919 rt2x00_desc_read(txd, 11, &word); 1920 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, 1921 txdesc->length); 1922 rt2x00_desc_write(txd, 11, word); 1923 } 1924 1925 /* 1926 * Writing TXD word 0 must the last to prevent a race condition with 1927 * the device, whereby the device may take hold of the TXD before we 1928 * finished updating it. 1929 */ 1930 rt2x00_desc_read(txd, 0, &word); 1931 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); 1932 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1933 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1934 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1935 rt2x00_set_field32(&word, TXD_W0_ACK, 1936 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1937 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1938 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1939 rt2x00_set_field32(&word, TXD_W0_OFDM, 1940 (txdesc->rate_mode == RATE_MODE_OFDM)); 1941 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1942 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1943 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1944 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 1945 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); 1946 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, 1947 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); 1948 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); 1949 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1950 rt2x00_set_field32(&word, TXD_W0_BURST, 1951 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 1952 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); 1953 rt2x00_desc_write(txd, 0, word); 1954 1955 /* 1956 * Register descriptor details in skb frame descriptor. 1957 */ 1958 skbdesc->desc = txd; 1959 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE : 1960 TXD_DESC_SIZE; 1961 } 1962 1963 /* 1964 * TX data initialization 1965 */ 1966 static void rt61pci_write_beacon(struct queue_entry *entry, 1967 struct txentry_desc *txdesc) 1968 { 1969 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1970 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1971 unsigned int beacon_base; 1972 unsigned int padding_len; 1973 u32 orig_reg, reg; 1974 1975 /* 1976 * Disable beaconing while we are reloading the beacon data, 1977 * otherwise we might be sending out invalid data. 1978 */ 1979 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); 1980 orig_reg = reg; 1981 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 1982 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 1983 1984 /* 1985 * Write the TX descriptor for the beacon. 1986 */ 1987 rt61pci_write_tx_desc(entry, txdesc); 1988 1989 /* 1990 * Dump beacon to userspace through debugfs. 1991 */ 1992 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); 1993 1994 /* 1995 * Write entire beacon with descriptor and padding to register. 1996 */ 1997 padding_len = roundup(entry->skb->len, 4) - entry->skb->len; 1998 if (padding_len && skb_pad(entry->skb, padding_len)) { 1999 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); 2000 /* skb freed by skb_pad() on failure */ 2001 entry->skb = NULL; 2002 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 2003 return; 2004 } 2005 2006 beacon_base = HW_BEACON_OFFSET(entry->entry_idx); 2007 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base, 2008 entry_priv->desc, TXINFO_SIZE); 2009 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE, 2010 entry->skb->data, 2011 entry->skb->len + padding_len); 2012 2013 /* 2014 * Enable beaconing again. 2015 * 2016 * For Wi-Fi faily generated beacons between participating 2017 * stations. Set TBTT phase adaptive adjustment step to 8us. 2018 */ 2019 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); 2020 2021 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); 2022 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 2023 2024 /* 2025 * Clean up beacon skb. 2026 */ 2027 dev_kfree_skb_any(entry->skb); 2028 entry->skb = NULL; 2029 } 2030 2031 static void rt61pci_clear_beacon(struct queue_entry *entry) 2032 { 2033 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 2034 u32 orig_reg, reg; 2035 2036 /* 2037 * Disable beaconing while we are reloading the beacon data, 2038 * otherwise we might be sending out invalid data. 2039 */ 2040 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg); 2041 reg = orig_reg; 2042 rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); 2043 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); 2044 2045 /* 2046 * Clear beacon. 2047 */ 2048 rt2x00mmio_register_write(rt2x00dev, 2049 HW_BEACON_OFFSET(entry->entry_idx), 0); 2050 2051 /* 2052 * Restore global beaconing state. 