1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22 	Module: rt2x00lib
23 	Abstract: rt2x00 queue specific routines.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
30 
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33 
34 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
35 {
36 	struct data_queue *queue = entry->queue;
37 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
38 	struct sk_buff *skb;
39 	struct skb_frame_desc *skbdesc;
40 	unsigned int frame_size;
41 	unsigned int head_size = 0;
42 	unsigned int tail_size = 0;
43 
44 	/*
45 	 * The frame size includes descriptor size, because the
46 	 * hardware directly receive the frame into the skbuffer.
47 	 */
48 	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
49 
50 	/*
51 	 * The payload should be aligned to a 4-byte boundary,
52 	 * this means we need at least 3 bytes for moving the frame
53 	 * into the correct offset.
54 	 */
55 	head_size = 4;
56 
57 	/*
58 	 * For IV/EIV/ICV assembly we must make sure there is
59 	 * at least 8 bytes bytes available in headroom for IV/EIV
60 	 * and 8 bytes for ICV data as tailroon.
61 	 */
62 	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
63 		head_size += 8;
64 		tail_size += 8;
65 	}
66 
67 	/*
68 	 * Allocate skbuffer.
69 	 */
70 	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
71 	if (!skb)
72 		return NULL;
73 
74 	/*
75 	 * Make sure we not have a frame with the requested bytes
76 	 * available in the head and tail.
77 	 */
78 	skb_reserve(skb, head_size);
79 	skb_put(skb, frame_size);
80 
81 	/*
82 	 * Populate skbdesc.
83 	 */
84 	skbdesc = get_skb_frame_desc(skb);
85 	memset(skbdesc, 0, sizeof(*skbdesc));
86 
87 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
88 		dma_addr_t skb_dma;
89 
90 		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
91 					 DMA_FROM_DEVICE);
92 		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
93 			dev_kfree_skb_any(skb);
94 			return NULL;
95 		}
96 
97 		skbdesc->skb_dma = skb_dma;
98 		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
99 	}
100 
101 	return skb;
102 }
103 
104 int rt2x00queue_map_txskb(struct queue_entry *entry)
105 {
106 	struct device *dev = entry->queue->rt2x00dev->dev;
107 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
108 
109 	skbdesc->skb_dma =
110 	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
111 
112 	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
113 		return -ENOMEM;
114 
115 	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
119 
120 void rt2x00queue_unmap_skb(struct queue_entry *entry)
121 {
122 	struct device *dev = entry->queue->rt2x00dev->dev;
123 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
124 
125 	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
126 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
127 				 DMA_FROM_DEVICE);
128 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
129 	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
130 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
131 				 DMA_TO_DEVICE);
132 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
133 	}
134 }
135 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
136 
137 void rt2x00queue_free_skb(struct queue_entry *entry)
138 {
139 	if (!entry->skb)
140 		return;
141 
142 	rt2x00queue_unmap_skb(entry);
143 	dev_kfree_skb_any(entry->skb);
144 	entry->skb = NULL;
145 }
146 
147 void rt2x00queue_align_frame(struct sk_buff *skb)
148 {
149 	unsigned int frame_length = skb->len;
150 	unsigned int align = ALIGN_SIZE(skb, 0);
151 
152 	if (!align)
153 		return;
154 
155 	skb_push(skb, align);
156 	memmove(skb->data, skb->data + align, frame_length);
157 	skb_trim(skb, frame_length);
158 }
159 
160 /*
161  * H/W needs L2 padding between the header and the paylod if header size
162  * is not 4 bytes aligned.
163  */
164 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
165 {
166 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
167 
168 	if (!l2pad)
169 		return;
170 
171 	skb_push(skb, l2pad);
172 	memmove(skb->data, skb->data + l2pad, hdr_len);
173 }
174 
175 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
176 {
177 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
178 
179 	if (!l2pad)
180 		return;
181 
182 	memmove(skb->data + l2pad, skb->data, hdr_len);
183 	skb_pull(skb, l2pad);
184 }
185 
186 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
187 						 struct sk_buff *skb,
188 						 struct txentry_desc *txdesc)
189 {
190 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
191 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
192 	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
193 	u16 seqno;
194 
195 	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
196 		return;
197 
198 	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
199 
200 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
201 		/*
202 		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
203 		 * seqno on retransmited data (non-QOS) frames. To workaround
204 		 * the problem let's generate seqno in software if QOS is
205 		 * disabled.
