1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt61pci
21 	Abstract: rt61pci device specific routines.
22 	Supported chipsets: RT2561, RT2561s, RT2661.
23  */
24 
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
33 
34 #include "rt2x00.h"
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
38 
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static bool modparam_nohwcrypt = false;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 
46 /*
47  * Register access.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attempt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 				H2M_MAILBOX_CSR_OWNER, (__reg))
64 
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66 			      const unsigned int word, const u8 value)
67 {
68 	u32 reg;
69 
70 	mutex_lock(&rt2x00dev->csr_mutex);
71 
72 	/*
73 	 * Wait until the BBP becomes available, afterwards we
74 	 * can safely write the new data into the register.
75 	 */
76 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 		reg = 0;
78 		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82 
83 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
84 	}
85 
86 	mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88 
89 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
90 			     const unsigned int word, u8 *value)
91 {
92 	u32 reg;
93 
94 	mutex_lock(&rt2x00dev->csr_mutex);
95 
96 	/*
97 	 * Wait until the BBP becomes available, afterwards we
98 	 * can safely write the read request into the register.
99 	 * After the data has been written, we wait until hardware
100 	 * returns the correct value, if at any time the register
101 	 * doesn't become available in time, reg will be 0xffffffff
102 	 * which means we return 0xff to the caller.
103 	 */
104 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105 		reg = 0;
106 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109 
110 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
111 
112 		WAIT_FOR_BBP(rt2x00dev, &reg);
113 	}
114 
115 	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116 
117 	mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119 
120 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
121 			     const unsigned int word, const u32 value)
122 {
123 	u32 reg;
124 
125 	mutex_lock(&rt2x00dev->csr_mutex);
126 
127 	/*
128 	 * Wait until the RF becomes available, afterwards we
129 	 * can safely write the new data into the register.
130 	 */
131 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
132 		reg = 0;
133 		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
134 		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
135 		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
136 		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
137 
138 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
139 		rt2x00_rf_write(rt2x00dev, word, value);
140 	}
141 
142 	mutex_unlock(&rt2x00dev->csr_mutex);
143 }
144 
145 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
146 				const u8 command, const u8 token,
147 				const u8 arg0, const u8 arg1)
148 {
149 	u32 reg;
150 
151 	mutex_lock(&rt2x00dev->csr_mutex);
152 
153 	/*
154 	 * Wait until the MCU becomes available, afterwards we
155 	 * can safely write the new data into the register.
156 	 */
157 	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
158 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
159 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
160 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
161 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
162 		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
163 
164 		rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
165 		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
166 		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
167 		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
168 	}
169 
170 	mutex_unlock(&rt2x00dev->csr_mutex);
171 
172 }
173 
174 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
175 {
176 	struct rt2x00_dev *rt2x00dev = eeprom->data;
177 	u32 reg;
178 
179 	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
180 
181 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
182 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
183 	eeprom->reg_data_clock =
184 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
185 	eeprom->reg_chip_select =
186 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
187 }
188 
189 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
190 {
191 	struct rt2x00_dev *rt2x00dev = eeprom->data;
192 	u32 reg = 0;
193 
194 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
195 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
196 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
197 			   !!eeprom->reg_data_clock);
198 	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
199 			   !!eeprom->reg_chip_select);
200 
201 	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
202 }
203 
204 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
205 static const struct rt2x00debug rt61pci_rt2x00debug = {
206 	.owner	= THIS_MODULE,
207 	.csr	= {
208 		.read		= rt2x00mmio_register_read,
209 		.write		= rt2x00mmio_register_write,
210 		.flags		= RT2X00DEBUGFS_OFFSET,
211 		.word_base	= CSR_REG_BASE,
212 		.word_size	= sizeof(u32),
213 		.word_count	= CSR_REG_SIZE / sizeof(u32),
214 	},
215 	.eeprom	= {
216 		.read		= rt2x00_eeprom_read,
217 		.write		= rt2x00_eeprom_write,
218 		.word_base	= EEPROM_BASE,
219 		.word_size	= sizeof(u16),
220 		.word_count	= EEPROM_SIZE / sizeof(u16),
221 	},
222 	.bbp	= {
223 		.read		= rt61pci_bbp_read,
224 		.write		= rt61pci_bbp_write,
225 		.word_base	= BBP_BASE,
226 		.word_size	= sizeof(u8),
227 		.word_count	= BBP_SIZE / sizeof(u8),
228 	},
229 	.rf	= {
230 		.read		= rt2x00_rf_read,
231 		.write		= rt61pci_rf_write,
232 		.word_base	= RF_BASE,
233 		.word_size	= sizeof(u32),
234 		.word_count	= RF_SIZE / sizeof(u32),
235 	},
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238 
239 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
240 {
241 	u32 reg;
242 
243 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
244 	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
245 }
246 
247 #ifdef CONFIG_RT2X00_LIB_LEDS
248 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
249 				   enum led_brightness brightness)
250 {
251 	struct rt2x00_led *led =
252 	    container_of(led_cdev, struct rt2x00_led, led_dev);
253 	unsigned int enabled = brightness != LED_OFF;
254 	unsigned int a_mode =
255 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
256 	unsigned int bg_mode =
257 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
258 
259 	if (led->type == LED_TYPE_RADIO) {
260 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
261 				   MCU_LEDCS_RADIO_STATUS, enabled);
262 
263 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
264 				    (led->rt2x00dev->led_mcu_reg & 0xff),
265 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
266 	} else if (led->type == LED_TYPE_ASSOC) {
267 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
268 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
269 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
271 
272 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
273 				    (led->rt2x00dev->led_mcu_reg & 0xff),
274 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
275 	} else if (led->type == LED_TYPE_QUALITY) {
276 		/*
277 		 * The brightness is divided into 6 levels (0 - 5),
278 		 * this means we need to convert the brightness
279 		 * argument into the matching level within that range.
280 		 */
281 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
282 				    brightness / (LED_FULL / 6), 0);
283 	}
284 }
285 
286 static int rt61pci_blink_set(struct led_classdev *led_cdev,
287 			     unsigned long *delay_on,
288 			     unsigned long *delay_off)
289 {
290 	struct rt2x00_led *led =
291 	    container_of(led_cdev, struct rt2x00_led, led_dev);
292 	u32 reg;
293 
294 	rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
295 	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
296 	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
297 	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
298 
299 	return 0;
300 }
301 
302 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
303 			     struct rt2x00_led *led,
304 			     enum led_type type)
305 {
306 	led->rt2x00dev = rt2x00dev;
307 	led->type = type;
308 	led->led_dev.brightness_set = rt61pci_brightness_set;
309 	led->led_dev.blink_set = rt61pci_blink_set;
310 	led->flags = LED_INITIALIZED;
311 }
312 #endif /* CONFIG_RT2X00_LIB_LEDS */
313 
314 /*
315  * Configuration handlers.
316  */
317 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
318 				     struct rt2x00lib_crypto *crypto,
319 				     struct ieee80211_key_conf *key)
320 {
321 	struct hw_key_entry key_entry;
322 	struct rt2x00_field32 field;
323 	u32 mask;
324 	u32 reg;
325 
326 	if (crypto->cmd == SET_KEY) {
327 		/*
328 		 * rt2x00lib can't determine the correct free
329 		 * key_idx for shared keys. We have 1 register
330 		 * with key valid bits. The goal is simple, read
331 		 * the register, if that is full we have no slots
332 		 * left.
333 		 * Note that each BSS is allowed to have up to 4
334 		 * shared keys, so put a mask over the allowed
335 		 * entries.
336 		 */
337 		mask = (0xf << crypto->bssidx);
338 
339 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
340 		reg &= mask;
341 
342 		if (reg && reg == mask)
343 			return -ENOSPC;
344 
345 		key->hw_key_idx += reg ? ffz(reg) : 0;
346 
347 		/*
348 		 * Upload key to hardware
349 		 */
350 		memcpy(key_entry.key, crypto->key,
351 		       sizeof(key_entry.key));
352 		memcpy(key_entry.tx_mic, crypto->tx_mic,
353 		       sizeof(key_entry.tx_mic));
354 		memcpy(key_entry.rx_mic, crypto->rx_mic,
355 		       sizeof(key_entry.rx_mic));
356 
357 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
358 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
359 					       &key_entry, sizeof(key_entry));
360 
361 		/*
362 		 * The cipher types are stored over 2 registers.
363 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
364 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
365 		 * Using the correct defines correctly will cause overhead,
366 		 * so just calculate the correct offset.
367 		 */
368 		if (key->hw_key_idx < 8) {
369 			field.bit_offset = (3 * key->hw_key_idx);
370 			field.bit_mask = 0x7 << field.bit_offset;
371 
372 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
373 			rt2x00_set_field32(&reg, field, crypto->cipher);
374 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
375 		} else {
376 			field.bit_offset = (3 * (key->hw_key_idx - 8));
377 			field.bit_mask = 0x7 << field.bit_offset;
378 
379 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
380 			rt2x00_set_field32(&reg, field, crypto->cipher);
381 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
382 		}
383 
384 		/*
385 		 * The driver does not support the IV/EIV generation
386 		 * in hardware. However it doesn't support the IV/EIV
387 		 * inside the ieee80211 frame either, but requires it
388 		 * to be provided separately for the descriptor.