2053 */ 2054 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); 2055 } 2056 2057 /* 2058 * RX control handlers 2059 */ 2060 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) 2061 { 2062 u8 offset = rt2x00dev->lna_gain; 2063 u8 lna; 2064 2065 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); 2066 switch (lna) { 2067 case 3: 2068 offset += 90; 2069 break; 2070 case 2: 2071 offset += 74; 2072 break; 2073 case 1: 2074 offset += 64; 2075 break; 2076 default: 2077 return 0; 2078 } 2079 2080 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { 2081 if (lna == 3 || lna == 2) 2082 offset += 10; 2083 } 2084 2085 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; 2086 } 2087 2088 static void rt61pci_fill_rxdone(struct queue_entry *entry, 2089 struct rxdone_entry_desc *rxdesc) 2090 { 2091 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 2092 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 2093 u32 word0; 2094 u32 word1; 2095 2096 rt2x00_desc_read(entry_priv->desc, 0, &word0); 2097 rt2x00_desc_read(entry_priv->desc, 1, &word1); 2098 2099 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 2100 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 2101 2102 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); 2103 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); 2104 2105 if (rxdesc->cipher != CIPHER_NONE) { 2106 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]); 2107 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]); 2108 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 2109 2110 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv); 2111 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; 2112 2113 /* 2114 * Hardware has stripped IV/EIV data from 802.11 frame during 2115 * decryption. It has provided the data separately but rt2x00lib 2116 * should decide if it should be reinserted. 2117 */ 2118 rxdesc->flags |= RX_FLAG_IV_STRIPPED; 2119 2120 /* 2121 * The hardware has already checked the Michael Mic and has 2122 * stripped it from the frame. Signal this to mac80211. 2123 */ 2124 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 2125 2126 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 2127 rxdesc->flags |= RX_FLAG_DECRYPTED; 2128 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 2129 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 2130 } 2131 2132 /* 2133 * Obtain the status about this packet. 2134 * When frame was received with an OFDM bitrate, 2135 * the signal is the PLCP value. If it was received with 2136 * a CCK bitrate the signal is the rate in 100kbit/s. 2137 */ 2138 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 2139 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1); 2140 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 2141 2142 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 2143 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 2144 else 2145 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 2146 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 2147 rxdesc->dev_flags |= RXDONE_MY_BSS; 2148 } 2149 2150 /* 2151 * Interrupt functions. 2152 */ 2153 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) 2154 { 2155 struct data_queue *queue; 2156 struct queue_entry *entry; 2157 struct queue_entry *entry_done; 2158 struct queue_entry_priv_mmio *entry_priv; 2159 struct txdone_entry_desc txdesc; 2160 u32 word; 2161 u32 reg; 2162 int type; 2163 int index; 2164 int i; 2165 2166 /* 2167 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO 2168 * at most X times and also stop processing once the TX_STA_FIFO_VALID 2169 * flag is not set anymore. 2170 * 2171 * The legacy drivers use X=TX_RING_SIZE but state in a comment 2172 * that the TX_STA_FIFO stack has a size of 16. We stick to our 2173 * tx ring size for now. 2174 */ 2175 for (i = 0; i < rt2x00dev->tx->limit; i++) { 2176 rt2x00mmio_register_read(rt2x00dev, STA_CSR4, ®); 2177 if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) 2178 break; 2179 2180 /* 2181 * Skip this entry when it contains an invalid 2182 * queue identication number. 2183 */ 2184 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE); 2185 queue = rt2x00queue_get_tx_queue(rt2x00dev, type); 2186 if (unlikely(!queue)) 2187 continue; 2188 2189 /* 2190 * Skip this entry when it contains an invalid 2191 * index number. 2192 */ 2193 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); 2194 if (unlikely(index >= queue->limit)) 2195 continue; 2196 2197 entry = &queue->entries[index]; 2198 entry_priv = entry->priv_data; 2199 rt2x00_desc_read(entry_priv->desc, 0, &word); 2200 2201 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 2202 !rt2x00_get_field32(word, TXD_W0_VALID)) 2203 return; 2204 2205 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); 2206 while (entry != entry_done) { 2207 /* Catch up. 2208 * Just report any entries we missed as failed. 2209 */ 2210 rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n", 2211 entry_done->entry_idx); 2212 2213 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN); 2214 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); 2215 } 2216 2217 /* 2218 * Obtain the status about this packet. 