1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7  */
8 
9 /*
10 	Module: rt2x00lib
11 	Abstract: rt2x00 generic device routines.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/log2.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20 
21 #include "rt2x00.h"
22 #include "rt2x00lib.h"
23 
24 /*
25  * Utility functions.
26  */
27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28 			 struct ieee80211_vif *vif)
29 {
30 	/*
31 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32 	 * contains the bss number, see BSS_ID_MASK comments for details.
33 	 */
34 	if (rt2x00dev->intf_sta_count)
35 		return 0;
36 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37 }
38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39 
40 /*
41  * Radio control handlers.
42  */
43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44 {
45 	int status;
46 
47 	/*
48 	 * Don't enable the radio twice.
49 	 * And check if the hardware button has been disabled.
50 	 */
51 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52 		return 0;
53 
54 	/*
55 	 * Initialize all data queues.
56 	 */
57 	rt2x00queue_init_queues(rt2x00dev);
58 
59 	/*
60 	 * Enable radio.
61 	 */
62 	status =
63 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64 	if (status)
65 		return status;
66 
67 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68 
69 	rt2x00leds_led_radio(rt2x00dev, true);
70 	rt2x00led_led_activity(rt2x00dev, true);
71 
72 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73 
74 	/*
75 	 * Enable queues.
76 	 */
77 	rt2x00queue_start_queues(rt2x00dev);
78 	rt2x00link_start_tuner(rt2x00dev);
79 
80 	/*
81 	 * Start watchdog monitoring.
82 	 */
83 	rt2x00link_start_watchdog(rt2x00dev);
84 
85 	return 0;
86 }
87 
88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89 {
90 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91 		return;
92 
93 	/*
94 	 * Stop watchdog monitoring.
95 	 */
96 	rt2x00link_stop_watchdog(rt2x00dev);
97 
98 	/*
99 	 * Stop all queues
100 	 */
101 	rt2x00link_stop_tuner(rt2x00dev);
102 	rt2x00queue_stop_queues(rt2x00dev);
103 	rt2x00queue_flush_queues(rt2x00dev, true);
104 
105 	/*
106 	 * Disable radio.
107 	 */
108 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
109 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
110 	rt2x00led_led_activity(rt2x00dev, false);
111 	rt2x00leds_led_radio(rt2x00dev, false);
112 }
113 
114 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
115 					  struct ieee80211_vif *vif)
116 {
117 	struct rt2x00_dev *rt2x00dev = data;
118 	struct rt2x00_intf *intf = vif_to_intf(vif);
119 
120 	/*
121 	 * It is possible the radio was disabled while the work had been
122 	 * scheduled. If that happens we should return here immediately,
123 	 * note that in the spinlock protected area above the delayed_flags
124 	 * have been cleared correctly.
125 	 */
126 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
127 		return;
128 
129 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
130 		mutex_lock(&intf->beacon_skb_mutex);
131 		rt2x00queue_update_beacon(rt2x00dev, vif);
132 		mutex_unlock(&intf->beacon_skb_mutex);
133 	}
134 }
135 
136 static void rt2x00lib_intf_scheduled(struct work_struct *work)
137 {
138 	struct rt2x00_dev *rt2x00dev =
139 	    container_of(work, struct rt2x00_dev, intf_work);
140 
141 	/*
142 	 * Iterate over each interface and perform the
143 	 * requested configurations.
144 	 */
145 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
146 					    IEEE80211_IFACE_ITER_RESUME_ALL,
147 					    rt2x00lib_intf_scheduled_iter,
148 					    rt2x00dev);
149 }
150 
151 static void rt2x00lib_autowakeup(struct work_struct *work)
152 {
153 	struct rt2x00_dev *rt2x00dev =
154 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
155 
156 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
157 		return;
158 
159 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
160 		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
161 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
162 }
163 
164 /*
165  * Interrupt context handlers.
166  */
167 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
168 				     struct ieee80211_vif *vif)
169 {
170 	struct ieee80211_tx_control control = {};
171 	struct rt2x00_dev *rt2x00dev = data;
172 	struct sk_buff *skb;
173 
174 	/*
175 	 * Only AP mode interfaces do broad- and multicast buffering
176 	 */
177 	if (vif->type != NL80211_IFTYPE_AP)
178 		return;
179 
180 	/*
181 	 * Send out buffered broad- and multicast frames
182 	 */
183 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
184 	while (skb) {
185 		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
186 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
187 	}
188 }
189 
190 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
191 					struct ieee80211_vif *vif)
192 {
193 	struct rt2x00_dev *rt2x00dev = data;
194 
195 	if (vif->type != NL80211_IFTYPE_AP &&
196 	    vif->type != NL80211_IFTYPE_ADHOC &&
197 	    vif->type != NL80211_IFTYPE_MESH_POINT)
198 		return;
199 
200 	/*
201 	 * Update the beacon without locking. This is safe on PCI devices
202 	 * as they only update the beacon periodically here. This should
203 	 * never be called for USB devices.
204 	 */
205 	WARN_ON(rt2x00_is_usb(rt2x00dev));
206 	rt2x00queue_update_beacon(rt2x00dev, vif);
207 }
208 
209 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
210 {
211 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
212 		return;
213 
214 	/* send buffered bc/mc frames out for every bssid */
215 	ieee80211_iterate_active_interfaces_atomic(
216 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
217 		rt2x00lib_bc_buffer_iter, rt2x00dev);
218 	/*
219 	 * Devices with pre tbtt interrupt don't need to update the beacon
220 	 * here as they will fetch the next beacon directly prior to
221 	 * transmission.