206 		 */
207 		if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
208 			__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
209 		else
210 			/* H/W will generate sequence number */
211 			return;
212 	}
213 
214 	/*
215 	 * The hardware is not able to insert a sequence number. Assign a
216 	 * software generated one here.
217 	 *
218 	 * This is wrong because beacons are not getting sequence
219 	 * numbers assigned properly.
220 	 *
221 	 * A secondary problem exists for drivers that cannot toggle
222 	 * sequence counting per-frame, since those will override the
223 	 * sequence counter given by mac80211.
224 	 */
225 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
226 		seqno = atomic_add_return(0x10, &intf->seqno);
227 	else
228 		seqno = atomic_read(&intf->seqno);
229 
230 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
231 	hdr->seq_ctrl |= cpu_to_le16(seqno);
232 }
233 
234 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
235 						  struct sk_buff *skb,
236 						  struct txentry_desc *txdesc,
237 						  const struct rt2x00_rate *hwrate)
238 {
239 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
240 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
241 	unsigned int data_length;
242 	unsigned int duration;
243 	unsigned int residual;
244 
245 	/*
246 	 * Determine with what IFS priority this frame should be send.
247 	 * Set ifs to IFS_SIFS when the this is not the first fragment,
248 	 * or this fragment came after RTS/CTS.
249 	 */
250 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
251 		txdesc->u.plcp.ifs = IFS_BACKOFF;
252 	else
253 		txdesc->u.plcp.ifs = IFS_SIFS;
254 
255 	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
256 	data_length = skb->len + 4;
257 	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
258 
259 	/*
260 	 * PLCP setup
261 	 * Length calculation depends on OFDM/CCK rate.
262 	 */
263 	txdesc->u.plcp.signal = hwrate->plcp;
264 	txdesc->u.plcp.service = 0x04;
265 
266 	if (hwrate->flags & DEV_RATE_OFDM) {
267 		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
268 		txdesc->u.plcp.length_low = data_length & 0x3f;
269 	} else {
270 		/*
271 		 * Convert length to microseconds.
272 		 */
273 		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
274 		duration = GET_DURATION(data_length, hwrate->bitrate);
275 
276 		if (residual != 0) {
277 			duration++;
278 
279 			/*
280 			 * Check if we need to set the Length Extension
281 			 */
282 			if (hwrate->bitrate == 110 && residual <= 30)
283 				txdesc->u.plcp.service |= 0x80;
284 		}
285 
286 		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
287 		txdesc->u.plcp.length_low = duration & 0xff;
288 
289 		/*
290 		 * When preamble is enabled we should set the
291 		 * preamble bit for the signal.
292 		 */
293 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
294 			txdesc->u.plcp.signal |= 0x08;
295 	}
296 }
297 
298 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
299 						struct sk_buff *skb,
300 						struct txentry_desc *txdesc,
301 						struct ieee80211_sta *sta,
302 						const struct rt2x00_rate *hwrate)
303 {
304 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
305 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
306 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
307 	struct rt2x00_sta *sta_priv = NULL;
308 	u8 density = 0;
309 
310 	if (sta) {
311 		sta_priv = sta_to_rt2x00_sta(sta);
312 		txdesc->u.ht.wcid = sta_priv->wcid;
313 		density = sta->ht_cap.ampdu_density;
314 	}
315 
316 	/*
317 	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
318 	 * mcs rate to be used
319 	 */
320 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
321 		txdesc->u.ht.mcs = txrate->idx;
322 
323 		/*
324 		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
325 		 * when using more then one tx stream (>MCS7).
326 		 */
327 		if (sta && txdesc->u.ht.mcs > 7 &&
328 		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
329 			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
330 	} else {
331 		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
332 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
333 			txdesc->u.ht.mcs |= 0x08;
334 	}
335 
336 	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
337 		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
338 			txdesc->u.ht.txop = TXOP_SIFS;
339 		else
340 			txdesc->u.ht.txop = TXOP_BACKOFF;
341 
342 		/* Left zero on all other settings. */
343 		return;
344 	}
345 
346 	/*
347 	 * Only one STBC stream is supported for now.
348 	 */
349 	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
350 		txdesc->u.ht.stbc = 1;
351 
352 	/*
353 	 * This frame is eligible for an AMPDU, however, don't aggregate
354 	 * frames that are intended to probe a specific tx rate.
355 	 */
356 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
357 	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
358 		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
359 		txdesc->u.ht.mpdu_density = density;
360 		txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
361 	}
362 
363 	/*
364 	 * Set 40Mhz mode if necessary (for legacy rates this will
365 	 * duplicate the frame to both channels).
