1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 6 <http://rt2x00.serialmonkey.com> 7 8 */ 9 10 /* 11 Module: rt2x00lib 12 Abstract: rt2x00 queue specific routines. 13 */ 14 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/dma-mapping.h> 19 20 #include "rt2x00.h" 21 #include "rt2x00lib.h" 22 23 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp) 24 { 25 struct data_queue *queue = entry->queue; 26 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 27 struct sk_buff *skb; 28 struct skb_frame_desc *skbdesc; 29 unsigned int frame_size; 30 unsigned int head_size = 0; 31 unsigned int tail_size = 0; 32 33 /* 34 * The frame size includes descriptor size, because the 35 * hardware directly receive the frame into the skbuffer. 36 */ 37 frame_size = queue->data_size + queue->desc_size + queue->winfo_size; 38 39 /* 40 * The payload should be aligned to a 4-byte boundary, 41 * this means we need at least 3 bytes for moving the frame 42 * into the correct offset. 43 */ 44 head_size = 4; 45 46 /* 47 * For IV/EIV/ICV assembly we must make sure there is 48 * at least 8 bytes bytes available in headroom for IV/EIV 49 * and 8 bytes for ICV data as tailroon. 50 */ 51 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) { 52 head_size += 8; 53 tail_size += 8; 54 } 55 56 /* 57 * Allocate skbuffer. 58 */ 59 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp); 60 if (!skb) 61 return NULL; 62 63 /* 64 * Make sure we not have a frame with the requested bytes 65 * available in the head and tail. 66 */ 67 skb_reserve(skb, head_size); 68 skb_put(skb, frame_size); 69 70 /* 71 * Populate skbdesc. 72 */ 73 skbdesc = get_skb_frame_desc(skb); 74 memset(skbdesc, 0, sizeof(*skbdesc)); 75 76 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) { 77 dma_addr_t skb_dma; 78 79 skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len, 80 DMA_FROM_DEVICE); 81 if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) { 82 dev_kfree_skb_any(skb); 83 return NULL; 84 } 85 86 skbdesc->skb_dma = skb_dma; 87 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; 88 } 89 90 return skb; 91 } 92 93 int rt2x00queue_map_txskb(struct queue_entry *entry) 94 { 95 struct device *dev = entry->queue->rt2x00dev->dev; 96 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 97 98 skbdesc->skb_dma = 99 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE); 100 101 if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma))) 102 return -ENOMEM; 103 104 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; 105 rt2x00lib_dmadone(entry); 106 return 0; 107 } 108 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); 109 110 void rt2x00queue_unmap_skb(struct queue_entry *entry) 111 { 112 struct device *dev = entry->queue->rt2x00dev->dev; 113 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 114 115 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { 116 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 117 DMA_FROM_DEVICE); 118 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; 119 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { 120 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 121 DMA_TO_DEVICE); 122 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; 123 } 124 } 125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb); 126 127 void rt2x00queue_free_skb(struct queue_entry *entry) 128 { 129 if (!entry->skb) 130 return; 131 132 rt2x00queue_unmap_skb(entry); 133 dev_kfree_skb_any(entry->skb); 134 entry->skb = NULL; 135 } 136 137 void rt2x00queue_align_frame(struct sk_buff *skb) 138 { 139 unsigned int frame_length = skb->len; 140 unsigned int align = ALIGN_SIZE(skb, 0); 141 142 if (!align) 143 return; 144 145 skb_push(skb, align); 146 memmove(skb->data, skb->data + align, frame_length); 147 skb_trim(skb, frame_length); 148 } 149 150 /* 151 * H/W needs L2 padding between the header and the paylod if header size 152 * is not 4 bytes aligned. 153 */ 154 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len) 155 { 156 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0; 157 158 if (!l2pad) 159 return; 160 161 skb_push(skb, l2pad); 162 memmove(skb->data, skb->data + l2pad, hdr_len); 163 } 164 165 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len) 166 { 167 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0; 168 169 if (!l2pad) 170 return; 171 172 memmove(skb->data + l2pad, skb->data, hdr_len); 173 skb_pull(skb, l2pad); 174 } 175 176 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev, 177 struct sk_buff *skb, 178 struct txentry_desc *txdesc) 179 { 180 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 181 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 182 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); 183 u16 seqno; 184 185 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 186 return; 187 188 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 189 190 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) { 191 /* 192 * rt2800 has a H/W (or F/W) bug, device incorrectly increase 193 * seqno on retransmitted data (non-QOS) and management frames. 