2219 */ 2220 txdesc.flags = 0; 2221 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) { 2222 case 0: /* Success, maybe with retry */ 2223 __set_bit(TXDONE_SUCCESS, &txdesc.flags); 2224 break; 2225 case 6: /* Failure, excessive retries */ 2226 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); 2227 /* Don't break, this is a failed frame! */ 2228 default: /* Failure */ 2229 __set_bit(TXDONE_FAILURE, &txdesc.flags); 2230 } 2231 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); 2232 2233 /* 2234 * the frame was retried at least once 2235 * -> hw used fallback rates 2236 */ 2237 if (txdesc.retry) 2238 __set_bit(TXDONE_FALLBACK, &txdesc.flags); 2239 2240 rt2x00lib_txdone(entry, &txdesc); 2241 } 2242 } 2243 2244 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev) 2245 { 2246 struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf }; 2247 2248 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); 2249 } 2250 2251 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, 2252 struct rt2x00_field32 irq_field) 2253 { 2254 u32 reg; 2255 2256 /* 2257 * Enable a single interrupt. The interrupt mask register 2258 * access needs locking. 2259 */ 2260 spin_lock_irq(&rt2x00dev->irqmask_lock); 2261 2262 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); 2263 rt2x00_set_field32(®, irq_field, 0); 2264 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 2265 2266 spin_unlock_irq(&rt2x00dev->irqmask_lock); 2267 } 2268 2269 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev, 2270 struct rt2x00_field32 irq_field) 2271 { 2272 u32 reg; 2273 2274 /* 2275 * Enable a single MCU interrupt. The interrupt mask register 2276 * access needs locking. 2277 */ 2278 spin_lock_irq(&rt2x00dev->irqmask_lock); 2279 2280 rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); 2281 rt2x00_set_field32(®, irq_field, 0); 2282 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); 2283 2284 spin_unlock_irq(&rt2x00dev->irqmask_lock); 2285 } 2286 2287 static void rt61pci_txstatus_tasklet(unsigned long data) 2288 { 2289 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 2290 rt61pci_txdone(rt2x00dev); 2291 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2292 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE); 2293 } 2294 2295 static void rt61pci_tbtt_tasklet(unsigned long data) 2296 { 2297 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 2298 rt2x00lib_beacondone(rt2x00dev); 2299 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2300 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE); 2301 } 2302 2303 static void rt61pci_rxdone_tasklet(unsigned long data) 2304 { 2305 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 2306 if (rt2x00mmio_rxdone(rt2x00dev)) 2307 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 2308 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2309 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE); 2310 } 2311 2312 static void rt61pci_autowake_tasklet(unsigned long data) 2313 { 2314 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 2315 rt61pci_wakeup(rt2x00dev); 2316 rt2x00mmio_register_write(rt2x00dev, 2317 M2H_CMD_DONE_CSR, 0xffffffff); 2318 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2319 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP); 2320 } 2321 2322 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) 2323 { 2324 struct rt2x00_dev *rt2x00dev = dev_instance; 2325 u32 reg_mcu, mask_mcu; 2326 u32 reg, mask; 2327 2328 /* 2329 * Get the interrupt sources & saved to local variable. 2330 * Write register value back to clear pending interrupts. 2331 */ 2332 rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu); 2333 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu); 2334 2335 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); 2336 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); 2337 2338 if (!reg && !reg_mcu) 2339 return IRQ_NONE; 2340 2341 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 2342 return IRQ_HANDLED; 2343 2344 /* 2345 * Schedule tasklets for interrupt handling. 2346 */ 2347 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) 2348 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 2349 2350 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) 2351 tasklet_schedule(&rt2x00dev->txstatus_tasklet); 2352 2353 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE)) 2354 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); 2355 2356 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP)) 2357 tasklet_schedule(&rt2x00dev->autowake_tasklet); 2358 2359 /* 2360 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits 2361 * for interrupts and interrupt masks we can just use the value of 2362 * INT_SOURCE_CSR to create the interrupt mask. 2363 */ 2364 mask = reg; 2365 mask_mcu = reg_mcu; 2366 2367 /* 2368 * Disable all interrupts for which a tasklet was scheduled right now, 2369 * the tasklet will reenable the appropriate interrupts. 2370 */ 2371 spin_lock(&rt2x00dev->irqmask_lock); 2372 2373 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); 2374 reg |= mask; 2375 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 2376 2377 rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); 2378 reg |= mask_mcu; 2379 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); 2380 2381 spin_unlock(&rt2x00dev->irqmask_lock); 2382 2383 return IRQ_HANDLED; 2384 } 2385 2386 /* 2387 * Device probe functions. 2388 */ 2389 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) 2390 { 2391 struct eeprom_93cx6 eeprom; 2392 u32 reg; 2393 u16 word; 2394 u8 *mac; 2395 s8 value; 2396 2397 rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, ®); 2398 2399 eeprom.data = rt2x00dev; 2400 eeprom.register_read = rt61pci_eepromregister_read; 2401 eeprom.register_write = rt61pci_eepromregister_write; 2402 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? 