366 	 */
367 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
368 	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
369 		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
370 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
371 		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
372 
373 	/*
374 	 * Determine IFS values
375 	 * - Use TXOP_BACKOFF for probe and management frames except beacons
376 	 * - Use TXOP_SIFS for fragment bursts
377 	 * - Use TXOP_HTTXOP for everything else
378 	 *
379 	 * Note: rt2800 devices won't use CTS protection (if used)
380 	 * for frames not transmitted with TXOP_HTTXOP
381 	 */
382 	if ((ieee80211_is_mgmt(hdr->frame_control) &&
383 	     !ieee80211_is_beacon(hdr->frame_control)) ||
384 	    (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
385 		txdesc->u.ht.txop = TXOP_BACKOFF;
386 	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
387 		txdesc->u.ht.txop = TXOP_SIFS;
388 	else
389 		txdesc->u.ht.txop = TXOP_HTTXOP;
390 }
391 
392 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
393 					     struct sk_buff *skb,
394 					     struct txentry_desc *txdesc,
395 					     struct ieee80211_sta *sta)
396 {
397 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
398 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
399 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
400 	struct ieee80211_rate *rate;
401 	const struct rt2x00_rate *hwrate = NULL;
402 
403 	memset(txdesc, 0, sizeof(*txdesc));
404 
405 	/*
406 	 * Header and frame information.
407 	 */
408 	txdesc->length = skb->len;
409 	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
410 
411 	/*
412 	 * Check whether this frame is to be acked.
413 	 */
414 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
415 		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
416 
417 	/*
418 	 * Check if this is a RTS/CTS frame
419 	 */
420 	if (ieee80211_is_rts(hdr->frame_control) ||
421 	    ieee80211_is_cts(hdr->frame_control)) {
422 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
423 		if (ieee80211_is_rts(hdr->frame_control))
424 			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
425 		else
426 			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
427 		if (tx_info->control.rts_cts_rate_idx >= 0)
428 			rate =
429 			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
430 	}
431 
432 	/*
433 	 * Determine retry information.
434 	 */
435 	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
436 	if (txdesc->retry_limit >= rt2x00dev->long_retry)
437 		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
438 
439 	/*
440 	 * Check if more fragments are pending
441 	 */
442 	if (ieee80211_has_morefrags(hdr->frame_control)) {
443 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
444 		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
445 	}
446 
447 	/*
448 	 * Check if more frames (!= fragments) are pending
449 	 */
450 	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
451 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
452 
453 	/*
454 	 * Beacons and probe responses require the tsf timestamp
455 	 * to be inserted into the frame.
456 	 */
457 	if (ieee80211_is_beacon(hdr->frame_control) ||
458 	    ieee80211_is_probe_resp(hdr->frame_control))
459 		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
460 
461 	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
462 	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
463 		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
464 
465 	/*
466 	 * Determine rate modulation.
467 	 */
468 	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
469 		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
470 	else if (txrate->flags & IEEE80211_TX_RC_MCS)
471 		txdesc->rate_mode = RATE_MODE_HT_MIX;
472 	else {
473 		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
474 		hwrate = rt2x00_get_rate(rate->hw_value);
475 		if (hwrate->flags & DEV_RATE_OFDM)
476 			txdesc->rate_mode = RATE_MODE_OFDM;
477 		else
478 			txdesc->rate_mode = RATE_MODE_CCK;
479 	}
480 
481 	/*
482 	 * Apply TX descriptor handling by components
483 	 */
484 	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
485 	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
486 
487 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
488 		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
489 						   sta, hwrate);
490 	else
491 		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
492 						      hwrate);
493 }
494 
495 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
496 				     struct txentry_desc *txdesc)
497 {
498 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
499 
500 	/*
501 	 * This should not happen, we already checked the entry
502 	 * was ours. When the hardware disagrees there has been
503 	 * a queue corruption!
504 	 */
505 	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
506 		     rt2x00dev->ops->lib->get_entry_state(entry))) {
507 		rt2x00_err(rt2x00dev,
508 			   "Corrupt queue %d, accessing entry which is not ours\n"
509 			   "Please file bug report to %s\n",
510 			   entry->queue->qid, DRV_PROJECT);
511 		return -EINVAL;
512 	}
513 
514 	/*
515 	 * Add the requested extra tx headroom in front of the skb.