194 * To workaround the problem let's generate seqno in software. 195 * Except for beacons which are transmitted periodically by H/W 196 * hence hardware has to assign seqno for them. 197 */ 198 if (ieee80211_is_beacon(hdr->frame_control)) { 199 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 200 /* H/W will generate sequence number */ 201 return; 202 } 203 204 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 205 } 206 207 /* 208 * The hardware is not able to insert a sequence number. Assign a 209 * software generated one here. 210 * 211 * This is wrong because beacons are not getting sequence 212 * numbers assigned properly. 213 * 214 * A secondary problem exists for drivers that cannot toggle 215 * sequence counting per-frame, since those will override the 216 * sequence counter given by mac80211. 217 */ 218 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 219 seqno = atomic_add_return(0x10, &intf->seqno); 220 else 221 seqno = atomic_read(&intf->seqno); 222 223 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 224 hdr->seq_ctrl |= cpu_to_le16(seqno); 225 } 226 227 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev, 228 struct sk_buff *skb, 229 struct txentry_desc *txdesc, 230 const struct rt2x00_rate *hwrate) 231 { 232 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 233 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 234 unsigned int data_length; 235 unsigned int duration; 236 unsigned int residual; 237 238 /* 239 * Determine with what IFS priority this frame should be send. 240 * Set ifs to IFS_SIFS when the this is not the first fragment, 241 * or this fragment came after RTS/CTS. 242 */ 243 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 244 txdesc->u.plcp.ifs = IFS_BACKOFF; 245 else 246 txdesc->u.plcp.ifs = IFS_SIFS; 247 248 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */ 249 data_length = skb->len + 4; 250 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb); 251 252 /* 253 * PLCP setup 254 * Length calculation depends on OFDM/CCK rate. 255 */ 256 txdesc->u.plcp.signal = hwrate->plcp; 257 txdesc->u.plcp.service = 0x04; 258 259 if (hwrate->flags & DEV_RATE_OFDM) { 260 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f; 261 txdesc->u.plcp.length_low = data_length & 0x3f; 262 } else { 263 /* 264 * Convert length to microseconds. 265 */ 266 residual = GET_DURATION_RES(data_length, hwrate->bitrate); 267 duration = GET_DURATION(data_length, hwrate->bitrate); 268 269 if (residual != 0) { 270 duration++; 271 272 /* 273 * Check if we need to set the Length Extension 274 */ 275 if (hwrate->bitrate == 110 && residual <= 30) 276 txdesc->u.plcp.service |= 0x80; 277 } 278 279 txdesc->u.plcp.length_high = (duration >> 8) & 0xff; 280 txdesc->u.plcp.length_low = duration & 0xff; 281 282 /* 283 * When preamble is enabled we should set the 284 * preamble bit for the signal. 285 */ 286 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 287 txdesc->u.plcp.signal |= 0x08; 288 } 289 } 290 291 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev, 292 struct sk_buff *skb, 293 struct txentry_desc *txdesc, 294 struct ieee80211_sta *sta, 295 const struct rt2x00_rate *hwrate) 296 { 297 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 298 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 299 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 300 struct rt2x00_sta *sta_priv = NULL; 301 u8 density = 0; 302 303 if (sta) { 304 sta_priv = sta_to_rt2x00_sta(sta); 305 txdesc->u.ht.wcid = sta_priv->wcid; 306 density = sta->deflink.ht_cap.ampdu_density; 307 } 308 309 /* 310 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the 311 * mcs rate to be used 312 */ 313 if (txrate->flags & IEEE80211_TX_RC_MCS) { 314 txdesc->u.ht.mcs = txrate->idx; 315 316 /* 317 * MIMO PS should be set to 1 for STA's using dynamic SM PS 318 * when using more then one tx stream (>MCS7). 