1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt61pci
21 	Abstract: rt61pci device specific routines.
22 	Supported chipsets: RT2561, RT2561s, RT2661.
23  */
24 
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
33 
34 #include "rt2x00.h"
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
38 
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static bool modparam_nohwcrypt = false;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 
46 /*
47  * Register access.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attempt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 	rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 	rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 	rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 				H2M_MAILBOX_CSR_OWNER, (__reg))
64 
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66 			      const unsigned int word, const u8 value)
67 {
68 	u32 reg;
69 
70 	mutex_lock(&rt2x00dev->csr_mutex);
71 
72 	/*
73 	 * Wait until the BBP becomes available, afterwards we
74 	 * can safely write the new data into the register.
75 	 */
76 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 		reg = 0;
78 		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82 
83 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
84 	}
85 
86 	mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88 
89 static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
90 			   const unsigned int word)
91 {
92 	u32 reg;
93 	u8 value;
94 
95 	mutex_lock(&rt2x00dev->csr_mutex);
96 
97 	/*
98 	 * Wait until the BBP becomes available, afterwards we
99 	 * can safely write the read request into the register.
100 	 * After the data has been written, we wait until hardware
101 	 * returns the correct value, if at any time the register
102 	 * doesn't become available in time, reg will be 0xffffffff
103 	 * which means we return 0xff to the caller.
104 	 */
105 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 		reg = 0;
107 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110 
111 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
112 
113 		WAIT_FOR_BBP(rt2x00dev, &reg);
114 	}
115 
116 	value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117 
118 	mutex_unlock(&rt2x00dev->csr_mutex);
119 
120 	return value;
121 }
122 
123 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
124 			     const unsigned int word, const u32 value)
125 {
126 	u32 reg;
127 
128 	mutex_lock(&rt2x00dev->csr_mutex);
129 
130 	/*
131 	 * Wait until the RF becomes available, afterwards we
132 	 * can safely write the new data into the register.
133 	 */
134 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135 		reg = 0;
136 		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137 		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
138 		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
139 		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
140 
141 		rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
142 		rt2x00_rf_write(rt2x00dev, word, value);
143 	}
144 
145 	mutex_unlock(&rt2x00dev->csr_mutex);
146 }
147 
148 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
149 				const u8 command, const u8 token,
150 				const u8 arg0, const u8 arg1)
151 {
152 	u32 reg;
153 
154 	mutex_lock(&rt2x00dev->csr_mutex);
155 
156 	/*
157 	 * Wait until the MCU becomes available, afterwards we
158 	 * can safely write the new data into the register.
159 	 */
160 	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
161 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
162 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
163 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
164 		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
165 		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
166 
167 		reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
168 		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
169 		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
170 		rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
171 	}
172 
173 	mutex_unlock(&rt2x00dev->csr_mutex);
174 
175 }
176 
177 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
178 {
179 	struct rt2x00_dev *rt2x00dev = eeprom->data;
180 	u32 reg;
181 
182 	reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
183 
184 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
185 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
186 	eeprom->reg_data_clock =
187 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
188 	eeprom->reg_chip_select =
189 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
190 }
191 
192 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
193 {
194 	struct rt2x00_dev *rt2x00dev = eeprom->data;
195 	u32 reg = 0;
196 
197 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
198 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
199 	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
200 			   !!eeprom->reg_data_clock);
201 	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
202 			   !!eeprom->reg_chip_select);
203 
204 	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
205 }
206 
207 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
208 static const struct rt2x00debug rt61pci_rt2x00debug = {
209 	.owner	= THIS_MODULE,
210 	.csr	= {
211 		.read		= rt2x00mmio_register_read,
212 		.write		= rt2x00mmio_register_write,
213 		.flags		= RT2X00DEBUGFS_OFFSET,
214 		.word_base	= CSR_REG_BASE,
215 		.word_size	= sizeof(u32),
216 		.word_count	= CSR_REG_SIZE / sizeof(u32),
217 	},
218 	.eeprom	= {
219 		.read		= rt2x00_eeprom_read,
220 		.write		= rt2x00_eeprom_write,
221 		.word_base	= EEPROM_BASE,
222 		.word_size	= sizeof(u16),
223 		.word_count	= EEPROM_SIZE / sizeof(u16),
224 	},
225 	.bbp	= {
226 		.read		= rt61pci_bbp_read,
227 		.write		= rt61pci_bbp_write,
228 		.word_base	= BBP_BASE,
229 		.word_size	= sizeof(u8),
230 		.word_count	= BBP_SIZE / sizeof(u8),
231 	},
232 	.rf	= {
233 		.read		= rt2x00_rf_read,
234 		.write		= rt61pci_rf_write,
235 		.word_base	= RF_BASE,
236 		.word_size	= sizeof(u32),
237 		.word_count	= RF_SIZE / sizeof(u32),
238 	},
239 };
240 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
241 
242 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
243 {
244 	u32 reg;
245 
246 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
247 	return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
248 }
249 
250 #ifdef CONFIG_RT2X00_LIB_LEDS
251 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
252 				   enum led_brightness brightness)
253 {
254 	struct rt2x00_led *led =
255 	    container_of(led_cdev, struct rt2x00_led, led_dev);
256 	unsigned int enabled = brightness != LED_OFF;
257 	unsigned int a_mode =
258 	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
259 	unsigned int bg_mode =
260 	    (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
261 
262 	if (led->type == LED_TYPE_RADIO) {
263 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
264 				   MCU_LEDCS_RADIO_STATUS, enabled);
265 
266 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
267 				    (led->rt2x00dev->led_mcu_reg & 0xff),
268 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
269 	} else if (led->type == LED_TYPE_ASSOC) {
270 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
272 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
274 
275 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
276 				    (led->rt2x00dev->led_mcu_reg & 0xff),
277 				    ((led->rt2x00dev->led_mcu_reg >> 8)));
278 	} else if (led->type == LED_TYPE_QUALITY) {
279 		/*
280 		 * The brightness is divided into 6 levels (0 - 5),
281 		 * this means we need to convert the brightness
282 		 * argument into the matching level within that range.
283 		 */
284 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
285 				    brightness / (LED_FULL / 6), 0);
286 	}
287 }
288 
289 static int rt61pci_blink_set(struct led_classdev *led_cdev,
290 			     unsigned long *delay_on,
291 			     unsigned long *delay_off)
292 {
293 	struct rt2x00_led *led =
294 	    container_of(led_cdev, struct rt2x00_led, led_dev);
295 	u32 reg;
296 
297 	reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
298 	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
299 	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
300 	rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
301 
302 	return 0;
303 }
304 
305 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
306 			     struct rt2x00_led *led,
307 			     enum led_type type)
308 {
309 	led->rt2x00dev = rt2x00dev;
310 	led->type = type;
311 	led->led_dev.brightness_set = rt61pci_brightness_set;
312 	led->led_dev.blink_set = rt61pci_blink_set;
313 	led->flags = LED_INITIALIZED;
314 }
315 #endif /* CONFIG_RT2X00_LIB_LEDS */
316 
317 /*
318  * Configuration handlers.
319  */
320 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
321 				     struct rt2x00lib_crypto *crypto,
322 				     struct ieee80211_key_conf *key)
323 {
324 	struct hw_key_entry key_entry;
325 	struct rt2x00_field32 field;
326 	u32 mask;
327 	u32 reg;
328 
329 	if (crypto->cmd == SET_KEY) {
330 		/*
331 		 * rt2x00lib can't determine the correct free
332 		 * key_idx for shared keys. We have 1 register
333 		 * with key valid bits. The goal is simple, read
334 		 * the register, if that is full we have no slots
335 		 * left.
336 		 * Note that each BSS is allowed to have up to 4
337 		 * shared keys, so put a mask over the allowed
338 		 * entries.
339 		 */
340 		mask = (0xf << crypto->bssidx);
341 
342 		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0);
343 		reg &= mask;
344 
345 		if (reg && reg == mask)
346 			return -ENOSPC;
347 
348 		key->hw_key_idx += reg ? ffz(reg) : 0;
349 
350 		/*
351 		 * Upload key to hardware
352 		 */
353 		memcpy(key_entry.key, crypto->key,
354 		       sizeof(key_entry.key));
355 		memcpy(key_entry.tx_mic, crypto->tx_mic,
356 		       sizeof(key_entry.tx_mic));
357 		memcpy(key_entry.rx_mic, crypto->rx_mic,
358 		       sizeof(key_entry.rx_mic));
359 
360 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
361 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
362 					       &key_entry, sizeof(key_entry));
363 
364 		/*
365 		 * The cipher types are stored over 2 registers.
366 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
367 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
368 		 * Using the correct defines correctly will cause overhead,
369 		 * so just calculate the correct offset.
370 		 */
371 		if (key->hw_key_idx < 8) {
372 			field.bit_offset = (3 * key->hw_key_idx);
373 			field.bit_mask = 0x7 << field.bit_offset;
374 
375 			reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR1);
376 			rt2x00_set_field32(&reg, field, crypto->cipher);
377 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
378 		} else {
379 			field.bit_offset = (3 * (key->hw_key_idx - 8));
380 			field.bit_mask = 0x7 << field.bit_offset;
381 
382 			reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR5);
383 			rt2x00_set_field32(&reg, field, crypto->cipher);
384 			rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
385 		}
386 
387 		/*
388 		 * The driver does not support the IV/EIV generation
389 		 * in hardware. However it doesn't support the IV/EIV
390 		 * inside the ieee80211 frame either, but requires it
391 		 * to be provided separately for the descriptor.