516 	 */
517 	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
518 	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
519 
520 	/*
521 	 * Call the driver's write_tx_data function, if it exists.
522 	 */
523 	if (rt2x00dev->ops->lib->write_tx_data)
524 		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
525 
526 	/*
527 	 * Map the skb to DMA.
528 	 */
529 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
530 	    rt2x00queue_map_txskb(entry))
531 		return -ENOMEM;
532 
533 	return 0;
534 }
535 
536 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
537 					    struct txentry_desc *txdesc)
538 {
539 	struct data_queue *queue = entry->queue;
540 
541 	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
542 
543 	/*
544 	 * All processing on the frame has been completed, this means
545 	 * it is now ready to be dumped to userspace through debugfs.
546 	 */
547 	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
548 }
549 
550 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
551 				      struct txentry_desc *txdesc)
552 {
553 	/*
554 	 * Check if we need to kick the queue, there are however a few rules
555 	 *	1) Don't kick unless this is the last in frame in a burst.
556 	 *	   When the burst flag is set, this frame is always followed
557 	 *	   by another frame which in some way are related to eachother.
558 	 *	   This is true for fragments, RTS or CTS-to-self frames.
559 	 *	2) Rule 1 can be broken when the available entries
560 	 *	   in the queue are less then a certain threshold.
561 	 */
562 	if (rt2x00queue_threshold(queue) ||
563 	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
564 		queue->rt2x00dev->ops->lib->kick_queue(queue);
565 }
566 
567 static void rt2x00queue_bar_check(struct queue_entry *entry)
568 {
569 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
570 	struct ieee80211_bar *bar = (void *) (entry->skb->data +
571 				    rt2x00dev->extra_tx_headroom);
572 	struct rt2x00_bar_list_entry *bar_entry;
573 
574 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
575 		return;
576 
577 	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
578 
579 	/*
580 	 * If the alloc fails we still send the BAR out but just don't track
581 	 * it in our bar list. And as a result we will report it to mac80211
582 	 * back as failed.
583 	 */
584 	if (!bar_entry)
585 		return;
586 
587 	bar_entry->entry = entry;
588 	bar_entry->block_acked = 0;
589 
590 	/*
591 	 * Copy the relevant parts of the 802.11 BAR into out check list
592 	 * such that we can use RCU for less-overhead in the RX path since
593 	 * sending BARs and processing the according BlockAck should be
594 	 * the exception.
595 	 */
596 	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
597 	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
598 	bar_entry->control = bar->control;
599 	bar_entry->start_seq_num = bar->start_seq_num;
600 
601 	/*
602 	 * Insert BAR into our BAR check list.
603 	 */
604 	spin_lock_bh(&rt2x00dev->bar_list_lock);
605 	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
606 	spin_unlock_bh(&rt2x00dev->bar_list_lock);
607 }
608 
609 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
610 			       struct ieee80211_sta *sta, bool local)
611 {
612 	struct ieee80211_tx_info *tx_info;
613 	struct queue_entry *entry;
614 	struct txentry_desc txdesc;
615 	struct skb_frame_desc *skbdesc;
616 	u8 rate_idx, rate_flags;
617 	int ret = 0;
618 
619 	/*
620 	 * Copy all TX descriptor information into txdesc,
621 	 * after that we are free to use the skb->cb array
622 	 * for our information.
623 	 */
624 	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
625 
626 	/*
627 	 * All information is retrieved from the skb->cb array,
628 	 * now we should claim ownership of the driver part of that
629 	 * array, preserving the bitrate index and flags.
630 	 */
631 	tx_info = IEEE80211_SKB_CB(skb);
632 	rate_idx = tx_info->control.rates[0].idx;
633 	rate_flags = tx_info->control.rates[0].flags;
634 	skbdesc = get_skb_frame_desc(skb);
635 	memset(skbdesc, 0, sizeof(*skbdesc));
636 	skbdesc->tx_rate_idx = rate_idx;
637 	skbdesc->tx_rate_flags = rate_flags;
638 
639 	if (local)
640 		skbdesc->flags |= SKBDESC_NOT_MAC80211;
641 
642 	/*
643 	 * When hardware encryption is supported, and this frame
644 	 * is to be encrypted, we should strip the IV/EIV data from
645 	 * the frame so we can provide it to the driver separately.
646 	 */
647 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
648 	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
649 		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
650 			rt2x00crypto_tx_copy_iv(skb, &txdesc);
651 		else
652 			rt2x00crypto_tx_remove_iv(skb, &txdesc);
653 	}
654 
655 	/*
656 	 * When DMA allocation is required we should guarantee to the
657 	 * driver that the DMA is aligned to a 4-byte boundary.