222 	 */
223 	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
224 		return;
225 
226 	/* fetch next beacon */
227 	ieee80211_iterate_active_interfaces_atomic(
228 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229 		rt2x00lib_beaconupdate_iter, rt2x00dev);
230 }
231 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
232 
233 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
234 {
235 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
236 		return;
237 
238 	/* fetch next beacon */
239 	ieee80211_iterate_active_interfaces_atomic(
240 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241 		rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
244 
245 void rt2x00lib_dmastart(struct queue_entry *entry)
246 {
247 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
248 	rt2x00queue_index_inc(entry, Q_INDEX);
249 }
250 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
251 
252 void rt2x00lib_dmadone(struct queue_entry *entry)
253 {
254 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
255 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
256 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
257 }
258 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
259 
260 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
261 {
262 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
263 	struct ieee80211_bar *bar = (void *) entry->skb->data;
264 	struct rt2x00_bar_list_entry *bar_entry;
265 	int ret;
266 
267 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
268 		return 0;
269 
270 	/*
271 	 * Unlike all other frames, the status report for BARs does
272 	 * not directly come from the hardware as it is incapable of
273 	 * matching a BA to a previously send BAR. The hardware will
274 	 * report all BARs as if they weren't acked at all.
275 	 *
276 	 * Instead the RX-path will scan for incoming BAs and set the
277 	 * block_acked flag if it sees one that was likely caused by
278 	 * a BAR from us.
279 	 *
280 	 * Remove remaining BARs here and return their status for
281 	 * TX done processing.
282 	 */
283 	ret = 0;
284 	rcu_read_lock();
285 	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
286 		if (bar_entry->entry != entry)
287 			continue;
288 
289 		spin_lock_bh(&rt2x00dev->bar_list_lock);
290 		/* Return whether this BAR was blockacked or not */
291 		ret = bar_entry->block_acked;
292 		/* Remove the BAR from our checklist */
293 		list_del_rcu(&bar_entry->list);
294 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
295 		kfree_rcu(bar_entry, head);
296 
297 		break;
298 	}
299 	rcu_read_unlock();
300 
301 	return ret;
302 }
303 
304 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
305 				     struct ieee80211_tx_info *tx_info,
306 				     struct skb_frame_desc *skbdesc,
307 				     struct txdone_entry_desc *txdesc,
308 				     bool success)
309 {
310 	u8 rate_idx, rate_flags, retry_rates;
311 	int i;
312 
313 	rate_idx = skbdesc->tx_rate_idx;
314 	rate_flags = skbdesc->tx_rate_flags;
315 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
316 	    (txdesc->retry + 1) : 1;
317 
318 	/*
319 	 * Initialize TX status
320 	 */
321 	memset(&tx_info->status, 0, sizeof(tx_info->status));
322 	tx_info->status.ack_signal = 0;
323 
324 	/*
325 	 * Frame was send with retries, hardware tried
326 	 * different rates to send out the frame, at each
327 	 * retry it lowered the rate 1 step except when the
328 	 * lowest rate was used.
329 	 */
330 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
331 		tx_info->status.rates[i].idx = rate_idx - i;
332 		tx_info->status.rates[i].flags = rate_flags;
333 
334 		if (rate_idx - i == 0) {
335 			/*
336 			 * The lowest rate (index 0) was used until the
337 			 * number of max retries was reached.
338 			 */
339 			tx_info->status.rates[i].count = retry_rates - i;
340 			i++;
341 			break;
342 		}
343 		tx_info->status.rates[i].count = 1;
344 	}
345 	if (i < (IEEE80211_TX_MAX_RATES - 1))
346 		tx_info->status.rates[i].idx = -1; /* terminate */
347 
348 	if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
349 		tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
350 
351 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
352 		if (success)
353 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
354 		else
355 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
356 	}
357 
358 	/*
359 	 * Every single frame has it's own tx status, hence report
360 	 * every frame as ampdu of size 1.
361 	 *
362 	 * TODO: if we can find out how many frames were aggregated
363 	 * by the hw we could provide the real ampdu_len to mac80211
364 	 * which would allow the rc algorithm to better decide on
365 	 * which rates are suitable.
366 	 */
367 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
368 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
369 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
370 				  IEEE80211_TX_CTL_AMPDU;
371 		tx_info->status.ampdu_len = 1;
372 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
373 	}
374 
375 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
376 		if (success)
377 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
378 		else
379 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
380 	}
381 }
382 
383 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
384 				  struct queue_entry *entry)
385 {
386 	/*
387 	 * Make this entry available for reuse.
388 	 */
389 	entry->skb = NULL;
390 	entry->flags = 0;
391 
392 	rt2x00dev->ops->lib->clear_entry(entry);
393 
394 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
395 
396 	/*
397 	 * If the data queue was below the threshold before the txdone
398 	 * handler we must make sure the packet queue in the mac80211 stack
399 	 * is reenabled when the txdone handler has finished. This has to be
400 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
401 	 * before it was stopped.
402 	 */
403 	spin_lock_bh(&entry->queue->tx_lock);
404 	if (!rt2x00queue_threshold(entry->queue))
405 		rt2x00queue_unpause_queue(entry->queue);
406 	spin_unlock_bh(&entry->queue->tx_lock);
407 }
408 
409 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
410 			      struct txdone_entry_desc *txdesc)
411 {
412 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
413 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
414 	struct ieee80211_tx_info txinfo = {};
415 	bool success;
416 
417 	/*
418 	 * Unmap the skb.
419 	 */
420 	rt2x00queue_unmap_skb(entry);
421 
422 	/*
423 	 * Signal that the TX descriptor is no longer in the skb.
424 	 */
425 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
426 
427 	/*
428 	 * Send frame to debugfs immediately, after this call is completed
429 	 * we are going to overwrite the skb->cb array.