392 		 * rt2x00lib will cut the IV/EIV data out of all frames
393 		 * given to us by mac80211, but we must tell mac80211
394 		 * to generate the IV/EIV data.
395 		 */
396 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
397 	}
398 
399 	/*
400 	 * SEC_CSR0 contains only single-bit fields to indicate
401 	 * a particular key is valid. Because using the FIELD32()
402 	 * defines directly will cause a lot of overhead, we use
403 	 * a calculation to determine the correct bit directly.
404 	 */
405 	mask = 1 << key->hw_key_idx;
406 
407 	reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0);
408 	if (crypto->cmd == SET_KEY)
409 		reg |= mask;
410 	else if (crypto->cmd == DISABLE_KEY)
411 		reg &= ~mask;
412 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
413 
414 	return 0;
415 }
416 
417 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
418 				       struct rt2x00lib_crypto *crypto,
419 				       struct ieee80211_key_conf *key)
420 {
421 	struct hw_pairwise_ta_entry addr_entry;
422 	struct hw_key_entry key_entry;
423 	u32 mask;
424 	u32 reg;
425 
426 	if (crypto->cmd == SET_KEY) {
427 		/*
428 		 * rt2x00lib can't determine the correct free
429 		 * key_idx for pairwise keys. We have 2 registers
430 		 * with key valid bits. The goal is simple: read
431 		 * the first register. If that is full, move to
432 		 * the next register.
433 		 * When both registers are full, we drop the key.
434 		 * Otherwise, we use the first invalid entry.
435 		 */
436 		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
437 		if (reg && reg == ~0) {
438 			key->hw_key_idx = 32;
439 			reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
440 			if (reg && reg == ~0)
441 				return -ENOSPC;
442 		}
443 
444 		key->hw_key_idx += reg ? ffz(reg) : 0;
445 
446 		/*
447 		 * Upload key to hardware
448 		 */
449 		memcpy(key_entry.key, crypto->key,
450 		       sizeof(key_entry.key));
451 		memcpy(key_entry.tx_mic, crypto->tx_mic,
452 		       sizeof(key_entry.tx_mic));
453 		memcpy(key_entry.rx_mic, crypto->rx_mic,
454 		       sizeof(key_entry.rx_mic));
455 
456 		memset(&addr_entry, 0, sizeof(addr_entry));
457 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
458 		addr_entry.cipher = crypto->cipher;
459 
460 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
461 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
462 					       &key_entry, sizeof(key_entry));
463 
464 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
465 		rt2x00mmio_register_multiwrite(rt2x00dev, reg,
466 					       &addr_entry, sizeof(addr_entry));
467 
468 		/*
469 		 * Enable pairwise lookup table for given BSS idx.
470 		 * Without this, received frames will not be decrypted
471 		 * by the hardware.
472 		 */
473 		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
474 		reg |= (1 << crypto->bssidx);
475 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
476 
477 		/*
478 		 * The driver does not support the IV/EIV generation
479 		 * in hardware. However it doesn't support the IV/EIV
480 		 * inside the ieee80211 frame either, but requires it
481 		 * to be provided separately for the descriptor.
482 		 * rt2x00lib will cut the IV/EIV data out of all frames
483 		 * given to us by mac80211, but we must tell mac80211
484 		 * to generate the IV/EIV data.
485 		 */
486 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
487 	}
488 
489 	/*
490 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
491 	 * a particular key is valid. Because using the FIELD32()
492 	 * defines directly will cause a lot of overhead, we use
493 	 * a calculation to determine the correct bit directly.
494 	 */
495 	if (key->hw_key_idx < 32) {
496 		mask = 1 << key->hw_key_idx;
497 
498 		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
499 		if (crypto->cmd == SET_KEY)
500 			reg |= mask;
501 		else if (crypto->cmd == DISABLE_KEY)
502 			reg &= ~mask;
503 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
504 	} else {
505 		mask = 1 << (key->hw_key_idx - 32);
506 
507 		reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
508 		if (crypto->cmd == SET_KEY)
509 			reg |= mask;
510 		else if (crypto->cmd == DISABLE_KEY)
511 			reg &= ~mask;
512 		rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
513 	}
514 
515 	return 0;
516 }
517 
518 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
519 				  const unsigned int filter_flags)
520 {
521 	u32 reg;
522 
523 	/*
524 	 * Start configuration steps.
525 	 * Note that the version error will always be dropped
526 	 * and broadcast frames will always be accepted since
527 	 * there is no filter for it at this time.
528 	 */
529 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
530 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
531 			   !(filter_flags & FIF_FCSFAIL));
532 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
533 			   !(filter_flags & FIF_PLCPFAIL));
534 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
535 			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
536 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
537 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
538 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
539 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
540 			   !rt2x00dev->intf_ap_count);
541 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
542 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
543 			   !(filter_flags & FIF_ALLMULTI));
544 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
545 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
546 			   !(filter_flags & FIF_CONTROL));
547 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
548 }
549 
550 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
551 				struct rt2x00_intf *intf,
552 				struct rt2x00intf_conf *conf,
553 				const unsigned int flags)
554 {
555 	u32 reg;
556 
557 	if (flags & CONFIG_UPDATE_TYPE) {
558 		/*
559 		 * Enable synchronisation.
560 		 */
561 		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
562 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
563 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
564 	}
565 
566 	if (flags & CONFIG_UPDATE_MAC) {
567 		reg = le32_to_cpu(conf->mac[1]);
568 		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
569 		conf->mac[1] = cpu_to_le32(reg);
570 
571 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
572 					       conf->mac, sizeof(conf->mac));
573 	}
574 
575 	if (flags & CONFIG_UPDATE_BSSID) {
576 		reg = le32_to_cpu(conf->bssid[1]);
577 		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
578 		conf->bssid[1] = cpu_to_le32(reg);
579 
580 		rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
581 					       conf->bssid,
582 					       sizeof(conf->bssid));
583 	}
584 }
585 
586 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
587 			       struct rt2x00lib_erp *erp,
588 			       u32 changed)
589 {
590 	u32 reg;
591 
592 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
593 	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
594 	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
595 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
596 
597 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
598 		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
599 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
600 		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
601 				   !!erp->short_preamble);
602 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
603 	}
604 
605 	if (changed & BSS_CHANGED_BASIC_RATES)
606 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
607 					  erp->basic_rates);
608 
609 	if (changed & BSS_CHANGED_BEACON_INT) {
610 		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
611 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
612 				   erp->beacon_int * 16);
613 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
614 	}
615 
616 	if (changed & BSS_CHANGED_ERP_SLOT) {
617 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
618 		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
619 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
620 
621 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
622 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
623 		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
624 		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
625 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
626 	}
627 }
628 
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630 				      struct antenna_setup *ant)
631 {
632 	u8 r3;
633 	u8 r4;
634 	u8 r77;
635 
636 	r3 = rt61pci_bbp_read(rt2x00dev, 3);
637 	r4 = rt61pci_bbp_read(rt2x00dev, 4);
638 	r77 = rt61pci_bbp_read(rt2x00dev, 77);
639 
640 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
641 
642 	/*
643 	 * Configure the RX antenna.
644 	 */
645 	switch (ant->rx) {
646 	case ANTENNA_HW_DIVERSITY:
647 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
648 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
649 				  (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
650 		break;
651 	case ANTENNA_A:
652 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
654 		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
655 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
656 		else
657 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
658 		break;
659 	case ANTENNA_B:
660 	default:
661 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
663 		if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
664 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
665 		else
666 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
667 		break;
668 	}
669 
670 	rt61pci_bbp_write(rt2x00dev, 77, r77);
671 	rt61pci_bbp_write(rt2x00dev, 3, r3);
672 	rt61pci_bbp_write(rt2x00dev, 4, r4);
673 }
674 
675 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
676 				      struct antenna_setup *ant)
677 {
678 	u8 r3;
679 	u8 r4;
680 	u8 r77;
681 
682 	r3 = rt61pci_bbp_read(rt2x00dev, 3);
683 	r4 = rt61pci_bbp_read(rt2x00dev, 4);
684 	r77 = rt61pci_bbp_read(rt2x00dev, 77);
685 
686 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
687 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
688 			  !rt2x00_has_cap_frame_type(rt2x00dev));
689 
690 	/*
691 	 * Configure the RX antenna.
692 	 */
693 	switch (ant->rx) {
694 	case ANTENNA_HW_DIVERSITY:
695 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
696 		break;
697 	case ANTENNA_A:
698 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
699 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
700 		break;
701 	case ANTENNA_B:
702 	default:
703 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
704 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
705 		break;
706 	}
707 
708 	rt61pci_bbp_write(rt2x00dev, 77, r77);
709 	rt61pci_bbp_write(rt2x00dev, 3, r3);
710 	rt61pci_bbp_write(rt2x00dev, 4, r4);
711 }
712 
713 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
714 					   const int p1, const int p2)
715 {
716 	u32 reg;
717 
718 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
719 
720 	rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
721 	rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
722 
723 	rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
724 	rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
725 
726 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
727 }
728 
729 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
730 					struct antenna_setup *ant)
731 {
732 	u8 r3;
733 	u8 r4;
734 	u8 r77;
735 
736 	r3 = rt61pci_bbp_read(rt2x00dev, 3);
737 	r4 = rt61pci_bbp_read(rt2x00dev, 4);
738 	r77 = rt61pci_bbp_read(rt2x00dev, 77);
739 
740 	/*
741 	 * Configure the RX antenna.