658 	 * However some drivers require L2 padding to pad the payload
659 	 * rather then the header. This could be a requirement for
660 	 * PCI and USB devices, while header alignment only is valid
661 	 * for PCI devices.
662 	 */
663 	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
664 		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
665 	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
666 		rt2x00queue_align_frame(skb);
667 
668 	/*
669 	 * That function must be called with bh disabled.
670 	 */
671 	spin_lock(&queue->tx_lock);
672 
673 	if (unlikely(rt2x00queue_full(queue))) {
674 		rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
675 			   queue->qid);
676 		ret = -ENOBUFS;
677 		goto out;
678 	}
679 
680 	entry = rt2x00queue_get_entry(queue, Q_INDEX);
681 
682 	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
683 				      &entry->flags))) {
684 		rt2x00_err(queue->rt2x00dev,
685 			   "Arrived at non-free entry in the non-full queue %d\n"
686 			   "Please file bug report to %s\n",
687 			   queue->qid, DRV_PROJECT);
688 		ret = -EINVAL;
689 		goto out;
690 	}
691 
692 	entry->skb = skb;
693 
694 	/*
695 	 * It could be possible that the queue was corrupted and this
696 	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
697 	 * this frame will simply be dropped.
698 	 */
699 	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
700 		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
701 		entry->skb = NULL;
702 		ret = -EIO;
703 		goto out;
704 	}
705 
706 	/*
707 	 * Put BlockAckReqs into our check list for driver BA processing.
708 	 */
709 	rt2x00queue_bar_check(entry);
710 
711 	set_bit(ENTRY_DATA_PENDING, &entry->flags);
712 
713 	rt2x00queue_index_inc(entry, Q_INDEX);
714 	rt2x00queue_write_tx_descriptor(entry, &txdesc);
715 	rt2x00queue_kick_tx_queue(queue, &txdesc);
716 
717 out:
718 	/*
719 	 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
720 	 * do this under queue->tx_lock. Bottom halve was already disabled
721 	 * before ieee80211_xmit() call.
722 	 */
723 	if (rt2x00queue_threshold(queue))
724 		rt2x00queue_pause_queue(queue);
725 
726 	spin_unlock(&queue->tx_lock);
727 	return ret;
728 }
729 
730 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
731 			     struct ieee80211_vif *vif)
732 {
733 	struct rt2x00_intf *intf = vif_to_intf(vif);
734 
735 	if (unlikely(!intf->beacon))
736 		return -ENOBUFS;
737 
738 	/*
739 	 * Clean up the beacon skb.
740 	 */
741 	rt2x00queue_free_skb(intf->beacon);
742 
743 	/*
744 	 * Clear beacon (single bssid devices don't need to clear the beacon
745 	 * since the beacon queue will get stopped anyway).
746 	 */
747 	if (rt2x00dev->ops->lib->clear_beacon)
748 		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
749 
750 	return 0;
751 }
752 
753 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
754 			      struct ieee80211_vif *vif)
755 {
756 	struct rt2x00_intf *intf = vif_to_intf(vif);
757 	struct skb_frame_desc *skbdesc;
758 	struct txentry_desc txdesc;
759 
760 	if (unlikely(!intf->beacon))
761 		return -ENOBUFS;
762 
763 	/*
764 	 * Clean up the beacon skb.
765 	 */
766 	rt2x00queue_free_skb(intf->beacon);
767 
768 	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
769 	if (!intf->beacon->skb)
770 		return -ENOMEM;
771 
772 	/*
773 	 * Copy all TX descriptor information into txdesc,
774 	 * after that we are free to use the skb->cb array
775 	 * for our information.
776 	 */
777 	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
778 
779 	/*
780 	 * Fill in skb descriptor
781 	 */
782 	skbdesc = get_skb_frame_desc(intf->beacon->skb);
783 	memset(skbdesc, 0, sizeof(*skbdesc));
784 
785 	/*
786 	 * Send beacon to hardware.