430 	 */
431 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
432 
433 	/*
434 	 * Determine if the frame has been successfully transmitted and
435 	 * remove BARs from our check list while checking for their
436 	 * TX status.
437 	 */
438 	success =
439 	    rt2x00lib_txdone_bar_status(entry) ||
440 	    test_bit(TXDONE_SUCCESS, &txdesc->flags);
441 
442 	if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
443 		/*
444 		 * Update TX statistics.
445 		 */
446 		rt2x00dev->link.qual.tx_success += success;
447 		rt2x00dev->link.qual.tx_failed += !success;
448 
449 		rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
450 					 success);
451 		ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
452 	}
453 
454 	dev_kfree_skb_any(entry->skb);
455 	rt2x00lib_clear_entry(rt2x00dev, entry);
456 }
457 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
458 
459 void rt2x00lib_txdone(struct queue_entry *entry,
460 		      struct txdone_entry_desc *txdesc)
461 {
462 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
463 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
464 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
465 	u8 skbdesc_flags = skbdesc->flags;
466 	unsigned int header_length;
467 	bool success;
468 
469 	/*
470 	 * Unmap the skb.
471 	 */
472 	rt2x00queue_unmap_skb(entry);
473 
474 	/*
475 	 * Remove the extra tx headroom from the skb.
476 	 */
477 	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
478 
479 	/*
480 	 * Signal that the TX descriptor is no longer in the skb.
481 	 */
482 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
483 
484 	/*
485 	 * Determine the length of 802.11 header.
486 	 */
487 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
488 
489 	/*
490 	 * Remove L2 padding which was added during
491 	 */
492 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
493 		rt2x00queue_remove_l2pad(entry->skb, header_length);
494 
495 	/*
496 	 * If the IV/EIV data was stripped from the frame before it was
497 	 * passed to the hardware, we should now reinsert it again because
498 	 * mac80211 will expect the same data to be present it the
499 	 * frame as it was passed to us.
500 	 */
501 	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
502 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
503 
504 	/*
505 	 * Send frame to debugfs immediately, after this call is completed
506 	 * we are going to overwrite the skb->cb array.
507 	 */
508 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
509 
510 	/*
511 	 * Determine if the frame has been successfully transmitted and
512 	 * remove BARs from our check list while checking for their
513 	 * TX status.
514 	 */
515 	success =
516 	    rt2x00lib_txdone_bar_status(entry) ||
517 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
518 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
519 
520 	/*
521 	 * Update TX statistics.
522 	 */
523 	rt2x00dev->link.qual.tx_success += success;
524 	rt2x00dev->link.qual.tx_failed += !success;
525 
526 	rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
527 
528 	/*
529 	 * Only send the status report to mac80211 when it's a frame
530 	 * that originated in mac80211. If this was a extra frame coming
531 	 * through a mac80211 library call (RTS/CTS) then we should not
532 	 * send the status report back.
533 	 */
534 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
535 		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
536 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
537 		else
538 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
539 	} else {
540 		dev_kfree_skb_any(entry->skb);
541 	}
542 
543 	rt2x00lib_clear_entry(rt2x00dev, entry);
544 }
545 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
546 
547 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
548 {
549 	struct txdone_entry_desc txdesc;
550 
551 	txdesc.flags = 0;
552 	__set_bit(status, &txdesc.flags);
553 	txdesc.retry = 0;
554 
555 	rt2x00lib_txdone(entry, &txdesc);
556 }
557 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
558 
559 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
560 {
561 	struct ieee80211_mgmt *mgmt = (void *)data;
562 	u8 *pos, *end;
563 
564 	pos = (u8 *)mgmt->u.beacon.variable;
565 	end = data + len;
566 	while (pos < end) {
567 		if (pos + 2 + pos[1] > end)
568 			return NULL;
569 
570 		if (pos[0] == ie)
571 			return pos;
572 
573 		pos += 2 + pos[1];
574 	}
575 
576 	return NULL;
577 }
578 
579 static void rt2x00lib_sleep(struct work_struct *work)
580 {
581 	struct rt2x00_dev *rt2x00dev =
582 	    container_of(work, struct rt2x00_dev, sleep_work);
583 
584 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
585 		return;
586 
587 	/*
588 	 * Check again is powersaving is enabled, to prevent races from delayed
589 	 * work execution.