389 		 * rt2x00lib will cut the IV/EIV data out of all frames
390 		 * given to us by mac80211, but we must tell mac80211
391 		 * to generate the IV/EIV data.
392 		 */
393 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
394 	}
395 
396 	/*
397 	 * SEC_CSR0 contains only single-bit fields to indicate
398 	 * a particular key is valid. Because using the FIELD32()
399 	 * defines directly will cause a lot of overhead, we use
400 	 * a calculation to determine the correct bit directly.
401 	 */
402 	mask = 1 << key->hw_key_idx;
403 
404 	rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
405 	if (crypto->cmd == SET_KEY)
406 		reg |= mask;
407 	else if (crypto->cmd == DISABLE_KEY)
408 		reg &= ~mask;
409 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
410 
411 	return 0;
412 }
413 
414 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
415 				       struct rt2x00lib_crypto *crypto,
416 				       struct ieee80211_key_conf *key)
417 {
418 	struct hw_pairwise_ta_entry addr_entry;
419 	struct hw_key_entry key_entry;
420 	u32 mask;
421 	u32 reg;
422 
423 	if (crypto->cmd == SET_KEY) {
424 		/*
425 		 * rt2x00lib can't determine the correct free
426 		 * key_idx for pairwise keys. We have 2 registers
427 		 * with key valid bits. The goal is simple: read
428 		 * the first register. If that is full, move to
429 		 * the next register.
430 		 * When both registers are full, we drop the key.
431 		 * Otherwise, we use the first invalid entry.
432 		 */
433 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
434 		if (reg && reg == ~0) {
435 			key->hw_key_idx = 32;
436 			rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
437 			if (reg && reg == ~0)
438 				return -ENOSPC;
439 		}
440 
441 		key->hw_key_idx += reg ? ffz(reg) : 0;
442 
443 		/*
444 		 * Upload key to hardware
445 		 */
446 		memcpy(key_entry.key, crypto->key,
447 		       sizeof(key_entry.key));
448 		memcpy(key_entry.tx_mic, crypto->tx_mic,
449 		       sizeof(key_entry.tx_mic));
450 		memcpy(key_entry.rx_mic, crypto->rx_mic,
451 		       sizeof(key_entry.rx_mic));
452 
453 		memset(&addr_entry, 0, sizeof(addr_entry));
454 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
455 		addr_entry.cipher = crypto->cipher;
456 
457 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
458 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
459 					       &key_entry, sizeof(key_entry));
460 
461 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
462 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
463 					       &addr_entry, sizeof(addr_entry));
464 
465 		/*
466 		 * Enable pairwise lookup table for given BSS idx.
467 		 * Without this, received frames will not be decrypted
468 		 * by the hardware.
469 		 */
470 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
471 		reg |= (1 << crypto->bssidx);
472 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
473 
474 		/*
475 		 * The driver does not support the IV/EIV generation
476 		 * in hardware. However it doesn't support the IV/EIV
477 		 * inside the ieee80211 frame either, but requires it
478 		 * to be provided separately for the descriptor.
479 		 * rt2x00lib will cut the IV/EIV data out of all frames
480 		 * given to us by mac80211, but we must tell mac80211
481 		 * to generate the IV/EIV data.
482 		 */
483 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
484 	}
485 
486 	/*
487 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
488 	 * a particular key is valid. Because using the FIELD32()
489 	 * defines directly will cause a lot of overhead, we use
490 	 * a calculation to determine the correct bit directly.
491 	 */
492 	if (key->hw_key_idx < 32) {
493 		mask = 1 << key->hw_key_idx;
494 
495 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
496 		if (crypto->cmd == SET_KEY)
497 			reg |= mask;
498 		else if (crypto->cmd == DISABLE_KEY)
499 			reg &= ~mask;
500 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
501 	} else {
502 		mask = 1 << (key->hw_key_idx - 32);
503 
504 		rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
505 		if (crypto->cmd == SET_KEY)
506 			reg |= mask;
507 		else if (crypto->cmd == DISABLE_KEY)
508 			reg &= ~mask;
509 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
510 	}
511 
512 	return 0;
513 }
514 
515 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
516 				  const unsigned int filter_flags)
517 {
518 	u32 reg;
519 
520 	/*
521 	 * Start configuration steps.
522 	 * Note that the version error will always be dropped
523 	 * and broadcast frames will always be accepted since
524 	 * there is no filter for it at this time.
525 	 */
526 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
527 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
528 			   !(filter_flags & FIF_FCSFAIL));
529 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
530 			   !(filter_flags & FIF_PLCPFAIL));
531 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
532 			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
533 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME, 1);
534 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
535 			   !rt2x00dev->intf_ap_count);
536 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
537 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
538 			   !(filter_flags & FIF_ALLMULTI));
539 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
540 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
541 			   !(filter_flags & FIF_CONTROL));
542 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
543 }
544 
545 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
546 				struct rt2x00_intf *intf,
547 				struct rt2x00intf_conf *conf,
548 				const unsigned int flags)
549 {
550 	u32 reg;
551 
552 	if (flags & CONFIG_UPDATE_TYPE) {
553 		/*
554 		 * Enable synchronisation.
555 		 */
556 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
557 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
558 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
559 	}
560 
561 	if (flags & CONFIG_UPDATE_MAC) {
562 		reg = le32_to_cpu(conf->mac[1]);
563 		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
564 		conf->mac[1] = cpu_to_le32(reg);
565 
566 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
567 					       conf->mac, sizeof(conf->mac));
568 	}
569 
570 	if (flags & CONFIG_UPDATE_BSSID) {
571 		reg = le32_to_cpu(conf->bssid[1]);
572 		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
573 		conf->bssid[1] = cpu_to_le32(reg);
574 
575 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
576 					       conf->bssid,
577 					       sizeof(conf->bssid));
578 	}
579 }
580 
581 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
582 			       struct rt2x00lib_erp *erp,
583 			       u32 changed)
584 {
585 	u32 reg;
586 
587 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
588 	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
589 	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
590 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
591 
592 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
593 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
594 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
595 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
596 				   !!erp->short_preamble);
597 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
598 	}
599 
600 	if (changed & BSS_CHANGED_BASIC_RATES)
601 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
602 					  erp->basic_rates);
603 
604 	if (changed & BSS_CHANGED_BEACON_INT) {
605 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
606 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
607 				   erp->beacon_int * 16);
608 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
609 	}
610 
611 	if (changed & BSS_CHANGED_ERP_SLOT) {
612 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
613 		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
614 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
615 
616 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
617 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
618 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
619 		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
620 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
621 	}
622 }
623 
624 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
625 				      struct antenna_setup *ant)
626 {
627 	u8 r3;
628 	u8 r4;
629 	u8 r77;
630 
631 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
632 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
633 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
634 
635 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
636 
637 	/*
638 	 * Configure the RX antenna.
639 	 */
640 	switch (ant->rx) {
641 	case ANTENNA_HW_DIVERSITY:
642 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
643 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
644 				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
645 		break;
646 	case ANTENNA_A:
647 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
648 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
649 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
650 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
651 		else
652 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
653 		break;
654 	case ANTENNA_B:
655 	default:
656 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
657 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
658 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
659 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
660 		else
661 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
662 		break;
663 	}
664 
665 	rt61pci_bbp_write(rt2x00dev, 77, r77);
666 	rt61pci_bbp_write(rt2x00dev, 3, r3);
667 	rt61pci_bbp_write(rt2x00dev, 4, r4);
668 }
669 
670 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
671 				      struct antenna_setup *ant)
672 {
673 	u8 r3;
674 	u8 r4;
675 	u8 r77;
676 
677 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
678 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
679 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
680 
681 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
682 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
683 			  !rt2x00_has_cap_frame_type(rt2x00dev));
684 
685 	/*
686 	 * Configure the RX antenna.
687 	 */
688 	switch (ant->rx) {
689 	case ANTENNA_HW_DIVERSITY:
690 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
691 		break;
692 	case ANTENNA_A:
693 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
694 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
695 		break;
696 	case ANTENNA_B:
697 	default:
698 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
699 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
700 		break;
701 	}
702 
703 	rt61pci_bbp_write(rt2x00dev, 77, r77);
704 	rt61pci_bbp_write(rt2x00dev, 3, r3);
705 	rt61pci_bbp_write(rt2x00dev, 4, r4);
706 }
707 
708 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
709 					   const int p1, const int p2)
710 {
711 	u32 reg;
712 
713 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
714 
715 	rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
716 	rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
717 
718 	rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
719 	rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
720 
721 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
722 }
723 
724 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
725 					struct antenna_setup *ant)
726 {
727 	u8 r3;
728 	u8 r4;
729 	u8 r77;
730 
731 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
732 	rt61pci_bbp_read(rt2x00dev, 4, &r4);
733 	rt61pci_bbp_read(rt2x00dev, 77, &r77);
734 
735 	/*
736 	 * Configure the RX antenna.
737 	 */
738 	switch (ant->rx) {
739 	case ANTENNA_A:
740 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
741 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
742 		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
743 		break;
744 	case ANTENNA_HW_DIVERSITY:
745 		/*
746 		 * FIXME: Antenna selection for the rf 2529 is very confusing
747 		 * in the legacy driver. Just default to antenna B until the
748 		 * legacy code can be properly translated into rt2x00 code.