319 */ 320 if (sta && txdesc->u.ht.mcs > 7 && 321 sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC) 322 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags); 323 } else { 324 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs); 325 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 326 txdesc->u.ht.mcs |= 0x08; 327 } 328 329 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) { 330 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 331 txdesc->u.ht.txop = TXOP_SIFS; 332 else 333 txdesc->u.ht.txop = TXOP_BACKOFF; 334 335 /* Left zero on all other settings. */ 336 return; 337 } 338 339 /* 340 * Only one STBC stream is supported for now. 341 */ 342 if (tx_info->flags & IEEE80211_TX_CTL_STBC) 343 txdesc->u.ht.stbc = 1; 344 345 /* 346 * This frame is eligible for an AMPDU, however, don't aggregate 347 * frames that are intended to probe a specific tx rate. 348 */ 349 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU && 350 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) { 351 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags); 352 txdesc->u.ht.mpdu_density = density; 353 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */ 354 } 355 356 /* 357 * Set 40Mhz mode if necessary (for legacy rates this will 358 * duplicate the frame to both channels). 359 */ 360 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH || 361 txrate->flags & IEEE80211_TX_RC_DUP_DATA) 362 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags); 363 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 364 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags); 365 366 /* 367 * Determine IFS values 368 * - Use TXOP_BACKOFF for management frames except beacons 369 * - Use TXOP_SIFS for fragment bursts 370 * - Use TXOP_HTTXOP for everything else 371 * 372 * Note: rt2800 devices won't use CTS protection (if used) 373 * for frames not transmitted with TXOP_HTTXOP 374 */ 375 if (ieee80211_is_mgmt(hdr->frame_control) && 376 !ieee80211_is_beacon(hdr->frame_control)) 377 txdesc->u.ht.txop = TXOP_BACKOFF; 378 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 379 txdesc->u.ht.txop = TXOP_SIFS; 380 else 381 txdesc->u.ht.txop = TXOP_HTTXOP; 382 } 383 384 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev, 385 struct sk_buff *skb, 386 struct txentry_desc *txdesc, 387 struct ieee80211_sta *sta) 388 { 389 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 390 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 391 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 392 struct ieee80211_rate *rate; 393 const struct rt2x00_rate *hwrate = NULL; 394 395 memset(txdesc, 0, sizeof(*txdesc)); 396 397 /* 398 * Header and frame information. 399 */ 400 txdesc->length = skb->len; 401 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb); 402 403 /* 404 * Check whether this frame is to be acked. 405 */ 406 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) 407 __set_bit(ENTRY_TXD_ACK, &txdesc->flags); 408 409 /* 410 * Check if this is a RTS/CTS frame 411 */ 412 if (ieee80211_is_rts(hdr->frame_control) || 413 ieee80211_is_cts(hdr->frame_control)) { 414 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 415 if (ieee80211_is_rts(hdr->frame_control)) 416 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); 417 else 418 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); 419 if (tx_info->control.rts_cts_rate_idx >= 0) 420 rate = 421 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); 422 } 423 424 /* 425 * Determine retry information. 426 */ 427 txdesc->retry_limit = tx_info->control.rates[0].count - 1; 428 if (txdesc->retry_limit >= rt2x00dev->long_retry) 429 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); 430 431 /* 432 * Check if more fragments are pending 433 */ 434 if (ieee80211_has_morefrags(hdr->frame_control)) { 435 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 436 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); 437 } 438 439 /* 440 * Check if more frames (!= fragments) are pending 441 */ 442 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES) 443 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 444 445 /* 446 * Beacons and probe responses require the tsf timestamp 447 * to be inserted into the frame. 448 */ 449 if ((ieee80211_is_beacon(hdr->frame_control) || 450 ieee80211_is_probe_resp(hdr->frame_control)) && 451 !(tx_info->flags & IEEE80211_TX_CTL_INJECTED)) 452 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); 453 454 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) && 455 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) 456 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); 457 458 /* 459 * Determine rate modulation. 