2403 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; 2404 eeprom.reg_data_in = 0; 2405 eeprom.reg_data_out = 0; 2406 eeprom.reg_data_clock = 0; 2407 eeprom.reg_chip_select = 0; 2408 2409 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, 2410 EEPROM_SIZE / sizeof(u16)); 2411 2412 /* 2413 * Start validation of the data that has been read. 2414 */ 2415 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 2416 if (!is_valid_ether_addr(mac)) { 2417 eth_random_addr(mac); 2418 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); 2419 } 2420 2421 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); 2422 if (word == 0xffff) { 2423 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 2424 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 2425 ANTENNA_B); 2426 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 2427 ANTENNA_B); 2428 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); 2429 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 2430 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 2431 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); 2432 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 2433 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 2434 } 2435 2436 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); 2437 if (word == 0xffff) { 2438 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); 2439 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); 2440 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0); 2441 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0); 2442 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); 2443 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); 2444 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); 2445 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 2446 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 2447 } 2448 2449 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); 2450 if (word == 0xffff) { 2451 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, 2452 LED_MODE_DEFAULT); 2453 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); 2454 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); 2455 } 2456 2457 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); 2458 if (word == 0xffff) { 2459 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); 2460 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); 2461 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); 2462 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); 2463 } 2464 2465 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); 2466 if (word == 0xffff) { 2467 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 2468 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 2469 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 2470 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); 2471 } else { 2472 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); 2473 if (value < -10 || value > 10) 2474 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); 2475 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); 2476 if (value < -10 || value > 10) 2477 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); 2478 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); 2479 } 2480 2481 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); 2482 if (word == 0xffff) { 2483 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 2484 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 2485 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 2486 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); 2487 } else { 2488 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); 2489 if (value < -10 || value > 10) 2490 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); 2491 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); 2492 if (value < -10 || value > 10) 2493 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); 2494 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); 2495 } 2496 2497 return 0; 2498 } 2499 2500 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) 2501 { 2502 u32 reg; 2503 u16 value; 2504 u16 eeprom; 2505 2506 /* 2507 * Read EEPROM word for configuration. 2508 */ 2509 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); 2510 2511 /* 2512 * Identify RF chipset. 2513 */ 2514 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 2515 rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, ®); 2516 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), 2517 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); 2518 2519 if (!rt2x00_rf(rt2x00dev, RF5225) && 2520 !rt2x00_rf(rt2x00dev, RF5325) && 2521 !rt2x00_rf(rt2x00dev, RF2527) && 2522 !rt2x00_rf(rt2x00dev, RF2529)) { 2523 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 2524 return -ENODEV; 2525 } 2526 2527 /* 2528 * Determine number of antennas. 2529 */ 2530 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) 2531 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags); 2532 2533 /* 2534 * Identify default antenna configuration. 