749 		 */
750 	case ANTENNA_B:
751 	default:
752 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
753 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
754 		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
755 		break;
756 	}
757 
758 	rt61pci_bbp_write(rt2x00dev, 77, r77);
759 	rt61pci_bbp_write(rt2x00dev, 3, r3);
760 	rt61pci_bbp_write(rt2x00dev, 4, r4);
761 }
762 
763 struct antenna_sel {
764 	u8 word;
765 	/*
766 	 * value[0] -> non-LNA
767 	 * value[1] -> LNA
768 	 */
769 	u8 value[2];
770 };
771 
772 static const struct antenna_sel antenna_sel_a[] = {
773 	{ 96,  { 0x58, 0x78 } },
774 	{ 104, { 0x38, 0x48 } },
775 	{ 75,  { 0xfe, 0x80 } },
776 	{ 86,  { 0xfe, 0x80 } },
777 	{ 88,  { 0xfe, 0x80 } },
778 	{ 35,  { 0x60, 0x60 } },
779 	{ 97,  { 0x58, 0x58 } },
780 	{ 98,  { 0x58, 0x58 } },
781 };
782 
783 static const struct antenna_sel antenna_sel_bg[] = {
784 	{ 96,  { 0x48, 0x68 } },
785 	{ 104, { 0x2c, 0x3c } },
786 	{ 75,  { 0xfe, 0x80 } },
787 	{ 86,  { 0xfe, 0x80 } },
788 	{ 88,  { 0xfe, 0x80 } },
789 	{ 35,  { 0x50, 0x50 } },
790 	{ 97,  { 0x48, 0x48 } },
791 	{ 98,  { 0x48, 0x48 } },
792 };
793 
794 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
795 			       struct antenna_setup *ant)
796 {
797 	const struct antenna_sel *sel;
798 	unsigned int lna;
799 	unsigned int i;
800 	u32 reg;
801 
802 	/*
803 	 * We should never come here because rt2x00lib is supposed
804 	 * to catch this and send us the correct antenna explicitely.
805 	 */
806 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
807 	       ant->tx == ANTENNA_SW_DIVERSITY);
808 
809 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
810 		sel = antenna_sel_a;
811 		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
812 	} else {
813 		sel = antenna_sel_bg;
814 		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
815 	}
816 
817 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
818 		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
819 
820 	rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
821 
822 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
823 			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
824 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
825 			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
826 
827 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
828 
829 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
830 		rt61pci_config_antenna_5x(rt2x00dev, ant);
831 	else if (rt2x00_rf(rt2x00dev, RF2527))
832 		rt61pci_config_antenna_2x(rt2x00dev, ant);
833 	else if (rt2x00_rf(rt2x00dev, RF2529)) {
834 		if (rt2x00_has_cap_double_antenna(rt2x00dev))
835 			rt61pci_config_antenna_2x(rt2x00dev, ant);
836 		else
837 			rt61pci_config_antenna_2529(rt2x00dev, ant);
838 	}
839 }
840 
841 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
842 				    struct rt2x00lib_conf *libconf)
843 {
844 	u16 eeprom;
845 	short lna_gain = 0;
846 
847 	if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
848 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
849 			lna_gain += 14;
850 
851 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
852 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
853 	} else {
854 		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
855 			lna_gain += 14;
856 
857 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
858 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
859 	}
860 
861 	rt2x00dev->lna_gain = lna_gain;
862 }
863 
864 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
865 				   struct rf_channel *rf, const int txpower)
866 {
867 	u8 r3;
868 	u8 r94;
869 	u8 smart;
870 
871 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
872 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
873 
874 	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
875 
876 	rt61pci_bbp_read(rt2x00dev, 3, &r3);
877 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
878 	rt61pci_bbp_write(rt2x00dev, 3, r3);
879 
880 	r94 = 6;
881 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
882 		r94 += txpower - MAX_TXPOWER;
883 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
884 		r94 += txpower;
885 	rt61pci_bbp_write(rt2x00dev, 94, r94);
886 
887 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
888 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
889 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
890 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
891 
892 	udelay(200);
893 
894 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
895 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
896 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
897 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
898 
899 	udelay(200);
900 
901 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
902 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
903 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
904 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
905 
906 	msleep(1);
907 }
908 
909 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
910 				   const int txpower)
911 {
912 	struct rf_channel rf;
913 
914 	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
915 	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
916 	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
917 	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
918 
919 	rt61pci_config_channel(rt2x00dev, &rf, txpower);
920 }
921 
922 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
923 				    struct rt2x00lib_conf *libconf)
924 {
925 	u32 reg;
926 
927 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
928 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
929 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
930 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
931 	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
932 			   libconf->conf->long_frame_max_tx_count);
933 	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
934 			   libconf->conf->short_frame_max_tx_count);
935 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
936 }
937 
938 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
939 				struct rt2x00lib_conf *libconf)
940 {
941 	enum dev_state state =
942 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
943 		STATE_SLEEP : STATE_AWAKE;
944 	u32 reg;
945 
946 	if (state == STATE_SLEEP) {
947 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
948 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
949 				   rt2x00dev->beacon_int - 10);
950 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
951 				   libconf->conf->listen_interval - 1);
952 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
953 
954 		/* We must first disable autowake before it can be enabled */
955 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
956 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
957 
958 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
959 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
960 
961 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
962 					  0x00000005);
963 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
964 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
965 
966 		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
967 	} else {
968 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
969 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
970 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
971 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
972 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
973 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
974 
975 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
976 					  0x00000007);
977 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
978 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
979 
980 		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
981 	}
982 }
983 
984 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
985 			   struct rt2x00lib_conf *libconf,
986 			   const unsigned int flags)
987 {
988 	/* Always recalculate LNA gain before changing configuration */
989 	rt61pci_config_lna_gain(rt2x00dev, libconf);
990 
991 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
992 		rt61pci_config_channel(rt2x00dev, &libconf->rf,
993 				       libconf->conf->power_level);
994 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
995 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
996 		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
997 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
998 		rt61pci_config_retry_limit(rt2x00dev, libconf);
999 	if (flags & IEEE80211_CONF_CHANGE_PS)
1000 		rt61pci_config_ps(rt2x00dev, libconf);
1001 }
1002 
1003 /*
1004  * Link tuning
1005  */
1006 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1007 			       struct link_qual *qual)
1008 {
1009 	u32 reg;
1010 
1011 	/*
1012 	 * Update FCS error count from register.
1013 	 */
1014 	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1015 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1016 
1017 	/*
1018 	 * Update False CCA count from register.
1019 	 */
1020 	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1021 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1022 }
1023 
1024 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1025 				   struct link_qual *qual, u8 vgc_level)
1026 {
1027 	if (qual->vgc_level != vgc_level) {
1028 		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1029 		qual->vgc_level = vgc_level;
1030 		qual->vgc_level_reg = vgc_level;
1031 	}
1032 }
1033 
1034 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1035 				struct link_qual *qual)
1036 {
1037 	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1038 }
1039 
1040 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1041 			       struct link_qual *qual, const u32 count)
1042 {
1043 	u8 up_bound;
1044 	u8 low_bound;
1045 
1046 	/*
1047 	 * Determine r17 bounds.
1048 	 */
1049 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1050 		low_bound = 0x28;
1051 		up_bound = 0x48;
1052 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1053 			low_bound += 0x10;
1054 			up_bound += 0x10;
1055 		}
1056 	} else {
1057 		low_bound = 0x20;
1058 		up_bound = 0x40;
1059 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1060 			low_bound += 0x10;
1061 			up_bound += 0x10;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * If we are not associated, we should go straight to the
1067 	 * dynamic CCA tuning.
1068 	 */
1069 	if (!rt2x00dev->intf_associated)
1070 		goto dynamic_cca_tune;
1071 
1072 	/*
1073 	 * Special big-R17 for very short distance
1074 	 */
1075 	if (qual->rssi >= -35) {
1076 		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1077 		return;
1078 	}
1079 
1080 	/*
1081 	 * Special big-R17 for short distance
1082 	 */
1083 	if (qual->rssi >= -58) {
1084 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1085 		return;
1086 	}
1087 
1088 	/*
1089 	 * Special big-R17 for middle-short distance
1090 	 */
1091 	if (qual->rssi >= -66) {
1092 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1093 		return;
1094 	}
1095 
1096 	/*
1097 	 * Special mid-R17 for middle distance
1098 	 */
1099 	if (qual->rssi >= -74) {
1100 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1101 		return;
1102 	}
1103 
1104 	/*
1105 	 * Special case: Change up_bound based on the rssi.
1106 	 * Lower up_bound when rssi is weaker then -74 dBm.
1107 	 */
1108 	up_bound -= 2 * (-74 - qual->rssi);
1109 	if (low_bound > up_bound)
1110 		up_bound = low_bound;
1111 
1112 	if (qual->vgc_level > up_bound) {
1113 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1114 		return;
1115 	}
1116 
1117 dynamic_cca_tune:
1118 
1119 	/*
1120 	 * r17 does not yet exceed upper limit, continue and base
1121 	 * the r17 tuning on the false CCA count.
1122 	 */
1123 	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1124 		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1125 	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1126 		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1127 }
1128 
1129 /*
1130  * Queue handlers.
