1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 6 <http://rt2x00.serialmonkey.com> 7 8 */ 9 10 /* 11 Module: rt2x00lib 12 Abstract: rt2x00 queue specific routines. 13 */ 14 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/dma-mapping.h> 19 20 #include "rt2x00.h" 21 #include "rt2x00lib.h" 22 23 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp) 24 { 25 struct data_queue *queue = entry->queue; 26 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 27 struct sk_buff *skb; 28 struct skb_frame_desc *skbdesc; 29 unsigned int frame_size; 30 unsigned int head_size = 0; 31 unsigned int tail_size = 0; 32 33 /* 34 * The frame size includes descriptor size, because the 35 * hardware directly receive the frame into the skbuffer. 36 */ 37 frame_size = queue->data_size + queue->desc_size + queue->winfo_size; 38 39 /* 40 * The payload should be aligned to a 4-byte boundary, 41 * this means we need at least 3 bytes for moving the frame 42 * into the correct offset. 43 */ 44 head_size = 4; 45 46 /* 47 * For IV/EIV/ICV assembly we must make sure there is 48 * at least 8 bytes bytes available in headroom for IV/EIV 49 * and 8 bytes for ICV data as tailroon. 50 */ 51 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) { 52 head_size += 8; 53 tail_size += 8; 54 } 55 56 /* 57 * Allocate skbuffer. 58 */ 59 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp); 60 if (!skb) 61 return NULL; 62 63 /* 64 * Make sure we not have a frame with the requested bytes 65 * available in the head and tail. 66 */ 67 skb_reserve(skb, head_size); 68 skb_put(skb, frame_size); 69 70 /* 71 * Populate skbdesc. 72 */ 73 skbdesc = get_skb_frame_desc(skb); 74 memset(skbdesc, 0, sizeof(*skbdesc)); 75 76 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) { 77 dma_addr_t skb_dma; 78 79 skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len, 80 DMA_FROM_DEVICE); 81 if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) { 82 dev_kfree_skb_any(skb); 83 return NULL; 84 } 85 86 skbdesc->skb_dma = skb_dma; 87 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; 88 } 89 90 return skb; 91 } 92 93 int rt2x00queue_map_txskb(struct queue_entry *entry) 94 { 95 struct device *dev = entry->queue->rt2x00dev->dev; 96 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 97 98 skbdesc->skb_dma = 99 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE); 100 101 if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma))) 102 return -ENOMEM; 103 104 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; 105 rt2x00lib_dmadone(entry); 106 return 0; 107 } 108 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); 109 110 void rt2x00queue_unmap_skb(struct queue_entry *entry) 111 { 112 struct device *dev = entry->queue->rt2x00dev->dev; 113 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 114 115 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { 116 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 117 DMA_FROM_DEVICE); 118 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; 119 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { 120 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 121 DMA_TO_DEVICE); 122 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; 123 } 124 } 125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb); 126 127 void rt2x00queue_free_skb(struct queue_entry *entry) 128 { 129 if (!entry->skb) 130 return; 131 132 rt2x00queue_unmap_skb(entry); 133 dev_kfree_skb_any(entry->skb); 134 entry->skb = NULL; 135 } 136 137 void rt2x00queue_align_frame(struct sk_buff *skb) 138 { 139 unsigned int frame_length = skb->len; 140 unsigned int align = ALIGN_SIZE(skb, 0); 141 142 if (!align) 143 return; 144 145 skb_push(skb, align); 146 memmove(skb->data, skb->data + align, frame_length); 147 skb_trim(skb, frame_length); 148 } 149 150 /* 151 * H/W needs L2 padding between the header and the paylod if header size 152 * is not 4 bytes aligned. 153 */ 154 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len) 155 { 156 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0; 157 158 if (!l2pad) 159 return; 160 161 skb_push(skb, l2pad); 162 memmove(skb->data, skb->data + l2pad, hdr_len); 163 } 164 165 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len) 166 { 167 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0; 168 169 if (!l2pad) 170 return; 171 172 memmove(skb->data + l2pad, skb->data, hdr_len); 173 skb_pull(skb, l2pad); 174 } 175 176 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev, 177 struct sk_buff *skb, 178 struct txentry_desc *txdesc) 179 { 180 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 181 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 182 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); 183 u16 seqno; 184 185 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 186 return; 187 188 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 189 190 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) { 191 /* 192 * rt2800 has a H/W (or F/W) bug, device incorrectly increase 193 * seqno on retransmitted data (non-QOS) and management frames. 