2535 */ 2536 rt2x00dev->default_ant.tx = 2537 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 2538 rt2x00dev->default_ant.rx = 2539 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 2540 2541 /* 2542 * Read the Frame type. 2543 */ 2544 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) 2545 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); 2546 2547 /* 2548 * Detect if this device has a hardware controlled radio. 2549 */ 2550 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 2551 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 2552 2553 /* 2554 * Read frequency offset and RF programming sequence. 2555 */ 2556 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); 2557 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) 2558 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags); 2559 2560 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); 2561 2562 /* 2563 * Read external LNA informations. 2564 */ 2565 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); 2566 2567 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) 2568 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); 2569 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) 2570 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); 2571 2572 /* 2573 * When working with a RF2529 chip without double antenna, 2574 * the antenna settings should be gathered from the NIC 2575 * eeprom word. 2576 */ 2577 if (rt2x00_rf(rt2x00dev, RF2529) && 2578 !rt2x00_has_cap_double_antenna(rt2x00dev)) { 2579 rt2x00dev->default_ant.rx = 2580 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED); 2581 rt2x00dev->default_ant.tx = 2582 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED); 2583 2584 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) 2585 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY; 2586 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) 2587 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY; 2588 } 2589 2590 /* 2591 * Store led settings, for correct led behaviour. 2592 * If the eeprom value is invalid, 2593 * switch to default led mode. 2594 */ 2595 #ifdef CONFIG_RT2X00_LIB_LEDS 2596 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); 2597 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); 2598 2599 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 2600 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); 2601 if (value == LED_MODE_SIGNAL_STRENGTH) 2602 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual, 2603 LED_TYPE_QUALITY); 2604 2605 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); 2606 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, 2607 rt2x00_get_field16(eeprom, 2608 EEPROM_LED_POLARITY_GPIO_0)); 2609 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, 2610 rt2x00_get_field16(eeprom, 2611 EEPROM_LED_POLARITY_GPIO_1)); 2612 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, 2613 rt2x00_get_field16(eeprom, 2614 EEPROM_LED_POLARITY_GPIO_2)); 2615 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, 2616 rt2x00_get_field16(eeprom, 2617 EEPROM_LED_POLARITY_GPIO_3)); 2618 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, 2619 rt2x00_get_field16(eeprom, 2620 EEPROM_LED_POLARITY_GPIO_4)); 2621 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, 2622 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); 2623 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, 2624 rt2x00_get_field16(eeprom, 2625 EEPROM_LED_POLARITY_RDY_G)); 2626 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, 2627 rt2x00_get_field16(eeprom, 2628 EEPROM_LED_POLARITY_RDY_A)); 2629 #endif /* CONFIG_RT2X00_LIB_LEDS */ 2630 2631 return 0; 2632 } 2633 2634 /* 2635 * RF value list for RF5225 & RF5325 2636 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled 2637 */ 2638 static const struct rf_channel rf_vals_noseq[] = { 2639 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, 2640 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, 2641 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, 2642 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, 2643 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, 2644 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, 2645 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, 2646 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, 2647 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, 2648 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, 2649 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, 2650 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, 2651 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, 2652 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, 2653 2654 /* 802.11 UNI / HyperLan 2 */ 2655 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, 2656 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, 2657 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, 2658 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, 2659 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, 2660 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, 2661 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, 2662 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, 2663 2664 /* 802.11 HyperLan 2 */ 2665 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, 2666 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, 