1131  */
1132 static void rt61pci_start_queue(struct data_queue *queue)
1133 {
1134 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1135 	u32 reg;
1136 
1137 	switch (queue->qid) {
1138 	case QID_RX:
1139 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1140 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1141 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1142 		break;
1143 	case QID_BEACON:
1144 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1145 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1146 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1147 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1148 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1149 		break;
1150 	default:
1151 		break;
1152 	}
1153 }
1154 
1155 static void rt61pci_kick_queue(struct data_queue *queue)
1156 {
1157 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1158 	u32 reg;
1159 
1160 	switch (queue->qid) {
1161 	case QID_AC_VO:
1162 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1163 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1164 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1165 		break;
1166 	case QID_AC_VI:
1167 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1168 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1169 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1170 		break;
1171 	case QID_AC_BE:
1172 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1173 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1174 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1175 		break;
1176 	case QID_AC_BK:
1177 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1178 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1179 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1180 		break;
1181 	default:
1182 		break;
1183 	}
1184 }
1185 
1186 static void rt61pci_stop_queue(struct data_queue *queue)
1187 {
1188 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1189 	u32 reg;
1190 
1191 	switch (queue->qid) {
1192 	case QID_AC_VO:
1193 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1194 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1195 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1196 		break;
1197 	case QID_AC_VI:
1198 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1199 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1200 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1201 		break;
1202 	case QID_AC_BE:
1203 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1204 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1205 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1206 		break;
1207 	case QID_AC_BK:
1208 		rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1209 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1210 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1211 		break;
1212 	case QID_RX:
1213 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1214 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1215 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1216 		break;
1217 	case QID_BEACON:
1218 		rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1219 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1220 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1221 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1222 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1223 
1224 		/*
1225 		 * Wait for possibly running tbtt tasklets.
1226 		 */
1227 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1228 		break;
1229 	default:
1230 		break;
1231 	}
1232 }
1233 
1234 /*
1235  * Firmware functions
1236  */
1237 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1238 {
1239 	u16 chip;
1240 	char *fw_name;
1241 
1242 	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1243 	switch (chip) {
1244 	case RT2561_PCI_ID:
1245 		fw_name = FIRMWARE_RT2561;
1246 		break;
1247 	case RT2561s_PCI_ID:
1248 		fw_name = FIRMWARE_RT2561s;
1249 		break;
1250 	case RT2661_PCI_ID:
1251 		fw_name = FIRMWARE_RT2661;
1252 		break;
1253 	default:
1254 		fw_name = NULL;
1255 		break;
1256 	}
1257 
1258 	return fw_name;
1259 }
1260 
1261 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1262 				  const u8 *data, const size_t len)
1263 {
1264 	u16 fw_crc;
1265 	u16 crc;
1266 
1267 	/*
1268 	 * Only support 8kb firmware files.
1269 	 */
1270 	if (len != 8192)
1271 		return FW_BAD_LENGTH;
1272 
1273 	/*
1274 	 * The last 2 bytes in the firmware array are the crc checksum itself.
1275 	 * This means that we should never pass those 2 bytes to the crc
1276 	 * algorithm.
1277 	 */
1278 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1279 
1280 	/*
1281 	 * Use the crc itu-t algorithm.
1282 	 */
1283 	crc = crc_itu_t(0, data, len - 2);
1284 	crc = crc_itu_t_byte(crc, 0);
1285 	crc = crc_itu_t_byte(crc, 0);
1286 
1287 	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1288 }
1289 
1290 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1291 				 const u8 *data, const size_t len)
1292 {
1293 	int i;
1294 	u32 reg;
1295 
1296 	/*
1297 	 * Wait for stable hardware.
1298 	 */
1299 	for (i = 0; i < 100; i++) {
1300 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1301 		if (reg)
1302 			break;
1303 		msleep(1);
1304 	}
1305 
1306 	if (!reg) {
1307 		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1308 		return -EBUSY;
1309 	}
1310 
1311 	/*
1312 	 * Prepare MCU and mailbox for firmware loading.
1313 	 */
1314 	reg = 0;
1315 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1316 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1317 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1318 	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1319 	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1320 
1321 	/*
1322 	 * Write firmware to device.
1323 	 */
1324 	reg = 0;
1325 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1326 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1327 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1328 
1329 	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1330 				       data, len);
1331 
1332 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1333 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1334 
1335 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1336 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1337 
1338 	for (i = 0; i < 100; i++) {
1339 		rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1340 		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1341 			break;
1342 		msleep(1);
1343 	}
1344 
1345 	if (i == 100) {
1346 		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1347 		return -EBUSY;
1348 	}
1349 
1350 	/*
1351 	 * Hardware needs another millisecond before it is ready.
1352 	 */
1353 	msleep(1);
1354 
1355 	/*
1356 	 * Reset MAC and BBP registers.
1357 	 */
1358 	reg = 0;
1359 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1360 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1361 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1362 
1363 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1364 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1365 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1366 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1367 
1368 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1369 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1370 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1371 
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Initialization functions.
1377  */
1378 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1379 {
1380 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1381 	u32 word;
1382 
1383 	if (entry->queue->qid == QID_RX) {
1384 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1385 
1386 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1387 	} else {
1388 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1389 
1390 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1391 		        rt2x00_get_field32(word, TXD_W0_VALID));
1392 	}
1393 }
1394 
1395 static void rt61pci_clear_entry(struct queue_entry *entry)
1396 {
1397 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1398 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1399 	u32 word;
1400 
1401 	if (entry->queue->qid == QID_RX) {
1402 		rt2x00_desc_read(entry_priv->desc, 5, &word);
1403 		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1404 				   skbdesc->skb_dma);
1405 		rt2x00_desc_write(entry_priv->desc, 5, word);
1406 
1407 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1408 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1409 		rt2x00_desc_write(entry_priv->desc, 0, word);
1410 	} else {
1411 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1412 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1413 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1414 		rt2x00_desc_write(entry_priv->desc, 0, word);
1415 	}
1416 }
1417 
1418 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1419 {
1420 	struct queue_entry_priv_mmio *entry_priv;
1421 	u32 reg;
1422 
1423 	/*
1424 	 * Initialize registers.
1425 	 */
1426 	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1427 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1428 			   rt2x00dev->tx[0].limit);
1429 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1430 			   rt2x00dev->tx[1].limit);
1431 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1432 			   rt2x00dev->tx[2].limit);
1433 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1434 			   rt2x00dev->tx[3].limit);
1435 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1436 
1437 	rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1438 	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1439 			   rt2x00dev->tx[0].desc_size / 4);
1440 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1441 
1442 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1443 	rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1444 	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1445 			   entry_priv->desc_dma);
1446 	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1447 
1448 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1449 	rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1450 	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1451 			   entry_priv->desc_dma);
1452 	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1453 
1454 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1455 	rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1456 	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1457 			   entry_priv->desc_dma);
1458 	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1459 
1460 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1461 	rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1462 	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1463 			   entry_priv->desc_dma);
1464 	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1465 
1466 	rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1467 	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1468 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1469 			   rt2x00dev->rx->desc_size / 4);
1470 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1471 	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1472 
1473 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1474 	rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1475 	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1476 			   entry_priv->desc_dma);
1477 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1478 
1479 	rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1480 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1481 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1482 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1483 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1484 	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1485 
1486 	rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1487 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1488 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1489 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1490 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1491 	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1492 
1493 	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1494 	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1495 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1496 
1497 	return 0;
1498 }
1499 
1500 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1501 {
1502 	u32 reg;
1503 
1504 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1505 	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1506 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1507 	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1508 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1509 
1510 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1511 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1512 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1513 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1514 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1515 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1516 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1517 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1518 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1519 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1520 
1521 	/*
1522 	 * CCK TXD BBP registers
1523 	 */
1524 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1525 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1526 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1527 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1528 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1529 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1530 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1531 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1532 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1533 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1534 
1535 	/*
1536 	 * OFDM TXD BBP registers
1537 	 */
1538 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1539 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1540 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1541 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1542 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1543 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1544 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1545 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1546 
1547 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1548 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1549 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1550 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1551 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1552 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1553 
1554 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1555 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1556 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1557 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1558 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1559 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1560 
1561 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1562 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1563 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1564 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1565 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1566 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1567 	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1568 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1569 
1570 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1571 
1572 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1573 
1574 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1575 	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1576 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1577 
1578 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1579 
1580 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1581 		return -EBUSY;
1582 
1583 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1584 
1585 	/*
1586 	 * Invalidate all Shared Keys (SEC_CSR0),
1587 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1588 	 */
1589 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1590 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1591 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1592 
1593 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1594 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1595 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1596 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1597 
1598 	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1599 
1600 	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1601 
1602 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1603 
1604 	/*
1605 	 * Clear all beacons
1606 	 * For the Beacon base registers we only need to clear
1607 	 * the first byte since that byte contains the VALID and OWNER
1608 	 * bits which (when set to 0) will invalidate the entire beacon.
1609 	 */
1610 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1611 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1612 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1613 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1614 
1615 	/*
1616 	 * We must clear the error counters.
1617 	 * These registers are cleared on read,
1618 	 * so we may pass a useless variable to store the value.
1619 	 */
1620 	rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1621 	rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1622 	rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1623 
1624 	/*
1625 	 * Reset MAC and BBP registers.