590 	 */
591 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
592 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
593 				 IEEE80211_CONF_CHANGE_PS);
594 }
595 
596 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
597 				      struct sk_buff *skb,
598 				      struct rxdone_entry_desc *rxdesc)
599 {
600 	struct rt2x00_bar_list_entry *entry;
601 	struct ieee80211_bar *ba = (void *)skb->data;
602 
603 	if (likely(!ieee80211_is_back(ba->frame_control)))
604 		return;
605 
606 	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
607 		return;
608 
609 	rcu_read_lock();
610 	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
611 
612 		if (ba->start_seq_num != entry->start_seq_num)
613 			continue;
614 
615 #define TID_CHECK(a, b) (						\
616 	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
617 	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
618 
619 		if (!TID_CHECK(ba->control, entry->control))
620 			continue;
621 
622 #undef TID_CHECK
623 
624 		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
625 			continue;
626 
627 		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
628 			continue;
629 
630 		/* Mark BAR since we received the according BA */
631 		spin_lock_bh(&rt2x00dev->bar_list_lock);
632 		entry->block_acked = 1;
633 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
634 		break;
635 	}
636 	rcu_read_unlock();
637 
638 }
639 
640 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
641 				      struct sk_buff *skb,
642 				      struct rxdone_entry_desc *rxdesc)
643 {
644 	struct ieee80211_hdr *hdr = (void *) skb->data;
645 	struct ieee80211_tim_ie *tim_ie;
646 	u8 *tim;
647 	u8 tim_len;
648 	bool cam;
649 
650 	/* If this is not a beacon, or if mac80211 has no powersaving
651 	 * configured, or if the device is already in powersaving mode
652 	 * we can exit now. */
653 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
654 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
655 		return;
656 
657 	/* min. beacon length + FCS_LEN */
658 	if (skb->len <= 40 + FCS_LEN)
659 		return;
660 
661 	/* and only beacons from the associated BSSID, please */
662 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
663 	    !rt2x00dev->aid)
664 		return;
665 
666 	rt2x00dev->last_beacon = jiffies;
667 
668 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
669 	if (!tim)
670 		return;
671 
672 	if (tim[1] < sizeof(*tim_ie))
673 		return;
674 
675 	tim_len = tim[1];
676 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
677 
678 	/* Check whenever the PHY can be turned off again. */
679 
680 	/* 1. What about buffered unicast traffic for our AID? */
681 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
682 
683 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
684 	cam |= (tim_ie->bitmap_ctrl & 0x01);
685 
686 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
687 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
688 }
689 
690 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
691 					struct rxdone_entry_desc *rxdesc)
692 {
693 	struct ieee80211_supported_band *sband;
694 	const struct rt2x00_rate *rate;
695 	unsigned int i;
696 	int signal = rxdesc->signal;
697 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
698 
699 	switch (rxdesc->rate_mode) {
700 	case RATE_MODE_CCK:
701 	case RATE_MODE_OFDM:
702 		/*
703 		 * For non-HT rates the MCS value needs to contain the
704 		 * actually used rate modulation (CCK or OFDM).
705 		 */
706 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
707 			signal = RATE_MCS(rxdesc->rate_mode, signal);
708 
709 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
710 		for (i = 0; i < sband->n_bitrates; i++) {
711 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
712 			if (((type == RXDONE_SIGNAL_PLCP) &&
713 			     (rate->plcp == signal)) ||
714 			    ((type == RXDONE_SIGNAL_BITRATE) &&
715 			      (rate->bitrate == signal)) ||
716 			    ((type == RXDONE_SIGNAL_MCS) &&
717 			      (rate->mcs == signal))) {
718 				return i;
719 			}
720 		}
721 		break;
722 	case RATE_MODE_HT_MIX:
723 	case RATE_MODE_HT_GREENFIELD:
724 		if (signal >= 0 && signal <= 76)
725 			return signal;
726 		break;
727 	default:
728 		break;
729 	}
730 
731 	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
732 		    rxdesc->rate_mode, signal, type);
733 	return 0;
734 }
735 
736 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
737 {
738 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
739 	struct rxdone_entry_desc rxdesc;
740 	struct sk_buff *skb;
741 	struct ieee80211_rx_status *rx_status;
742 	unsigned int header_length;
743 	int rate_idx;
744 
745 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
746 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
747 		goto submit_entry;
748 
749 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
750 		goto submit_entry;
751 
752 	/*
753 	 * Allocate a new sk_buffer. If no new buffer available, drop the
754 	 * received frame and reuse the existing buffer.
755 	 */
756 	skb = rt2x00queue_alloc_rxskb(entry, gfp);
757 	if (!skb)
758 		goto submit_entry;
759 
760 	/*
761 	 * Unmap the skb.
762 	 */
763 	rt2x00queue_unmap_skb(entry);
764 
765 	/*
766 	 * Extract the RXD details.
767 	 */
768 	memset(&rxdesc, 0, sizeof(rxdesc));
769 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
770 
771 	/*
772 	 * Check for valid size in case we get corrupted descriptor from
773 	 * hardware.
774 	 */
775 	if (unlikely(rxdesc.size == 0 ||
776 		     rxdesc.size > entry->queue->data_size)) {
777 		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
778 			   rxdesc.size, entry->queue->data_size);
779 		dev_kfree_skb(entry->skb);
780 		goto renew_skb;
781 	}
782 
783 	/*
784 	 * The data behind the ieee80211 header must be
785 	 * aligned on a 4 byte boundary.
786 	 */
787 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
788 
789 	/*
790 	 * Hardware might have stripped the IV/EIV/ICV data,
791 	 * in that case it is possible that the data was
792 	 * provided separately (through hardware descriptor)
793 	 * in which case we should reinsert the data into the frame.
794 	 */
795 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
796 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
797 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
798 					  &rxdesc);
799 	else if (header_length &&
800 		 (rxdesc.size > header_length) &&
801 		 (rxdesc.dev_flags & RXDONE_L2PAD))
802 		rt2x00queue_remove_l2pad(entry->skb, header_length);
803 
804 	/* Trim buffer to correct size */
805 	skb_trim(entry->skb, rxdesc.size);
806 
807 	/*
808 	 * Translate the signal to the correct bitrate index.
809 	 */
810 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
811 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
812 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
813 		rxdesc.encoding = RX_ENC_HT;
814 
815 	/*
816 	 * Check if this is a beacon, and more frames have been
817 	 * buffered while we were in powersaving mode.
818 	 */
819 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
820 
821 	/*
822 	 * Check for incoming BlockAcks to match to the BlockAckReqs
823 	 * we've send out.
824 	 */
825 	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
826 
827 	/*
828 	 * Update extra components
829 	 */
830 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
831 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
832 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
833 
834 	/*
835 	 * Initialize RX status information, and send frame
836 	 * to mac80211.