2667 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, 2668 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, 2669 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, 2670 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, 2671 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, 2672 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, 2673 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, 2674 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, 2675 2676 /* 802.11 UNII */ 2677 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, 2678 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, 2679 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, 2680 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, 2681 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, 2682 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, 2683 2684 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2685 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, 2686 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, 2687 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, 2688 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, 2689 }; 2690 2691 /* 2692 * RF value list for RF5225 & RF5325 2693 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled 2694 */ 2695 static const struct rf_channel rf_vals_seq[] = { 2696 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, 2697 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, 2698 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, 2699 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, 2700 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, 2701 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, 2702 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, 2703 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, 2704 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, 2705 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, 2706 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, 2707 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, 2708 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, 2709 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, 2710 2711 /* 802.11 UNI / HyperLan 2 */ 2712 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 }, 2713 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 }, 2714 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b }, 2715 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b }, 2716 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 }, 2717 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 }, 2718 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 }, 2719 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b }, 2720 2721 /* 802.11 HyperLan 2 */ 2722 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 }, 2723 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 }, 2724 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 }, 2725 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 }, 2726 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 }, 2727 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 }, 2728 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b }, 2729 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b }, 2730 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 }, 2731 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 }, 2732 2733 /* 802.11 UNII */ 2734 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 }, 2735 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b }, 2736 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b }, 2737 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 }, 2738 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 }, 2739 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 }, 2740 2741 /* MMAC(Japan)J52 ch 34,38,42,46 */ 2742 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b }, 2743 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 }, 2744 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b }, 2745 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 }, 2746 }; 2747 2748 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 2749 { 2750 struct hw_mode_spec *spec = &rt2x00dev->spec; 2751 struct channel_info *info; 2752 char *tx_power; 2753 unsigned int i; 2754 2755 /* 2756 * Disable powersaving as default. 2757 */ 2758 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; 2759 2760 /* 2761 * Initialize all hw fields. 2762 */ 2763 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 2764 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 2765 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); 2766 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 2767 2768 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 2769 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 2770 rt2x00_eeprom_addr(rt2x00dev, 2771 EEPROM_MAC_ADDR_0)); 2772 2773 /* 2774 * As rt61 has a global fallback table we cannot specify 2775 * more then one tx rate per frame but since the hw will 2776 * try several rates (based on the fallback table) we should 2777 * initialize max_report_rates to the maximum number of rates 2778 * we are going to try. Otherwise mac80211 will truncate our 2779 * reported tx rates and the rc algortihm will end up with 2780 * incorrect data. 2781 */ 2782 rt2x00dev->hw->max_rates = 1; 2783 rt2x00dev->hw->max_report_rates = 7; 2784 rt2x00dev->hw->max_rate_tries = 1; 2785 2786 /* 2787 * Initialize hw_mode information. 