1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 /*
21 	Module: rt2x00lib
22 	Abstract: rt2x00 generic device routines.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32 
33 /*
34  * Utility functions.
35  */
36 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
37 			 struct ieee80211_vif *vif)
38 {
39 	/*
40 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
41 	 * contains the bss number, see BSS_ID_MASK comments for details.
42 	 */
43 	if (rt2x00dev->intf_sta_count)
44 		return 0;
45 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
46 }
47 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
48 
49 /*
50  * Radio control handlers.
51  */
52 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
53 {
54 	int status;
55 
56 	/*
57 	 * Don't enable the radio twice.
58 	 * And check if the hardware button has been disabled.
59 	 */
60 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
61 		return 0;
62 
63 	/*
64 	 * Initialize all data queues.
65 	 */
66 	rt2x00queue_init_queues(rt2x00dev);
67 
68 	/*
69 	 * Enable radio.
70 	 */
71 	status =
72 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
73 	if (status)
74 		return status;
75 
76 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
77 
78 	rt2x00leds_led_radio(rt2x00dev, true);
79 	rt2x00led_led_activity(rt2x00dev, true);
80 
81 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
82 
83 	/*
84 	 * Enable queues.
85 	 */
86 	rt2x00queue_start_queues(rt2x00dev);
87 	rt2x00link_start_tuner(rt2x00dev);
88 	rt2x00link_start_agc(rt2x00dev);
89 	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
90 		rt2x00link_start_vcocal(rt2x00dev);
91 
92 	/*
93 	 * Start watchdog monitoring.
94 	 */
95 	rt2x00link_start_watchdog(rt2x00dev);
96 
97 	return 0;
98 }
99 
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103 		return;
104 
105 	/*
106 	 * Stop watchdog monitoring.
107 	 */
108 	rt2x00link_stop_watchdog(rt2x00dev);
109 
110 	/*
111 	 * Stop all queues
112 	 */
113 	rt2x00link_stop_agc(rt2x00dev);
114 	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
115 		rt2x00link_stop_vcocal(rt2x00dev);
116 	rt2x00link_stop_tuner(rt2x00dev);
117 	rt2x00queue_stop_queues(rt2x00dev);
118 	rt2x00queue_flush_queues(rt2x00dev, true);
119 
120 	/*
121 	 * Disable radio.
122 	 */
123 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
124 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
125 	rt2x00led_led_activity(rt2x00dev, false);
126 	rt2x00leds_led_radio(rt2x00dev, false);
127 }
128 
129 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
130 					  struct ieee80211_vif *vif)
131 {
132 	struct rt2x00_dev *rt2x00dev = data;
133 	struct rt2x00_intf *intf = vif_to_intf(vif);
134 
135 	/*
136 	 * It is possible the radio was disabled while the work had been
137 	 * scheduled. If that happens we should return here immediately,
138 	 * note that in the spinlock protected area above the delayed_flags
139 	 * have been cleared correctly.
140 	 */
141 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
142 		return;
143 
144 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
145 		mutex_lock(&intf->beacon_skb_mutex);
146 		rt2x00queue_update_beacon(rt2x00dev, vif);
147 		mutex_unlock(&intf->beacon_skb_mutex);
148 	}
149 }
150 
151 static void rt2x00lib_intf_scheduled(struct work_struct *work)
152 {
153 	struct rt2x00_dev *rt2x00dev =
154 	    container_of(work, struct rt2x00_dev, intf_work);
155 
156 	/*
157 	 * Iterate over each interface and perform the
158 	 * requested configurations.
159 	 */
160 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
161 					    IEEE80211_IFACE_ITER_RESUME_ALL,
162 					    rt2x00lib_intf_scheduled_iter,
163 					    rt2x00dev);
164 }
165 
166 static void rt2x00lib_autowakeup(struct work_struct *work)
167 {
168 	struct rt2x00_dev *rt2x00dev =
169 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
170 
171 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
172 		return;
173 
174 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
175 		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
176 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
177 }
178 
179 /*
180  * Interrupt context handlers.