194 * To workaround the problem let's generate seqno in software. 195 * Except for beacons which are transmitted periodically by H/W 196 * hence hardware has to assign seqno for them. 197 */ 198 if (ieee80211_is_beacon(hdr->frame_control)) { 199 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 200 /* H/W will generate sequence number */ 201 return; 202 } 203 204 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 205 } 206 207 /* 208 * The hardware is not able to insert a sequence number. Assign a 209 * software generated one here. 210 * 211 * This is wrong because beacons are not getting sequence 212 * numbers assigned properly. 213 * 214 * A secondary problem exists for drivers that cannot toggle 215 * sequence counting per-frame, since those will override the 216 * sequence counter given by mac80211. 217 */ 218 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 219 seqno = atomic_add_return(0x10, &intf->seqno); 220 else 221 seqno = atomic_read(&intf->seqno); 222 223 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 224 hdr->seq_ctrl |= cpu_to_le16(seqno); 225 } 226 227 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev, 228 struct sk_buff *skb, 229 struct txentry_desc *txdesc, 230 const struct rt2x00_rate *hwrate) 231 { 232 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 233 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 234 unsigned int data_length; 235 unsigned int duration; 236 unsigned int residual; 237 238 /* 239 * Determine with what IFS priority this frame should be send. 240 * Set ifs to IFS_SIFS when the this is not the first fragment, 241 * or this fragment came after RTS/CTS. 242 */ 243 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 244 txdesc->u.plcp.ifs = IFS_BACKOFF; 245 else 246 txdesc->u.plcp.ifs = IFS_SIFS; 247 248 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */ 249 data_length = skb->len + 4; 250 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb); 251 252 /* 253 * PLCP setup 254 * Length calculation depends on OFDM/CCK rate. 255 */ 256 txdesc->u.plcp.signal = hwrate->plcp; 257 txdesc->u.plcp.service = 0x04; 258 259 if (hwrate->flags & DEV_RATE_OFDM) { 260 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f; 261 txdesc->u.plcp.length_low = data_length & 0x3f; 262 } else { 263 /* 264 * Convert length to microseconds. 265 */ 266 residual = GET_DURATION_RES(data_length, hwrate->bitrate); 267 duration = GET_DURATION(data_length, hwrate->bitrate); 268 269 if (residual != 0) { 270 duration++; 271 272 /* 273 * Check if we need to set the Length Extension 274 */ 275 if (hwrate->bitrate == 110 && residual <= 30) 276 txdesc->u.plcp.service |= 0x80; 277 } 278 279 txdesc->u.plcp.length_high = (duration >> 8) & 0xff; 280 txdesc->u.plcp.length_low = duration & 0xff; 281 282 /* 283 * When preamble is enabled we should set the 284 * preamble bit for the signal. 285 */ 286 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 287 txdesc->u.plcp.signal |= 0x08; 288 } 289 } 290 291 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev, 292 struct sk_buff *skb, 293 struct txentry_desc *txdesc, 294 struct ieee80211_sta *sta, 295 const struct rt2x00_rate *hwrate) 296 { 297 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 298 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 299 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 300 struct rt2x00_sta *sta_priv = NULL; 301 u8 density = 0; 302 303 if (sta) { 304 sta_priv = sta_to_rt2x00_sta(sta); 305 txdesc->u.ht.wcid = sta_priv->wcid; 306 density = sta->ht_cap.ampdu_density; 307 } 308 309 /* 310 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the 311 * mcs rate to be used 312 */ 313 if (txrate->flags & IEEE80211_TX_RC_MCS) { 314 txdesc->u.ht.mcs = txrate->idx; 315 316 /* 317 * MIMO PS should be set to 1 for STA's using dynamic SM PS 318 * when using more then one tx stream (>MCS7). 