837 	 */
838 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
839 
840 	/* Ensure that all fields of rx_status are initialized
841 	 * properly. The skb->cb array was used for driver
842 	 * specific informations, so rx_status might contain
843 	 * garbage.
844 	 */
845 	memset(rx_status, 0, sizeof(*rx_status));
846 
847 	rx_status->mactime = rxdesc.timestamp;
848 	rx_status->band = rt2x00dev->curr_band;
849 	rx_status->freq = rt2x00dev->curr_freq;
850 	rx_status->rate_idx = rate_idx;
851 	rx_status->signal = rxdesc.rssi;
852 	rx_status->flag = rxdesc.flags;
853 	rx_status->enc_flags = rxdesc.enc_flags;
854 	rx_status->encoding = rxdesc.encoding;
855 	rx_status->bw = rxdesc.bw;
856 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
857 
858 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
859 
860 renew_skb:
861 	/*
862 	 * Replace the skb with the freshly allocated one.
863 	 */
864 	entry->skb = skb;
865 
866 submit_entry:
867 	entry->flags = 0;
868 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
869 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
870 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
871 		rt2x00dev->ops->lib->clear_entry(entry);
872 }
873 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
874 
875 /*
876  * Driver initialization handlers.
877  */
878 const struct rt2x00_rate rt2x00_supported_rates[12] = {
879 	{
880 		.flags = DEV_RATE_CCK,
881 		.bitrate = 10,
882 		.ratemask = BIT(0),
883 		.plcp = 0x00,
884 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
885 	},
886 	{
887 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
888 		.bitrate = 20,
889 		.ratemask = BIT(1),
890 		.plcp = 0x01,
891 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
892 	},
893 	{
894 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
895 		.bitrate = 55,
896 		.ratemask = BIT(2),
897 		.plcp = 0x02,
898 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
899 	},
900 	{
901 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
902 		.bitrate = 110,
903 		.ratemask = BIT(3),
904 		.plcp = 0x03,
905 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
906 	},
907 	{
908 		.flags = DEV_RATE_OFDM,
909 		.bitrate = 60,
910 		.ratemask = BIT(4),
911 		.plcp = 0x0b,
912 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
913 	},
914 	{
915 		.flags = DEV_RATE_OFDM,
916 		.bitrate = 90,
917 		.ratemask = BIT(5),
918 		.plcp = 0x0f,
919 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
920 	},
921 	{
922 		.flags = DEV_RATE_OFDM,
923 		.bitrate = 120,
924 		.ratemask = BIT(6),
925 		.plcp = 0x0a,
926 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
927 	},
928 	{
929 		.flags = DEV_RATE_OFDM,
930 		.bitrate = 180,
931 		.ratemask = BIT(7),
932 		.plcp = 0x0e,
933 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
934 	},
935 	{
936 		.flags = DEV_RATE_OFDM,
937 		.bitrate = 240,
938 		.ratemask = BIT(8),
939 		.plcp = 0x09,
940 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
941 	},
942 	{
943 		.flags = DEV_RATE_OFDM,
944 		.bitrate = 360,
945 		.ratemask = BIT(9),
946 		.plcp = 0x0d,
947 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
948 	},
949 	{
950 		.flags = DEV_RATE_OFDM,
951 		.bitrate = 480,
952 		.ratemask = BIT(10),
953 		.plcp = 0x08,
954 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
955 	},
956 	{
957 		.flags = DEV_RATE_OFDM,
958 		.bitrate = 540,
959 		.ratemask = BIT(11),
960 		.plcp = 0x0c,
961 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
962 	},
963 };
964 
965 static void rt2x00lib_channel(struct ieee80211_channel *entry,
966 			      const int channel, const int tx_power,
967 			      const int value)
968 {
969 	/* XXX: this assumption about the band is wrong for 802.11j */
970 	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
971 	entry->center_freq = ieee80211_channel_to_frequency(channel,
972 							    entry->band);
973 	entry->hw_value = value;
974 	entry->max_power = tx_power;
975 	entry->max_antenna_gain = 0xff;
976 }
977 
978 static void rt2x00lib_rate(struct ieee80211_rate *entry,
979 			   const u16 index, const struct rt2x00_rate *rate)
980 {
981 	entry->flags = 0;
982 	entry->bitrate = rate->bitrate;
983 	entry->hw_value = index;
984 	entry->hw_value_short = index;
985 
986 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
987 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
988 }
989 
990 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
991 {
992 	of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
993 
994 	if (!is_valid_ether_addr(eeprom_mac_addr)) {
995 		eth_random_addr(eeprom_mac_addr);
996 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
997 	}
998 }
999 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1000 
1001 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1002 				    struct hw_mode_spec *spec)
1003 {
1004 	struct ieee80211_hw *hw = rt2x00dev->hw;
1005 	struct ieee80211_channel *channels;
1006 	struct ieee80211_rate *rates;
1007 	unsigned int num_rates;
1008 	unsigned int i;
1009 
1010 	num_rates = 0;
1011 	if (spec->supported_rates & SUPPORT_RATE_CCK)
1012 		num_rates += 4;
1013 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
1014 		num_rates += 8;
1015 
1016 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1017 	if (!channels)
1018 		return -ENOMEM;
1019 
1020 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1021 	if (!rates)
1022 		goto exit_free_channels;
1023 
1024 	/*
1025 	 * Initialize Rate list.
1026 	 */
1027 	for (i = 0; i < num_rates; i++)
1028 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1029 
1030 	/*
1031 	 * Initialize Channel list.
1032 	 */
1033 	for (i = 0; i < spec->num_channels; i++) {
1034 		rt2x00lib_channel(&channels[i],
1035 				  spec->channels[i].channel,
1036 				  spec->channels_info[i].max_power, i);
1037 	}
1038 
1039 	/*
1040 	 * Intitialize 802.11b, 802.11g
1041 	 * Rates: CCK, OFDM.