460 */ 461 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 462 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD; 463 else if (txrate->flags & IEEE80211_TX_RC_MCS) 464 txdesc->rate_mode = RATE_MODE_HT_MIX; 465 else { 466 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); 467 hwrate = rt2x00_get_rate(rate->hw_value); 468 if (hwrate->flags & DEV_RATE_OFDM) 469 txdesc->rate_mode = RATE_MODE_OFDM; 470 else 471 txdesc->rate_mode = RATE_MODE_CCK; 472 } 473 474 /* 475 * Apply TX descriptor handling by components 476 */ 477 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc); 478 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc); 479 480 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC)) 481 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc, 482 sta, hwrate); 483 else 484 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc, 485 hwrate); 486 } 487 488 static int rt2x00queue_write_tx_data(struct queue_entry *entry, 489 struct txentry_desc *txdesc) 490 { 491 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 492 493 /* 494 * This should not happen, we already checked the entry 495 * was ours. When the hardware disagrees there has been 496 * a queue corruption! 497 */ 498 if (unlikely(rt2x00dev->ops->lib->get_entry_state && 499 rt2x00dev->ops->lib->get_entry_state(entry))) { 500 rt2x00_err(rt2x00dev, 501 "Corrupt queue %d, accessing entry which is not ours\n" 502 "Please file bug report to %s\n", 503 entry->queue->qid, DRV_PROJECT); 504 return -EINVAL; 505 } 506 507 /* 508 * Add the requested extra tx headroom in front of the skb. 509 */ 510 skb_push(entry->skb, rt2x00dev->extra_tx_headroom); 511 memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom); 512 513 /* 514 * Call the driver's write_tx_data function, if it exists. 515 */ 516 if (rt2x00dev->ops->lib->write_tx_data) 517 rt2x00dev->ops->lib->write_tx_data(entry, txdesc); 518 519 /* 520 * Map the skb to DMA. 521 */ 522 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) && 523 rt2x00queue_map_txskb(entry)) 524 return -ENOMEM; 525 526 return 0; 527 } 528 529 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, 530 struct txentry_desc *txdesc) 531 { 532 struct data_queue *queue = entry->queue; 533 534 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc); 535 536 /* 537 * All processing on the frame has been completed, this means 538 * it is now ready to be dumped to userspace through debugfs. 539 */ 540 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry); 541 } 542 543 static void rt2x00queue_kick_tx_queue(struct data_queue *queue, 544 struct txentry_desc *txdesc) 545 { 546 /* 547 * Check if we need to kick the queue, there are however a few rules 548 * 1) Don't kick unless this is the last in frame in a burst. 549 * When the burst flag is set, this frame is always followed 550 * by another frame which in some way are related to eachother. 551 * This is true for fragments, RTS or CTS-to-self frames. 552 * 2) Rule 1 can be broken when the available entries 553 * in the queue are less then a certain threshold. 554 */ 555 if (rt2x00queue_threshold(queue) || 556 !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) 557 queue->rt2x00dev->ops->lib->kick_queue(queue); 558 } 559 560 static void rt2x00queue_bar_check(struct queue_entry *entry) 561 { 562 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 563 struct ieee80211_bar *bar = (void *) (entry->skb->data + 564 rt2x00dev->extra_tx_headroom); 565 struct rt2x00_bar_list_entry *bar_entry; 566 567 if (likely(!ieee80211_is_back_req(bar->frame_control))) 568 return; 569 570 bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC); 571 572 /* 573 * If the alloc fails we still send the BAR out but just don't track 574 * it in our bar list. And as a result we will report it to mac80211 575 * back as failed. 576 */ 577 if (!bar_entry) 578 return; 579 580 bar_entry->entry = entry; 581 bar_entry->block_acked = 0; 582 583 /* 584 * Copy the relevant parts of the 802.11 BAR into out check list 585 * such that we can use RCU for less-overhead in the RX path since 586 * sending BARs and processing the according BlockAck should be 587 * the exception. 588 */ 589 memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra)); 590 memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta)); 591 bar_entry->control = bar->control; 592 bar_entry->start_seq_num = bar->start_seq_num; 593 594 /* 595 * Insert BAR into our BAR check list. 596 */ 597 spin_lock_bh(&rt2x00dev->bar_list_lock); 598 list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list); 599 spin_unlock_bh(&rt2x00dev->bar_list_lock); 600 } 601 602 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb, 603 struct ieee80211_sta *sta, bool local) 604 { 605 struct ieee80211_tx_info *tx_info; 606 struct queue_entry *entry; 607 struct txentry_desc txdesc; 608 struct skb_frame_desc *skbdesc; 609 u8 rate_idx, rate_flags; 610 int ret = 0; 611 612 /* 613 * Copy all TX descriptor information into txdesc, 614 * after that we are free to use the skb->cb array 615 * for our information. 