319 */ 320 if (sta && txdesc->u.ht.mcs > 7 && 321 sta->smps_mode == IEEE80211_SMPS_DYNAMIC) 322 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags); 323 } else { 324 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs); 325 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 326 txdesc->u.ht.mcs |= 0x08; 327 } 328 329 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) { 330 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 331 txdesc->u.ht.txop = TXOP_SIFS; 332 else 333 txdesc->u.ht.txop = TXOP_BACKOFF; 334 335 /* Left zero on all other settings. */ 336 return; 337 } 338 339 /* 340 * Only one STBC stream is supported for now. 341 */ 342 if (tx_info->flags & IEEE80211_TX_CTL_STBC) 343 txdesc->u.ht.stbc = 1; 344 345 /* 346 * This frame is eligible for an AMPDU, however, don't aggregate 347 * frames that are intended to probe a specific tx rate. 348 */ 349 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU && 350 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) { 351 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags); 352 txdesc->u.ht.mpdu_density = density; 353 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */ 354 } 355 356 /* 357 * Set 40Mhz mode if necessary (for legacy rates this will 358 * duplicate the frame to both channels). 359 */ 360 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH || 361 txrate->flags & IEEE80211_TX_RC_DUP_DATA) 362 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags); 363 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 364 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags); 365 366 /* 367 * Determine IFS values 368 * - Use TXOP_BACKOFF for management frames except beacons 369 * - Use TXOP_SIFS for fragment bursts 370 * - Use TXOP_HTTXOP for everything else 371 * 372 * Note: rt2800 devices won't use CTS protection (if used) 373 * for frames not transmitted with TXOP_HTTXOP 374 */ 375 if (ieee80211_is_mgmt(hdr->frame_control) && 376 !ieee80211_is_beacon(hdr->frame_control)) 377 txdesc->u.ht.txop = TXOP_BACKOFF; 378 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 379 txdesc->u.ht.txop = TXOP_SIFS; 380 else 381 txdesc->u.ht.txop = TXOP_HTTXOP; 382 } 383 384 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev, 385 struct sk_buff *skb, 386 struct txentry_desc *txdesc, 387 struct ieee80211_sta *sta) 388 { 389 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 390 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 391 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 392 struct ieee80211_rate *rate; 393 const struct rt2x00_rate *hwrate = NULL; 394 395 memset(txdesc, 0, sizeof(*txdesc)); 396 397 /* 398 * Header and frame information. 399 */ 400 txdesc->length = skb->len; 401 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb); 402 403 /* 404 * Check whether this frame is to be acked. 405 */ 406 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) 407 __set_bit(ENTRY_TXD_ACK, &txdesc->flags); 408 409 /* 410 * Check if this is a RTS/CTS frame 411 */ 412 if (ieee80211_is_rts(hdr->frame_control) || 413 ieee80211_is_cts(hdr->frame_control)) { 414 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 415 if (ieee80211_is_rts(hdr->frame_control)) 416 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); 417 else 418 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); 419 if (tx_info->control.rts_cts_rate_idx >= 0) 420 rate = 421 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); 422 } 423 424 /* 425 * Determine retry information. 426 */ 427 txdesc->retry_limit = tx_info->control.rates[0].count - 1; 428 if (txdesc->retry_limit >= rt2x00dev->long_retry) 429 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); 430 431 /* 432 * Check if more fragments are pending 433 */ 434 if (ieee80211_has_morefrags(hdr->frame_control)) { 435 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 436 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); 437 } 438 439 /* 440 * Check if more frames (!= fragments) are pending 441 */ 442 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES) 443 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 444 445 /* 446 * Beacons and probe responses require the tsf timestamp 447 * to be inserted into the frame. 448 */ 449 if (ieee80211_is_beacon(hdr->frame_control) || 450 ieee80211_is_probe_resp(hdr->frame_control)) 451 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); 452 453 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) && 454 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) 455 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); 456 457 /* 458 * Determine rate modulation. 