1626 	 */
1627 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1628 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1629 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1630 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1631 
1632 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1633 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1634 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1635 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1636 
1637 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1638 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1639 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1640 
1641 	return 0;
1642 }
1643 
1644 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1645 {
1646 	unsigned int i;
1647 	u8 value;
1648 
1649 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1650 		rt61pci_bbp_read(rt2x00dev, 0, &value);
1651 		if ((value != 0xff) && (value != 0x00))
1652 			return 0;
1653 		udelay(REGISTER_BUSY_DELAY);
1654 	}
1655 
1656 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1657 	return -EACCES;
1658 }
1659 
1660 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1661 {
1662 	unsigned int i;
1663 	u16 eeprom;
1664 	u8 reg_id;
1665 	u8 value;
1666 
1667 	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1668 		return -EACCES;
1669 
1670 	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1671 	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1672 	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1673 	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1674 	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1675 	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1676 	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1677 	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1678 	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1679 	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1680 	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1681 	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1682 	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1683 	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1684 	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1685 	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1686 	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1687 	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1688 	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1689 	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1690 	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1691 	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1692 	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1693 	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1694 
1695 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1696 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1697 
1698 		if (eeprom != 0xffff && eeprom != 0x0000) {
1699 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1700 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1701 			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1702 		}
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 /*
1709  * Device state switch handlers.
1710  */
1711 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1712 			       enum dev_state state)
1713 {
1714 	int mask = (state == STATE_RADIO_IRQ_OFF);
1715 	u32 reg;
1716 	unsigned long flags;
1717 
1718 	/*
1719 	 * When interrupts are being enabled, the interrupt registers
1720 	 * should clear the register to assure a clean state.
1721 	 */
1722 	if (state == STATE_RADIO_IRQ_ON) {
1723 		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1724 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1725 
1726 		rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1727 		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1728 	}
1729 
1730 	/*
1731 	 * Only toggle the interrupts bits we are going to use.
1732 	 * Non-checked interrupt bits are disabled by default.
1733 	 */
1734 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1735 
1736 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1737 	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1738 	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1739 	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1740 	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1741 	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1742 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1743 
1744 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1745 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1746 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1747 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1748 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1749 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1750 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1751 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1752 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1753 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1754 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1755 
1756 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1757 
1758 	if (state == STATE_RADIO_IRQ_OFF) {
1759 		/*
1760 		 * Ensure that all tasklets are finished.
1761 		 */
1762 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1763 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1764 		tasklet_kill(&rt2x00dev->autowake_tasklet);
1765 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1766 	}
1767 }
1768 
1769 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1770 {
1771 	u32 reg;
1772 
1773 	/*
1774 	 * Initialize all registers.
1775 	 */
1776 	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1777 		     rt61pci_init_registers(rt2x00dev) ||
1778 		     rt61pci_init_bbp(rt2x00dev)))
1779 		return -EIO;
1780 
1781 	/*
1782 	 * Enable RX.
1783 	 */
1784 	rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1785 	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1786 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1787 
1788 	return 0;
1789 }
1790 
1791 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1792 {
1793 	/*
1794 	 * Disable power
1795 	 */
1796 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1797 }
1798 
1799 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1800 {
1801 	u32 reg, reg2;
1802 	unsigned int i;
1803 	char put_to_sleep;
1804 
1805 	put_to_sleep = (state != STATE_AWAKE);
1806 
1807 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1808 	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1809 	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1810 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1811 
1812 	/*
1813 	 * Device is not guaranteed to be in the requested state yet.
1814 	 * We must wait until the register indicates that the
1815 	 * device has entered the correct state.
1816 	 */
1817 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1818 		rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1819 		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1820 		if (state == !put_to_sleep)
1821 			return 0;
1822 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1823 		msleep(10);
1824 	}
1825 
1826 	return -EBUSY;
1827 }
1828 
1829 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1830 				    enum dev_state state)
1831 {
1832 	int retval = 0;
1833 
1834 	switch (state) {
1835 	case STATE_RADIO_ON:
1836 		retval = rt61pci_enable_radio(rt2x00dev);
1837 		break;
1838 	case STATE_RADIO_OFF:
1839 		rt61pci_disable_radio(rt2x00dev);
1840 		break;
1841 	case STATE_RADIO_IRQ_ON:
1842 	case STATE_RADIO_IRQ_OFF:
1843 		rt61pci_toggle_irq(rt2x00dev, state);
1844 		break;
1845 	case STATE_DEEP_SLEEP:
1846 	case STATE_SLEEP:
1847 	case STATE_STANDBY:
1848 	case STATE_AWAKE:
1849 		retval = rt61pci_set_state(rt2x00dev, state);
1850 		break;
1851 	default:
1852 		retval = -ENOTSUPP;
1853 		break;
1854 	}
1855 
1856 	if (unlikely(retval))
1857 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1858 			   state, retval);
1859 
1860 	return retval;
1861 }
1862 
1863 /*
1864  * TX descriptor initialization
1865  */
1866 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1867 				  struct txentry_desc *txdesc)
1868 {
1869 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1870 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1871 	__le32 *txd = entry_priv->desc;
1872 	u32 word;
1873 
1874 	/*
1875 	 * Start writing the descriptor words.
1876 	 */
1877 	rt2x00_desc_read(txd, 1, &word);
1878 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1879 	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1880 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1881 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1882 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1883 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1884 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1885 	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1886 	rt2x00_desc_write(txd, 1, word);
1887 
1888 	rt2x00_desc_read(txd, 2, &word);
1889 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1890 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1891 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1892 			   txdesc->u.plcp.length_low);
1893 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1894 			   txdesc->u.plcp.length_high);
1895 	rt2x00_desc_write(txd, 2, word);
1896 
1897 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1898 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1899 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1900 	}
1901 
1902 	rt2x00_desc_read(txd, 5, &word);
1903 	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1904 	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1905 			   skbdesc->entry->entry_idx);
1906 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1907 			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1908 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1909 	rt2x00_desc_write(txd, 5, word);
1910 
1911 	if (entry->queue->qid != QID_BEACON) {
1912 		rt2x00_desc_read(txd, 6, &word);
1913 		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1914 				   skbdesc->skb_dma);
1915 		rt2x00_desc_write(txd, 6, word);
1916 
1917 		rt2x00_desc_read(txd, 11, &word);
1918 		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1919 				   txdesc->length);
1920 		rt2x00_desc_write(txd, 11, word);
1921 	}
1922 
1923 	/*
1924 	 * Writing TXD word 0 must the last to prevent a race condition with
1925 	 * the device, whereby the device may take hold of the TXD before we
1926 	 * finished updating it.
1927 	 */
1928 	rt2x00_desc_read(txd, 0, &word);
1929 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1930 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1931 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1932 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1933 	rt2x00_set_field32(&word, TXD_W0_ACK,
1934 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1935 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1936 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1937 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1938 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1939 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1940 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1941 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1942 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1943 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1944 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1945 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1946 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1947 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1948 	rt2x00_set_field32(&word, TXD_W0_BURST,
1949 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1950 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1951 	rt2x00_desc_write(txd, 0, word);
1952 
1953 	/*
1954 	 * Register descriptor details in skb frame descriptor.
1955 	 */
1956 	skbdesc->desc = txd;
1957 	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1958 			    TXD_DESC_SIZE;
1959 }
1960 
1961 /*
1962  * TX data initialization
1963  */
1964 static void rt61pci_write_beacon(struct queue_entry *entry,
1965 				 struct txentry_desc *txdesc)
1966 {
1967 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1968 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1969 	unsigned int beacon_base;
1970 	unsigned int padding_len;
1971 	u32 orig_reg, reg;
1972 
1973 	/*
1974 	 * Disable beaconing while we are reloading the beacon data,
1975 	 * otherwise we might be sending out invalid data.
1976 	 */
1977 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1978 	orig_reg = reg;
1979 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1980 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1981 
1982 	/*
1983 	 * Write the TX descriptor for the beacon.
1984 	 */
1985 	rt61pci_write_tx_desc(entry, txdesc);
1986 
1987 	/*
1988 	 * Dump beacon to userspace through debugfs.
1989 	 */
1990 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1991 
1992 	/*
1993 	 * Write entire beacon with descriptor and padding to register.
1994 	 */
1995 	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1996 	if (padding_len && skb_pad(entry->skb, padding_len)) {
1997 		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1998 		/* skb freed by skb_pad() on failure */
1999 		entry->skb = NULL;
2000 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2001 		return;
2002 	}
2003 
2004 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2005 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2006 				       entry_priv->desc, TXINFO_SIZE);
2007 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2008 				       entry->skb->data,
2009 				       entry->skb->len + padding_len);
2010 
2011 	/*
2012 	 * Enable beaconing again.
2013 	 *
2014 	 * For Wi-Fi faily generated beacons between participating
2015 	 * stations. Set TBTT phase adaptive adjustment step to 8us.
2016 	 */
2017 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2018 
2019 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2020 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2021 
2022 	/*
2023 	 * Clean up beacon skb.
2024 	 */
2025 	dev_kfree_skb_any(entry->skb);
2026 	entry->skb = NULL;
2027 }
2028 
2029 static void rt61pci_clear_beacon(struct queue_entry *entry)
2030 {
2031 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2032 	u32 orig_reg, reg;
2033 
2034 	/*
2035 	 * Disable beaconing while we are reloading the beacon data,
2036 	 * otherwise we might be sending out invalid data.
