1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22 	Module: rt2x00lib
23 	Abstract: rt2x00 queue specific routines.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
30 
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33 
34 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
35 {
36 	struct data_queue *queue = entry->queue;
37 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
38 	struct sk_buff *skb;
39 	struct skb_frame_desc *skbdesc;
40 	unsigned int frame_size;
41 	unsigned int head_size = 0;
42 	unsigned int tail_size = 0;
43 
44 	/*
45 	 * The frame size includes descriptor size, because the
46 	 * hardware directly receive the frame into the skbuffer.
47 	 */
48 	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
49 
50 	/*
51 	 * The payload should be aligned to a 4-byte boundary,
52 	 * this means we need at least 3 bytes for moving the frame
53 	 * into the correct offset.
54 	 */
55 	head_size = 4;
56 
57 	/*
58 	 * For IV/EIV/ICV assembly we must make sure there is
59 	 * at least 8 bytes bytes available in headroom for IV/EIV
60 	 * and 8 bytes for ICV data as tailroon.
61 	 */
62 	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
63 		head_size += 8;
64 		tail_size += 8;
65 	}
66 
67 	/*
68 	 * Allocate skbuffer.
69 	 */
70 	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
71 	if (!skb)
72 		return NULL;
73 
74 	/*
75 	 * Make sure we not have a frame with the requested bytes
76 	 * available in the head and tail.
77 	 */
78 	skb_reserve(skb, head_size);
79 	skb_put(skb, frame_size);
80 
81 	/*
82 	 * Populate skbdesc.
83 	 */
84 	skbdesc = get_skb_frame_desc(skb);
85 	memset(skbdesc, 0, sizeof(*skbdesc));
86 
87 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
88 		dma_addr_t skb_dma;
89 
90 		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
91 					 DMA_FROM_DEVICE);
92 		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
93 			dev_kfree_skb_any(skb);
94 			return NULL;
95 		}
96 
97 		skbdesc->skb_dma = skb_dma;
98 		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
99 	}
100 
101 	return skb;
102 }
103 
104 int rt2x00queue_map_txskb(struct queue_entry *entry)
105 {
106 	struct device *dev = entry->queue->rt2x00dev->dev;
107 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
108 
109 	skbdesc->skb_dma =
110 	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
111 
112 	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
113 		return -ENOMEM;
114 
115 	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
116 	rt2x00lib_dmadone(entry);
117 	return 0;
118 }
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
120 
121 void rt2x00queue_unmap_skb(struct queue_entry *entry)
122 {
123 	struct device *dev = entry->queue->rt2x00dev->dev;
124 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
125 
126 	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
127 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
128 				 DMA_FROM_DEVICE);
129 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
130 	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
131 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
132 				 DMA_TO_DEVICE);
133 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
134 	}
135 }
136 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
137 
138 void rt2x00queue_free_skb(struct queue_entry *entry)
139 {
140 	if (!entry->skb)
141 		return;
142 
143 	rt2x00queue_unmap_skb(entry);
144 	dev_kfree_skb_any(entry->skb);
145 	entry->skb = NULL;
146 }
147 
148 void rt2x00queue_align_frame(struct sk_buff *skb)
149 {
150 	unsigned int frame_length = skb->len;
151 	unsigned int align = ALIGN_SIZE(skb, 0);
152 
153 	if (!align)
154 		return;
155 
156 	skb_push(skb, align);
157 	memmove(skb->data, skb->data + align, frame_length);
158 	skb_trim(skb, frame_length);
159 }
160 
161 /*
162  * H/W needs L2 padding between the header and the paylod if header size
163  * is not 4 bytes aligned.
164  */
165 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166 {
167 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168 
169 	if (!l2pad)
170 		return;
171 
172 	skb_push(skb, l2pad);
173 	memmove(skb->data, skb->data + l2pad, hdr_len);
174 }
175 
176 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
177 {
178 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
179 
180 	if (!l2pad)
181 		return;
182 
183 	memmove(skb->data + l2pad, skb->data, hdr_len);
184 	skb_pull(skb, l2pad);
185 }
186 
187 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
188 						 struct sk_buff *skb,
189 						 struct txentry_desc *txdesc)
190 {
191 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
192 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
193 	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
194 	u16 seqno;
195 
196 	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
197 		return;
198 
199 	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200 
201 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
202 		/*
203 		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
204 		 * seqno on retransmitted data (non-QOS) and management frames.
205 		 * To workaround the problem let's generate seqno in software.