742 	 */
743 	switch (ant->rx) {
744 	case ANTENNA_A:
745 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
746 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
747 		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
748 		break;
749 	case ANTENNA_HW_DIVERSITY:
750 		/*
751 		 * FIXME: Antenna selection for the rf 2529 is very confusing
752 		 * in the legacy driver. Just default to antenna B until the
753 		 * legacy code can be properly translated into rt2x00 code.
754 		 */
755 	case ANTENNA_B:
756 	default:
757 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
758 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
759 		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
760 		break;
761 	}
762 
763 	rt61pci_bbp_write(rt2x00dev, 77, r77);
764 	rt61pci_bbp_write(rt2x00dev, 3, r3);
765 	rt61pci_bbp_write(rt2x00dev, 4, r4);
766 }
767 
768 struct antenna_sel {
769 	u8 word;
770 	/*
771 	 * value[0] -> non-LNA
772 	 * value[1] -> LNA
773 	 */
774 	u8 value[2];
775 };
776 
777 static const struct antenna_sel antenna_sel_a[] = {
778 	{ 96,  { 0x58, 0x78 } },
779 	{ 104, { 0x38, 0x48 } },
780 	{ 75,  { 0xfe, 0x80 } },
781 	{ 86,  { 0xfe, 0x80 } },
782 	{ 88,  { 0xfe, 0x80 } },
783 	{ 35,  { 0x60, 0x60 } },
784 	{ 97,  { 0x58, 0x58 } },
785 	{ 98,  { 0x58, 0x58 } },
786 };
787 
788 static const struct antenna_sel antenna_sel_bg[] = {
789 	{ 96,  { 0x48, 0x68 } },
790 	{ 104, { 0x2c, 0x3c } },
791 	{ 75,  { 0xfe, 0x80 } },
792 	{ 86,  { 0xfe, 0x80 } },
793 	{ 88,  { 0xfe, 0x80 } },
794 	{ 35,  { 0x50, 0x50 } },
795 	{ 97,  { 0x48, 0x48 } },
796 	{ 98,  { 0x48, 0x48 } },
797 };
798 
799 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
800 			       struct antenna_setup *ant)
801 {
802 	const struct antenna_sel *sel;
803 	unsigned int lna;
804 	unsigned int i;
805 	u32 reg;
806 
807 	/*
808 	 * We should never come here because rt2x00lib is supposed
809 	 * to catch this and send us the correct antenna explicitely.
810 	 */
811 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
812 	       ant->tx == ANTENNA_SW_DIVERSITY);
813 
814 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
815 		sel = antenna_sel_a;
816 		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
817 	} else {
818 		sel = antenna_sel_bg;
819 		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
820 	}
821 
822 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
823 		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
824 
825 	reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
826 
827 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
828 			   rt2x00dev->curr_band == NL80211_BAND_2GHZ);
829 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
830 			   rt2x00dev->curr_band == NL80211_BAND_5GHZ);
831 
832 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
833 
834 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
835 		rt61pci_config_antenna_5x(rt2x00dev, ant);
836 	else if (rt2x00_rf(rt2x00dev, RF2527))
837 		rt61pci_config_antenna_2x(rt2x00dev, ant);
838 	else if (rt2x00_rf(rt2x00dev, RF2529)) {
839 		if (rt2x00_has_cap_double_antenna(rt2x00dev))
840 			rt61pci_config_antenna_2x(rt2x00dev, ant);
841 		else
842 			rt61pci_config_antenna_2529(rt2x00dev, ant);
843 	}
844 }
845 
846 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
847 				    struct rt2x00lib_conf *libconf)
848 {
849 	u16 eeprom;
850 	short lna_gain = 0;
851 
852 	if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
853 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
854 			lna_gain += 14;
855 
856 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
857 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
858 	} else {
859 		if (rt2x00_has_cap_external_lna_a(rt2x00dev))
860 			lna_gain += 14;
861 
862 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
863 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
864 	}
865 
866 	rt2x00dev->lna_gain = lna_gain;
867 }
868 
869 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
870 				   struct rf_channel *rf, const int txpower)
871 {
872 	u8 r3;
873 	u8 r94;
874 	u8 smart;
875 
876 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
877 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
878 
879 	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
880 
881 	r3 = rt61pci_bbp_read(rt2x00dev, 3);
882 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
883 	rt61pci_bbp_write(rt2x00dev, 3, r3);
884 
885 	r94 = 6;
886 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
887 		r94 += txpower - MAX_TXPOWER;
888 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
889 		r94 += txpower;
890 	rt61pci_bbp_write(rt2x00dev, 94, r94);
891 
892 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
893 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
894 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
895 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
896 
897 	udelay(200);
898 
899 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
900 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
901 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
902 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
903 
904 	udelay(200);
905 
906 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
907 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
908 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
909 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
910 
911 	msleep(1);
912 }
913 
914 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
915 				   const int txpower)
916 {
917 	struct rf_channel rf;
918 
919 	rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
920 	rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
921 	rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
922 	rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
923 
924 	rt61pci_config_channel(rt2x00dev, &rf, txpower);
925 }
926 
927 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
928 				    struct rt2x00lib_conf *libconf)
929 {
930 	u32 reg;
931 
932 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
933 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
934 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
935 	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
936 	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
937 			   libconf->conf->long_frame_max_tx_count);
938 	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
939 			   libconf->conf->short_frame_max_tx_count);
940 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
941 }
942 
943 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
944 				struct rt2x00lib_conf *libconf)
945 {
946 	enum dev_state state =
947 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
948 		STATE_SLEEP : STATE_AWAKE;
949 	u32 reg;
950 
951 	if (state == STATE_SLEEP) {
952 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
953 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
954 				   rt2x00dev->beacon_int - 10);
955 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
956 				   libconf->conf->listen_interval - 1);
957 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
958 
959 		/* We must first disable autowake before it can be enabled */
960 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
961 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
962 
963 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
964 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
965 
966 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
967 					  0x00000005);
968 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
969 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
970 
971 		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
972 	} else {
973 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
974 		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
975 		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
976 		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
977 		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
978 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
979 
980 		rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
981 					  0x00000007);
982 		rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
983 		rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
984 
985 		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
986 	}
987 }
988 
989 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
990 			   struct rt2x00lib_conf *libconf,
991 			   const unsigned int flags)
992 {
993 	/* Always recalculate LNA gain before changing configuration */
994 	rt61pci_config_lna_gain(rt2x00dev, libconf);
995 
996 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
997 		rt61pci_config_channel(rt2x00dev, &libconf->rf,
998 				       libconf->conf->power_level);
999 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1000 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1001 		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1002 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1003 		rt61pci_config_retry_limit(rt2x00dev, libconf);
1004 	if (flags & IEEE80211_CONF_CHANGE_PS)
1005 		rt61pci_config_ps(rt2x00dev, libconf);
1006 }
1007 
1008 /*
1009  * Link tuning
1010  */
1011 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1012 			       struct link_qual *qual)
1013 {
1014 	u32 reg;
1015 
1016 	/*
1017 	 * Update FCS error count from register.
1018 	 */
1019 	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1020 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1021 
1022 	/*
1023 	 * Update False CCA count from register.
1024 	 */
1025 	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1026 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1027 }
1028 
1029 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1030 				   struct link_qual *qual, u8 vgc_level)
1031 {
1032 	if (qual->vgc_level != vgc_level) {
1033 		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1034 		qual->vgc_level = vgc_level;
1035 		qual->vgc_level_reg = vgc_level;
1036 	}
1037 }
1038 
1039 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1040 				struct link_qual *qual)
1041 {
1042 	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1043 }
1044 
1045 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1046 			       struct link_qual *qual, const u32 count)
1047 {
1048 	u8 up_bound;
1049 	u8 low_bound;
1050 
1051 	/*
1052 	 * Determine r17 bounds.
1053 	 */
1054 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1055 		low_bound = 0x28;
1056 		up_bound = 0x48;
1057 		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1058 			low_bound += 0x10;
1059 			up_bound += 0x10;
1060 		}
1061 	} else {
1062 		low_bound = 0x20;
1063 		up_bound = 0x40;
1064 		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1065 			low_bound += 0x10;
1066 			up_bound += 0x10;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * If we are not associated, we should go straight to the
1072 	 * dynamic CCA tuning.
1073 	 */
1074 	if (!rt2x00dev->intf_associated)
1075 		goto dynamic_cca_tune;
1076 
1077 	/*
1078 	 * Special big-R17 for very short distance
1079 	 */
1080 	if (qual->rssi >= -35) {
1081 		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1082 		return;
1083 	}
1084 
1085 	/*
1086 	 * Special big-R17 for short distance
1087 	 */
1088 	if (qual->rssi >= -58) {
1089 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * Special big-R17 for middle-short distance
1095 	 */
1096 	if (qual->rssi >= -66) {
1097 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1098 		return;
1099 	}
1100 
1101 	/*
1102 	 * Special mid-R17 for middle distance
1103 	 */
1104 	if (qual->rssi >= -74) {
1105 		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1106 		return;
1107 	}
1108 
1109 	/*
1110 	 * Special case: Change up_bound based on the rssi.
1111 	 * Lower up_bound when rssi is weaker then -74 dBm.
1112 	 */
1113 	up_bound -= 2 * (-74 - qual->rssi);
1114 	if (low_bound > up_bound)
1115 		up_bound = low_bound;
1116 
1117 	if (qual->vgc_level > up_bound) {
1118 		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1119 		return;
1120 	}
1121 
1122 dynamic_cca_tune:
1123 
1124 	/*
1125 	 * r17 does not yet exceed upper limit, continue and base
1126 	 * the r17 tuning on the false CCA count.