459 */ 460 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 461 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD; 462 else if (txrate->flags & IEEE80211_TX_RC_MCS) 463 txdesc->rate_mode = RATE_MODE_HT_MIX; 464 else { 465 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); 466 hwrate = rt2x00_get_rate(rate->hw_value); 467 if (hwrate->flags & DEV_RATE_OFDM) 468 txdesc->rate_mode = RATE_MODE_OFDM; 469 else 470 txdesc->rate_mode = RATE_MODE_CCK; 471 } 472 473 /* 474 * Apply TX descriptor handling by components 475 */ 476 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc); 477 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc); 478 479 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC)) 480 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc, 481 sta, hwrate); 482 else 483 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc, 484 hwrate); 485 } 486 487 static int rt2x00queue_write_tx_data(struct queue_entry *entry, 488 struct txentry_desc *txdesc) 489 { 490 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 491 492 /* 493 * This should not happen, we already checked the entry 494 * was ours. When the hardware disagrees there has been 495 * a queue corruption! 496 */ 497 if (unlikely(rt2x00dev->ops->lib->get_entry_state && 498 rt2x00dev->ops->lib->get_entry_state(entry))) { 499 rt2x00_err(rt2x00dev, 500 "Corrupt queue %d, accessing entry which is not ours\n" 501 "Please file bug report to %s\n", 502 entry->queue->qid, DRV_PROJECT); 503 return -EINVAL; 504 } 505 506 /* 507 * Add the requested extra tx headroom in front of the skb. 508 */ 509 skb_push(entry->skb, rt2x00dev->extra_tx_headroom); 510 memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom); 511 512 /* 513 * Call the driver's write_tx_data function, if it exists. 514 */ 515 if (rt2x00dev->ops->lib->write_tx_data) 516 rt2x00dev->ops->lib->write_tx_data(entry, txdesc); 517 518 /* 519 * Map the skb to DMA. 520 */ 521 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) && 522 rt2x00queue_map_txskb(entry)) 523 return -ENOMEM; 524 525 return 0; 526 } 527 528 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, 529 struct txentry_desc *txdesc) 530 { 531 struct data_queue *queue = entry->queue; 532 533 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc); 534 535 /* 536 * All processing on the frame has been completed, this means 537 * it is now ready to be dumped to userspace through debugfs. 538 */ 539 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry); 540 } 541 542 static void rt2x00queue_kick_tx_queue(struct data_queue *queue, 543 struct txentry_desc *txdesc) 544 { 545 /* 546 * Check if we need to kick the queue, there are however a few rules 547 * 1) Don't kick unless this is the last in frame in a burst. 548 * When the burst flag is set, this frame is always followed 549 * by another frame which in some way are related to eachother. 550 * This is true for fragments, RTS or CTS-to-self frames. 551 * 2) Rule 1 can be broken when the available entries 552 * in the queue are less then a certain threshold. 553 */ 554 if (rt2x00queue_threshold(queue) || 555 !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) 556 queue->rt2x00dev->ops->lib->kick_queue(queue); 557 } 558 559 static void rt2x00queue_bar_check(struct queue_entry *entry) 560 { 561 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 562 struct ieee80211_bar *bar = (void *) (entry->skb->data + 563 rt2x00dev->extra_tx_headroom); 564 struct rt2x00_bar_list_entry *bar_entry; 565 566 if (likely(!ieee80211_is_back_req(bar->frame_control))) 567 return; 568 569 bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC); 570 571 /* 572 * If the alloc fails we still send the BAR out but just don't track 573 * it in our bar list. And as a result we will report it to mac80211 574 * back as failed. 575 */ 576 if (!bar_entry) 577 return; 578 579 bar_entry->entry = entry; 580 bar_entry->block_acked = 0; 581 582 /* 583 * Copy the relevant parts of the 802.11 BAR into out check list 584 * such that we can use RCU for less-overhead in the RX path since 585 * sending BARs and processing the according BlockAck should be 586 * the exception. 587 */ 588 memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra)); 589 memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta)); 590 bar_entry->control = bar->control; 591 bar_entry->start_seq_num = bar->start_seq_num; 592 593 /* 594 * Insert BAR into our BAR check list. 595 */ 596 spin_lock_bh(&rt2x00dev->bar_list_lock); 597 list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list); 598 spin_unlock_bh(&rt2x00dev->bar_list_lock); 599 } 600 601 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb, 602 struct ieee80211_sta *sta, bool local) 603 { 604 struct ieee80211_tx_info *tx_info; 605 struct queue_entry *entry; 606 struct txentry_desc txdesc; 607 struct skb_frame_desc *skbdesc; 608 u8 rate_idx, rate_flags; 609 int ret = 0; 610 611 /* 612 * Copy all TX descriptor information into txdesc, 613 * after that we are free to use the skb->cb array 614 * for our information. 