206 		 * Except for beacons which are transmitted periodically by H/W
207 		 * hence hardware has to assign seqno for them.
208 		 */
209 	    	if (ieee80211_is_beacon(hdr->frame_control)) {
210 			__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
211 			/* H/W will generate sequence number */
212 			return;
213 		}
214 
215 		__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216 	}
217 
218 	/*
219 	 * The hardware is not able to insert a sequence number. Assign a
220 	 * software generated one here.
221 	 *
222 	 * This is wrong because beacons are not getting sequence
223 	 * numbers assigned properly.
224 	 *
225 	 * A secondary problem exists for drivers that cannot toggle
226 	 * sequence counting per-frame, since those will override the
227 	 * sequence counter given by mac80211.
228 	 */
229 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
230 		seqno = atomic_add_return(0x10, &intf->seqno);
231 	else
232 		seqno = atomic_read(&intf->seqno);
233 
234 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
235 	hdr->seq_ctrl |= cpu_to_le16(seqno);
236 }
237 
238 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
239 						  struct sk_buff *skb,
240 						  struct txentry_desc *txdesc,
241 						  const struct rt2x00_rate *hwrate)
242 {
243 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
244 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
245 	unsigned int data_length;
246 	unsigned int duration;
247 	unsigned int residual;
248 
249 	/*
250 	 * Determine with what IFS priority this frame should be send.
251 	 * Set ifs to IFS_SIFS when the this is not the first fragment,
252 	 * or this fragment came after RTS/CTS.
253 	 */
254 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
255 		txdesc->u.plcp.ifs = IFS_BACKOFF;
256 	else
257 		txdesc->u.plcp.ifs = IFS_SIFS;
258 
259 	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
260 	data_length = skb->len + 4;
261 	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
262 
263 	/*
264 	 * PLCP setup
265 	 * Length calculation depends on OFDM/CCK rate.
266 	 */
267 	txdesc->u.plcp.signal = hwrate->plcp;
268 	txdesc->u.plcp.service = 0x04;
269 
270 	if (hwrate->flags & DEV_RATE_OFDM) {
271 		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
272 		txdesc->u.plcp.length_low = data_length & 0x3f;
273 	} else {
274 		/*
275 		 * Convert length to microseconds.
276 		 */
277 		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
278 		duration = GET_DURATION(data_length, hwrate->bitrate);
279 
280 		if (residual != 0) {
281 			duration++;
282 
283 			/*
284 			 * Check if we need to set the Length Extension
285 			 */
286 			if (hwrate->bitrate == 110 && residual <= 30)
287 				txdesc->u.plcp.service |= 0x80;
288 		}
289 
290 		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
291 		txdesc->u.plcp.length_low = duration & 0xff;
292 
293 		/*
294 		 * When preamble is enabled we should set the
295 		 * preamble bit for the signal.
296 		 */
297 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
298 			txdesc->u.plcp.signal |= 0x08;
299 	}
300 }
301 
302 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
303 						struct sk_buff *skb,
304 						struct txentry_desc *txdesc,
305 						struct ieee80211_sta *sta,
306 						const struct rt2x00_rate *hwrate)
307 {
308 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
309 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
310 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
311 	struct rt2x00_sta *sta_priv = NULL;
312 	u8 density = 0;
313 
314 	if (sta) {
315 		sta_priv = sta_to_rt2x00_sta(sta);
316 		txdesc->u.ht.wcid = sta_priv->wcid;
317 		density = sta->ht_cap.ampdu_density;
318 	}
319 
320 	/*
321 	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
322 	 * mcs rate to be used
323 	 */
324 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
325 		txdesc->u.ht.mcs = txrate->idx;
326 
327 		/*
328 		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
329 		 * when using more then one tx stream (>MCS7).
330 		 */
331 		if (sta && txdesc->u.ht.mcs > 7 &&
332 		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
333 			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
334 	} else {
335 		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
336 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
337 			txdesc->u.ht.mcs |= 0x08;
338 	}
339 
340 	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
341 		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
342 			txdesc->u.ht.txop = TXOP_SIFS;
343 		else
344 			txdesc->u.ht.txop = TXOP_BACKOFF;
345 
346 		/* Left zero on all other settings. */
347 		return;
348 	}
349 
350 	/*
351 	 * Only one STBC stream is supported for now.
352 	 */
353 	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
354 		txdesc->u.ht.stbc = 1;
355 
356 	/*
357 	 * This frame is eligible for an AMPDU, however, don't aggregate
358 	 * frames that are intended to probe a specific tx rate.