616 */ 617 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta); 618 619 /* 620 * All information is retrieved from the skb->cb array, 621 * now we should claim ownership of the driver part of that 622 * array, preserving the bitrate index and flags. 623 */ 624 tx_info = IEEE80211_SKB_CB(skb); 625 rate_idx = tx_info->control.rates[0].idx; 626 rate_flags = tx_info->control.rates[0].flags; 627 skbdesc = get_skb_frame_desc(skb); 628 memset(skbdesc, 0, sizeof(*skbdesc)); 629 skbdesc->tx_rate_idx = rate_idx; 630 skbdesc->tx_rate_flags = rate_flags; 631 632 if (local) 633 skbdesc->flags |= SKBDESC_NOT_MAC80211; 634 635 /* 636 * When hardware encryption is supported, and this frame 637 * is to be encrypted, we should strip the IV/EIV data from 638 * the frame so we can provide it to the driver separately. 639 */ 640 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && 641 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { 642 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV)) 643 rt2x00crypto_tx_copy_iv(skb, &txdesc); 644 else 645 rt2x00crypto_tx_remove_iv(skb, &txdesc); 646 } 647 648 /* 649 * When DMA allocation is required we should guarantee to the 650 * driver that the DMA is aligned to a 4-byte boundary. 651 * However some drivers require L2 padding to pad the payload 652 * rather then the header. This could be a requirement for 653 * PCI and USB devices, while header alignment only is valid 654 * for PCI devices. 655 */ 656 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD)) 657 rt2x00queue_insert_l2pad(skb, txdesc.header_length); 658 else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA)) 659 rt2x00queue_align_frame(skb); 660 661 /* 662 * That function must be called with bh disabled. 663 */ 664 spin_lock(&queue->tx_lock); 665 666 if (unlikely(rt2x00queue_full(queue))) { 667 rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n", 668 queue->qid); 669 ret = -ENOBUFS; 670 goto out; 671 } 672 673 entry = rt2x00queue_get_entry(queue, Q_INDEX); 674 675 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, 676 &entry->flags))) { 677 rt2x00_err(queue->rt2x00dev, 678 "Arrived at non-free entry in the non-full queue %d\n" 679 "Please file bug report to %s\n", 680 queue->qid, DRV_PROJECT); 681 ret = -EINVAL; 682 goto out; 683 } 684 685 entry->skb = skb; 686 687 /* 688 * It could be possible that the queue was corrupted and this 689 * call failed. Since we always return NETDEV_TX_OK to mac80211, 690 * this frame will simply be dropped. 691 */ 692 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) { 693 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 694 entry->skb = NULL; 695 ret = -EIO; 696 goto out; 697 } 698 699 /* 700 * Put BlockAckReqs into our check list for driver BA processing. 701 */ 702 rt2x00queue_bar_check(entry); 703 704 set_bit(ENTRY_DATA_PENDING, &entry->flags); 705 706 rt2x00queue_index_inc(entry, Q_INDEX); 707 rt2x00queue_write_tx_descriptor(entry, &txdesc); 708 rt2x00queue_kick_tx_queue(queue, &txdesc); 709 710 out: 711 /* 712 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we 713 * do this under queue->tx_lock. Bottom halve was already disabled 714 * before ieee80211_xmit() call. 715 */ 716 if (rt2x00queue_threshold(queue)) 717 rt2x00queue_pause_queue(queue); 718 719 spin_unlock(&queue->tx_lock); 720 return ret; 721 } 722 723 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev, 724 struct ieee80211_vif *vif) 725 { 726 struct rt2x00_intf *intf = vif_to_intf(vif); 727 728 if (unlikely(!intf->beacon)) 729 return -ENOBUFS; 730 731 /* 732 * Clean up the beacon skb. 733 */ 734 rt2x00queue_free_skb(intf->beacon); 735 736 /* 737 * Clear beacon (single bssid devices don't need to clear the beacon 738 * since the beacon queue will get stopped anyway). 739 */ 740 if (rt2x00dev->ops->lib->clear_beacon) 741 rt2x00dev->ops->lib->clear_beacon(intf->beacon); 742 743 return 0; 744 } 745 746 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, 747 struct ieee80211_vif *vif) 748 { 749 struct rt2x00_intf *intf = vif_to_intf(vif); 750 struct skb_frame_desc *skbdesc; 751 struct txentry_desc txdesc; 752 753 if (unlikely(!intf->beacon)) 754 return -ENOBUFS; 755 756 /* 757 * Clean up the beacon skb. 758 */ 759 rt2x00queue_free_skb(intf->beacon); 760 761 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif, 0); 762 if (!intf->beacon->skb) 763 return -ENOMEM; 764 765 /* 766 * Copy all TX descriptor information into txdesc, 767 * after that we are free to use the skb->cb array 768 * for our information. 