787 	 */
788 	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
789 
790 	return 0;
791 
792 }
793 
794 bool rt2x00queue_for_each_entry(struct data_queue *queue,
795 				enum queue_index start,
796 				enum queue_index end,
797 				void *data,
798 				bool (*fn)(struct queue_entry *entry,
799 					   void *data))
800 {
801 	unsigned long irqflags;
802 	unsigned int index_start;
803 	unsigned int index_end;
804 	unsigned int i;
805 
806 	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
807 		rt2x00_err(queue->rt2x00dev,
808 			   "Entry requested from invalid index range (%d - %d)\n",
809 			   start, end);
810 		return true;
811 	}
812 
813 	/*
814 	 * Only protect the range we are going to loop over,
815 	 * if during our loop a extra entry is set to pending
816 	 * it should not be kicked during this run, since it
817 	 * is part of another TX operation.
818 	 */
819 	spin_lock_irqsave(&queue->index_lock, irqflags);
820 	index_start = queue->index[start];
821 	index_end = queue->index[end];
822 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
823 
824 	/*
825 	 * Start from the TX done pointer, this guarantees that we will
826 	 * send out all frames in the correct order.
827 	 */
828 	if (index_start < index_end) {
829 		for (i = index_start; i < index_end; i++) {
830 			if (fn(&queue->entries[i], data))
831 				return true;
832 		}
833 	} else {
834 		for (i = index_start; i < queue->limit; i++) {
835 			if (fn(&queue->entries[i], data))
836 				return true;
837 		}
838 
839 		for (i = 0; i < index_end; i++) {
840 			if (fn(&queue->entries[i], data))
841 				return true;
842 		}
843 	}
844 
845 	return false;
846 }
847 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
848 
849 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
850 					  enum queue_index index)
851 {
852 	struct queue_entry *entry;
853 	unsigned long irqflags;
854 
855 	if (unlikely(index >= Q_INDEX_MAX)) {
856 		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
857 			   index);
858 		return NULL;
859 	}
860 
861 	spin_lock_irqsave(&queue->index_lock, irqflags);
862 
863 	entry = &queue->entries[queue->index[index]];
864 
865 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
866 
867 	return entry;
868 }
869 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
870 
871 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
872 {
873 	struct data_queue *queue = entry->queue;
874 	unsigned long irqflags;
875 
876 	if (unlikely(index >= Q_INDEX_MAX)) {
877 		rt2x00_err(queue->rt2x00dev,
878 			   "Index change on invalid index type (%d)\n", index);
879 		return;
880 	}
881 
882 	spin_lock_irqsave(&queue->index_lock, irqflags);
883 
884 	queue->index[index]++;
885 	if (queue->index[index] >= queue->limit)
886 		queue->index[index] = 0;
887 
888 	entry->last_action = jiffies;
889 
890 	if (index == Q_INDEX) {
891 		queue->length++;
892 	} else if (index == Q_INDEX_DONE) {
893 		queue->length--;
894 		queue->count++;
895 	}
896 
897 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
898 }
899 
900 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
901 {
902 	switch (queue->qid) {
903 	case QID_AC_VO:
904 	case QID_AC_VI:
905 	case QID_AC_BE:
906 	case QID_AC_BK:
907 		/*
908 		 * For TX queues, we have to disable the queue
909 		 * inside mac80211.
910 		 */
911 		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
912 		break;
913 	default:
914 		break;
915 	}
916 }
917 void rt2x00queue_pause_queue(struct data_queue *queue)
918 {
919 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
920 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
921 	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
922 		return;
923 
924 	rt2x00queue_pause_queue_nocheck(queue);
925 }
926 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
927 
928 void rt2x00queue_unpause_queue(struct data_queue *queue)
929 {
930 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
931 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
932 	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
933 		return;
934 
935 	switch (queue->qid) {
936 	case QID_AC_VO:
937 	case QID_AC_VI:
938 	case QID_AC_BE:
939 	case QID_AC_BK:
940 		/*
941 		 * For TX queues, we have to enable the queue
942 		 * inside mac80211.
943 		 */
944 		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
945 		break;
946 	case QID_RX:
947 		/*
948 		 * For RX we need to kick the queue now in order to
949 		 * receive frames.