2037 	 */
2038 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
2039 	reg = orig_reg;
2040 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2041 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2042 
2043 	/*
2044 	 * Clear beacon.
2045 	 */
2046 	rt2x00mmio_register_write(rt2x00dev,
2047 				  HW_BEACON_OFFSET(entry->entry_idx), 0);
2048 
2049 	/*
2050 	 * Restore global beaconing state.
2051 	 */
2052 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2053 }
2054 
2055 /*
2056  * RX control handlers
2057  */
2058 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2059 {
2060 	u8 offset = rt2x00dev->lna_gain;
2061 	u8 lna;
2062 
2063 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2064 	switch (lna) {
2065 	case 3:
2066 		offset += 90;
2067 		break;
2068 	case 2:
2069 		offset += 74;
2070 		break;
2071 	case 1:
2072 		offset += 64;
2073 		break;
2074 	default:
2075 		return 0;
2076 	}
2077 
2078 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2079 		if (lna == 3 || lna == 2)
2080 			offset += 10;
2081 	}
2082 
2083 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2084 }
2085 
2086 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2087 				struct rxdone_entry_desc *rxdesc)
2088 {
2089 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2090 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2091 	u32 word0;
2092 	u32 word1;
2093 
2094 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
2095 	rt2x00_desc_read(entry_priv->desc, 1, &word1);
2096 
2097 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2098 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2099 
2100 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2101 	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2102 
2103 	if (rxdesc->cipher != CIPHER_NONE) {
2104 		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2105 		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2106 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2107 
2108 		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2109 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2110 
2111 		/*
2112 		 * Hardware has stripped IV/EIV data from 802.11 frame during
2113 		 * decryption. It has provided the data separately but rt2x00lib
2114 		 * should decide if it should be reinserted.
2115 		 */
2116 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2117 
2118 		/*
2119 		 * The hardware has already checked the Michael Mic and has
2120 		 * stripped it from the frame. Signal this to mac80211.
2121 		 */
2122 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2123 
2124 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2125 			rxdesc->flags |= RX_FLAG_DECRYPTED;
2126 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2127 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2128 	}
2129 
2130 	/*
2131 	 * Obtain the status about this packet.
2132 	 * When frame was received with an OFDM bitrate,
2133 	 * the signal is the PLCP value. If it was received with
2134 	 * a CCK bitrate the signal is the rate in 100kbit/s.
2135 	 */
2136 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2137 	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2138 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2139 
2140 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2141 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2142 	else
2143 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2144 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2145 		rxdesc->dev_flags |= RXDONE_MY_BSS;
2146 }
2147 
2148 /*
2149  * Interrupt functions.
2150  */
2151 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2152 {
2153 	struct data_queue *queue;
2154 	struct queue_entry *entry;
2155 	struct queue_entry *entry_done;
2156 	struct queue_entry_priv_mmio *entry_priv;
2157 	struct txdone_entry_desc txdesc;
2158 	u32 word;
2159 	u32 reg;
2160 	int type;
2161 	int index;
2162 	int i;
2163 
2164 	/*
2165 	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2166 	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2167 	 * flag is not set anymore.
2168 	 *
2169 	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2170 	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2171 	 * tx ring size for now.
2172 	 */
2173 	for (i = 0; i < rt2x00dev->tx->limit; i++) {
2174 		rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2175 		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2176 			break;
2177 
2178 		/*
2179 		 * Skip this entry when it contains an invalid
2180 		 * queue identication number.
2181 		 */
2182 		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2183 		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2184 		if (unlikely(!queue))
2185 			continue;
2186 
2187 		/*
2188 		 * Skip this entry when it contains an invalid
2189 		 * index number.
2190 		 */
2191 		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2192 		if (unlikely(index >= queue->limit))
2193 			continue;
2194 
2195 		entry = &queue->entries[index];
2196 		entry_priv = entry->priv_data;
2197 		rt2x00_desc_read(entry_priv->desc, 0, &word);
2198 
2199 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2200 		    !rt2x00_get_field32(word, TXD_W0_VALID))
2201 			return;
2202 
2203 		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2204 		while (entry != entry_done) {
2205 			/* Catch up.
2206 			 * Just report any entries we missed as failed.
2207 			 */
2208 			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2209 				    entry_done->entry_idx);
2210 
2211 			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2212 			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2213 		}
2214 
2215 		/*
2216 		 * Obtain the status about this packet.
2217 		 */
2218 		txdesc.flags = 0;
2219 		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2220 		case 0: /* Success, maybe with retry */
2221 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2222 			break;
2223 		case 6: /* Failure, excessive retries */
2224 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2225 			/* Don't break, this is a failed frame! */
2226 		default: /* Failure */
2227 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2228 		}
2229 		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2230 
2231 		/*
2232 		 * the frame was retried at least once
2233 		 * -> hw used fallback rates
2234 		 */
2235 		if (txdesc.retry)
2236 			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2237 
2238 		rt2x00lib_txdone(entry, &txdesc);
2239 	}
2240 }
2241 
2242 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2243 {
2244 	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2245 
2246 	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2247 }
2248 
2249 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2250 					    struct rt2x00_field32 irq_field)
2251 {
2252 	u32 reg;
2253 
2254 	/*
2255 	 * Enable a single interrupt. The interrupt mask register
2256 	 * access needs locking.
2257 	 */
2258 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2259 
2260 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2261 	rt2x00_set_field32(&reg, irq_field, 0);
2262 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2263 
2264 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2265 }
2266 
2267 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2268 					 struct rt2x00_field32 irq_field)
2269 {
2270 	u32 reg;
2271 
2272 	/*
2273 	 * Enable a single MCU interrupt. The interrupt mask register
2274 	 * access needs locking.
2275 	 */
2276 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2277 
2278 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2279 	rt2x00_set_field32(&reg, irq_field, 0);
2280 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2281 
2282 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2283 }
2284 
2285 static void rt61pci_txstatus_tasklet(unsigned long data)
2286 {
2287 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2288 	rt61pci_txdone(rt2x00dev);
2289 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2290 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2291 }
2292 
2293 static void rt61pci_tbtt_tasklet(unsigned long data)
2294 {
2295 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2296 	rt2x00lib_beacondone(rt2x00dev);
2297 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2298 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2299 }
2300 
2301 static void rt61pci_rxdone_tasklet(unsigned long data)
2302 {
2303 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2304 	if (rt2x00mmio_rxdone(rt2x00dev))
2305 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2306 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2307 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2308 }
2309 
2310 static void rt61pci_autowake_tasklet(unsigned long data)
2311 {
2312 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2313 	rt61pci_wakeup(rt2x00dev);
2314 	rt2x00mmio_register_write(rt2x00dev,
2315 				  M2H_CMD_DONE_CSR, 0xffffffff);
2316 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2317 		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2318 }
2319 
2320 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2321 {
2322 	struct rt2x00_dev *rt2x00dev = dev_instance;
2323 	u32 reg_mcu, mask_mcu;
2324 	u32 reg, mask;
2325 
2326 	/*
2327 	 * Get the interrupt sources & saved to local variable.
2328 	 * Write register value back to clear pending interrupts.
2329 	 */
2330 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2331 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2332 
2333 	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2334 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2335 
2336 	if (!reg && !reg_mcu)
2337 		return IRQ_NONE;
2338 
2339 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2340 		return IRQ_HANDLED;
2341 
2342 	/*
2343 	 * Schedule tasklets for interrupt handling.
2344 	 */
2345 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2346 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2347 
2348 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2349 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2350 
2351 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2352 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2353 
2354 	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2355 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
2356 
2357 	/*
2358 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2359 	 * for interrupts and interrupt masks we can just use the value of
2360 	 * INT_SOURCE_CSR to create the interrupt mask.
2361 	 */
2362 	mask = reg;
2363 	mask_mcu = reg_mcu;
2364 
2365 	/*
2366 	 * Disable all interrupts for which a tasklet was scheduled right now,
2367 	 * the tasklet will reenable the appropriate interrupts.
2368 	 */
2369 	spin_lock(&rt2x00dev->irqmask_lock);
2370 
2371 	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2372 	reg |= mask;
2373 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2374 
2375 	rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2376 	reg |= mask_mcu;
2377 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2378 
2379 	spin_unlock(&rt2x00dev->irqmask_lock);
2380 
2381 	return IRQ_HANDLED;
2382 }
2383 
2384 /*
2385  * Device probe functions.
2386  */
2387 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2388 {
2389 	struct eeprom_93cx6 eeprom;
2390 	u32 reg;
2391 	u16 word;
2392 	u8 *mac;
2393 	s8 value;
2394 
2395 	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2396 
2397 	eeprom.data = rt2x00dev;
2398 	eeprom.register_read = rt61pci_eepromregister_read;
2399 	eeprom.register_write = rt61pci_eepromregister_write;
2400 	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2401 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2402 	eeprom.reg_data_in = 0;
2403 	eeprom.reg_data_out = 0;
2404 	eeprom.reg_data_clock = 0;
2405 	eeprom.reg_chip_select = 0;
2406 
2407 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2408 			       EEPROM_SIZE / sizeof(u16));
2409 
2410 	/*
2411 	 * Start validation of the data that has been read.