615 */ 616 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta); 617 618 /* 619 * All information is retrieved from the skb->cb array, 620 * now we should claim ownership of the driver part of that 621 * array, preserving the bitrate index and flags. 622 */ 623 tx_info = IEEE80211_SKB_CB(skb); 624 rate_idx = tx_info->control.rates[0].idx; 625 rate_flags = tx_info->control.rates[0].flags; 626 skbdesc = get_skb_frame_desc(skb); 627 memset(skbdesc, 0, sizeof(*skbdesc)); 628 skbdesc->tx_rate_idx = rate_idx; 629 skbdesc->tx_rate_flags = rate_flags; 630 631 if (local) 632 skbdesc->flags |= SKBDESC_NOT_MAC80211; 633 634 /* 635 * When hardware encryption is supported, and this frame 636 * is to be encrypted, we should strip the IV/EIV data from 637 * the frame so we can provide it to the driver separately. 638 */ 639 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && 640 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { 641 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV)) 642 rt2x00crypto_tx_copy_iv(skb, &txdesc); 643 else 644 rt2x00crypto_tx_remove_iv(skb, &txdesc); 645 } 646 647 /* 648 * When DMA allocation is required we should guarantee to the 649 * driver that the DMA is aligned to a 4-byte boundary. 650 * However some drivers require L2 padding to pad the payload 651 * rather then the header. This could be a requirement for 652 * PCI and USB devices, while header alignment only is valid 653 * for PCI devices. 654 */ 655 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD)) 656 rt2x00queue_insert_l2pad(skb, txdesc.header_length); 657 else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA)) 658 rt2x00queue_align_frame(skb); 659 660 /* 661 * That function must be called with bh disabled. 662 */ 663 spin_lock(&queue->tx_lock); 664 665 if (unlikely(rt2x00queue_full(queue))) { 666 rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n", 667 queue->qid); 668 ret = -ENOBUFS; 669 goto out; 670 } 671 672 entry = rt2x00queue_get_entry(queue, Q_INDEX); 673 674 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, 675 &entry->flags))) { 676 rt2x00_err(queue->rt2x00dev, 677 "Arrived at non-free entry in the non-full queue %d\n" 678 "Please file bug report to %s\n", 679 queue->qid, DRV_PROJECT); 680 ret = -EINVAL; 681 goto out; 682 } 683 684 entry->skb = skb; 685 686 /* 687 * It could be possible that the queue was corrupted and this 688 * call failed. Since we always return NETDEV_TX_OK to mac80211, 689 * this frame will simply be dropped. 690 */ 691 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) { 692 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 693 entry->skb = NULL; 694 ret = -EIO; 695 goto out; 696 } 697 698 /* 699 * Put BlockAckReqs into our check list for driver BA processing. 700 */ 701 rt2x00queue_bar_check(entry); 702 703 set_bit(ENTRY_DATA_PENDING, &entry->flags); 704 705 rt2x00queue_index_inc(entry, Q_INDEX); 706 rt2x00queue_write_tx_descriptor(entry, &txdesc); 707 rt2x00queue_kick_tx_queue(queue, &txdesc); 708 709 out: 710 /* 711 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we 712 * do this under queue->tx_lock. Bottom halve was already disabled 713 * before ieee80211_xmit() call. 714 */ 715 if (rt2x00queue_threshold(queue)) 716 rt2x00queue_pause_queue(queue); 717 718 spin_unlock(&queue->tx_lock); 719 return ret; 720 } 721 722 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev, 723 struct ieee80211_vif *vif) 724 { 725 struct rt2x00_intf *intf = vif_to_intf(vif); 726 727 if (unlikely(!intf->beacon)) 728 return -ENOBUFS; 729 730 /* 731 * Clean up the beacon skb. 732 */ 733 rt2x00queue_free_skb(intf->beacon); 734 735 /* 736 * Clear beacon (single bssid devices don't need to clear the beacon 737 * since the beacon queue will get stopped anyway). 738 */ 739 if (rt2x00dev->ops->lib->clear_beacon) 740 rt2x00dev->ops->lib->clear_beacon(intf->beacon); 741 742 return 0; 743 } 744 745 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, 746 struct ieee80211_vif *vif) 747 { 748 struct rt2x00_intf *intf = vif_to_intf(vif); 749 struct skb_frame_desc *skbdesc; 750 struct txentry_desc txdesc; 751 752 if (unlikely(!intf->beacon)) 753 return -ENOBUFS; 754 755 /* 756 * Clean up the beacon skb. 757 */ 758 rt2x00queue_free_skb(intf->beacon); 759 760 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif); 761 if (!intf->beacon->skb) 762 return -ENOMEM; 763 764 /* 765 * Copy all TX descriptor information into txdesc, 766 * after that we are free to use the skb->cb array 767 * for our information. 