950 		 */
951 		queue->rt2x00dev->ops->lib->kick_queue(queue);
952 	default:
953 		break;
954 	}
955 }
956 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
957 
958 void rt2x00queue_start_queue(struct data_queue *queue)
959 {
960 	mutex_lock(&queue->status_lock);
961 
962 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
963 	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
964 		mutex_unlock(&queue->status_lock);
965 		return;
966 	}
967 
968 	set_bit(QUEUE_PAUSED, &queue->flags);
969 
970 	queue->rt2x00dev->ops->lib->start_queue(queue);
971 
972 	rt2x00queue_unpause_queue(queue);
973 
974 	mutex_unlock(&queue->status_lock);
975 }
976 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
977 
978 void rt2x00queue_stop_queue(struct data_queue *queue)
979 {
980 	mutex_lock(&queue->status_lock);
981 
982 	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
983 		mutex_unlock(&queue->status_lock);
984 		return;
985 	}
986 
987 	rt2x00queue_pause_queue_nocheck(queue);
988 
989 	queue->rt2x00dev->ops->lib->stop_queue(queue);
990 
991 	mutex_unlock(&queue->status_lock);
992 }
993 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
994 
995 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
996 {
997 	bool tx_queue =
998 		(queue->qid == QID_AC_VO) ||
999 		(queue->qid == QID_AC_VI) ||
1000 		(queue->qid == QID_AC_BE) ||
1001 		(queue->qid == QID_AC_BK);
1002 
1003 
1004 	/*
1005 	 * If we are not supposed to drop any pending
1006 	 * frames, this means we must force a start (=kick)
1007 	 * to the queue to make sure the hardware will
1008 	 * start transmitting.
1009 	 */
1010 	if (!drop && tx_queue)
1011 		queue->rt2x00dev->ops->lib->kick_queue(queue);
1012 
1013 	/*
1014 	 * Check if driver supports flushing, if that is the case we can
1015 	 * defer the flushing to the driver. Otherwise we must use the
1016 	 * alternative which just waits for the queue to become empty.
1017 	 */
1018 	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1019 		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1020 
1021 	/*
1022 	 * The queue flush has failed...
1023 	 */
1024 	if (unlikely(!rt2x00queue_empty(queue)))
1025 		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1026 			    queue->qid);
1027 }
1028 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1029 
1030 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1031 {
1032 	struct data_queue *queue;
1033 
1034 	/*
1035 	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1036 	 * for each queue after is has been properly initialized.
1037 	 */
1038 	tx_queue_for_each(rt2x00dev, queue)
1039 		rt2x00queue_start_queue(queue);
1040 
1041 	rt2x00queue_start_queue(rt2x00dev->rx);
1042 }
1043 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1044 
1045 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1046 {
1047 	struct data_queue *queue;
1048 
1049 	/*
1050 	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1051 	 * as well, but we are completely shutting doing everything
1052 	 * now, so it is much safer to stop all TX queues at once,
1053 	 * and use rt2x00queue_stop_queue for cleaning up.
1054 	 */
1055 	ieee80211_stop_queues(rt2x00dev->hw);
1056 
1057 	tx_queue_for_each(rt2x00dev, queue)
1058 		rt2x00queue_stop_queue(queue);
1059 
1060 	rt2x00queue_stop_queue(rt2x00dev->rx);
1061 }
1062 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1063 
1064 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1065 {
1066 	struct data_queue *queue;
1067 
1068 	tx_queue_for_each(rt2x00dev, queue)
1069 		rt2x00queue_flush_queue(queue, drop);
1070 
1071 	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1072 }
1073 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1074 
1075 static void rt2x00queue_reset(struct data_queue *queue)
1076 {
1077 	unsigned long irqflags;
1078 	unsigned int i;
1079 
1080 	spin_lock_irqsave(&queue->index_lock, irqflags);
1081 
1082 	queue->count = 0;
1083 	queue->length = 0;
1084 
1085 	for (i = 0; i < Q_INDEX_MAX; i++)
1086 		queue->index[i] = 0;
1087 
1088 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1089 }
1090 
1091 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1092 {
1093 	struct data_queue *queue;
1094 	unsigned int i;
1095 
1096 	queue_for_each(rt2x00dev, queue) {
1097 		rt2x00queue_reset(queue);
1098 
1099 		for (i = 0; i < queue->limit; i++)
1100 			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1101 	}
1102 }
1103 
1104 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1105 {
1106 	struct queue_entry *entries;
1107 	unsigned int entry_size;
1108 	unsigned int i;
1109 
1110 	rt2x00queue_reset(queue);
1111 
1112 	/*
1113 	 * Allocate all queue entries.