359 	 */
360 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
361 	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
362 		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
363 		txdesc->u.ht.mpdu_density = density;
364 		txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
365 	}
366 
367 	/*
368 	 * Set 40Mhz mode if necessary (for legacy rates this will
369 	 * duplicate the frame to both channels).
370 	 */
371 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
372 	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
373 		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
374 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
375 		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
376 
377 	/*
378 	 * Determine IFS values
379 	 * - Use TXOP_BACKOFF for management frames except beacons
380 	 * - Use TXOP_SIFS for fragment bursts
381 	 * - Use TXOP_HTTXOP for everything else
382 	 *
383 	 * Note: rt2800 devices won't use CTS protection (if used)
384 	 * for frames not transmitted with TXOP_HTTXOP
385 	 */
386 	if (ieee80211_is_mgmt(hdr->frame_control) &&
387 	    !ieee80211_is_beacon(hdr->frame_control))
388 		txdesc->u.ht.txop = TXOP_BACKOFF;
389 	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
390 		txdesc->u.ht.txop = TXOP_SIFS;
391 	else
392 		txdesc->u.ht.txop = TXOP_HTTXOP;
393 }
394 
395 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
396 					     struct sk_buff *skb,
397 					     struct txentry_desc *txdesc,
398 					     struct ieee80211_sta *sta)
399 {
400 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
401 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
402 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
403 	struct ieee80211_rate *rate;
404 	const struct rt2x00_rate *hwrate = NULL;
405 
406 	memset(txdesc, 0, sizeof(*txdesc));
407 
408 	/*
409 	 * Header and frame information.
410 	 */
411 	txdesc->length = skb->len;
412 	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
413 
414 	/*
415 	 * Check whether this frame is to be acked.
416 	 */
417 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
418 		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
419 
420 	/*
421 	 * Check if this is a RTS/CTS frame
422 	 */
423 	if (ieee80211_is_rts(hdr->frame_control) ||
424 	    ieee80211_is_cts(hdr->frame_control)) {
425 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
426 		if (ieee80211_is_rts(hdr->frame_control))
427 			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
428 		else
429 			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
430 		if (tx_info->control.rts_cts_rate_idx >= 0)
431 			rate =
432 			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
433 	}
434 
435 	/*
436 	 * Determine retry information.
437 	 */
438 	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
439 	if (txdesc->retry_limit >= rt2x00dev->long_retry)
440 		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
441 
442 	/*
443 	 * Check if more fragments are pending
444 	 */
445 	if (ieee80211_has_morefrags(hdr->frame_control)) {
446 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
447 		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
448 	}
449 
450 	/*
451 	 * Check if more frames (!= fragments) are pending
452 	 */
453 	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
454 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
455 
456 	/*
457 	 * Beacons and probe responses require the tsf timestamp
458 	 * to be inserted into the frame.
459 	 */
460 	if (ieee80211_is_beacon(hdr->frame_control) ||
461 	    ieee80211_is_probe_resp(hdr->frame_control))
462 		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
463 
464 	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
465 	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
466 		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
467 
468 	/*
469 	 * Determine rate modulation.
470 	 */
471 	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
472 		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
473 	else if (txrate->flags & IEEE80211_TX_RC_MCS)
474 		txdesc->rate_mode = RATE_MODE_HT_MIX;
475 	else {
476 		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
477 		hwrate = rt2x00_get_rate(rate->hw_value);
478 		if (hwrate->flags & DEV_RATE_OFDM)
479 			txdesc->rate_mode = RATE_MODE_OFDM;
480 		else
481 			txdesc->rate_mode = RATE_MODE_CCK;
482 	}
483 
484 	/*
485 	 * Apply TX descriptor handling by components
486 	 */
487 	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
488 	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
489 
490 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
491 		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
492 						   sta, hwrate);
493 	else
494 		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
495 						      hwrate);
496 }
497 
498 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
499 				     struct txentry_desc *txdesc)
500 {
501 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502 
503 	/*
504 	 * This should not happen, we already checked the entry
505 	 * was ours. When the hardware disagrees there has been
506 	 * a queue corruption!
507 	 */
508 	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
509 		     rt2x00dev->ops->lib->get_entry_state(entry))) {
510 		rt2x00_err(rt2x00dev,
511 			   "Corrupt queue %d, accessing entry which is not ours\n"
512 			   "Please file bug report to %s\n",
513 			   entry->queue->qid, DRV_PROJECT);
514 		return -EINVAL;
515 	}
516 
517 	/*
518 	 * Add the requested extra tx headroom in front of the skb.