1127 	 */
1128 	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1129 		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1130 	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1131 		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1132 }
1133 
1134 /*
1135  * Queue handlers.
1136  */
1137 static void rt61pci_start_queue(struct data_queue *queue)
1138 {
1139 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1140 	u32 reg;
1141 
1142 	switch (queue->qid) {
1143 	case QID_RX:
1144 		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1145 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1146 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1147 		break;
1148 	case QID_BEACON:
1149 		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1150 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1151 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1152 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1153 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1154 		break;
1155 	default:
1156 		break;
1157 	}
1158 }
1159 
1160 static void rt61pci_kick_queue(struct data_queue *queue)
1161 {
1162 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1163 	u32 reg;
1164 
1165 	switch (queue->qid) {
1166 	case QID_AC_VO:
1167 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1168 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1169 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1170 		break;
1171 	case QID_AC_VI:
1172 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1173 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1174 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1175 		break;
1176 	case QID_AC_BE:
1177 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1178 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1179 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1180 		break;
1181 	case QID_AC_BK:
1182 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1183 		rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1184 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1185 		break;
1186 	default:
1187 		break;
1188 	}
1189 }
1190 
1191 static void rt61pci_stop_queue(struct data_queue *queue)
1192 {
1193 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1194 	u32 reg;
1195 
1196 	switch (queue->qid) {
1197 	case QID_AC_VO:
1198 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1199 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1200 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1201 		break;
1202 	case QID_AC_VI:
1203 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1204 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1205 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1206 		break;
1207 	case QID_AC_BE:
1208 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1209 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1210 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1211 		break;
1212 	case QID_AC_BK:
1213 		reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1214 		rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1215 		rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1216 		break;
1217 	case QID_RX:
1218 		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1219 		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1220 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1221 		break;
1222 	case QID_BEACON:
1223 		reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1224 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1225 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1226 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1227 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1228 
1229 		/*
1230 		 * Wait for possibly running tbtt tasklets.
1231 		 */
1232 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1233 		break;
1234 	default:
1235 		break;
1236 	}
1237 }
1238 
1239 /*
1240  * Firmware functions
1241  */
1242 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1243 {
1244 	u16 chip;
1245 	char *fw_name;
1246 
1247 	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1248 	switch (chip) {
1249 	case RT2561_PCI_ID:
1250 		fw_name = FIRMWARE_RT2561;
1251 		break;
1252 	case RT2561s_PCI_ID:
1253 		fw_name = FIRMWARE_RT2561s;
1254 		break;
1255 	case RT2661_PCI_ID:
1256 		fw_name = FIRMWARE_RT2661;
1257 		break;
1258 	default:
1259 		fw_name = NULL;
1260 		break;
1261 	}
1262 
1263 	return fw_name;
1264 }
1265 
1266 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1267 				  const u8 *data, const size_t len)
1268 {
1269 	u16 fw_crc;
1270 	u16 crc;
1271 
1272 	/*
1273 	 * Only support 8kb firmware files.
1274 	 */
1275 	if (len != 8192)
1276 		return FW_BAD_LENGTH;
1277 
1278 	/*
1279 	 * The last 2 bytes in the firmware array are the crc checksum itself.
1280 	 * This means that we should never pass those 2 bytes to the crc
1281 	 * algorithm.
1282 	 */
1283 	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1284 
1285 	/*
1286 	 * Use the crc itu-t algorithm.
1287 	 */
1288 	crc = crc_itu_t(0, data, len - 2);
1289 	crc = crc_itu_t_byte(crc, 0);
1290 	crc = crc_itu_t_byte(crc, 0);
1291 
1292 	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1293 }
1294 
1295 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1296 				 const u8 *data, const size_t len)
1297 {
1298 	int i;
1299 	u32 reg;
1300 
1301 	/*
1302 	 * Wait for stable hardware.
1303 	 */
1304 	for (i = 0; i < 100; i++) {
1305 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
1306 		if (reg)
1307 			break;
1308 		msleep(1);
1309 	}
1310 
1311 	if (!reg) {
1312 		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1313 		return -EBUSY;
1314 	}
1315 
1316 	/*
1317 	 * Prepare MCU and mailbox for firmware loading.
1318 	 */
1319 	reg = 0;
1320 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1321 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1322 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1323 	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1324 	rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1325 
1326 	/*
1327 	 * Write firmware to device.
1328 	 */
1329 	reg = 0;
1330 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1331 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1332 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1333 
1334 	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1335 				       data, len);
1336 
1337 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1338 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1339 
1340 	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1341 	rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1342 
1343 	for (i = 0; i < 100; i++) {
1344 		reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
1345 		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1346 			break;
1347 		msleep(1);
1348 	}
1349 
1350 	if (i == 100) {
1351 		rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1352 		return -EBUSY;
1353 	}
1354 
1355 	/*
1356 	 * Hardware needs another millisecond before it is ready.
1357 	 */
1358 	msleep(1);
1359 
1360 	/*
1361 	 * Reset MAC and BBP registers.
1362 	 */
1363 	reg = 0;
1364 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1365 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1366 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1367 
1368 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1369 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1370 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1371 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1372 
1373 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1374 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1375 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1376 
1377 	return 0;
1378 }
1379 
1380 /*
1381  * Initialization functions.
1382  */
1383 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1384 {
1385 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1386 	u32 word;
1387 
1388 	if (entry->queue->qid == QID_RX) {
1389 		word = rt2x00_desc_read(entry_priv->desc, 0);
1390 
1391 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1392 	} else {
1393 		word = rt2x00_desc_read(entry_priv->desc, 0);
1394 
1395 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1396 		        rt2x00_get_field32(word, TXD_W0_VALID));
1397 	}
1398 }
1399 
1400 static void rt61pci_clear_entry(struct queue_entry *entry)
1401 {
1402 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1403 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1404 	u32 word;
1405 
1406 	if (entry->queue->qid == QID_RX) {
1407 		word = rt2x00_desc_read(entry_priv->desc, 5);
1408 		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1409 				   skbdesc->skb_dma);
1410 		rt2x00_desc_write(entry_priv->desc, 5, word);
1411 
1412 		word = rt2x00_desc_read(entry_priv->desc, 0);
1413 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1414 		rt2x00_desc_write(entry_priv->desc, 0, word);
1415 	} else {
1416 		word = rt2x00_desc_read(entry_priv->desc, 0);
1417 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1418 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1419 		rt2x00_desc_write(entry_priv->desc, 0, word);
1420 	}
1421 }
1422 
1423 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1424 {
1425 	struct queue_entry_priv_mmio *entry_priv;
1426 	u32 reg;
1427 
1428 	/*
1429 	 * Initialize registers.
1430 	 */
1431 	reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
1432 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1433 			   rt2x00dev->tx[0].limit);
1434 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1435 			   rt2x00dev->tx[1].limit);
1436 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1437 			   rt2x00dev->tx[2].limit);
1438 	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1439 			   rt2x00dev->tx[3].limit);
1440 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1441 
1442 	reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
1443 	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1444 			   rt2x00dev->tx[0].desc_size / 4);
1445 	rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1446 
1447 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1448 	reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
1449 	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1450 			   entry_priv->desc_dma);
1451 	rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1452 
1453 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1454 	reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
1455 	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1456 			   entry_priv->desc_dma);
1457 	rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1458 
1459 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1460 	reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
1461 	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1462 			   entry_priv->desc_dma);
1463 	rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1464 
1465 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1466 	reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
1467 	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1468 			   entry_priv->desc_dma);
1469 	rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1470 
1471 	reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
1472 	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1473 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1474 			   rt2x00dev->rx->desc_size / 4);
1475 	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1476 	rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1477 
1478 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1479 	reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
1480 	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1481 			   entry_priv->desc_dma);
1482 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1483 
1484 	reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
1485 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1486 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1487 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1488 	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1489 	rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1490 
1491 	reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
1492 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1493 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1494 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1495 	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1496 	rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1497 
1498 	reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1499 	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1500 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1501 
1502 	return 0;
1503 }
1504 
1505 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1506 {
1507 	u32 reg;
1508 
1509 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1510 	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1511 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1512 	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1513 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1514 
1515 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
1516 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1517 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1518 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1519 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1520 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1521 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1522 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1523 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1524 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1525 
1526 	/*
1527 	 * CCK TXD BBP registers
1528 	 */
1529 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
1530 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1531 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1532 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1533 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1534 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1535 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1536 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1537 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1538 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1539 
1540 	/*
1541 	 * OFDM TXD BBP registers
1542 	 */
1543 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
1544 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1545 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1546 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1547 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1548 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1549 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1550 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1551 
1552 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
1553 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1554 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1555 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1556 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1557 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1558 
1559 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
1560 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1561 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1562 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1563 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1564 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1565 
1566 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1567 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1568 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1569 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1570 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1571 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1572 	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1573 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1574 
1575 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1576 
1577 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1578 
1579 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
1580 	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1581 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1582 
1583 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1584 
1585 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1586 		return -EBUSY;
1587 
1588 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1589 
1590 	/*
1591 	 * Invalidate all Shared Keys (SEC_CSR0),
1592 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1593 	 */
1594 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1595 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1596 	rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1597 
1598 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1599 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1600 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1601 	rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1602 
1603 	rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1604 
1605 	rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1606 
1607 	rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1608 
1609 	/*
1610 	 * Clear all beacons
1611 	 * For the Beacon base registers we only need to clear
1612 	 * the first byte since that byte contains the VALID and OWNER
1613 	 * bits which (when set to 0) will invalidate the entire beacon.