1114 	 */
1115 	entry_size = sizeof(*entries) + queue->priv_size;
1116 	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1117 	if (!entries)
1118 		return -ENOMEM;
1119 
1120 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1121 	(((char *)(__base)) + ((__limit) * (__esize)) + \
1122 	    ((__index) * (__psize)))
1123 
1124 	for (i = 0; i < queue->limit; i++) {
1125 		entries[i].flags = 0;
1126 		entries[i].queue = queue;
1127 		entries[i].skb = NULL;
1128 		entries[i].entry_idx = i;
1129 		entries[i].priv_data =
1130 		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1131 					    sizeof(*entries), queue->priv_size);
1132 	}
1133 
1134 #undef QUEUE_ENTRY_PRIV_OFFSET
1135 
1136 	queue->entries = entries;
1137 
1138 	return 0;
1139 }
1140 
1141 static void rt2x00queue_free_skbs(struct data_queue *queue)
1142 {
1143 	unsigned int i;
1144 
1145 	if (!queue->entries)
1146 		return;
1147 
1148 	for (i = 0; i < queue->limit; i++) {
1149 		rt2x00queue_free_skb(&queue->entries[i]);
1150 	}
1151 }
1152 
1153 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1154 {
1155 	unsigned int i;
1156 	struct sk_buff *skb;
1157 
1158 	for (i = 0; i < queue->limit; i++) {
1159 		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1160 		if (!skb)
1161 			return -ENOMEM;
1162 		queue->entries[i].skb = skb;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1169 {
1170 	struct data_queue *queue;
1171 	int status;
1172 
1173 	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1174 	if (status)
1175 		goto exit;
1176 
1177 	tx_queue_for_each(rt2x00dev, queue) {
1178 		status = rt2x00queue_alloc_entries(queue);
1179 		if (status)
1180 			goto exit;
1181 	}
1182 
1183 	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1184 	if (status)
1185 		goto exit;
1186 
1187 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1188 		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1189 		if (status)
1190 			goto exit;
1191 	}
1192 
1193 	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1194 	if (status)
1195 		goto exit;
1196 
1197 	return 0;
1198 
1199 exit:
1200 	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1201 
1202 	rt2x00queue_uninitialize(rt2x00dev);
1203 
1204 	return status;
1205 }
1206 
1207 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1208 {
1209 	struct data_queue *queue;
1210 
1211 	rt2x00queue_free_skbs(rt2x00dev->rx);
1212 
1213 	queue_for_each(rt2x00dev, queue) {
1214 		kfree(queue->entries);
1215 		queue->entries = NULL;
1216 	}
1217 }
1218 
1219 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1220 			     struct data_queue *queue, enum data_queue_qid qid)
1221 {
1222 	mutex_init(&queue->status_lock);
1223 	spin_lock_init(&queue->tx_lock);
1224 	spin_lock_init(&queue->index_lock);
1225 
1226 	queue->rt2x00dev = rt2x00dev;
1227 	queue->qid = qid;
1228 	queue->txop = 0;
1229 	queue->aifs = 2;
1230 	queue->cw_min = 5;
1231 	queue->cw_max = 10;
1232 
1233 	rt2x00dev->ops->queue_init(queue);
1234 
1235 	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1236 }
1237 
1238 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1239 {
1240 	struct data_queue *queue;
1241 	enum data_queue_qid qid;
1242 	unsigned int req_atim =
1243 	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1244 
1245 	/*
1246 	 * We need the following queues:
1247 	 * RX: 1
1248 	 * TX: ops->tx_queues
1249 	 * Beacon: 1
1250 	 * Atim: 1 (if required)
1251 	 */
1252 	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1253 
1254 	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1255 	if (!queue)
1256 		return -ENOMEM;
1257 
1258 	/*
1259 	 * Initialize pointers
1260 	 */
1261 	rt2x00dev->rx = queue;
1262 	rt2x00dev->tx = &queue[1];
1263 	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1264 	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1265 
1266 	/*
1267 	 * Initialize queue parameters.
1268 	 * RX: qid = QID_RX
1269 	 * TX: qid = QID_AC_VO + index
1270 	 * TX: cw_min: 2^5 = 32.
1271 	 * TX: cw_max: 2^10 = 1024.
1272 	 * BCN: qid = QID_BEACON
1273 	 * ATIM: qid = QID_ATIM
1274 	 */
1275 	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1276 
1277 	qid = QID_AC_VO;
1278 	tx_queue_for_each(rt2x00dev, queue)
1279 		rt2x00queue_init(rt2x00dev, queue, qid++);
1280 
1281 	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1282 	if (req_atim)
1283 		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1284 
1285 	return 0;
1286 }
1287 
1288 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1289 {
1290 	kfree(rt2x00dev->rx);
1291 	rt2x00dev->rx = NULL;
1292 	rt2x00dev->tx = NULL;
1293 	rt2x00dev->bcn = NULL;
1294 }
1295