2788 */ 2789 spec->supported_bands = SUPPORT_BAND_2GHZ; 2790 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 2791 2792 if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) { 2793 spec->num_channels = 14; 2794 spec->channels = rf_vals_noseq; 2795 } else { 2796 spec->num_channels = 14; 2797 spec->channels = rf_vals_seq; 2798 } 2799 2800 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) { 2801 spec->supported_bands |= SUPPORT_BAND_5GHZ; 2802 spec->num_channels = ARRAY_SIZE(rf_vals_seq); 2803 } 2804 2805 /* 2806 * Create channel information array 2807 */ 2808 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 2809 if (!info) 2810 return -ENOMEM; 2811 2812 spec->channels_info = info; 2813 2814 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); 2815 for (i = 0; i < 14; i++) { 2816 info[i].max_power = MAX_TXPOWER; 2817 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 2818 } 2819 2820 if (spec->num_channels > 14) { 2821 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); 2822 for (i = 14; i < spec->num_channels; i++) { 2823 info[i].max_power = MAX_TXPOWER; 2824 info[i].default_power1 = 2825 TXPOWER_FROM_DEV(tx_power[i - 14]); 2826 } 2827 } 2828 2829 return 0; 2830 } 2831 2832 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev) 2833 { 2834 int retval; 2835 u32 reg; 2836 2837 /* 2838 * Disable power saving. 2839 */ 2840 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); 2841 2842 /* 2843 * Allocate eeprom data. 2844 */ 2845 retval = rt61pci_validate_eeprom(rt2x00dev); 2846 if (retval) 2847 return retval; 2848 2849 retval = rt61pci_init_eeprom(rt2x00dev); 2850 if (retval) 2851 return retval; 2852 2853 /* 2854 * Enable rfkill polling by setting GPIO direction of the 2855 * rfkill switch GPIO pin correctly. 2856 */ 2857 rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®); 2858 rt2x00_set_field32(®, MAC_CSR13_DIR5, 1); 2859 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); 2860 2861 /* 2862 * Initialize hw specifications. 2863 */ 2864 retval = rt61pci_probe_hw_mode(rt2x00dev); 2865 if (retval) 2866 return retval; 2867 2868 /* 2869 * This device has multiple filters for control frames, 2870 * but has no a separate filter for PS Poll frames. 2871 */ 2872 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); 2873 2874 /* 2875 * This device requires firmware and DMA mapped skbs. 2876 */ 2877 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); 2878 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); 2879 if (!modparam_nohwcrypt) 2880 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 2881 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 2882 2883 /* 2884 * Set the rssi offset. 2885 */ 2886 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 2887 2888 return 0; 2889 } 2890 2891 /* 2892 * IEEE80211 stack callback functions. 2893 */ 2894 static int rt61pci_conf_tx(struct ieee80211_hw *hw, 2895 struct ieee80211_vif *vif, u16 queue_idx, 2896 const struct ieee80211_tx_queue_params *params) 2897 { 2898 struct rt2x00_dev *rt2x00dev = hw->priv; 2899 struct data_queue *queue; 2900 struct rt2x00_field32 field; 2901 int retval; 2902 u32 reg; 2903 u32 offset; 2904 2905 /* 2906 * First pass the configuration through rt2x00lib, that will 2907 * update the queue settings and validate the input. After that 2908 * we are free to update the registers based on the value 2909 * in the queue parameter. 2910 */ 2911 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); 2912 if (retval) 2913 return retval; 2914 2915 /* 2916 * We only need to perform additional register initialization 2917 * for WMM queues. 2918 */ 2919 if (queue_idx >= 4) 2920 return 0; 2921 2922 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 2923 2924 /* Update WMM TXOP register */ 2925 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); 2926 field.bit_offset = (queue_idx & 1) * 16; 2927 field.bit_mask = 0xffff << field.bit_offset; 2928 2929 rt2x00mmio_register_read(rt2x00dev, offset, ®); 2930 rt2x00_set_field32(®, field, queue->txop); 2931 rt2x00mmio_register_write(rt2x00dev, offset, reg); 2932 2933 /* Update WMM registers */ 2934 field.bit_offset = queue_idx * 4; 2935 field.bit_mask = 0xf << field.bit_offset; 2936 2937 rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, ®); 2938 rt2x00_set_field32(®, field, queue->aifs); 2939 rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg); 2940 2941 rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, ®); 2942 rt2x00_set_field32(®, field, queue->cw_min); 2943 rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg); 2944 2945 rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, ®); 2946 rt2x00_set_field32(®, field, queue->cw_max); 2947 rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg); 2948 2949 return 0; 2950 } 2951 2952 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 2953 { 2954 struct rt2x00_dev *rt2x00dev = hw->priv; 2955 u64 tsf; 2956 u32 reg; 2957 2958 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, ®); 