1614 	 */
1615 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1616 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1617 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1618 	rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1619 
1620 	/*
1621 	 * We must clear the error counters.
1622 	 * These registers are cleared on read,
1623 	 * so we may pass a useless variable to store the value.
1624 	 */
1625 	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1626 	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1627 	reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
1628 
1629 	/*
1630 	 * Reset MAC and BBP registers.
1631 	 */
1632 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1633 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1634 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1635 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1636 
1637 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1638 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1639 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1640 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1641 
1642 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1643 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1644 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1645 
1646 	return 0;
1647 }
1648 
1649 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1650 {
1651 	unsigned int i;
1652 	u8 value;
1653 
1654 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1655 		value = rt61pci_bbp_read(rt2x00dev, 0);
1656 		if ((value != 0xff) && (value != 0x00))
1657 			return 0;
1658 		udelay(REGISTER_BUSY_DELAY);
1659 	}
1660 
1661 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1662 	return -EACCES;
1663 }
1664 
1665 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1666 {
1667 	unsigned int i;
1668 	u16 eeprom;
1669 	u8 reg_id;
1670 	u8 value;
1671 
1672 	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1673 		return -EACCES;
1674 
1675 	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1676 	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1677 	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1678 	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1679 	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1680 	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1681 	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1682 	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1683 	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1684 	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1685 	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1686 	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1687 	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1688 	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1689 	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1690 	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1691 	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1692 	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1693 	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1694 	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1695 	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1696 	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1697 	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1698 	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1699 
1700 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1701 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1702 
1703 		if (eeprom != 0xffff && eeprom != 0x0000) {
1704 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1705 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1706 			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1707 		}
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 /*
1714  * Device state switch handlers.
1715  */
1716 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1717 			       enum dev_state state)
1718 {
1719 	int mask = (state == STATE_RADIO_IRQ_OFF);
1720 	u32 reg;
1721 	unsigned long flags;
1722 
1723 	/*
1724 	 * When interrupts are being enabled, the interrupt registers
1725 	 * should clear the register to assure a clean state.
1726 	 */
1727 	if (state == STATE_RADIO_IRQ_ON) {
1728 		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
1729 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1730 
1731 		reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
1732 		rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1733 	}
1734 
1735 	/*
1736 	 * Only toggle the interrupts bits we are going to use.
1737 	 * Non-checked interrupt bits are disabled by default.
1738 	 */
1739 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1740 
1741 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
1742 	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1743 	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1744 	rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1745 	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1746 	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1747 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1748 
1749 	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
1750 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1751 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1752 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1753 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1754 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1755 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1756 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1757 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1758 	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1759 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1760 
1761 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1762 
1763 	if (state == STATE_RADIO_IRQ_OFF) {
1764 		/*
1765 		 * Ensure that all tasklets are finished.
1766 		 */
1767 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1768 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1769 		tasklet_kill(&rt2x00dev->autowake_tasklet);
1770 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1771 	}
1772 }
1773 
1774 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1775 {
1776 	u32 reg;
1777 
1778 	/*
1779 	 * Initialize all registers.
1780 	 */
1781 	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1782 		     rt61pci_init_registers(rt2x00dev) ||
1783 		     rt61pci_init_bbp(rt2x00dev)))
1784 		return -EIO;
1785 
1786 	/*
1787 	 * Enable RX.
1788 	 */
1789 	reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1790 	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1791 	rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1792 
1793 	return 0;
1794 }
1795 
1796 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1797 {
1798 	/*
1799 	 * Disable power
1800 	 */
1801 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1802 }
1803 
1804 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1805 {
1806 	u32 reg, reg2;
1807 	unsigned int i;
1808 	char put_to_sleep;
1809 
1810 	put_to_sleep = (state != STATE_AWAKE);
1811 
1812 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1813 	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1814 	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1815 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1816 
1817 	/*
1818 	 * Device is not guaranteed to be in the requested state yet.
1819 	 * We must wait until the register indicates that the
1820 	 * device has entered the correct state.
1821 	 */
1822 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1823 		reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1824 		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1825 		if (state == !put_to_sleep)
1826 			return 0;
1827 		rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1828 		msleep(10);
1829 	}
1830 
1831 	return -EBUSY;
1832 }
1833 
1834 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1835 				    enum dev_state state)
1836 {
1837 	int retval = 0;
1838 
1839 	switch (state) {
1840 	case STATE_RADIO_ON:
1841 		retval = rt61pci_enable_radio(rt2x00dev);
1842 		break;
1843 	case STATE_RADIO_OFF:
1844 		rt61pci_disable_radio(rt2x00dev);
1845 		break;
1846 	case STATE_RADIO_IRQ_ON:
1847 	case STATE_RADIO_IRQ_OFF:
1848 		rt61pci_toggle_irq(rt2x00dev, state);
1849 		break;
1850 	case STATE_DEEP_SLEEP:
1851 	case STATE_SLEEP:
1852 	case STATE_STANDBY:
1853 	case STATE_AWAKE:
1854 		retval = rt61pci_set_state(rt2x00dev, state);
1855 		break;
1856 	default:
1857 		retval = -ENOTSUPP;
1858 		break;
1859 	}
1860 
1861 	if (unlikely(retval))
1862 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1863 			   state, retval);
1864 
1865 	return retval;
1866 }
1867 
1868 /*
1869  * TX descriptor initialization
1870  */
1871 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1872 				  struct txentry_desc *txdesc)
1873 {
1874 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1875 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1876 	__le32 *txd = entry_priv->desc;
1877 	u32 word;
1878 
1879 	/*
1880 	 * Start writing the descriptor words.
1881 	 */
1882 	word = rt2x00_desc_read(txd, 1);
1883 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1884 	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1885 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1886 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1887 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1888 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1889 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1890 	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1891 	rt2x00_desc_write(txd, 1, word);
1892 
1893 	word = rt2x00_desc_read(txd, 2);
1894 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1895 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1896 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1897 			   txdesc->u.plcp.length_low);
1898 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1899 			   txdesc->u.plcp.length_high);
1900 	rt2x00_desc_write(txd, 2, word);
1901 
1902 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1903 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1904 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1905 	}
1906 
1907 	word = rt2x00_desc_read(txd, 5);
1908 	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1909 	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1910 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1911 			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1912 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1913 	rt2x00_desc_write(txd, 5, word);
1914 
1915 	if (entry->queue->qid != QID_BEACON) {
1916 		word = rt2x00_desc_read(txd, 6);
1917 		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1918 				   skbdesc->skb_dma);
1919 		rt2x00_desc_write(txd, 6, word);
1920 
1921 		word = rt2x00_desc_read(txd, 11);
1922 		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1923 				   txdesc->length);
1924 		rt2x00_desc_write(txd, 11, word);
1925 	}
1926 
1927 	/*
1928 	 * Writing TXD word 0 must the last to prevent a race condition with
1929 	 * the device, whereby the device may take hold of the TXD before we
1930 	 * finished updating it.
1931 	 */
1932 	word = rt2x00_desc_read(txd, 0);
1933 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1934 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1935 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1936 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1937 	rt2x00_set_field32(&word, TXD_W0_ACK,
1938 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1939 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1940 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1941 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1942 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1943 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1944 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1945 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1946 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1947 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1948 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1949 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1950 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1951 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1952 	rt2x00_set_field32(&word, TXD_W0_BURST,
1953 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1954 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1955 	rt2x00_desc_write(txd, 0, word);
1956 
1957 	/*
1958 	 * Register descriptor details in skb frame descriptor.
1959 	 */
1960 	skbdesc->desc = txd;
1961 	skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1962 			    TXD_DESC_SIZE;
1963 }
1964 
1965 /*
1966  * TX data initialization
1967  */
1968 static void rt61pci_write_beacon(struct queue_entry *entry,
1969 				 struct txentry_desc *txdesc)
1970 {
1971 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1972 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1973 	unsigned int beacon_base;
1974 	unsigned int padding_len;
1975 	u32 orig_reg, reg;
1976 
1977 	/*
1978 	 * Disable beaconing while we are reloading the beacon data,
1979 	 * otherwise we might be sending out invalid data.
1980 	 */
1981 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1982 	orig_reg = reg;
1983 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1984 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1985 
1986 	/*
1987 	 * Write the TX descriptor for the beacon.
1988 	 */
1989 	rt61pci_write_tx_desc(entry, txdesc);
1990 
1991 	/*
1992 	 * Dump beacon to userspace through debugfs.
1993 	 */
1994 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1995 
1996 	/*
1997 	 * Write entire beacon with descriptor and padding to register.
1998 	 */
1999 	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2000 	if (padding_len && skb_pad(entry->skb, padding_len)) {
2001 		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2002 		/* skb freed by skb_pad() on failure */
2003 		entry->skb = NULL;
2004 		rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2005 		return;
2006 	}
2007 
2008 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2009 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2010 				       entry_priv->desc, TXINFO_SIZE);
2011 	rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2012 				       entry->skb->data,
2013 				       entry->skb->len + padding_len);
2014 
2015 	/*
2016 	 * Enable beaconing again.
2017 	 *
2018 	 * For Wi-Fi faily generated beacons between participating
2019 	 * stations. Set TBTT phase adaptive adjustment step to 8us.
2020 	 */
2021 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2022 
2023 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2024 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2025 
2026 	/*
2027 	 * Clean up beacon skb.