181  */
182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183 				     struct ieee80211_vif *vif)
184 {
185 	struct ieee80211_tx_control control = {};
186 	struct rt2x00_dev *rt2x00dev = data;
187 	struct sk_buff *skb;
188 
189 	/*
190 	 * Only AP mode interfaces do broad- and multicast buffering
191 	 */
192 	if (vif->type != NL80211_IFTYPE_AP)
193 		return;
194 
195 	/*
196 	 * Send out buffered broad- and multicast frames
197 	 */
198 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199 	while (skb) {
200 		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
201 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
202 	}
203 }
204 
205 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
206 					struct ieee80211_vif *vif)
207 {
208 	struct rt2x00_dev *rt2x00dev = data;
209 
210 	if (vif->type != NL80211_IFTYPE_AP &&
211 	    vif->type != NL80211_IFTYPE_ADHOC &&
212 	    vif->type != NL80211_IFTYPE_MESH_POINT &&
213 	    vif->type != NL80211_IFTYPE_WDS)
214 		return;
215 
216 	/*
217 	 * Update the beacon without locking. This is safe on PCI devices
218 	 * as they only update the beacon periodically here. This should
219 	 * never be called for USB devices.
220 	 */
221 	WARN_ON(rt2x00_is_usb(rt2x00dev));
222 	rt2x00queue_update_beacon(rt2x00dev, vif);
223 }
224 
225 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
226 {
227 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
228 		return;
229 
230 	/* send buffered bc/mc frames out for every bssid */
231 	ieee80211_iterate_active_interfaces_atomic(
232 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
233 		rt2x00lib_bc_buffer_iter, rt2x00dev);
234 	/*
235 	 * Devices with pre tbtt interrupt don't need to update the beacon
236 	 * here as they will fetch the next beacon directly prior to
237 	 * transmission.
238 	 */
239 	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
240 		return;
241 
242 	/* fetch next beacon */
243 	ieee80211_iterate_active_interfaces_atomic(
244 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
245 		rt2x00lib_beaconupdate_iter, rt2x00dev);
246 }
247 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
248 
249 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
250 {
251 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
252 		return;
253 
254 	/* fetch next beacon */
255 	ieee80211_iterate_active_interfaces_atomic(
256 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
257 		rt2x00lib_beaconupdate_iter, rt2x00dev);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
260 
261 void rt2x00lib_dmastart(struct queue_entry *entry)
262 {
263 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
264 	rt2x00queue_index_inc(entry, Q_INDEX);
265 }
266 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
267 
268 void rt2x00lib_dmadone(struct queue_entry *entry)
269 {
270 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
271 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
272 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
273 }
274 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
275 
276 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
277 {
278 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
279 	struct ieee80211_bar *bar = (void *) entry->skb->data;
280 	struct rt2x00_bar_list_entry *bar_entry;
281 	int ret;
282 
283 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
284 		return 0;
285 
286 	/*
287 	 * Unlike all other frames, the status report for BARs does
288 	 * not directly come from the hardware as it is incapable of
289 	 * matching a BA to a previously send BAR. The hardware will
290 	 * report all BARs as if they weren't acked at all.
291 	 *
292 	 * Instead the RX-path will scan for incoming BAs and set the
293 	 * block_acked flag if it sees one that was likely caused by
294 	 * a BAR from us.
295 	 *
296 	 * Remove remaining BARs here and return their status for
297 	 * TX done processing.