1042 	 * Channels: 2.4 GHz
1043 	 */
1044 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1045 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1046 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1047 		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1048 		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1049 		hw->wiphy->bands[NL80211_BAND_2GHZ] =
1050 		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1051 		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1052 		       &spec->ht, sizeof(spec->ht));
1053 	}
1054 
1055 	/*
1056 	 * Intitialize 802.11a
1057 	 * Rates: OFDM.
1058 	 * Channels: OFDM, UNII, HiperLAN2.
1059 	 */
1060 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1061 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1062 		    spec->num_channels - 14;
1063 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1064 		    num_rates - 4;
1065 		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1066 		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1067 		hw->wiphy->bands[NL80211_BAND_5GHZ] =
1068 		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1069 		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1070 		       &spec->ht, sizeof(spec->ht));
1071 	}
1072 
1073 	return 0;
1074 
1075  exit_free_channels:
1076 	kfree(channels);
1077 	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1078 	return -ENOMEM;
1079 }
1080 
1081 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1082 {
1083 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1084 		ieee80211_unregister_hw(rt2x00dev->hw);
1085 
1086 	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1087 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1088 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1089 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1090 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1091 	}
1092 
1093 	kfree(rt2x00dev->spec.channels_info);
1094 	kfree(rt2x00dev->chan_survey);
1095 }
1096 
1097 static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = {
1098 	{ .throughput = 0 * 1024, .blink_time = 334 },
1099 	{ .throughput = 1 * 1024, .blink_time = 260 },
1100 	{ .throughput = 2 * 1024, .blink_time = 220 },
1101 	{ .throughput = 5 * 1024, .blink_time = 190 },
1102 	{ .throughput = 10 * 1024, .blink_time = 170 },
1103 	{ .throughput = 25 * 1024, .blink_time = 150 },
1104 	{ .throughput = 54 * 1024, .blink_time = 130 },
1105 	{ .throughput = 120 * 1024, .blink_time = 110 },
1106 	{ .throughput = 265 * 1024, .blink_time = 80 },
1107 	{ .throughput = 586 * 1024, .blink_time = 50 },
1108 };
1109 
1110 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1111 {
1112 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1113 	int status;
1114 
1115 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1116 		return 0;
1117 
1118 	/*
1119 	 * Initialize HW modes.
1120 	 */
1121 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1122 	if (status)
1123 		return status;
1124 
1125 	/*
1126 	 * Initialize HW fields.
1127 	 */
1128 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1129 
1130 	/*
1131 	 * Initialize extra TX headroom required.
1132 	 */
1133 	rt2x00dev->hw->extra_tx_headroom =
1134 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1135 		      rt2x00dev->extra_tx_headroom);
1136 
1137 	/*
1138 	 * Take TX headroom required for alignment into account.
1139 	 */
1140 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1141 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1142 	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1143 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1144 
1145 	/*
1146 	 * Tell mac80211 about the size of our private STA structure.
1147 	 */
1148 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1149 
1150 	/*
1151 	 * Allocate tx status FIFO for driver use.
1152 	 */
1153 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1154 		/*
1155 		 * Allocate the txstatus fifo. In the worst case the tx
1156 		 * status fifo has to hold the tx status of all entries
1157 		 * in all tx queues. Hence, calculate the kfifo size as
1158 		 * tx_queues * entry_num and round up to the nearest
1159 		 * power of 2.
1160 		 */
1161 		int kfifo_size =
1162 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1163 					   rt2x00dev->tx->limit *
1164 					   sizeof(u32));
1165 
1166 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1167 				     GFP_KERNEL);
1168 		if (status)
1169 			return status;
1170 	}
1171 
1172 	/*
1173 	 * Initialize tasklets if used by the driver. Tasklets are
1174 	 * disabled until the interrupts are turned on. The driver
1175 	 * has to handle that.
1176 	 */
1177 #define RT2X00_TASKLET_INIT(taskletname) \
1178 	if (rt2x00dev->ops->lib->taskletname) { \
1179 		tasklet_setup(&rt2x00dev->taskletname, \
1180 			     rt2x00dev->ops->lib->taskletname); \
1181 	}
1182 
1183 	RT2X00_TASKLET_INIT(txstatus_tasklet);
1184 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1185 	RT2X00_TASKLET_INIT(tbtt_tasklet);
1186 	RT2X00_TASKLET_INIT(rxdone_tasklet);
1187 	RT2X00_TASKLET_INIT(autowake_tasklet);
1188 
1189 #undef RT2X00_TASKLET_INIT
1190 
1191 	ieee80211_create_tpt_led_trigger(rt2x00dev->hw,
1192 					 IEEE80211_TPT_LEDTRIG_FL_RADIO,
1193 					 rt2x00_tpt_blink,
1194 					 ARRAY_SIZE(rt2x00_tpt_blink));
1195 
1196 	/*
1197 	 * Register HW.
1198 	 */
1199 	status = ieee80211_register_hw(rt2x00dev->hw);
1200 	if (status)
1201 		return status;
1202 
1203 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Initialization/uninitialization handlers.
1210  */
1211 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1212 {
1213 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1214 		return;
1215 
1216 	/*
1217 	 * Stop rfkill polling.
1218 	 */
1219 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1220 		rt2x00rfkill_unregister(rt2x00dev);
1221 
1222 	/*
1223 	 * Allow the HW to uninitialize.
1224 	 */
1225 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1226 
1227 	/*
1228 	 * Free allocated queue entries.