768 */ 769 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL); 770 771 /* 772 * Fill in skb descriptor 773 */ 774 skbdesc = get_skb_frame_desc(intf->beacon->skb); 775 memset(skbdesc, 0, sizeof(*skbdesc)); 776 777 /* 778 * Send beacon to hardware. 779 */ 780 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc); 781 782 return 0; 783 784 } 785 786 bool rt2x00queue_for_each_entry(struct data_queue *queue, 787 enum queue_index start, 788 enum queue_index end, 789 void *data, 790 bool (*fn)(struct queue_entry *entry, 791 void *data)) 792 { 793 unsigned long irqflags; 794 unsigned int index_start; 795 unsigned int index_end; 796 unsigned int i; 797 798 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) { 799 rt2x00_err(queue->rt2x00dev, 800 "Entry requested from invalid index range (%d - %d)\n", 801 start, end); 802 return true; 803 } 804 805 /* 806 * Only protect the range we are going to loop over, 807 * if during our loop a extra entry is set to pending 808 * it should not be kicked during this run, since it 809 * is part of another TX operation. 810 */ 811 spin_lock_irqsave(&queue->index_lock, irqflags); 812 index_start = queue->index[start]; 813 index_end = queue->index[end]; 814 spin_unlock_irqrestore(&queue->index_lock, irqflags); 815 816 /* 817 * Start from the TX done pointer, this guarantees that we will 818 * send out all frames in the correct order. 819 */ 820 if (index_start < index_end) { 821 for (i = index_start; i < index_end; i++) { 822 if (fn(&queue->entries[i], data)) 823 return true; 824 } 825 } else { 826 for (i = index_start; i < queue->limit; i++) { 827 if (fn(&queue->entries[i], data)) 828 return true; 829 } 830 831 for (i = 0; i < index_end; i++) { 832 if (fn(&queue->entries[i], data)) 833 return true; 834 } 835 } 836 837 return false; 838 } 839 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry); 840 841 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 842 enum queue_index index) 843 { 844 struct queue_entry *entry; 845 unsigned long irqflags; 846 847 if (unlikely(index >= Q_INDEX_MAX)) { 848 rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n", 849 index); 850 return NULL; 851 } 852 853 spin_lock_irqsave(&queue->index_lock, irqflags); 854 855 entry = &queue->entries[queue->index[index]]; 856 857 spin_unlock_irqrestore(&queue->index_lock, irqflags); 858 859 return entry; 860 } 861 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); 862 863 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index) 864 { 865 struct data_queue *queue = entry->queue; 866 unsigned long irqflags; 867 868 if (unlikely(index >= Q_INDEX_MAX)) { 869 rt2x00_err(queue->rt2x00dev, 870 "Index change on invalid index type (%d)\n", index); 871 return; 872 } 873 874 spin_lock_irqsave(&queue->index_lock, irqflags); 875 876 queue->index[index]++; 877 if (queue->index[index] >= queue->limit) 878 queue->index[index] = 0; 879 880 entry->last_action = jiffies; 881 882 if (index == Q_INDEX) { 883 queue->length++; 884 } else if (index == Q_INDEX_DONE) { 885 queue->length--; 886 queue->count++; 887 } 888 889 spin_unlock_irqrestore(&queue->index_lock, irqflags); 890 } 891 892 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue) 893 { 894 switch (queue->qid) { 895 case QID_AC_VO: 896 case QID_AC_VI: 897 case QID_AC_BE: 898 case QID_AC_BK: 899 /* 900 * For TX queues, we have to disable the queue 901 * inside mac80211. 902 */ 903 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid); 904 break; 905 default: 906 break; 907 } 908 } 909 void rt2x00queue_pause_queue(struct data_queue *queue) 910 { 911 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 912 !test_bit(QUEUE_STARTED, &queue->flags) || 913 test_and_set_bit(QUEUE_PAUSED, &queue->flags)) 914 return; 915 916 rt2x00queue_pause_queue_nocheck(queue); 917 } 918 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue); 919 920 void rt2x00queue_unpause_queue(struct data_queue *queue) 921 { 922 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 923 !test_bit(QUEUE_STARTED, &queue->flags) || 924 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags)) 925 return; 926 927 switch (queue->qid) { 928 case QID_AC_VO: 929 case QID_AC_VI: 930 case QID_AC_BE: 931 case QID_AC_BK: 932 /* 933 * For TX queues, we have to enable the queue 934 * inside mac80211. 935 */ 936 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid); 937 break; 938 case QID_RX: 939 /* 940 * For RX we need to kick the queue now in order to 941 * receive frames. 