298 	 */
299 	ret = 0;
300 	rcu_read_lock();
301 	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
302 		if (bar_entry->entry != entry)
303 			continue;
304 
305 		spin_lock_bh(&rt2x00dev->bar_list_lock);
306 		/* Return whether this BAR was blockacked or not */
307 		ret = bar_entry->block_acked;
308 		/* Remove the BAR from our checklist */
309 		list_del_rcu(&bar_entry->list);
310 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
311 		kfree_rcu(bar_entry, head);
312 
313 		break;
314 	}
315 	rcu_read_unlock();
316 
317 	return ret;
318 }
319 
320 void rt2x00lib_txdone(struct queue_entry *entry,
321 		      struct txdone_entry_desc *txdesc)
322 {
323 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
324 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
325 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
326 	unsigned int header_length, i;
327 	u8 rate_idx, rate_flags, retry_rates;
328 	u8 skbdesc_flags = skbdesc->flags;
329 	bool success;
330 
331 	/*
332 	 * Unmap the skb.
333 	 */
334 	rt2x00queue_unmap_skb(entry);
335 
336 	/*
337 	 * Remove the extra tx headroom from the skb.
338 	 */
339 	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
340 
341 	/*
342 	 * Signal that the TX descriptor is no longer in the skb.
343 	 */
344 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
345 
346 	/*
347 	 * Determine the length of 802.11 header.
348 	 */
349 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
350 
351 	/*
352 	 * Remove L2 padding which was added during
353 	 */
354 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
355 		rt2x00queue_remove_l2pad(entry->skb, header_length);
356 
357 	/*
358 	 * If the IV/EIV data was stripped from the frame before it was
359 	 * passed to the hardware, we should now reinsert it again because
360 	 * mac80211 will expect the same data to be present it the
361 	 * frame as it was passed to us.
362 	 */
363 	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
364 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
365 
366 	/*
367 	 * Send frame to debugfs immediately, after this call is completed
368 	 * we are going to overwrite the skb->cb array.
369 	 */
370 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
371 
372 	/*
373 	 * Determine if the frame has been successfully transmitted and
374 	 * remove BARs from our check list while checking for their
375 	 * TX status.
376 	 */
377 	success =
378 	    rt2x00lib_txdone_bar_status(entry) ||
379 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
380 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
381 
382 	/*
383 	 * Update TX statistics.
384 	 */
385 	rt2x00dev->link.qual.tx_success += success;
386 	rt2x00dev->link.qual.tx_failed += !success;
387 
388 	rate_idx = skbdesc->tx_rate_idx;
389 	rate_flags = skbdesc->tx_rate_flags;
390 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
391 	    (txdesc->retry + 1) : 1;
392 
393 	/*
394 	 * Initialize TX status
395 	 */
396 	memset(&tx_info->status, 0, sizeof(tx_info->status));
397 	tx_info->status.ack_signal = 0;
398 
399 	/*
400 	 * Frame was send with retries, hardware tried
401 	 * different rates to send out the frame, at each
402 	 * retry it lowered the rate 1 step except when the
403 	 * lowest rate was used.
404 	 */
405 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
406 		tx_info->status.rates[i].idx = rate_idx - i;
407 		tx_info->status.rates[i].flags = rate_flags;
408 
409 		if (rate_idx - i == 0) {
410 			/*
411 			 * The lowest rate (index 0) was used until the
412 			 * number of max retries was reached.
413 			 */
414 			tx_info->status.rates[i].count = retry_rates - i;
415 			i++;
416 			break;
417 		}
418 		tx_info->status.rates[i].count = 1;
419 	}
420 	if (i < (IEEE80211_TX_MAX_RATES - 1))
421 		tx_info->status.rates[i].idx = -1; /* terminate */
422 
423 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
424 		if (success)
425 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
426 		else
427 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
428 	}
429 
430 	/*
431 	 * Every single frame has it's own tx status, hence report
432 	 * every frame as ampdu of size 1.
433 	 *
434 	 * TODO: if we can find out how many frames were aggregated
435 	 * by the hw we could provide the real ampdu_len to mac80211
436 	 * which would allow the rc algorithm to better decide on
437 	 * which rates are suitable.