2028 	 */
2029 	dev_kfree_skb_any(entry->skb);
2030 	entry->skb = NULL;
2031 }
2032 
2033 static void rt61pci_clear_beacon(struct queue_entry *entry)
2034 {
2035 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2036 	u32 orig_reg, reg;
2037 
2038 	/*
2039 	 * Disable beaconing while we are reloading the beacon data,
2040 	 * otherwise we might be sending out invalid data.
2041 	 */
2042 	orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
2043 	reg = orig_reg;
2044 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2045 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2046 
2047 	/*
2048 	 * Clear beacon.
2049 	 */
2050 	rt2x00mmio_register_write(rt2x00dev,
2051 				  HW_BEACON_OFFSET(entry->entry_idx), 0);
2052 
2053 	/*
2054 	 * Restore global beaconing state.
2055 	 */
2056 	rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2057 }
2058 
2059 /*
2060  * RX control handlers
2061  */
2062 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2063 {
2064 	u8 offset = rt2x00dev->lna_gain;
2065 	u8 lna;
2066 
2067 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2068 	switch (lna) {
2069 	case 3:
2070 		offset += 90;
2071 		break;
2072 	case 2:
2073 		offset += 74;
2074 		break;
2075 	case 1:
2076 		offset += 64;
2077 		break;
2078 	default:
2079 		return 0;
2080 	}
2081 
2082 	if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
2083 		if (lna == 3 || lna == 2)
2084 			offset += 10;
2085 	}
2086 
2087 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2088 }
2089 
2090 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2091 				struct rxdone_entry_desc *rxdesc)
2092 {
2093 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2094 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2095 	u32 word0;
2096 	u32 word1;
2097 
2098 	word0 = rt2x00_desc_read(entry_priv->desc, 0);
2099 	word1 = rt2x00_desc_read(entry_priv->desc, 1);
2100 
2101 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2102 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2103 
2104 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2105 	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2106 
2107 	if (rxdesc->cipher != CIPHER_NONE) {
2108 		rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
2109 		rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
2110 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2111 
2112 		rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
2113 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2114 
2115 		/*
2116 		 * Hardware has stripped IV/EIV data from 802.11 frame during
2117 		 * decryption. It has provided the data separately but rt2x00lib
2118 		 * should decide if it should be reinserted.
2119 		 */
2120 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2121 
2122 		/*
2123 		 * The hardware has already checked the Michael Mic and has
2124 		 * stripped it from the frame. Signal this to mac80211.
2125 		 */
2126 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2127 
2128 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2129 			rxdesc->flags |= RX_FLAG_DECRYPTED;
2130 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2131 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2132 	}
2133 
2134 	/*
2135 	 * Obtain the status about this packet.
2136 	 * When frame was received with an OFDM bitrate,
2137 	 * the signal is the PLCP value. If it was received with
2138 	 * a CCK bitrate the signal is the rate in 100kbit/s.
2139 	 */
2140 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2141 	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2142 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2143 
2144 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2145 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2146 	else
2147 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2148 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2149 		rxdesc->dev_flags |= RXDONE_MY_BSS;
2150 }
2151 
2152 /*
2153  * Interrupt functions.
2154  */
2155 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2156 {
2157 	struct data_queue *queue;
2158 	struct queue_entry *entry;
2159 	struct queue_entry *entry_done;
2160 	struct queue_entry_priv_mmio *entry_priv;
2161 	struct txdone_entry_desc txdesc;
2162 	u32 word;
2163 	u32 reg;
2164 	int type;
2165 	int index;
2166 	int i;
2167 
2168 	/*
2169 	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2170 	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2171 	 * flag is not set anymore.
2172 	 *
2173 	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2174 	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2175 	 * tx ring size for now.
2176 	 */
2177 	for (i = 0; i < rt2x00dev->tx->limit; i++) {
2178 		reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
2179 		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2180 			break;
2181 
2182 		/*
2183 		 * Skip this entry when it contains an invalid
2184 		 * queue identication number.
2185 		 */
2186 		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2187 		queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2188 		if (unlikely(!queue))
2189 			continue;
2190 
2191 		/*
2192 		 * Skip this entry when it contains an invalid
2193 		 * index number.
2194 		 */
2195 		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2196 		if (unlikely(index >= queue->limit))
2197 			continue;
2198 
2199 		entry = &queue->entries[index];
2200 		entry_priv = entry->priv_data;
2201 		word = rt2x00_desc_read(entry_priv->desc, 0);
2202 
2203 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2204 		    !rt2x00_get_field32(word, TXD_W0_VALID))
2205 			return;
2206 
2207 		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2208 		while (entry != entry_done) {
2209 			/* Catch up.
2210 			 * Just report any entries we missed as failed.
2211 			 */
2212 			rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2213 				    entry_done->entry_idx);
2214 
2215 			rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2216 			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2217 		}
2218 
2219 		/*
2220 		 * Obtain the status about this packet.
2221 		 */
2222 		txdesc.flags = 0;
2223 		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2224 		case 0: /* Success, maybe with retry */
2225 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2226 			break;
2227 		case 6: /* Failure, excessive retries */
2228 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2229 			/* Fall through - this is a failed frame! */
2230 		default: /* Failure */
2231 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2232 		}
2233 		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2234 
2235 		/*
2236 		 * the frame was retried at least once
2237 		 * -> hw used fallback rates
2238 		 */
2239 		if (txdesc.retry)
2240 			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2241 
2242 		rt2x00lib_txdone(entry, &txdesc);
2243 	}
2244 }
2245 
2246 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2247 {
2248 	struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2249 
2250 	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2251 }
2252 
2253 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2254 					    struct rt2x00_field32 irq_field)
2255 {
2256 	u32 reg;
2257 
2258 	/*
2259 	 * Enable a single interrupt. The interrupt mask register
2260 	 * access needs locking.
2261 	 */
2262 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2263 
2264 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2265 	rt2x00_set_field32(&reg, irq_field, 0);
2266 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2267 
2268 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2269 }
2270 
2271 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2272 					 struct rt2x00_field32 irq_field)
2273 {
2274 	u32 reg;
2275 
2276 	/*
2277 	 * Enable a single MCU interrupt. The interrupt mask register
2278 	 * access needs locking.
2279 	 */
2280 	spin_lock_irq(&rt2x00dev->irqmask_lock);
2281 
2282 	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2283 	rt2x00_set_field32(&reg, irq_field, 0);
2284 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2285 
2286 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
2287 }
2288 
2289 static void rt61pci_txstatus_tasklet(unsigned long data)
2290 {
2291 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2292 	rt61pci_txdone(rt2x00dev);
2293 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2294 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2295 }
2296 
2297 static void rt61pci_tbtt_tasklet(unsigned long data)
2298 {
2299 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2300 	rt2x00lib_beacondone(rt2x00dev);
2301 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2302 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2303 }
2304 
2305 static void rt61pci_rxdone_tasklet(unsigned long data)
2306 {
2307 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2308 	if (rt2x00mmio_rxdone(rt2x00dev))
2309 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2310 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2311 		rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2312 }
2313 
2314 static void rt61pci_autowake_tasklet(unsigned long data)
2315 {
2316 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2317 	rt61pci_wakeup(rt2x00dev);
2318 	rt2x00mmio_register_write(rt2x00dev,
2319 				  M2H_CMD_DONE_CSR, 0xffffffff);
2320 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2321 		rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2322 }
2323 
2324 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2325 {
2326 	struct rt2x00_dev *rt2x00dev = dev_instance;
2327 	u32 reg_mcu, mask_mcu;
2328 	u32 reg, mask;
2329 
2330 	/*
2331 	 * Get the interrupt sources & saved to local variable.
2332 	 * Write register value back to clear pending interrupts.
2333 	 */
2334 	reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
2335 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2336 
2337 	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
2338 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2339 
2340 	if (!reg && !reg_mcu)
2341 		return IRQ_NONE;
2342 
2343 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2344 		return IRQ_HANDLED;
2345 
2346 	/*
2347 	 * Schedule tasklets for interrupt handling.
2348 	 */
2349 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2350 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2351 
2352 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2353 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2354 
2355 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2356 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2357 
2358 	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2359 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
2360 
2361 	/*
2362 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2363 	 * for interrupts and interrupt masks we can just use the value of
2364 	 * INT_SOURCE_CSR to create the interrupt mask.
2365 	 */
2366 	mask = reg;
2367 	mask_mcu = reg_mcu;
2368 
2369 	/*
2370 	 * Disable all interrupts for which a tasklet was scheduled right now,
2371 	 * the tasklet will reenable the appropriate interrupts.
2372 	 */
2373 	spin_lock(&rt2x00dev->irqmask_lock);
2374 
2375 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2376 	reg |= mask;
2377 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2378 
2379 	reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2380 	reg |= mask_mcu;
2381 	rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2382 
2383 	spin_unlock(&rt2x00dev->irqmask_lock);
2384 
2385 	return IRQ_HANDLED;
2386 }
2387 
2388 /*
2389  * Device probe functions.
2390  */
2391 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2392 {
2393 	struct eeprom_93cx6 eeprom;
2394 	u32 reg;
2395 	u16 word;
2396 	u8 *mac;
2397 	s8 value;
2398 
2399 	reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
2400 
2401 	eeprom.data = rt2x00dev;
2402 	eeprom.register_read = rt61pci_eepromregister_read;
2403 	eeprom.register_write = rt61pci_eepromregister_write;
2404 	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2405 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2406 	eeprom.reg_data_in = 0;
2407 	eeprom.reg_data_out = 0;
2408 	eeprom.reg_data_clock = 0;
2409 	eeprom.reg_chip_select = 0;
2410 
2411 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2412 			       EEPROM_SIZE / sizeof(u16));
2413 
2414 	/*
2415 	 * Start validation of the data that has been read.