519 	 */
520 	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
521 	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
522 
523 	/*
524 	 * Call the driver's write_tx_data function, if it exists.
525 	 */
526 	if (rt2x00dev->ops->lib->write_tx_data)
527 		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
528 
529 	/*
530 	 * Map the skb to DMA.
531 	 */
532 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
533 	    rt2x00queue_map_txskb(entry))
534 		return -ENOMEM;
535 
536 	return 0;
537 }
538 
539 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
540 					    struct txentry_desc *txdesc)
541 {
542 	struct data_queue *queue = entry->queue;
543 
544 	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
545 
546 	/*
547 	 * All processing on the frame has been completed, this means
548 	 * it is now ready to be dumped to userspace through debugfs.
549 	 */
550 	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
551 }
552 
553 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
554 				      struct txentry_desc *txdesc)
555 {
556 	/*
557 	 * Check if we need to kick the queue, there are however a few rules
558 	 *	1) Don't kick unless this is the last in frame in a burst.
559 	 *	   When the burst flag is set, this frame is always followed
560 	 *	   by another frame which in some way are related to eachother.
561 	 *	   This is true for fragments, RTS or CTS-to-self frames.
562 	 *	2) Rule 1 can be broken when the available entries
563 	 *	   in the queue are less then a certain threshold.
564 	 */
565 	if (rt2x00queue_threshold(queue) ||
566 	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
567 		queue->rt2x00dev->ops->lib->kick_queue(queue);
568 }
569 
570 static void rt2x00queue_bar_check(struct queue_entry *entry)
571 {
572 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
573 	struct ieee80211_bar *bar = (void *) (entry->skb->data +
574 				    rt2x00dev->extra_tx_headroom);
575 	struct rt2x00_bar_list_entry *bar_entry;
576 
577 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
578 		return;
579 
580 	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
581 
582 	/*
583 	 * If the alloc fails we still send the BAR out but just don't track
584 	 * it in our bar list. And as a result we will report it to mac80211
585 	 * back as failed.
586 	 */
587 	if (!bar_entry)
588 		return;
589 
590 	bar_entry->entry = entry;
591 	bar_entry->block_acked = 0;
592 
593 	/*
594 	 * Copy the relevant parts of the 802.11 BAR into out check list
595 	 * such that we can use RCU for less-overhead in the RX path since
596 	 * sending BARs and processing the according BlockAck should be
597 	 * the exception.
598 	 */
599 	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
600 	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
601 	bar_entry->control = bar->control;
602 	bar_entry->start_seq_num = bar->start_seq_num;
603 
604 	/*
605 	 * Insert BAR into our BAR check list.
606 	 */
607 	spin_lock_bh(&rt2x00dev->bar_list_lock);
608 	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
609 	spin_unlock_bh(&rt2x00dev->bar_list_lock);
610 }
611 
612 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
613 			       struct ieee80211_sta *sta, bool local)
614 {
615 	struct ieee80211_tx_info *tx_info;
616 	struct queue_entry *entry;
617 	struct txentry_desc txdesc;
618 	struct skb_frame_desc *skbdesc;
619 	u8 rate_idx, rate_flags;
620 	int ret = 0;
621 
622 	/*
623 	 * Copy all TX descriptor information into txdesc,
624 	 * after that we are free to use the skb->cb array
625 	 * for our information.
626 	 */
627 	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
628 
629 	/*
630 	 * All information is retrieved from the skb->cb array,
631 	 * now we should claim ownership of the driver part of that
632 	 * array, preserving the bitrate index and flags.
633 	 */
634 	tx_info = IEEE80211_SKB_CB(skb);
635 	rate_idx = tx_info->control.rates[0].idx;
636 	rate_flags = tx_info->control.rates[0].flags;
637 	skbdesc = get_skb_frame_desc(skb);
638 	memset(skbdesc, 0, sizeof(*skbdesc));
639 	skbdesc->tx_rate_idx = rate_idx;
640 	skbdesc->tx_rate_flags = rate_flags;
641 
642 	if (local)
643 		skbdesc->flags |= SKBDESC_NOT_MAC80211;
644 
645 	/*
646 	 * When hardware encryption is supported, and this frame
647 	 * is to be encrypted, we should strip the IV/EIV data from
648 	 * the frame so we can provide it to the driver separately.
649 	 */
650 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
651 	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
652 		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
653 			rt2x00crypto_tx_copy_iv(skb, &txdesc);
654 		else
655 			rt2x00crypto_tx_remove_iv(skb, &txdesc);
656 	}
657 
658 	/*
659 	 * When DMA allocation is required we should guarantee to the
660 	 * driver that the DMA is aligned to a 4-byte boundary.