942 */ 943 queue->rt2x00dev->ops->lib->kick_queue(queue); 944 break; 945 default: 946 break; 947 } 948 } 949 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue); 950 951 void rt2x00queue_start_queue(struct data_queue *queue) 952 { 953 mutex_lock(&queue->status_lock); 954 955 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 956 test_and_set_bit(QUEUE_STARTED, &queue->flags)) { 957 mutex_unlock(&queue->status_lock); 958 return; 959 } 960 961 set_bit(QUEUE_PAUSED, &queue->flags); 962 963 queue->rt2x00dev->ops->lib->start_queue(queue); 964 965 rt2x00queue_unpause_queue(queue); 966 967 mutex_unlock(&queue->status_lock); 968 } 969 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue); 970 971 void rt2x00queue_stop_queue(struct data_queue *queue) 972 { 973 mutex_lock(&queue->status_lock); 974 975 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) { 976 mutex_unlock(&queue->status_lock); 977 return; 978 } 979 980 rt2x00queue_pause_queue_nocheck(queue); 981 982 queue->rt2x00dev->ops->lib->stop_queue(queue); 983 984 mutex_unlock(&queue->status_lock); 985 } 986 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue); 987 988 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop) 989 { 990 bool tx_queue = 991 (queue->qid == QID_AC_VO) || 992 (queue->qid == QID_AC_VI) || 993 (queue->qid == QID_AC_BE) || 994 (queue->qid == QID_AC_BK); 995 996 if (rt2x00queue_empty(queue)) 997 return; 998 999 /* 1000 * If we are not supposed to drop any pending 1001 * frames, this means we must force a start (=kick) 1002 * to the queue to make sure the hardware will 1003 * start transmitting. 1004 */ 1005 if (!drop && tx_queue) 1006 queue->rt2x00dev->ops->lib->kick_queue(queue); 1007 1008 /* 1009 * Check if driver supports flushing, if that is the case we can 1010 * defer the flushing to the driver. Otherwise we must use the 1011 * alternative which just waits for the queue to become empty. 1012 */ 1013 if (likely(queue->rt2x00dev->ops->lib->flush_queue)) 1014 queue->rt2x00dev->ops->lib->flush_queue(queue, drop); 1015 1016 /* 1017 * The queue flush has failed... 1018 */ 1019 if (unlikely(!rt2x00queue_empty(queue))) 1020 rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n", 1021 queue->qid); 1022 } 1023 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue); 1024 1025 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev) 1026 { 1027 struct data_queue *queue; 1028 1029 /* 1030 * rt2x00queue_start_queue will call ieee80211_wake_queue 1031 * for each queue after is has been properly initialized. 1032 */ 1033 tx_queue_for_each(rt2x00dev, queue) 1034 rt2x00queue_start_queue(queue); 1035 1036 rt2x00queue_start_queue(rt2x00dev->rx); 1037 } 1038 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues); 1039 1040 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev) 1041 { 1042 struct data_queue *queue; 1043 1044 /* 1045 * rt2x00queue_stop_queue will call ieee80211_stop_queue 1046 * as well, but we are completely shutting doing everything 1047 * now, so it is much safer to stop all TX queues at once, 1048 * and use rt2x00queue_stop_queue for cleaning up. 1049 */ 1050 ieee80211_stop_queues(rt2x00dev->hw); 1051 1052 tx_queue_for_each(rt2x00dev, queue) 1053 rt2x00queue_stop_queue(queue); 1054 1055 rt2x00queue_stop_queue(rt2x00dev->rx); 1056 } 1057 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues); 1058 1059 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop) 1060 { 1061 struct data_queue *queue; 1062 1063 tx_queue_for_each(rt2x00dev, queue) 1064 rt2x00queue_flush_queue(queue, drop); 1065 1066 rt2x00queue_flush_queue(rt2x00dev->rx, drop); 1067 } 1068 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues); 1069 1070 static void rt2x00queue_reset(struct data_queue *queue) 1071 { 1072 unsigned long irqflags; 1073 unsigned int i; 1074 1075 spin_lock_irqsave(&queue->index_lock, irqflags); 1076 1077 queue->count = 0; 1078 queue->length = 0; 1079 1080 for (i = 0; i < Q_INDEX_MAX; i++) 1081 queue->index[i] = 0; 1082 1083 spin_unlock_irqrestore(&queue->index_lock, irqflags); 1084 } 1085 1086 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) 1087 { 1088 struct data_queue *queue; 1089 unsigned int i; 1090 1091 queue_for_each(rt2x00dev, queue) { 1092 rt2x00queue_reset(queue); 1093 1094 for (i = 0; i < queue->limit; i++) 1095 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); 1096 } 1097 } 1098 1099 static int rt2x00queue_alloc_entries(struct data_queue *queue) 1100 { 1101 struct queue_entry *entries; 1102 unsigned int entry_size; 1103 unsigned int i; 1104 1105 rt2x00queue_reset(queue); 1106 1107 /* 1108 * Allocate all queue entries. 