438 	 */
439 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
440 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
441 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
442 		tx_info->status.ampdu_len = 1;
443 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
444 
445 		if (!success)
446 			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
447 	}
448 
449 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
450 		if (success)
451 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
452 		else
453 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
454 	}
455 
456 	/*
457 	 * Only send the status report to mac80211 when it's a frame
458 	 * that originated in mac80211. If this was a extra frame coming
459 	 * through a mac80211 library call (RTS/CTS) then we should not
460 	 * send the status report back.
461 	 */
462 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
463 		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
464 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
465 		else
466 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
467 	} else
468 		dev_kfree_skb_any(entry->skb);
469 
470 	/*
471 	 * Make this entry available for reuse.
472 	 */
473 	entry->skb = NULL;
474 	entry->flags = 0;
475 
476 	rt2x00dev->ops->lib->clear_entry(entry);
477 
478 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
479 
480 	/*
481 	 * If the data queue was below the threshold before the txdone
482 	 * handler we must make sure the packet queue in the mac80211 stack
483 	 * is reenabled when the txdone handler has finished. This has to be
484 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
485 	 * before it was stopped.
486 	 */
487 	spin_lock_bh(&entry->queue->tx_lock);
488 	if (!rt2x00queue_threshold(entry->queue))
489 		rt2x00queue_unpause_queue(entry->queue);
490 	spin_unlock_bh(&entry->queue->tx_lock);
491 }
492 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
493 
494 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
495 {
496 	struct txdone_entry_desc txdesc;
497 
498 	txdesc.flags = 0;
499 	__set_bit(status, &txdesc.flags);
500 	txdesc.retry = 0;
501 
502 	rt2x00lib_txdone(entry, &txdesc);
503 }
504 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
505 
506 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
507 {
508 	struct ieee80211_mgmt *mgmt = (void *)data;
509 	u8 *pos, *end;
510 
511 	pos = (u8 *)mgmt->u.beacon.variable;
512 	end = data + len;
513 	while (pos < end) {
514 		if (pos + 2 + pos[1] > end)
515 			return NULL;
516 
517 		if (pos[0] == ie)
518 			return pos;
519 
520 		pos += 2 + pos[1];
521 	}
522 
523 	return NULL;
524 }
525 
526 static void rt2x00lib_sleep(struct work_struct *work)
527 {
528 	struct rt2x00_dev *rt2x00dev =
529 	    container_of(work, struct rt2x00_dev, sleep_work);
530 
531 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
532 		return;
533 
534 	/*
535 	 * Check again is powersaving is enabled, to prevent races from delayed
536 	 * work execution.
537 	 */
538 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
539 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
540 				 IEEE80211_CONF_CHANGE_PS);
541 }
542 
543 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
544 				      struct sk_buff *skb,
545 				      struct rxdone_entry_desc *rxdesc)
546 {
547 	struct rt2x00_bar_list_entry *entry;
548 	struct ieee80211_bar *ba = (void *)skb->data;
549 
550 	if (likely(!ieee80211_is_back(ba->frame_control)))
551 		return;
552 
553 	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
554 		return;
555 
556 	rcu_read_lock();
557 	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
558 
559 		if (ba->start_seq_num != entry->start_seq_num)
560 			continue;
561 
562 #define TID_CHECK(a, b) (						\
563 	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
564 	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
565 
566 		if (!TID_CHECK(ba->control, entry->control))
567 			continue;
568 
569 #undef TID_CHECK
570 
571 		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
572 			continue;
573 
574 		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
575 			continue;
576 
577 		/* Mark BAR since we received the according BA */
578 		spin_lock_bh(&rt2x00dev->bar_list_lock);
579 		entry->block_acked = 1;
580 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