2416 	 */
2417 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2418 	rt2x00lib_set_mac_address(rt2x00dev, mac);
2419 
2420 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2421 	if (word == 0xffff) {
2422 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2423 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2424 				   ANTENNA_B);
2425 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2426 				   ANTENNA_B);
2427 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2428 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2429 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2430 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2431 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2432 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2433 	}
2434 
2435 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2436 	if (word == 0xffff) {
2437 		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2438 		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2439 		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2440 		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2441 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2442 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2443 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2444 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2445 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2446 	}
2447 
2448 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2449 	if (word == 0xffff) {
2450 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2451 				   LED_MODE_DEFAULT);
2452 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2453 		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2454 	}
2455 
2456 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2457 	if (word == 0xffff) {
2458 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2459 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2460 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2461 		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2462 	}
2463 
2464 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
2465 	if (word == 0xffff) {
2466 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2467 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2468 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2469 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2470 	} else {
2471 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2472 		if (value < -10 || value > 10)
2473 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2474 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2475 		if (value < -10 || value > 10)
2476 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2477 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2478 	}
2479 
2480 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
2481 	if (word == 0xffff) {
2482 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2483 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2484 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2485 		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2486 	} else {
2487 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2488 		if (value < -10 || value > 10)
2489 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2490 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2491 		if (value < -10 || value > 10)
2492 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2493 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2500 {
2501 	u32 reg;
2502 	u16 value;
2503 	u16 eeprom;
2504 
2505 	/*
2506 	 * Read EEPROM word for configuration.
2507 	 */
2508 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2509 
2510 	/*
2511 	 * Identify RF chipset.
2512 	 */
2513 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2514 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
2515 	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2516 			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2517 
2518 	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2519 	    !rt2x00_rf(rt2x00dev, RF5325) &&
2520 	    !rt2x00_rf(rt2x00dev, RF2527) &&
2521 	    !rt2x00_rf(rt2x00dev, RF2529)) {
2522 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2523 		return -ENODEV;
2524 	}
2525 
2526 	/*
2527 	 * Determine number of antennas.
2528 	 */
2529 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2530 		__set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2531 
2532 	/*
2533 	 * Identify default antenna configuration.
2534 	 */
2535 	rt2x00dev->default_ant.tx =
2536 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2537 	rt2x00dev->default_ant.rx =
2538 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2539 
2540 	/*
2541 	 * Read the Frame type.
2542 	 */
2543 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2544 		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2545 
2546 	/*
2547 	 * Detect if this device has a hardware controlled radio.
2548 	 */
2549 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2550 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2551 
2552 	/*
2553 	 * Read frequency offset and RF programming sequence.
2554 	 */
2555 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2556 	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2557 		__set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2558 
2559 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2560 
2561 	/*
2562 	 * Read external LNA informations.
2563 	 */
2564 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2565 
2566 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2567 		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2568 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2569 		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2570 
2571 	/*
2572 	 * When working with a RF2529 chip without double antenna,
2573 	 * the antenna settings should be gathered from the NIC
2574 	 * eeprom word.
2575 	 */
2576 	if (rt2x00_rf(rt2x00dev, RF2529) &&
2577 	    !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2578 		rt2x00dev->default_ant.rx =
2579 		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2580 		rt2x00dev->default_ant.tx =
2581 		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2582 
2583 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2584 			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2585 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2586 			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2587 	}
2588 
2589 	/*
2590 	 * Store led settings, for correct led behaviour.
2591 	 * If the eeprom value is invalid,
2592 	 * switch to default led mode.
2593 	 */
2594 #ifdef CONFIG_RT2X00_LIB_LEDS
2595 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2596 	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2597 
2598 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2599 	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2600 	if (value == LED_MODE_SIGNAL_STRENGTH)
2601 		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2602 				 LED_TYPE_QUALITY);
2603 
2604 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2605 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2606 			   rt2x00_get_field16(eeprom,
2607 					      EEPROM_LED_POLARITY_GPIO_0));
2608 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2609 			   rt2x00_get_field16(eeprom,
2610 					      EEPROM_LED_POLARITY_GPIO_1));
2611 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2612 			   rt2x00_get_field16(eeprom,
2613 					      EEPROM_LED_POLARITY_GPIO_2));
2614 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2615 			   rt2x00_get_field16(eeprom,
2616 					      EEPROM_LED_POLARITY_GPIO_3));
2617 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2618 			   rt2x00_get_field16(eeprom,
2619 					      EEPROM_LED_POLARITY_GPIO_4));
2620 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2621 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2622 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2623 			   rt2x00_get_field16(eeprom,
2624 					      EEPROM_LED_POLARITY_RDY_G));
2625 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2626 			   rt2x00_get_field16(eeprom,
2627 					      EEPROM_LED_POLARITY_RDY_A));
2628 #endif /* CONFIG_RT2X00_LIB_LEDS */
2629 
2630 	return 0;
2631 }
2632 
2633 /*
2634  * RF value list for RF5225 & RF5325
2635  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2636  */
2637 static const struct rf_channel rf_vals_noseq[] = {
2638 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2639 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2640 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2641 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2642 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2643 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2644 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2645 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2646 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2647 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2648 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2649 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2650 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2651 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2652 
2653 	/* 802.11 UNI / HyperLan 2 */
2654 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2655 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2656 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2657 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2658 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2659 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2660 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2661 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2662 
2663 	/* 802.11 HyperLan 2 */
2664 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2665 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2666 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2667 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2668 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2669 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2670 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2671 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2672 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2673 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2674 
2675 	/* 802.11 UNII */
2676 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2677 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2678 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2679 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2680 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2681 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2682 
2683 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2684 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2685 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2686 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2687 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2688 };
2689 
2690 /*
2691  * RF value list for RF5225 & RF5325
2692  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2693  */
2694 static const struct rf_channel rf_vals_seq[] = {
2695 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2696 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2697 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2698 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2699 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2700 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2701 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2702 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2703 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2704 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2705 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2706 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2707 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2708 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2709 
2710 	/* 802.11 UNI / HyperLan 2 */
2711 	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2712 	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2713 	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2714 	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2715 	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2716 	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2717 	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2718 	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2719 
2720 	/* 802.11 HyperLan 2 */
2721 	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2722 	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2723 	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2724 	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2725 	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2726 	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2727 	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2728 	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2729 	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2730 	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2731 
2732 	/* 802.11 UNII */
2733 	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2734 	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2735 	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2736 	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2737 	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2738 	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2739 
2740 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2741 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2742 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2743 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2744 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2745 };
2746 
2747 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2748 {
2749 	struct hw_mode_spec *spec = &rt2x00dev->spec;
2750 	struct channel_info *info;
2751 	char *tx_power;
2752 	unsigned int i;
2753 
2754 	/*
2755 	 * Disable powersaving as default.
2756 	 */
2757 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2758 
2759 	/*
2760 	 * Initialize all hw fields.
2761 	 */
2762 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2763 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2764 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2765 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2766 
2767 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2768 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2769 				rt2x00_eeprom_addr(rt2x00dev,
2770 						   EEPROM_MAC_ADDR_0));
2771 
2772 	/*
2773 	 * As rt61 has a global fallback table we cannot specify
2774 	 * more then one tx rate per frame but since the hw will
2775 	 * try several rates (based on the fallback table) we should
2776 	 * initialize max_report_rates to the maximum number of rates
2777 	 * we are going to try. Otherwise mac80211 will truncate our
2778 	 * reported tx rates and the rc algortihm will end up with
2779 	 * incorrect data.
2780 	 */
2781 	rt2x00dev->hw->max_rates = 1;
2782 	rt2x00dev->hw->max_report_rates = 7;
2783 	rt2x00dev->hw->max_rate_tries = 1;
2784 
2785 	/*
2786 	 * Initialize hw_mode information.
2787 	 */
2788 	spec->supported_bands = SUPPORT_BAND_2GHZ;
2789 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2790 
2791 	if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2792 		spec->num_channels = 14;
2793 		spec->channels = rf_vals_noseq;
2794 	} else {
2795 		spec->num_channels = 14;
2796 		spec->channels = rf_vals_seq;
2797 	}
2798 
2799 	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2800 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2801 		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2802 	}
2803 
2804 	/*
2805 	 * Create channel information array
2806 	 */
2807 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2808 	if (!info)
2809 		return -ENOMEM;
2810 
2811 	spec->channels_info = info;
2812 
2813 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2814 	for (i = 0; i < 14; i++) {
2815 		info[i].max_power = MAX_TXPOWER;
2816 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2817 	}
2818 
2819 	if (spec->num_channels > 14) {
2820 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2821 		for (i = 14; i < spec->num_channels; i++) {
2822 			info[i].max_power = MAX_TXPOWER;
2823 			info[i].default_power1 =
2824 					TXPOWER_FROM_DEV(tx_power[i - 14]);
2825 		}
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2832 {
2833 	int retval;
2834 	u32 reg;
2835 
2836 	/*
2837 	 * Disable power saving.
2838 	 */
2839 	rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2840 
2841 	/*
2842 	 * Allocate eeprom data.
2843 	 */
2844 	retval = rt61pci_validate_eeprom(rt2x00dev);
2845 	if (retval)
2846 		return retval;
2847 
2848 	retval = rt61pci_init_eeprom(rt2x00dev);
2849 	if (retval)
2850 		return retval;
2851 
2852 	/*
2853 	 * Enable rfkill polling by setting GPIO direction of the
2854 	 * rfkill switch GPIO pin correctly.