2412 	 */
2413 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2414 	if (!is_valid_ether_addr(mac)) {
2415 		eth_random_addr(mac);
2416 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2417 	}
2418 
2419 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2420 	if (word == 0xffff) {
2421 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2422 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2423 				   ANTENNA_B);
2424 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2425 				   ANTENNA_B);
2426 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2427 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2428 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2429 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2430 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2431 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2432 	}
2433 
2434 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2435 	if (word == 0xffff) {
2436 		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2437 		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2438 		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2439 		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2440 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2441 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2442 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2443 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2444 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2445 	}
2446 
2447 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2448 	if (word == 0xffff) {
2449 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2450 				   LED_MODE_DEFAULT);
2451 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2452 		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2453 	}
2454 
2455 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2456 	if (word == 0xffff) {
2457 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2458 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2459 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2460 		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2461 	}
2462 
2463 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2464 	if (word == 0xffff) {
2465 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2466 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2467 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2468 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2469 	} else {
2470 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2471 		if (value < -10 || value > 10)
2472 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2473 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2474 		if (value < -10 || value > 10)
2475 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2476 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2477 	}
2478 
2479 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2480 	if (word == 0xffff) {
2481 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2482 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2483 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2484 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2485 	} else {
2486 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2487 		if (value < -10 || value > 10)
2488 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2489 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2490 		if (value < -10 || value > 10)
2491 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2492 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2493 	}
2494 
2495 	return 0;
2496 }
2497 
2498 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2499 {
2500 	u32 reg;
2501 	u16 value;
2502 	u16 eeprom;
2503 
2504 	/*
2505 	 * Read EEPROM word for configuration.
2506 	 */
2507 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2508 
2509 	/*
2510 	 * Identify RF chipset.
2511 	 */
2512 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2513 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2514 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2515 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2516 
2517 	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2518 	    !rt2x00_rf(rt2x00dev, RF5325) &&
2519 	    !rt2x00_rf(rt2x00dev, RF2527) &&
2520 	    !rt2x00_rf(rt2x00dev, RF2529)) {
2521 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2522 		return -ENODEV;
2523 	}
2524 
2525 	/*
2526 	 * Determine number of antennas.
2527 	 */
2528 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2529 		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2530 
2531 	/*
2532 	 * Identify default antenna configuration.
2533 	 */
2534 	rt2x00dev->default_ant.tx =
2535 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2536 	rt2x00dev->default_ant.rx =
2537 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2538 
2539 	/*
2540 	 * Read the Frame type.
2541 	 */
2542 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2543 		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2544 
2545 	/*
2546 	 * Detect if this device has a hardware controlled radio.
2547 	 */
2548 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2549 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2550 
2551 	/*
2552 	 * Read frequency offset and RF programming sequence.
2553 	 */
2554 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2555 	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2556 		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2557 
2558 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2559 
2560 	/*
2561 	 * Read external LNA informations.
2562 	 */
2563 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2564 
2565 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2566 		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2567 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2568 		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2569 
2570 	/*
2571 	 * When working with a RF2529 chip without double antenna,
2572 	 * the antenna settings should be gathered from the NIC
2573 	 * eeprom word.
2574 	 */
2575 	if (rt2x00_rf(rt2x00dev, RF2529) &&
2576 	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2577 		rt2x00dev->default_ant.rx =
2578 		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2579 		rt2x00dev->default_ant.tx =
2580 		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2581 
2582 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2583 			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2584 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2585 			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2586 	}
2587 
2588 	/*
2589 	 * Store led settings, for correct led behaviour.
2590 	 * If the eeprom value is invalid,
2591 	 * switch to default led mode.
2592 	 */
2593 #ifdef CONFIG_RT2X00_LIB_LEDS
2594 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2595 	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2596 
2597 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2598 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2599 	if (value == LED_MODE_SIGNAL_STRENGTH)
2600 		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2601 				 LED_TYPE_QUALITY);
2602 
2603 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2604 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2605 			   rt2x00_get_field16(eeprom,
2606 					      EEPROM_LED_POLARITY_GPIO_0));
2607 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2608 			   rt2x00_get_field16(eeprom,
2609 					      EEPROM_LED_POLARITY_GPIO_1));
2610 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2611 			   rt2x00_get_field16(eeprom,
2612 					      EEPROM_LED_POLARITY_GPIO_2));
2613 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2614 			   rt2x00_get_field16(eeprom,
2615 					      EEPROM_LED_POLARITY_GPIO_3));
2616 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2617 			   rt2x00_get_field16(eeprom,
2618 					      EEPROM_LED_POLARITY_GPIO_4));
2619 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2620 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2621 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2622 			   rt2x00_get_field16(eeprom,
2623 					      EEPROM_LED_POLARITY_RDY_G));
2624 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2625 			   rt2x00_get_field16(eeprom,
2626 					      EEPROM_LED_POLARITY_RDY_A));
2627 #endif /* CONFIG_RT2X00_LIB_LEDS */
2628 
2629 	return 0;
2630 }
2631 
2632 /*
2633  * RF value list for RF5225 & RF5325
2634  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2635  */
2636 static const struct rf_channel rf_vals_noseq[] = {
2637 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2638 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2639 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2640 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2641 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2642 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2643 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2644 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2645 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2646 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2647 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2648 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2649 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2650 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2651 
2652 	/* 802.11 UNI / HyperLan 2 */
2653 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2654 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2655 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2656 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2657 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2658 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2659 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2660 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2661 
2662 	/* 802.11 HyperLan 2 */
2663 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2664 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2665 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2666 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2667 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2668 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2669 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2670 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2671 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2672 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2673 
2674 	/* 802.11 UNII */
2675 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2676 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2677 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2678 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2679 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2680 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2681 
2682 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2683 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2684 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2685 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2686 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2687 };
2688 
2689 /*
2690  * RF value list for RF5225 & RF5325
2691  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2692  */
2693 static const struct rf_channel rf_vals_seq[] = {
2694 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2695 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2696 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2697 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2698 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2699 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2700 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2701 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2702 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2703 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2704 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2705 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2706 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2707 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2708 
2709 	/* 802.11 UNI / HyperLan 2 */
2710 	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2711 	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2712 	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2713 	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2714 	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2715 	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2716 	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2717 	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2718 
2719 	/* 802.11 HyperLan 2 */
2720 	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2721 	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2722 	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2723 	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2724 	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2725 	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2726 	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2727 	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2728 	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2729 	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2730 
2731 	/* 802.11 UNII */
2732 	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2733 	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2734 	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2735 	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2736 	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2737 	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2738 
2739 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2740 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2741 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2742 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2743 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2744 };
2745 
2746 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2747 {
2748 	struct hw_mode_spec *spec = &rt2x00dev->spec;
2749 	struct channel_info *info;
2750 	char *tx_power;
2751 	unsigned int i;
2752 
2753 	/*
2754 	 * Disable powersaving as default.
2755 	 */
2756 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2757 
2758 	/*
2759 	 * Initialize all hw fields.
2760 	 */
2761 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2762 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2763 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2764 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2765 
2766 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2767 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2768 				rt2x00_eeprom_addr(rt2x00dev,
2769 						   EEPROM_MAC_ADDR_0));
2770 
2771 	/*
2772 	 * As rt61 has a global fallback table we cannot specify
2773 	 * more then one tx rate per frame but since the hw will
2774 	 * try several rates (based on the fallback table) we should
2775 	 * initialize max_report_rates to the maximum number of rates
2776 	 * we are going to try. Otherwise mac80211 will truncate our
2777 	 * reported tx rates and the rc algortihm will end up with
2778 	 * incorrect data.
2779 	 */
2780 	rt2x00dev->hw->max_rates = 1;
2781 	rt2x00dev->hw->max_report_rates = 7;
2782 	rt2x00dev->hw->max_rate_tries = 1;
2783 
2784 	/*
2785 	 * Initialize hw_mode information.
2786 	 */
2787 	spec->supported_bands = SUPPORT_BAND_2GHZ;
2788 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2789 
2790 	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2791 		spec->num_channels = 14;
2792 		spec->channels = rf_vals_noseq;
2793 	} else {
2794 		spec->num_channels = 14;
2795 		spec->channels = rf_vals_seq;
2796 	}
2797 
2798 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2799 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2800 		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2801 	}
2802 
2803 	/*
2804 	 * Create channel information array
2805 	 */
2806 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2807 	if (!info)
2808 		return -ENOMEM;
2809 
2810 	spec->channels_info = info;
2811 
2812 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2813 	for (i = 0; i < 14; i++) {
2814 		info[i].max_power = MAX_TXPOWER;
2815 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2816 	}
2817 
2818 	if (spec->num_channels > 14) {
2819 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2820 		for (i = 14; i < spec->num_channels; i++) {
2821 			info[i].max_power = MAX_TXPOWER;
2822 			info[i].default_power1 =
2823 					TXPOWER_FROM_DEV(tx_power[i - 14]);
2824 		}
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2831 {
2832 	int retval;
2833 	u32 reg;
2834 
2835 	/*
2836 	 * Disable power saving.
2837 	 */
2838 	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2839 
2840 	/*
2841 	 * Allocate eeprom data.
2842 	 */
2843 	retval = rt61pci_validate_eeprom(rt2x00dev);
2844 	if (retval)
2845 		return retval;
2846 
2847 	retval = rt61pci_init_eeprom(rt2x00dev);
2848 	if (retval)
2849 		return retval;
2850 
2851 	/*
2852 	 * Enable rfkill polling by setting GPIO direction of the
2853 	 * rfkill switch GPIO pin correctly.