661 	 * However some drivers require L2 padding to pad the payload
662 	 * rather then the header. This could be a requirement for
663 	 * PCI and USB devices, while header alignment only is valid
664 	 * for PCI devices.
665 	 */
666 	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
667 		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
668 	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
669 		rt2x00queue_align_frame(skb);
670 
671 	/*
672 	 * That function must be called with bh disabled.
673 	 */
674 	spin_lock(&queue->tx_lock);
675 
676 	if (unlikely(rt2x00queue_full(queue))) {
677 		rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
678 			   queue->qid);
679 		ret = -ENOBUFS;
680 		goto out;
681 	}
682 
683 	entry = rt2x00queue_get_entry(queue, Q_INDEX);
684 
685 	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
686 				      &entry->flags))) {
687 		rt2x00_err(queue->rt2x00dev,
688 			   "Arrived at non-free entry in the non-full queue %d\n"
689 			   "Please file bug report to %s\n",
690 			   queue->qid, DRV_PROJECT);
691 		ret = -EINVAL;
692 		goto out;
693 	}
694 
695 	entry->skb = skb;
696 
697 	/*
698 	 * It could be possible that the queue was corrupted and this
699 	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
700 	 * this frame will simply be dropped.
701 	 */
702 	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
703 		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
704 		entry->skb = NULL;
705 		ret = -EIO;
706 		goto out;
707 	}
708 
709 	/*
710 	 * Put BlockAckReqs into our check list for driver BA processing.
711 	 */
712 	rt2x00queue_bar_check(entry);
713 
714 	set_bit(ENTRY_DATA_PENDING, &entry->flags);
715 
716 	rt2x00queue_index_inc(entry, Q_INDEX);
717 	rt2x00queue_write_tx_descriptor(entry, &txdesc);
718 	rt2x00queue_kick_tx_queue(queue, &txdesc);
719 
720 out:
721 	/*
722 	 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
723 	 * do this under queue->tx_lock. Bottom halve was already disabled
724 	 * before ieee80211_xmit() call.
725 	 */
726 	if (rt2x00queue_threshold(queue))
727 		rt2x00queue_pause_queue(queue);
728 
729 	spin_unlock(&queue->tx_lock);
730 	return ret;
731 }
732 
733 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
734 			     struct ieee80211_vif *vif)
735 {
736 	struct rt2x00_intf *intf = vif_to_intf(vif);
737 
738 	if (unlikely(!intf->beacon))
739 		return -ENOBUFS;
740 
741 	/*
742 	 * Clean up the beacon skb.
743 	 */
744 	rt2x00queue_free_skb(intf->beacon);
745 
746 	/*
747 	 * Clear beacon (single bssid devices don't need to clear the beacon
748 	 * since the beacon queue will get stopped anyway).
749 	 */
750 	if (rt2x00dev->ops->lib->clear_beacon)
751 		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
752 
753 	return 0;
754 }
755 
756 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
757 			      struct ieee80211_vif *vif)
758 {
759 	struct rt2x00_intf *intf = vif_to_intf(vif);
760 	struct skb_frame_desc *skbdesc;
761 	struct txentry_desc txdesc;
762 
763 	if (unlikely(!intf->beacon))
764 		return -ENOBUFS;
765 
766 	/*
767 	 * Clean up the beacon skb.
768 	 */
769 	rt2x00queue_free_skb(intf->beacon);
770 
771 	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
772 	if (!intf->beacon->skb)
773 		return -ENOMEM;
774 
775 	/*
776 	 * Copy all TX descriptor information into txdesc,
777 	 * after that we are free to use the skb->cb array
778 	 * for our information.
779 	 */
780 	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
781 
782 	/*
783 	 * Fill in skb descriptor
784 	 */
785 	skbdesc = get_skb_frame_desc(intf->beacon->skb);
786 	memset(skbdesc, 0, sizeof(*skbdesc));
787 
788 	/*
789 	 * Send beacon to hardware.