1229 	 */
1230 	rt2x00queue_uninitialize(rt2x00dev);
1231 }
1232 
1233 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1234 {
1235 	int status;
1236 
1237 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1238 		return 0;
1239 
1240 	/*
1241 	 * Allocate all queue entries.
1242 	 */
1243 	status = rt2x00queue_initialize(rt2x00dev);
1244 	if (status)
1245 		return status;
1246 
1247 	/*
1248 	 * Initialize the device.
1249 	 */
1250 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1251 	if (status) {
1252 		rt2x00queue_uninitialize(rt2x00dev);
1253 		return status;
1254 	}
1255 
1256 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1257 
1258 	/*
1259 	 * Start rfkill polling.
1260 	 */
1261 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1262 		rt2x00rfkill_register(rt2x00dev);
1263 
1264 	return 0;
1265 }
1266 
1267 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1268 {
1269 	int retval = 0;
1270 
1271 	/*
1272 	 * If this is the first interface which is added,
1273 	 * we should load the firmware now.
1274 	 */
1275 	retval = rt2x00lib_load_firmware(rt2x00dev);
1276 	if (retval)
1277 		goto out;
1278 
1279 	/*
1280 	 * Initialize the device.
1281 	 */
1282 	retval = rt2x00lib_initialize(rt2x00dev);
1283 	if (retval)
1284 		goto out;
1285 
1286 	rt2x00dev->intf_ap_count = 0;
1287 	rt2x00dev->intf_sta_count = 0;
1288 	rt2x00dev->intf_associated = 0;
1289 
1290 	/* Enable the radio */
1291 	retval = rt2x00lib_enable_radio(rt2x00dev);
1292 	if (retval)
1293 		goto out;
1294 
1295 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1296 
1297 out:
1298 	return retval;
1299 }
1300 
1301 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1302 {
1303 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1304 		return;
1305 
1306 	/*
1307 	 * Perhaps we can add something smarter here,
1308 	 * but for now just disabling the radio should do.
1309 	 */
1310 	rt2x00lib_disable_radio(rt2x00dev);
1311 
1312 	rt2x00dev->intf_ap_count = 0;
1313 	rt2x00dev->intf_sta_count = 0;
1314 	rt2x00dev->intf_associated = 0;
1315 }
1316 
1317 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1318 {
1319 	struct ieee80211_iface_limit *if_limit;
1320 	struct ieee80211_iface_combination *if_combination;
1321 
1322 	if (rt2x00dev->ops->max_ap_intf < 2)
1323 		return;
1324 
1325 	/*
1326 	 * Build up AP interface limits structure.
1327 	 */
1328 	if_limit = &rt2x00dev->if_limits_ap;
1329 	if_limit->max = rt2x00dev->ops->max_ap_intf;
1330 	if_limit->types = BIT(NL80211_IFTYPE_AP);
1331 #ifdef CONFIG_MAC80211_MESH
1332 	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1333 #endif
1334 
1335 	/*
1336 	 * Build up AP interface combinations structure.
1337 	 */
1338 	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1339 	if_combination->limits = if_limit;
1340 	if_combination->n_limits = 1;
1341 	if_combination->max_interfaces = if_limit->max;
1342 	if_combination->num_different_channels = 1;
1343 
1344 	/*
1345 	 * Finally, specify the possible combinations to mac80211.
1346 	 */
1347 	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1348 	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1349 }
1350 
1351 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1352 {
1353 	if (WARN_ON(!rt2x00dev->tx))
1354 		return 0;
1355 
1356 	if (rt2x00_is_usb(rt2x00dev))
1357 		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1358 
1359 	return rt2x00dev->tx[0].winfo_size;
1360 }
1361 
1362 /*
1363  * driver allocation handlers.
1364  */
1365 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1366 {
1367 	int retval = -ENOMEM;
1368 
1369 	/*
1370 	 * Set possible interface combinations.
1371 	 */
1372 	rt2x00lib_set_if_combinations(rt2x00dev);
1373 
1374 	/*
1375 	 * Allocate the driver data memory, if necessary.
1376 	 */
1377 	if (rt2x00dev->ops->drv_data_size > 0) {
1378 		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1379 			                      GFP_KERNEL);
1380 		if (!rt2x00dev->drv_data) {
1381 			retval = -ENOMEM;
1382 			goto exit;
1383 		}
1384 	}
1385 
1386 	spin_lock_init(&rt2x00dev->irqmask_lock);
1387 	mutex_init(&rt2x00dev->csr_mutex);
1388 	mutex_init(&rt2x00dev->conf_mutex);
1389 	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1390 	spin_lock_init(&rt2x00dev->bar_list_lock);
1391 	hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1392 		     HRTIMER_MODE_REL);
1393 
1394 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1395 
1396 	/*
1397 	 * Make room for rt2x00_intf inside the per-interface
1398 	 * structure ieee80211_vif.
1399 	 */
1400 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1401 
1402 	/*
1403 	 * rt2x00 devices can only use the last n bits of the MAC address
1404 	 * for virtual interfaces.
1405 	 */
1406 	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1407 		(rt2x00dev->ops->max_ap_intf - 1);
1408 
1409 	/*
1410 	 * Initialize work.
1411 	 */
1412 	rt2x00dev->workqueue =
1413 	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1414 	if (!rt2x00dev->workqueue) {
1415 		retval = -ENOMEM;
1416 		goto exit;
1417 	}
1418 
1419 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1420 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1421 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1422 
1423 	/*
1424 	 * Let the driver probe the device to detect the capabilities.
1425 	 */
1426 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1427 	if (retval) {
1428 		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1429 		goto exit;
1430 	}
1431 
1432 	/*
1433 	 * Allocate queue array.