2959 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; 2960 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, ®); 2961 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); 2962 2963 return tsf; 2964 } 2965 2966 static const struct ieee80211_ops rt61pci_mac80211_ops = { 2967 .tx = rt2x00mac_tx, 2968 .start = rt2x00mac_start, 2969 .stop = rt2x00mac_stop, 2970 .add_interface = rt2x00mac_add_interface, 2971 .remove_interface = rt2x00mac_remove_interface, 2972 .config = rt2x00mac_config, 2973 .configure_filter = rt2x00mac_configure_filter, 2974 .set_key = rt2x00mac_set_key, 2975 .sw_scan_start = rt2x00mac_sw_scan_start, 2976 .sw_scan_complete = rt2x00mac_sw_scan_complete, 2977 .get_stats = rt2x00mac_get_stats, 2978 .bss_info_changed = rt2x00mac_bss_info_changed, 2979 .conf_tx = rt61pci_conf_tx, 2980 .get_tsf = rt61pci_get_tsf, 2981 .rfkill_poll = rt2x00mac_rfkill_poll, 2982 .flush = rt2x00mac_flush, 2983 .set_antenna = rt2x00mac_set_antenna, 2984 .get_antenna = rt2x00mac_get_antenna, 2985 .get_ringparam = rt2x00mac_get_ringparam, 2986 .tx_frames_pending = rt2x00mac_tx_frames_pending, 2987 }; 2988 2989 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { 2990 .irq_handler = rt61pci_interrupt, 2991 .txstatus_tasklet = rt61pci_txstatus_tasklet, 2992 .tbtt_tasklet = rt61pci_tbtt_tasklet, 2993 .rxdone_tasklet = rt61pci_rxdone_tasklet, 2994 .autowake_tasklet = rt61pci_autowake_tasklet, 2995 .probe_hw = rt61pci_probe_hw, 2996 .get_firmware_name = rt61pci_get_firmware_name, 2997 .check_firmware = rt61pci_check_firmware, 2998 .load_firmware = rt61pci_load_firmware, 2999 .initialize = rt2x00mmio_initialize, 3000 .uninitialize = rt2x00mmio_uninitialize, 3001 .get_entry_state = rt61pci_get_entry_state, 3002 .clear_entry = rt61pci_clear_entry, 3003 .set_device_state = rt61pci_set_device_state, 3004 .rfkill_poll = rt61pci_rfkill_poll, 3005 .link_stats = rt61pci_link_stats, 3006 .reset_tuner = rt61pci_reset_tuner, 3007 .link_tuner = rt61pci_link_tuner, 3008 .start_queue = rt61pci_start_queue, 3009 .kick_queue = rt61pci_kick_queue, 3010 .stop_queue = rt61pci_stop_queue, 3011 .flush_queue = rt2x00mmio_flush_queue, 3012 .write_tx_desc = rt61pci_write_tx_desc, 3013 .write_beacon = rt61pci_write_beacon, 3014 .clear_beacon = rt61pci_clear_beacon, 3015 .fill_rxdone = rt61pci_fill_rxdone, 3016 .config_shared_key = rt61pci_config_shared_key, 3017 .config_pairwise_key = rt61pci_config_pairwise_key, 3018 .config_filter = rt61pci_config_filter, 3019 .config_intf = rt61pci_config_intf, 3020 .config_erp = rt61pci_config_erp, 3021 .config_ant = rt61pci_config_ant, 3022 .config = rt61pci_config, 3023 }; 3024 3025 static void rt61pci_queue_init(struct data_queue *queue) 3026 { 3027 switch (queue->qid) { 3028 case QID_RX: 3029 queue->limit = 32; 3030 queue->data_size = DATA_FRAME_SIZE; 3031 queue->desc_size = RXD_DESC_SIZE; 3032 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 3033 break; 3034 3035 case QID_AC_VO: 3036 case QID_AC_VI: 3037 case QID_AC_BE: 3038 case QID_AC_BK: 3039 queue->limit = 32; 3040 queue->data_size = DATA_FRAME_SIZE; 3041 queue->desc_size = TXD_DESC_SIZE; 3042 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 3043 break; 3044 3045 case QID_BEACON: 3046 queue->limit = 4; 3047 queue->data_size = 0; /* No DMA required for beacons */ 3048 queue->desc_size = TXINFO_SIZE; 3049 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 3050 break; 3051 3052 case QID_ATIM: 3053 /* fallthrough */ 3054 default: 3055 BUG(); 3056 break; 3057 } 3058 } 3059 3060 static const struct rt2x00_ops rt61pci_ops = { 3061 .name = KBUILD_MODNAME, 3062 .max_ap_intf = 4, 3063 .eeprom_size = EEPROM_SIZE, 3064 .rf_size = RF_SIZE, 3065 .tx_queues = NUM_TX_QUEUES, 3066 .queue_init = rt61pci_queue_init, 3067 .lib = &rt61pci_rt2x00_ops, 3068 .hw = &rt61pci_mac80211_ops, 3069 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 3070 .debugfs = &rt61pci_rt2x00debug, 3071 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 3072 }; 3073 3074 /* 3075 * RT61pci module information. 3076 */ 3077 static const struct pci_device_id rt61pci_device_table[] = { 3078 /* RT2561s */ 3079 { PCI_DEVICE(0x1814, 0x0301) }, 3080 /* RT2561 v2 */ 3081 { PCI_DEVICE(0x1814, 0x0302) }, 3082 /* RT2661 */ 3083 { PCI_DEVICE(0x1814, 0x0401) }, 3084 { 0, } 3085 }; 3086 3087 MODULE_AUTHOR(DRV_PROJECT); 3088 MODULE_VERSION(DRV_VERSION); 3089 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); 3090 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 " 3091 "PCI & PCMCIA chipset based cards"); 3092 MODULE_DEVICE_TABLE(pci, rt61pci_device_table); 3093 MODULE_FIRMWARE(FIRMWARE_RT2561); 3094 MODULE_FIRMWARE(FIRMWARE_RT2561s); 3095 MODULE_FIRMWARE(FIRMWARE_RT2661); 3096 MODULE_LICENSE("GPL"); 3097 3098 static int rt61pci_probe(struct pci_dev *pci_dev, 3099 const struct pci_device_id *id) 3100 { 3101 return rt2x00pci_probe(pci_dev, &rt61pci_ops); 3102 } 3103 3104 static struct pci_driver rt61pci_driver = { 3105 .name = KBUILD_MODNAME, 3106 .id_table = rt61pci_device_table, 3107 .probe = rt61pci_probe, 3108 .remove = rt2x00pci_remove, 3109 .suspend = rt2x00pci_suspend, 3110 .resume = rt2x00pci_resume, 3111 }; 3112 3113 module_pci_driver(rt61pci_driver); 3114