790 	 */
791 	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
792 
793 	return 0;
794 
795 }
796 
797 bool rt2x00queue_for_each_entry(struct data_queue *queue,
798 				enum queue_index start,
799 				enum queue_index end,
800 				void *data,
801 				bool (*fn)(struct queue_entry *entry,
802 					   void *data))
803 {
804 	unsigned long irqflags;
805 	unsigned int index_start;
806 	unsigned int index_end;
807 	unsigned int i;
808 
809 	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
810 		rt2x00_err(queue->rt2x00dev,
811 			   "Entry requested from invalid index range (%d - %d)\n",
812 			   start, end);
813 		return true;
814 	}
815 
816 	/*
817 	 * Only protect the range we are going to loop over,
818 	 * if during our loop a extra entry is set to pending
819 	 * it should not be kicked during this run, since it
820 	 * is part of another TX operation.
821 	 */
822 	spin_lock_irqsave(&queue->index_lock, irqflags);
823 	index_start = queue->index[start];
824 	index_end = queue->index[end];
825 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
826 
827 	/*
828 	 * Start from the TX done pointer, this guarantees that we will
829 	 * send out all frames in the correct order.
830 	 */
831 	if (index_start < index_end) {
832 		for (i = index_start; i < index_end; i++) {
833 			if (fn(&queue->entries[i], data))
834 				return true;
835 		}
836 	} else {
837 		for (i = index_start; i < queue->limit; i++) {
838 			if (fn(&queue->entries[i], data))
839 				return true;
840 		}
841 
842 		for (i = 0; i < index_end; i++) {
843 			if (fn(&queue->entries[i], data))
844 				return true;
845 		}
846 	}
847 
848 	return false;
849 }
850 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
851 
852 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
853 					  enum queue_index index)
854 {
855 	struct queue_entry *entry;
856 	unsigned long irqflags;
857 
858 	if (unlikely(index >= Q_INDEX_MAX)) {
859 		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
860 			   index);
861 		return NULL;
862 	}
863 
864 	spin_lock_irqsave(&queue->index_lock, irqflags);
865 
866 	entry = &queue->entries[queue->index[index]];
867 
868 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
869 
870 	return entry;
871 }
872 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
873 
874 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
875 {
876 	struct data_queue *queue = entry->queue;
877 	unsigned long irqflags;
878 
879 	if (unlikely(index >= Q_INDEX_MAX)) {
880 		rt2x00_err(queue->rt2x00dev,
881 			   "Index change on invalid index type (%d)\n", index);
882 		return;
883 	}
884 
885 	spin_lock_irqsave(&queue->index_lock, irqflags);
886 
887 	queue->index[index]++;
888 	if (queue->index[index] >= queue->limit)
889 		queue->index[index] = 0;
890 
891 	entry->last_action = jiffies;
892 
893 	if (index == Q_INDEX) {
894 		queue->length++;
895 	} else if (index == Q_INDEX_DONE) {
896 		queue->length--;
897 		queue->count++;
898 	}
899 
900 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
901 }
902 
903 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
904 {
905 	switch (queue->qid) {
906 	case QID_AC_VO:
907 	case QID_AC_VI:
908 	case QID_AC_BE:
909 	case QID_AC_BK:
910 		/*
911 		 * For TX queues, we have to disable the queue
912 		 * inside mac80211.
913 		 */
914 		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
915 		break;
916 	default:
917 		break;
918 	}
919 }
920 void rt2x00queue_pause_queue(struct data_queue *queue)
921 {
922 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
923 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
924 	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
925 		return;
926 
927 	rt2x00queue_pause_queue_nocheck(queue);
928 }
929 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
930 
931 void rt2x00queue_unpause_queue(struct data_queue *queue)
932 {
933 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
934 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
935 	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
936 		return;
937 
938 	switch (queue->qid) {
939 	case QID_AC_VO:
940 	case QID_AC_VI:
941 	case QID_AC_BE:
942 	case QID_AC_BK:
943 		/*
944 		 * For TX queues, we have to enable the queue
945 		 * inside mac80211.
946 		 */
947 		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
948 		break;
949 	case QID_RX:
950 		/*
951 		 * For RX we need to kick the queue now in order to
952 		 * receive frames.