1434 	 */
1435 	retval = rt2x00queue_allocate(rt2x00dev);
1436 	if (retval)
1437 		goto exit;
1438 
1439 	/* Cache TX headroom value */
1440 	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1441 
1442 	/*
1443 	 * Determine which operating modes are supported, all modes
1444 	 * which require beaconing, depend on the availability of
1445 	 * beacon entries.
1446 	 */
1447 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1448 	if (rt2x00dev->bcn->limit > 0)
1449 		rt2x00dev->hw->wiphy->interface_modes |=
1450 		    BIT(NL80211_IFTYPE_ADHOC) |
1451 #ifdef CONFIG_MAC80211_MESH
1452 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1453 #endif
1454 		    BIT(NL80211_IFTYPE_AP);
1455 
1456 	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1457 
1458 	wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1459 			      NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1460 
1461 	/*
1462 	 * Initialize ieee80211 structure.
1463 	 */
1464 	retval = rt2x00lib_probe_hw(rt2x00dev);
1465 	if (retval) {
1466 		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1467 		goto exit;
1468 	}
1469 
1470 	/*
1471 	 * Register extra components.
1472 	 */
1473 	rt2x00link_register(rt2x00dev);
1474 	rt2x00leds_register(rt2x00dev);
1475 	rt2x00debug_register(rt2x00dev);
1476 
1477 	/*
1478 	 * Start rfkill polling.
1479 	 */
1480 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1481 		rt2x00rfkill_register(rt2x00dev);
1482 
1483 	return 0;
1484 
1485 exit:
1486 	rt2x00lib_remove_dev(rt2x00dev);
1487 
1488 	return retval;
1489 }
1490 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1491 
1492 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1493 {
1494 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1495 
1496 	/*
1497 	 * Stop rfkill polling.
1498 	 */
1499 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1500 		rt2x00rfkill_unregister(rt2x00dev);
1501 
1502 	/*
1503 	 * Disable radio.
1504 	 */
1505 	rt2x00lib_disable_radio(rt2x00dev);
1506 
1507 	/*
1508 	 * Stop all work.
1509 	 */
1510 	cancel_work_sync(&rt2x00dev->intf_work);
1511 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1512 	cancel_work_sync(&rt2x00dev->sleep_work);
1513 
1514 	hrtimer_cancel(&rt2x00dev->txstatus_timer);
1515 
1516 	/*
1517 	 * Kill the tx status tasklet.
1518 	 */
1519 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1520 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1521 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1522 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1523 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1524 
1525 	/*
1526 	 * Uninitialize device.
1527 	 */
1528 	rt2x00lib_uninitialize(rt2x00dev);
1529 
1530 	if (rt2x00dev->workqueue)
1531 		destroy_workqueue(rt2x00dev->workqueue);
1532 
1533 	/*
1534 	 * Free the tx status fifo.
1535 	 */
1536 	kfifo_free(&rt2x00dev->txstatus_fifo);
1537 
1538 	/*
1539 	 * Free extra components
1540 	 */
1541 	rt2x00debug_deregister(rt2x00dev);
1542 	rt2x00leds_unregister(rt2x00dev);
1543 
1544 	/*
1545 	 * Free ieee80211_hw memory.
1546 	 */
1547 	rt2x00lib_remove_hw(rt2x00dev);
1548 
1549 	/*
1550 	 * Free firmware image.
1551 	 */
1552 	rt2x00lib_free_firmware(rt2x00dev);
1553 
1554 	/*
1555 	 * Free queue structures.
1556 	 */
1557 	rt2x00queue_free(rt2x00dev);
1558 
1559 	/*
1560 	 * Free the driver data.
1561 	 */
1562 	kfree(rt2x00dev->drv_data);
1563 }
1564 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1565 
1566 /*
1567  * Device state handlers
1568  */
1569 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1570 {
1571 	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1572 
1573 	/*
1574 	 * Prevent mac80211 from accessing driver while suspended.
1575 	 */
1576 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1577 		return 0;
1578 
1579 	/*
1580 	 * Cleanup as much as possible.
1581 	 */
1582 	rt2x00lib_uninitialize(rt2x00dev);
1583 
1584 	/*
1585 	 * Suspend/disable extra components.
1586 	 */
1587 	rt2x00leds_suspend(rt2x00dev);
1588 	rt2x00debug_deregister(rt2x00dev);
1589 
1590 	/*
1591 	 * Set device mode to sleep for power management,
1592 	 * on some hardware this call seems to consistently fail.
1593 	 * From the specifications it is hard to tell why it fails,
1594 	 * and if this is a "bad thing".
1595 	 * Overall it is safe to just ignore the failure and
1596 	 * continue suspending. The only downside is that the
1597 	 * device will not be in optimal power save mode, but with
1598 	 * the radio and the other components already disabled the
1599 	 * device is as good as disabled.
1600 	 */
1601 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1602 		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1603 
1604 	return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1607 
1608 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1609 {
1610 	rt2x00_dbg(rt2x00dev, "Waking up\n");
1611 
1612 	/*
1613 	 * Restore/enable extra components.
1614 	 */
1615 	rt2x00debug_register(rt2x00dev);
1616 	rt2x00leds_resume(rt2x00dev);
1617 
1618 	/*
1619 	 * We are ready again to receive requests from mac80211.
1620 	 */
1621 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1622 
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1626 
1627 /*
1628  * rt2x00lib module information.
1629  */
1630 MODULE_AUTHOR(DRV_PROJECT);
1631 MODULE_VERSION(DRV_VERSION);
1632 MODULE_DESCRIPTION("rt2x00 library");
1633 MODULE_LICENSE("GPL");
1634