2854 	 */
2855 	rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2856 	rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2857 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2858 
2859 	/*
2860 	 * Initialize hw specifications.
2861 	 */
2862 	retval = rt61pci_probe_hw_mode(rt2x00dev);
2863 	if (retval)
2864 		return retval;
2865 
2866 	/*
2867 	 * This device has multiple filters for control frames,
2868 	 * but has no a separate filter for PS Poll frames.
2869 	 */
2870 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2871 
2872 	/*
2873 	 * This device requires firmware and DMA mapped skbs.
2874 	 */
2875 	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2876 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2877 	if (!modparam_nohwcrypt)
2878 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2879 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2880 
2881 	/*
2882 	 * Set the rssi offset.
2883 	 */
2884 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2885 
2886 	return 0;
2887 }
2888 
2889 /*
2890  * IEEE80211 stack callback functions.
2891  */
2892 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2893 			   struct ieee80211_vif *vif, u16 queue_idx,
2894 			   const struct ieee80211_tx_queue_params *params)
2895 {
2896 	struct rt2x00_dev *rt2x00dev = hw->priv;
2897 	struct data_queue *queue;
2898 	struct rt2x00_field32 field;
2899 	int retval;
2900 	u32 reg;
2901 	u32 offset;
2902 
2903 	/*
2904 	 * First pass the configuration through rt2x00lib, that will
2905 	 * update the queue settings and validate the input. After that
2906 	 * we are free to update the registers based on the value
2907 	 * in the queue parameter.
2908 	 */
2909 	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2910 	if (retval)
2911 		return retval;
2912 
2913 	/*
2914 	 * We only need to perform additional register initialization
2915 	 * for WMM queues.
2916 	 */
2917 	if (queue_idx >= 4)
2918 		return 0;
2919 
2920 	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2921 
2922 	/* Update WMM TXOP register */
2923 	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2924 	field.bit_offset = (queue_idx & 1) * 16;
2925 	field.bit_mask = 0xffff << field.bit_offset;
2926 
2927 	rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2928 	rt2x00_set_field32(&reg, field, queue->txop);
2929 	rt2x00mmio_register_write(rt2x00dev, offset, reg);
2930 
2931 	/* Update WMM registers */
2932 	field.bit_offset = queue_idx * 4;
2933 	field.bit_mask = 0xf << field.bit_offset;
2934 
2935 	rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2936 	rt2x00_set_field32(&reg, field, queue->aifs);
2937 	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2938 
2939 	rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2940 	rt2x00_set_field32(&reg, field, queue->cw_min);
2941 	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2942 
2943 	rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2944 	rt2x00_set_field32(&reg, field, queue->cw_max);
2945 	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2946 
2947 	return 0;
2948 }
2949 
2950 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2951 {
2952 	struct rt2x00_dev *rt2x00dev = hw->priv;
2953 	u64 tsf;
2954 	u32 reg;
2955 
2956 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2957 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2958 	rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2959 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2960 
2961 	return tsf;
2962 }
2963 
2964 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2965 	.tx			= rt2x00mac_tx,
2966 	.start			= rt2x00mac_start,
2967 	.stop			= rt2x00mac_stop,
2968 	.add_interface		= rt2x00mac_add_interface,
2969 	.remove_interface	= rt2x00mac_remove_interface,
2970 	.config			= rt2x00mac_config,
2971 	.configure_filter	= rt2x00mac_configure_filter,
2972 	.set_key		= rt2x00mac_set_key,
2973 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2974 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2975 	.get_stats		= rt2x00mac_get_stats,
2976 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2977 	.conf_tx		= rt61pci_conf_tx,
2978 	.get_tsf		= rt61pci_get_tsf,
2979 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2980 	.flush			= rt2x00mac_flush,
2981 	.set_antenna		= rt2x00mac_set_antenna,
2982 	.get_antenna		= rt2x00mac_get_antenna,
2983 	.get_ringparam		= rt2x00mac_get_ringparam,
2984 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2985 };
2986 
2987 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2988 	.irq_handler		= rt61pci_interrupt,
2989 	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
2990 	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
2991 	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
2992 	.autowake_tasklet	= rt61pci_autowake_tasklet,
2993 	.probe_hw		= rt61pci_probe_hw,
2994 	.get_firmware_name	= rt61pci_get_firmware_name,
2995 	.check_firmware		= rt61pci_check_firmware,
2996 	.load_firmware		= rt61pci_load_firmware,
2997 	.initialize		= rt2x00mmio_initialize,
2998 	.uninitialize		= rt2x00mmio_uninitialize,
2999 	.get_entry_state	= rt61pci_get_entry_state,
3000 	.clear_entry		= rt61pci_clear_entry,
3001 	.set_device_state	= rt61pci_set_device_state,
3002 	.rfkill_poll		= rt61pci_rfkill_poll,
3003 	.link_stats		= rt61pci_link_stats,
3004 	.reset_tuner		= rt61pci_reset_tuner,
3005 	.link_tuner		= rt61pci_link_tuner,
3006 	.start_queue		= rt61pci_start_queue,
3007 	.kick_queue		= rt61pci_kick_queue,
3008 	.stop_queue		= rt61pci_stop_queue,
3009 	.flush_queue		= rt2x00mmio_flush_queue,
3010 	.write_tx_desc		= rt61pci_write_tx_desc,
3011 	.write_beacon		= rt61pci_write_beacon,
3012 	.clear_beacon		= rt61pci_clear_beacon,
3013 	.fill_rxdone		= rt61pci_fill_rxdone,
3014 	.config_shared_key	= rt61pci_config_shared_key,
3015 	.config_pairwise_key	= rt61pci_config_pairwise_key,
3016 	.config_filter		= rt61pci_config_filter,
3017 	.config_intf		= rt61pci_config_intf,
3018 	.config_erp		= rt61pci_config_erp,
3019 	.config_ant		= rt61pci_config_ant,
3020 	.config			= rt61pci_config,
3021 };
3022 
3023 static void rt61pci_queue_init(struct data_queue *queue)
3024 {
3025 	switch (queue->qid) {
3026 	case QID_RX:
3027 		queue->limit = 32;
3028 		queue->data_size = DATA_FRAME_SIZE;
3029 		queue->desc_size = RXD_DESC_SIZE;
3030 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3031 		break;
3032 
3033 	case QID_AC_VO:
3034 	case QID_AC_VI:
3035 	case QID_AC_BE:
3036 	case QID_AC_BK:
3037 		queue->limit = 32;
3038 		queue->data_size = DATA_FRAME_SIZE;
3039 		queue->desc_size = TXD_DESC_SIZE;
3040 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3041 		break;
3042 
3043 	case QID_BEACON:
3044 		queue->limit = 4;
3045 		queue->data_size = 0; /* No DMA required for beacons */
3046 		queue->desc_size = TXINFO_SIZE;
3047 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3048 		break;
3049 
3050 	case QID_ATIM:
3051 		/* fallthrough */
3052 	default:
3053 		BUG();
3054 		break;
3055 	}
3056 }
3057 
3058 static const struct rt2x00_ops rt61pci_ops = {
3059 	.name			= KBUILD_MODNAME,
3060 	.max_ap_intf		= 4,
3061 	.eeprom_size		= EEPROM_SIZE,
3062 	.rf_size		= RF_SIZE,
3063 	.tx_queues		= NUM_TX_QUEUES,
3064 	.queue_init		= rt61pci_queue_init,
3065 	.lib			= &rt61pci_rt2x00_ops,
3066 	.hw			= &rt61pci_mac80211_ops,
3067 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3068 	.debugfs		= &rt61pci_rt2x00debug,
3069 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3070 };
3071 
3072 /*
3073  * RT61pci module information.
3074  */
3075 static const struct pci_device_id rt61pci_device_table[] = {
3076 	/* RT2561s */
3077 	{ PCI_DEVICE(0x1814, 0x0301) },
3078 	/* RT2561 v2 */
3079 	{ PCI_DEVICE(0x1814, 0x0302) },
3080 	/* RT2661 */
3081 	{ PCI_DEVICE(0x1814, 0x0401) },
3082 	{ 0, }
3083 };
3084 
3085 MODULE_AUTHOR(DRV_PROJECT);
3086 MODULE_VERSION(DRV_VERSION);
3087 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3088 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3089 			"PCI & PCMCIA chipset based cards");
3090 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3091 MODULE_FIRMWARE(FIRMWARE_RT2561);
3092 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3093 MODULE_FIRMWARE(FIRMWARE_RT2661);
3094 MODULE_LICENSE("GPL");
3095 
3096 static int rt61pci_probe(struct pci_dev *pci_dev,
3097 			 const struct pci_device_id *id)
3098 {
3099 	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3100 }
3101 
3102 static struct pci_driver rt61pci_driver = {
3103 	.name		= KBUILD_MODNAME,
3104 	.id_table	= rt61pci_device_table,
3105 	.probe		= rt61pci_probe,
3106 	.remove		= rt2x00pci_remove,
3107 	.suspend	= rt2x00pci_suspend,
3108 	.resume		= rt2x00pci_resume,
3109 };
3110 
3111 module_pci_driver(rt61pci_driver);
3112