953 		 */
954 		queue->rt2x00dev->ops->lib->kick_queue(queue);
955 	default:
956 		break;
957 	}
958 }
959 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
960 
961 void rt2x00queue_start_queue(struct data_queue *queue)
962 {
963 	mutex_lock(&queue->status_lock);
964 
965 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
966 	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
967 		mutex_unlock(&queue->status_lock);
968 		return;
969 	}
970 
971 	set_bit(QUEUE_PAUSED, &queue->flags);
972 
973 	queue->rt2x00dev->ops->lib->start_queue(queue);
974 
975 	rt2x00queue_unpause_queue(queue);
976 
977 	mutex_unlock(&queue->status_lock);
978 }
979 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
980 
981 void rt2x00queue_stop_queue(struct data_queue *queue)
982 {
983 	mutex_lock(&queue->status_lock);
984 
985 	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
986 		mutex_unlock(&queue->status_lock);
987 		return;
988 	}
989 
990 	rt2x00queue_pause_queue_nocheck(queue);
991 
992 	queue->rt2x00dev->ops->lib->stop_queue(queue);
993 
994 	mutex_unlock(&queue->status_lock);
995 }
996 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
997 
998 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
999 {
1000 	bool tx_queue =
1001 		(queue->qid == QID_AC_VO) ||
1002 		(queue->qid == QID_AC_VI) ||
1003 		(queue->qid == QID_AC_BE) ||
1004 		(queue->qid == QID_AC_BK);
1005 
1006 	if (rt2x00queue_empty(queue))
1007 		return;
1008 
1009 	/*
1010 	 * If we are not supposed to drop any pending
1011 	 * frames, this means we must force a start (=kick)
1012 	 * to the queue to make sure the hardware will
1013 	 * start transmitting.
1014 	 */
1015 	if (!drop && tx_queue)
1016 		queue->rt2x00dev->ops->lib->kick_queue(queue);
1017 
1018 	/*
1019 	 * Check if driver supports flushing, if that is the case we can
1020 	 * defer the flushing to the driver. Otherwise we must use the
1021 	 * alternative which just waits for the queue to become empty.
1022 	 */
1023 	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1024 		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1025 
1026 	/*
1027 	 * The queue flush has failed...
1028 	 */
1029 	if (unlikely(!rt2x00queue_empty(queue)))
1030 		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1031 			    queue->qid);
1032 }
1033 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1034 
1035 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1036 {
1037 	struct data_queue *queue;
1038 
1039 	/*
1040 	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1041 	 * for each queue after is has been properly initialized.
1042 	 */
1043 	tx_queue_for_each(rt2x00dev, queue)
1044 		rt2x00queue_start_queue(queue);
1045 	rt2x00dev->last_nostatus_check = jiffies;
1046 
1047 	rt2x00queue_start_queue(rt2x00dev->rx);
1048 }
1049 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1050 
1051 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1052 {
1053 	struct data_queue *queue;
1054 
1055 	/*
1056 	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1057 	 * as well, but we are completely shutting doing everything
1058 	 * now, so it is much safer to stop all TX queues at once,
1059 	 * and use rt2x00queue_stop_queue for cleaning up.
1060 	 */
1061 	ieee80211_stop_queues(rt2x00dev->hw);
1062 
1063 	tx_queue_for_each(rt2x00dev, queue)
1064 		rt2x00queue_stop_queue(queue);
1065 
1066 	rt2x00queue_stop_queue(rt2x00dev->rx);
1067 }
1068 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1069 
1070 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1071 {
1072 	struct data_queue *queue;
1073 
1074 	tx_queue_for_each(rt2x00dev, queue)
1075 		rt2x00queue_flush_queue(queue, drop);
1076 
1077 	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1078 }
1079 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1080 
1081 static void rt2x00queue_reset(struct data_queue *queue)
1082 {
1083 	unsigned long irqflags;
1084 	unsigned int i;
1085 
1086 	spin_lock_irqsave(&queue->index_lock, irqflags);
1087 
1088 	queue->count = 0;
1089 	queue->length = 0;
1090 
1091 	for (i = 0; i < Q_INDEX_MAX; i++)
1092 		queue->index[i] = 0;
1093 
1094 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1095 }
1096 
1097 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1098 {
1099 	struct data_queue *queue;
1100 	unsigned int i;
1101 
1102 	queue_for_each(rt2x00dev, queue) {
1103 		rt2x00queue_reset(queue);
1104 
1105 		for (i = 0; i < queue->limit; i++)
1106 			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1107 	}
1108 }
1109 
1110 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1111 {
1112 	struct queue_entry *entries;
1113 	unsigned int entry_size;
1114 	unsigned int i;
1115 
1116 	rt2x00queue_reset(queue);
1117 
1118 	/*
1119 	 * Allocate all queue entries.