769 */ 770 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL); 771 772 /* 773 * Fill in skb descriptor 774 */ 775 skbdesc = get_skb_frame_desc(intf->beacon->skb); 776 memset(skbdesc, 0, sizeof(*skbdesc)); 777 778 /* 779 * Send beacon to hardware. 780 */ 781 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc); 782 783 return 0; 784 785 } 786 787 bool rt2x00queue_for_each_entry(struct data_queue *queue, 788 enum queue_index start, 789 enum queue_index end, 790 void *data, 791 bool (*fn)(struct queue_entry *entry, 792 void *data)) 793 { 794 unsigned long irqflags; 795 unsigned int index_start; 796 unsigned int index_end; 797 unsigned int i; 798 799 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) { 800 rt2x00_err(queue->rt2x00dev, 801 "Entry requested from invalid index range (%d - %d)\n", 802 start, end); 803 return true; 804 } 805 806 /* 807 * Only protect the range we are going to loop over, 808 * if during our loop a extra entry is set to pending 809 * it should not be kicked during this run, since it 810 * is part of another TX operation. 811 */ 812 spin_lock_irqsave(&queue->index_lock, irqflags); 813 index_start = queue->index[start]; 814 index_end = queue->index[end]; 815 spin_unlock_irqrestore(&queue->index_lock, irqflags); 816 817 /* 818 * Start from the TX done pointer, this guarantees that we will 819 * send out all frames in the correct order. 820 */ 821 if (index_start < index_end) { 822 for (i = index_start; i < index_end; i++) { 823 if (fn(&queue->entries[i], data)) 824 return true; 825 } 826 } else { 827 for (i = index_start; i < queue->limit; i++) { 828 if (fn(&queue->entries[i], data)) 829 return true; 830 } 831 832 for (i = 0; i < index_end; i++) { 833 if (fn(&queue->entries[i], data)) 834 return true; 835 } 836 } 837 838 return false; 839 } 840 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry); 841 842 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 843 enum queue_index index) 844 { 845 struct queue_entry *entry; 846 unsigned long irqflags; 847 848 if (unlikely(index >= Q_INDEX_MAX)) { 849 rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n", 850 index); 851 return NULL; 852 } 853 854 spin_lock_irqsave(&queue->index_lock, irqflags); 855 856 entry = &queue->entries[queue->index[index]]; 857 858 spin_unlock_irqrestore(&queue->index_lock, irqflags); 859 860 return entry; 861 } 862 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); 863 864 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index) 865 { 866 struct data_queue *queue = entry->queue; 867 unsigned long irqflags; 868 869 if (unlikely(index >= Q_INDEX_MAX)) { 870 rt2x00_err(queue->rt2x00dev, 871 "Index change on invalid index type (%d)\n", index); 872 return; 873 } 874 875 spin_lock_irqsave(&queue->index_lock, irqflags); 876 877 queue->index[index]++; 878 if (queue->index[index] >= queue->limit) 879 queue->index[index] = 0; 880 881 entry->last_action = jiffies; 882 883 if (index == Q_INDEX) { 884 queue->length++; 885 } else if (index == Q_INDEX_DONE) { 886 queue->length--; 887 queue->count++; 888 } 889 890 spin_unlock_irqrestore(&queue->index_lock, irqflags); 891 } 892 893 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue) 894 { 895 switch (queue->qid) { 896 case QID_AC_VO: 897 case QID_AC_VI: 898 case QID_AC_BE: 899 case QID_AC_BK: 900 /* 901 * For TX queues, we have to disable the queue 902 * inside mac80211. 903 */ 904 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid); 905 break; 906 default: 907 break; 908 } 909 } 910 void rt2x00queue_pause_queue(struct data_queue *queue) 911 { 912 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 913 !test_bit(QUEUE_STARTED, &queue->flags) || 914 test_and_set_bit(QUEUE_PAUSED, &queue->flags)) 915 return; 916 917 rt2x00queue_pause_queue_nocheck(queue); 918 } 919 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue); 920 921 void rt2x00queue_unpause_queue(struct data_queue *queue) 922 { 923 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 924 !test_bit(QUEUE_STARTED, &queue->flags) || 925 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags)) 926 return; 927 928 switch (queue->qid) { 929 case QID_AC_VO: 930 case QID_AC_VI: 931 case QID_AC_BE: 932 case QID_AC_BK: 933 /* 934 * For TX queues, we have to enable the queue 935 * inside mac80211. 936 */ 937 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid); 938 break; 939 case QID_RX: 940 /* 941 * For RX we need to kick the queue now in order to 942 * receive frames. 