2855 	 */
2856 	reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
2857 	rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2858 	rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2859 
2860 	/*
2861 	 * Initialize hw specifications.
2862 	 */
2863 	retval = rt61pci_probe_hw_mode(rt2x00dev);
2864 	if (retval)
2865 		return retval;
2866 
2867 	/*
2868 	 * This device has multiple filters for control frames,
2869 	 * but has no a separate filter for PS Poll frames.
2870 	 */
2871 	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2872 
2873 	/*
2874 	 * This device requires firmware and DMA mapped skbs.
2875 	 */
2876 	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2877 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2878 	if (!modparam_nohwcrypt)
2879 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2880 	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2881 
2882 	/*
2883 	 * Set the rssi offset.
2884 	 */
2885 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2886 
2887 	return 0;
2888 }
2889 
2890 /*
2891  * IEEE80211 stack callback functions.
2892  */
2893 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2894 			   struct ieee80211_vif *vif, u16 queue_idx,
2895 			   const struct ieee80211_tx_queue_params *params)
2896 {
2897 	struct rt2x00_dev *rt2x00dev = hw->priv;
2898 	struct data_queue *queue;
2899 	struct rt2x00_field32 field;
2900 	int retval;
2901 	u32 reg;
2902 	u32 offset;
2903 
2904 	/*
2905 	 * First pass the configuration through rt2x00lib, that will
2906 	 * update the queue settings and validate the input. After that
2907 	 * we are free to update the registers based on the value
2908 	 * in the queue parameter.
2909 	 */
2910 	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2911 	if (retval)
2912 		return retval;
2913 
2914 	/*
2915 	 * We only need to perform additional register initialization
2916 	 * for WMM queues.
2917 	 */
2918 	if (queue_idx >= 4)
2919 		return 0;
2920 
2921 	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2922 
2923 	/* Update WMM TXOP register */
2924 	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2925 	field.bit_offset = (queue_idx & 1) * 16;
2926 	field.bit_mask = 0xffff << field.bit_offset;
2927 
2928 	reg = rt2x00mmio_register_read(rt2x00dev, offset);
2929 	rt2x00_set_field32(&reg, field, queue->txop);
2930 	rt2x00mmio_register_write(rt2x00dev, offset, reg);
2931 
2932 	/* Update WMM registers */
2933 	field.bit_offset = queue_idx * 4;
2934 	field.bit_mask = 0xf << field.bit_offset;
2935 
2936 	reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
2937 	rt2x00_set_field32(&reg, field, queue->aifs);
2938 	rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2939 
2940 	reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
2941 	rt2x00_set_field32(&reg, field, queue->cw_min);
2942 	rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2943 
2944 	reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
2945 	rt2x00_set_field32(&reg, field, queue->cw_max);
2946 	rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2947 
2948 	return 0;
2949 }
2950 
2951 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2952 {
2953 	struct rt2x00_dev *rt2x00dev = hw->priv;
2954 	u64 tsf;
2955 	u32 reg;
2956 
2957 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
2958 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2959 	reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
2960 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2961 
2962 	return tsf;
2963 }
2964 
2965 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2966 	.tx			= rt2x00mac_tx,
2967 	.start			= rt2x00mac_start,
2968 	.stop			= rt2x00mac_stop,
2969 	.add_interface		= rt2x00mac_add_interface,
2970 	.remove_interface	= rt2x00mac_remove_interface,
2971 	.config			= rt2x00mac_config,
2972 	.configure_filter	= rt2x00mac_configure_filter,
2973 	.set_key		= rt2x00mac_set_key,
2974 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2975 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2976 	.get_stats		= rt2x00mac_get_stats,
2977 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2978 	.conf_tx		= rt61pci_conf_tx,
2979 	.get_tsf		= rt61pci_get_tsf,
2980 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2981 	.flush			= rt2x00mac_flush,
2982 	.set_antenna		= rt2x00mac_set_antenna,
2983 	.get_antenna		= rt2x00mac_get_antenna,
2984 	.get_ringparam		= rt2x00mac_get_ringparam,
2985 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2986 };
2987 
2988 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2989 	.irq_handler		= rt61pci_interrupt,
2990 	.txstatus_tasklet	= rt61pci_txstatus_tasklet,
2991 	.tbtt_tasklet		= rt61pci_tbtt_tasklet,
2992 	.rxdone_tasklet		= rt61pci_rxdone_tasklet,
2993 	.autowake_tasklet	= rt61pci_autowake_tasklet,
2994 	.probe_hw		= rt61pci_probe_hw,
2995 	.get_firmware_name	= rt61pci_get_firmware_name,
2996 	.check_firmware		= rt61pci_check_firmware,
2997 	.load_firmware		= rt61pci_load_firmware,
2998 	.initialize		= rt2x00mmio_initialize,
2999 	.uninitialize		= rt2x00mmio_uninitialize,
3000 	.get_entry_state	= rt61pci_get_entry_state,
3001 	.clear_entry		= rt61pci_clear_entry,
3002 	.set_device_state	= rt61pci_set_device_state,
3003 	.rfkill_poll		= rt61pci_rfkill_poll,
3004 	.link_stats		= rt61pci_link_stats,
3005 	.reset_tuner		= rt61pci_reset_tuner,
3006 	.link_tuner		= rt61pci_link_tuner,
3007 	.start_queue		= rt61pci_start_queue,
3008 	.kick_queue		= rt61pci_kick_queue,
3009 	.stop_queue		= rt61pci_stop_queue,
3010 	.flush_queue		= rt2x00mmio_flush_queue,
3011 	.write_tx_desc		= rt61pci_write_tx_desc,
3012 	.write_beacon		= rt61pci_write_beacon,
3013 	.clear_beacon		= rt61pci_clear_beacon,
3014 	.fill_rxdone		= rt61pci_fill_rxdone,
3015 	.config_shared_key	= rt61pci_config_shared_key,
3016 	.config_pairwise_key	= rt61pci_config_pairwise_key,
3017 	.config_filter		= rt61pci_config_filter,
3018 	.config_intf		= rt61pci_config_intf,
3019 	.config_erp		= rt61pci_config_erp,
3020 	.config_ant		= rt61pci_config_ant,
3021 	.config			= rt61pci_config,
3022 };
3023 
3024 static void rt61pci_queue_init(struct data_queue *queue)
3025 {
3026 	switch (queue->qid) {
3027 	case QID_RX:
3028 		queue->limit = 32;
3029 		queue->data_size = DATA_FRAME_SIZE;
3030 		queue->desc_size = RXD_DESC_SIZE;
3031 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3032 		break;
3033 
3034 	case QID_AC_VO:
3035 	case QID_AC_VI:
3036 	case QID_AC_BE:
3037 	case QID_AC_BK:
3038 		queue->limit = 32;
3039 		queue->data_size = DATA_FRAME_SIZE;
3040 		queue->desc_size = TXD_DESC_SIZE;
3041 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3042 		break;
3043 
3044 	case QID_BEACON:
3045 		queue->limit = 4;
3046 		queue->data_size = 0; /* No DMA required for beacons */
3047 		queue->desc_size = TXINFO_SIZE;
3048 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3049 		break;
3050 
3051 	case QID_ATIM:
3052 		/* fallthrough */
3053 	default:
3054 		BUG();
3055 		break;
3056 	}
3057 }
3058 
3059 static const struct rt2x00_ops rt61pci_ops = {
3060 	.name			= KBUILD_MODNAME,
3061 	.max_ap_intf		= 4,
3062 	.eeprom_size		= EEPROM_SIZE,
3063 	.rf_size		= RF_SIZE,
3064 	.tx_queues		= NUM_TX_QUEUES,
3065 	.queue_init		= rt61pci_queue_init,
3066 	.lib			= &rt61pci_rt2x00_ops,
3067 	.hw			= &rt61pci_mac80211_ops,
3068 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3069 	.debugfs		= &rt61pci_rt2x00debug,
3070 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3071 };
3072 
3073 /*
3074  * RT61pci module information.
3075  */
3076 static const struct pci_device_id rt61pci_device_table[] = {
3077 	/* RT2561s */
3078 	{ PCI_DEVICE(0x1814, 0x0301) },
3079 	/* RT2561 v2 */
3080 	{ PCI_DEVICE(0x1814, 0x0302) },
3081 	/* RT2661 */
3082 	{ PCI_DEVICE(0x1814, 0x0401) },
3083 	{ 0, }
3084 };
3085 
3086 MODULE_AUTHOR(DRV_PROJECT);
3087 MODULE_VERSION(DRV_VERSION);
3088 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3089 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3090 			"PCI & PCMCIA chipset based cards");
3091 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3092 MODULE_FIRMWARE(FIRMWARE_RT2561);
3093 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3094 MODULE_FIRMWARE(FIRMWARE_RT2661);
3095 MODULE_LICENSE("GPL");
3096 
3097 static int rt61pci_probe(struct pci_dev *pci_dev,
3098 			 const struct pci_device_id *id)
3099 {
3100 	return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3101 }
3102 
3103 static struct pci_driver rt61pci_driver = {
3104 	.name		= KBUILD_MODNAME,
3105 	.id_table	= rt61pci_device_table,
3106 	.probe		= rt61pci_probe,
3107 	.remove		= rt2x00pci_remove,
3108 	.suspend	= rt2x00pci_suspend,
3109 	.resume		= rt2x00pci_resume,
3110 };
3111 
3112 module_pci_driver(rt61pci_driver);
3113