1120 	 */
1121 	entry_size = sizeof(*entries) + queue->priv_size;
1122 	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1123 	if (!entries)
1124 		return -ENOMEM;
1125 
1126 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1127 	(((char *)(__base)) + ((__limit) * (__esize)) + \
1128 	    ((__index) * (__psize)))
1129 
1130 	for (i = 0; i < queue->limit; i++) {
1131 		entries[i].flags = 0;
1132 		entries[i].queue = queue;
1133 		entries[i].skb = NULL;
1134 		entries[i].entry_idx = i;
1135 		entries[i].priv_data =
1136 		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1137 					    sizeof(*entries), queue->priv_size);
1138 	}
1139 
1140 #undef QUEUE_ENTRY_PRIV_OFFSET
1141 
1142 	queue->entries = entries;
1143 
1144 	return 0;
1145 }
1146 
1147 static void rt2x00queue_free_skbs(struct data_queue *queue)
1148 {
1149 	unsigned int i;
1150 
1151 	if (!queue->entries)
1152 		return;
1153 
1154 	for (i = 0; i < queue->limit; i++) {
1155 		rt2x00queue_free_skb(&queue->entries[i]);
1156 	}
1157 }
1158 
1159 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1160 {
1161 	unsigned int i;
1162 	struct sk_buff *skb;
1163 
1164 	for (i = 0; i < queue->limit; i++) {
1165 		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1166 		if (!skb)
1167 			return -ENOMEM;
1168 		queue->entries[i].skb = skb;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1175 {
1176 	struct data_queue *queue;
1177 	int status;
1178 
1179 	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1180 	if (status)
1181 		goto exit;
1182 
1183 	tx_queue_for_each(rt2x00dev, queue) {
1184 		status = rt2x00queue_alloc_entries(queue);
1185 		if (status)
1186 			goto exit;
1187 	}
1188 
1189 	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1190 	if (status)
1191 		goto exit;
1192 
1193 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1194 		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1195 		if (status)
1196 			goto exit;
1197 	}
1198 
1199 	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1200 	if (status)
1201 		goto exit;
1202 
1203 	return 0;
1204 
1205 exit:
1206 	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1207 
1208 	rt2x00queue_uninitialize(rt2x00dev);
1209 
1210 	return status;
1211 }
1212 
1213 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1214 {
1215 	struct data_queue *queue;
1216 
1217 	rt2x00queue_free_skbs(rt2x00dev->rx);
1218 
1219 	queue_for_each(rt2x00dev, queue) {
1220 		kfree(queue->entries);
1221 		queue->entries = NULL;
1222 	}
1223 }
1224 
1225 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1226 			     struct data_queue *queue, enum data_queue_qid qid)
1227 {
1228 	mutex_init(&queue->status_lock);
1229 	spin_lock_init(&queue->tx_lock);
1230 	spin_lock_init(&queue->index_lock);
1231 
1232 	queue->rt2x00dev = rt2x00dev;
1233 	queue->qid = qid;
1234 	queue->txop = 0;
1235 	queue->aifs = 2;
1236 	queue->cw_min = 5;
1237 	queue->cw_max = 10;
1238 
1239 	rt2x00dev->ops->queue_init(queue);
1240 
1241 	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1242 }
1243 
1244 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1245 {
1246 	struct data_queue *queue;
1247 	enum data_queue_qid qid;
1248 	unsigned int req_atim =
1249 	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1250 
1251 	/*
1252 	 * We need the following queues:
1253 	 * RX: 1
1254 	 * TX: ops->tx_queues
1255 	 * Beacon: 1
1256 	 * Atim: 1 (if required)
1257 	 */
1258 	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1259 
1260 	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1261 	if (!queue)
1262 		return -ENOMEM;
1263 
1264 	/*
1265 	 * Initialize pointers
1266 	 */
1267 	rt2x00dev->rx = queue;
1268 	rt2x00dev->tx = &queue[1];
1269 	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1270 	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1271 
1272 	/*
1273 	 * Initialize queue parameters.
1274 	 * RX: qid = QID_RX
1275 	 * TX: qid = QID_AC_VO + index
1276 	 * TX: cw_min: 2^5 = 32.
1277 	 * TX: cw_max: 2^10 = 1024.
1278 	 * BCN: qid = QID_BEACON
1279 	 * ATIM: qid = QID_ATIM
1280 	 */
1281 	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1282 
1283 	qid = QID_AC_VO;
1284 	tx_queue_for_each(rt2x00dev, queue)
1285 		rt2x00queue_init(rt2x00dev, queue, qid++);
1286 
1287 	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1288 	if (req_atim)
1289 		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1290 
1291 	return 0;
1292 }
1293 
1294 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1295 {
1296 	kfree(rt2x00dev->rx);
1297 	rt2x00dev->rx = NULL;
1298 	rt2x00dev->tx = NULL;
1299 	rt2x00dev->bcn = NULL;
1300 }
1301