943 */ 944 queue->rt2x00dev->ops->lib->kick_queue(queue); 945 break; 946 default: 947 break; 948 } 949 } 950 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue); 951 952 void rt2x00queue_start_queue(struct data_queue *queue) 953 { 954 mutex_lock(&queue->status_lock); 955 956 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 957 test_and_set_bit(QUEUE_STARTED, &queue->flags)) { 958 mutex_unlock(&queue->status_lock); 959 return; 960 } 961 962 set_bit(QUEUE_PAUSED, &queue->flags); 963 964 queue->rt2x00dev->ops->lib->start_queue(queue); 965 966 rt2x00queue_unpause_queue(queue); 967 968 mutex_unlock(&queue->status_lock); 969 } 970 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue); 971 972 void rt2x00queue_stop_queue(struct data_queue *queue) 973 { 974 mutex_lock(&queue->status_lock); 975 976 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) { 977 mutex_unlock(&queue->status_lock); 978 return; 979 } 980 981 rt2x00queue_pause_queue_nocheck(queue); 982 983 queue->rt2x00dev->ops->lib->stop_queue(queue); 984 985 mutex_unlock(&queue->status_lock); 986 } 987 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue); 988 989 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop) 990 { 991 bool tx_queue = 992 (queue->qid == QID_AC_VO) || 993 (queue->qid == QID_AC_VI) || 994 (queue->qid == QID_AC_BE) || 995 (queue->qid == QID_AC_BK); 996 997 if (rt2x00queue_empty(queue)) 998 return; 999 1000 /* 1001 * If we are not supposed to drop any pending 1002 * frames, this means we must force a start (=kick) 1003 * to the queue to make sure the hardware will 1004 * start transmitting. 1005 */ 1006 if (!drop && tx_queue) 1007 queue->rt2x00dev->ops->lib->kick_queue(queue); 1008 1009 /* 1010 * Check if driver supports flushing, if that is the case we can 1011 * defer the flushing to the driver. Otherwise we must use the 1012 * alternative which just waits for the queue to become empty. 1013 */ 1014 if (likely(queue->rt2x00dev->ops->lib->flush_queue)) 1015 queue->rt2x00dev->ops->lib->flush_queue(queue, drop); 1016 1017 /* 1018 * The queue flush has failed... 1019 */ 1020 if (unlikely(!rt2x00queue_empty(queue))) 1021 rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n", 1022 queue->qid); 1023 } 1024 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue); 1025 1026 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev) 1027 { 1028 struct data_queue *queue; 1029 1030 /* 1031 * rt2x00queue_start_queue will call ieee80211_wake_queue 1032 * for each queue after is has been properly initialized. 1033 */ 1034 tx_queue_for_each(rt2x00dev, queue) 1035 rt2x00queue_start_queue(queue); 1036 1037 rt2x00queue_start_queue(rt2x00dev->rx); 1038 } 1039 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues); 1040 1041 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev) 1042 { 1043 struct data_queue *queue; 1044 1045 /* 1046 * rt2x00queue_stop_queue will call ieee80211_stop_queue 1047 * as well, but we are completely shutting doing everything 1048 * now, so it is much safer to stop all TX queues at once, 1049 * and use rt2x00queue_stop_queue for cleaning up. 1050 */ 1051 ieee80211_stop_queues(rt2x00dev->hw); 1052 1053 tx_queue_for_each(rt2x00dev, queue) 1054 rt2x00queue_stop_queue(queue); 1055 1056 rt2x00queue_stop_queue(rt2x00dev->rx); 1057 } 1058 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues); 1059 1060 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop) 1061 { 1062 struct data_queue *queue; 1063 1064 tx_queue_for_each(rt2x00dev, queue) 1065 rt2x00queue_flush_queue(queue, drop); 1066 1067 rt2x00queue_flush_queue(rt2x00dev->rx, drop); 1068 } 1069 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues); 1070 1071 static void rt2x00queue_reset(struct data_queue *queue) 1072 { 1073 unsigned long irqflags; 1074 unsigned int i; 1075 1076 spin_lock_irqsave(&queue->index_lock, irqflags); 1077 1078 queue->count = 0; 1079 queue->length = 0; 1080 1081 for (i = 0; i < Q_INDEX_MAX; i++) 1082 queue->index[i] = 0; 1083 1084 spin_unlock_irqrestore(&queue->index_lock, irqflags); 1085 } 1086 1087 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) 1088 { 1089 struct data_queue *queue; 1090 unsigned int i; 1091 1092 queue_for_each(rt2x00dev, queue) { 1093 rt2x00queue_reset(queue); 1094 1095 for (i = 0; i < queue->limit; i++) 1096 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); 1097 } 1098 } 1099 1100 static int rt2x00queue_alloc_entries(struct data_queue *queue) 1101 { 1102 struct queue_entry *entries; 1103 unsigned int entry_size; 1104 unsigned int i; 1105 1106 rt2x00queue_reset(queue); 1107 1108 /* 1109 * Allocate all queue entries. 