1109 */ 1110 entry_size = sizeof(*entries) + queue->priv_size; 1111 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL); 1112 if (!entries) 1113 return -ENOMEM; 1114 1115 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ 1116 (((char *)(__base)) + ((__limit) * (__esize)) + \ 1117 ((__index) * (__psize))) 1118 1119 for (i = 0; i < queue->limit; i++) { 1120 entries[i].flags = 0; 1121 entries[i].queue = queue; 1122 entries[i].skb = NULL; 1123 entries[i].entry_idx = i; 1124 entries[i].priv_data = 1125 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, 1126 sizeof(*entries), queue->priv_size); 1127 } 1128 1129 #undef QUEUE_ENTRY_PRIV_OFFSET 1130 1131 queue->entries = entries; 1132 1133 return 0; 1134 } 1135 1136 static void rt2x00queue_free_skbs(struct data_queue *queue) 1137 { 1138 unsigned int i; 1139 1140 if (!queue->entries) 1141 return; 1142 1143 for (i = 0; i < queue->limit; i++) { 1144 rt2x00queue_free_skb(&queue->entries[i]); 1145 } 1146 } 1147 1148 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue) 1149 { 1150 unsigned int i; 1151 struct sk_buff *skb; 1152 1153 for (i = 0; i < queue->limit; i++) { 1154 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL); 1155 if (!skb) 1156 return -ENOMEM; 1157 queue->entries[i].skb = skb; 1158 } 1159 1160 return 0; 1161 } 1162 1163 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) 1164 { 1165 struct data_queue *queue; 1166 int status; 1167 1168 status = rt2x00queue_alloc_entries(rt2x00dev->rx); 1169 if (status) 1170 goto exit; 1171 1172 tx_queue_for_each(rt2x00dev, queue) { 1173 status = rt2x00queue_alloc_entries(queue); 1174 if (status) 1175 goto exit; 1176 } 1177 1178 status = rt2x00queue_alloc_entries(rt2x00dev->bcn); 1179 if (status) 1180 goto exit; 1181 1182 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) { 1183 status = rt2x00queue_alloc_entries(rt2x00dev->atim); 1184 if (status) 1185 goto exit; 1186 } 1187 1188 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx); 1189 if (status) 1190 goto exit; 1191 1192 return 0; 1193 1194 exit: 1195 rt2x00_err(rt2x00dev, "Queue entries allocation failed\n"); 1196 1197 rt2x00queue_uninitialize(rt2x00dev); 1198 1199 return status; 1200 } 1201 1202 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) 1203 { 1204 struct data_queue *queue; 1205 1206 rt2x00queue_free_skbs(rt2x00dev->rx); 1207 1208 queue_for_each(rt2x00dev, queue) { 1209 kfree(queue->entries); 1210 queue->entries = NULL; 1211 } 1212 } 1213 1214 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, 1215 struct data_queue *queue, enum data_queue_qid qid) 1216 { 1217 mutex_init(&queue->status_lock); 1218 spin_lock_init(&queue->tx_lock); 1219 spin_lock_init(&queue->index_lock); 1220 1221 queue->rt2x00dev = rt2x00dev; 1222 queue->qid = qid; 1223 queue->txop = 0; 1224 queue->aifs = 2; 1225 queue->cw_min = 5; 1226 queue->cw_max = 10; 1227 1228 rt2x00dev->ops->queue_init(queue); 1229 1230 queue->threshold = DIV_ROUND_UP(queue->limit, 10); 1231 } 1232 1233 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) 1234 { 1235 struct data_queue *queue; 1236 enum data_queue_qid qid; 1237 unsigned int req_atim = 1238 rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE); 1239 1240 /* 1241 * We need the following queues: 1242 * RX: 1 1243 * TX: ops->tx_queues 1244 * Beacon: 1 1245 * Atim: 1 (if required) 1246 */ 1247 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; 1248 1249 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL); 1250 if (!queue) 1251 return -ENOMEM; 1252 1253 /* 1254 * Initialize pointers 1255 */ 1256 rt2x00dev->rx = queue; 1257 rt2x00dev->tx = &queue[1]; 1258 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; 1259 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL; 1260 1261 /* 1262 * Initialize queue parameters. 1263 * RX: qid = QID_RX 1264 * TX: qid = QID_AC_VO + index 1265 * TX: cw_min: 2^5 = 32. 1266 * TX: cw_max: 2^10 = 1024. 1267 * BCN: qid = QID_BEACON 1268 * ATIM: qid = QID_ATIM 1269 */ 1270 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); 1271 1272 qid = QID_AC_VO; 1273 tx_queue_for_each(rt2x00dev, queue) 1274 rt2x00queue_init(rt2x00dev, queue, qid++); 1275 1276 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON); 1277 if (req_atim) 1278 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM); 1279 1280 return 0; 1281 } 1282 1283 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) 1284 { 1285 kfree(rt2x00dev->rx); 1286 rt2x00dev->rx = NULL; 1287 rt2x00dev->tx = NULL; 1288 rt2x00dev->bcn = NULL; 1289 } 1290