1110 */ 1111 entry_size = sizeof(*entries) + queue->priv_size; 1112 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL); 1113 if (!entries) 1114 return -ENOMEM; 1115 1116 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ 1117 (((char *)(__base)) + ((__limit) * (__esize)) + \ 1118 ((__index) * (__psize))) 1119 1120 for (i = 0; i < queue->limit; i++) { 1121 entries[i].flags = 0; 1122 entries[i].queue = queue; 1123 entries[i].skb = NULL; 1124 entries[i].entry_idx = i; 1125 entries[i].priv_data = 1126 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, 1127 sizeof(*entries), queue->priv_size); 1128 } 1129 1130 #undef QUEUE_ENTRY_PRIV_OFFSET 1131 1132 queue->entries = entries; 1133 1134 return 0; 1135 } 1136 1137 static void rt2x00queue_free_skbs(struct data_queue *queue) 1138 { 1139 unsigned int i; 1140 1141 if (!queue->entries) 1142 return; 1143 1144 for (i = 0; i < queue->limit; i++) { 1145 rt2x00queue_free_skb(&queue->entries[i]); 1146 } 1147 } 1148 1149 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue) 1150 { 1151 unsigned int i; 1152 struct sk_buff *skb; 1153 1154 for (i = 0; i < queue->limit; i++) { 1155 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL); 1156 if (!skb) 1157 return -ENOMEM; 1158 queue->entries[i].skb = skb; 1159 } 1160 1161 return 0; 1162 } 1163 1164 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) 1165 { 1166 struct data_queue *queue; 1167 int status; 1168 1169 status = rt2x00queue_alloc_entries(rt2x00dev->rx); 1170 if (status) 1171 goto exit; 1172 1173 tx_queue_for_each(rt2x00dev, queue) { 1174 status = rt2x00queue_alloc_entries(queue); 1175 if (status) 1176 goto exit; 1177 } 1178 1179 status = rt2x00queue_alloc_entries(rt2x00dev->bcn); 1180 if (status) 1181 goto exit; 1182 1183 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) { 1184 status = rt2x00queue_alloc_entries(rt2x00dev->atim); 1185 if (status) 1186 goto exit; 1187 } 1188 1189 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx); 1190 if (status) 1191 goto exit; 1192 1193 return 0; 1194 1195 exit: 1196 rt2x00_err(rt2x00dev, "Queue entries allocation failed\n"); 1197 1198 rt2x00queue_uninitialize(rt2x00dev); 1199 1200 return status; 1201 } 1202 1203 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) 1204 { 1205 struct data_queue *queue; 1206 1207 rt2x00queue_free_skbs(rt2x00dev->rx); 1208 1209 queue_for_each(rt2x00dev, queue) { 1210 kfree(queue->entries); 1211 queue->entries = NULL; 1212 } 1213 } 1214 1215 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, 1216 struct data_queue *queue, enum data_queue_qid qid) 1217 { 1218 mutex_init(&queue->status_lock); 1219 spin_lock_init(&queue->tx_lock); 1220 spin_lock_init(&queue->index_lock); 1221 1222 queue->rt2x00dev = rt2x00dev; 1223 queue->qid = qid; 1224 queue->txop = 0; 1225 queue->aifs = 2; 1226 queue->cw_min = 5; 1227 queue->cw_max = 10; 1228 1229 rt2x00dev->ops->queue_init(queue); 1230 1231 queue->threshold = DIV_ROUND_UP(queue->limit, 10); 1232 } 1233 1234 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) 1235 { 1236 struct data_queue *queue; 1237 enum data_queue_qid qid; 1238 unsigned int req_atim = 1239 rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE); 1240 1241 /* 1242 * We need the following queues: 1243 * RX: 1 1244 * TX: ops->tx_queues 1245 * Beacon: 1 1246 * Atim: 1 (if required) 1247 */ 1248 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; 1249 1250 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL); 1251 if (!queue) 1252 return -ENOMEM; 1253 1254 /* 1255 * Initialize pointers 1256 */ 1257 rt2x00dev->rx = queue; 1258 rt2x00dev->tx = &queue[1]; 1259 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; 1260 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL; 1261 1262 /* 1263 * Initialize queue parameters. 1264 * RX: qid = QID_RX 1265 * TX: qid = QID_AC_VO + index 1266 * TX: cw_min: 2^5 = 32. 1267 * TX: cw_max: 2^10 = 1024. 1268 * BCN: qid = QID_BEACON 1269 * ATIM: qid = QID_ATIM 1270 */ 1271 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); 1272 1273 qid = QID_AC_VO; 1274 tx_queue_for_each(rt2x00dev, queue) 1275 rt2x00queue_init(rt2x00dev, queue, qid++); 1276 1277 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON); 1278 if (req_atim) 1279 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM); 1280 1281 return 0; 1282 } 1283 1284 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) 1285 { 1286 kfree(rt2x00dev->rx); 1287 rt2x00dev->rx = NULL; 1288 rt2x00dev->tx = NULL; 1289 rt2x00dev->bcn = NULL; 1290 } 1291