581 		break;
582 	}
583 	rcu_read_unlock();
584 
585 }
586 
587 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
588 				      struct sk_buff *skb,
589 				      struct rxdone_entry_desc *rxdesc)
590 {
591 	struct ieee80211_hdr *hdr = (void *) skb->data;
592 	struct ieee80211_tim_ie *tim_ie;
593 	u8 *tim;
594 	u8 tim_len;
595 	bool cam;
596 
597 	/* If this is not a beacon, or if mac80211 has no powersaving
598 	 * configured, or if the device is already in powersaving mode
599 	 * we can exit now. */
600 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
601 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
602 		return;
603 
604 	/* min. beacon length + FCS_LEN */
605 	if (skb->len <= 40 + FCS_LEN)
606 		return;
607 
608 	/* and only beacons from the associated BSSID, please */
609 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
610 	    !rt2x00dev->aid)
611 		return;
612 
613 	rt2x00dev->last_beacon = jiffies;
614 
615 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
616 	if (!tim)
617 		return;
618 
619 	if (tim[1] < sizeof(*tim_ie))
620 		return;
621 
622 	tim_len = tim[1];
623 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
624 
625 	/* Check whenever the PHY can be turned off again. */
626 
627 	/* 1. What about buffered unicast traffic for our AID? */
628 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
629 
630 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
631 	cam |= (tim_ie->bitmap_ctrl & 0x01);
632 
633 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
634 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
635 }
636 
637 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
638 					struct rxdone_entry_desc *rxdesc)
639 {
640 	struct ieee80211_supported_band *sband;
641 	const struct rt2x00_rate *rate;
642 	unsigned int i;
643 	int signal = rxdesc->signal;
644 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
645 
646 	switch (rxdesc->rate_mode) {
647 	case RATE_MODE_CCK:
648 	case RATE_MODE_OFDM:
649 		/*
650 		 * For non-HT rates the MCS value needs to contain the
651 		 * actually used rate modulation (CCK or OFDM).
652 		 */
653 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
654 			signal = RATE_MCS(rxdesc->rate_mode, signal);
655 
656 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
657 		for (i = 0; i < sband->n_bitrates; i++) {
658 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
659 			if (((type == RXDONE_SIGNAL_PLCP) &&
660 			     (rate->plcp == signal)) ||
661 			    ((type == RXDONE_SIGNAL_BITRATE) &&
662 			      (rate->bitrate == signal)) ||
663 			    ((type == RXDONE_SIGNAL_MCS) &&
664 			      (rate->mcs == signal))) {
665 				return i;
666 			}
667 		}
668 		break;
669 	case RATE_MODE_HT_MIX:
670 	case RATE_MODE_HT_GREENFIELD:
671 		if (signal >= 0 && signal <= 76)
672 			return signal;
673 		break;
674 	default:
675 		break;
676 	}
677 
678 	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
679 		    rxdesc->rate_mode, signal, type);
680 	return 0;
681 }
682 
683 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
684 {
685 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
686 	struct rxdone_entry_desc rxdesc;
687 	struct sk_buff *skb;
688 	struct ieee80211_rx_status *rx_status;
689 	unsigned int header_length;
690 	int rate_idx;
691 
692 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
693 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
694 		goto submit_entry;
695 
696 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
697 		goto submit_entry;
698 
699 	/*
700 	 * Allocate a new sk_buffer. If no new buffer available, drop the
701 	 * received frame and reuse the existing buffer.
702 	 */
703 	skb = rt2x00queue_alloc_rxskb(entry, gfp);
704 	if (!skb)
705 		goto submit_entry;
706 
707 	/*
708 	 * Unmap the skb.
709 	 */
710 	rt2x00queue_unmap_skb(entry);
711 
712 	/*
713 	 * Extract the RXD details.
714 	 */
715 	memset(&rxdesc, 0, sizeof(rxdesc));
716 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
717 
718 	/*
719 	 * Check for valid size in case we get corrupted descriptor from
720 	 * hardware.
721 	 */
722 	if (unlikely(rxdesc.size == 0 ||
723 		     rxdesc.size > entry->queue->data_size)) {
724 		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
725 			   rxdesc.size, entry->queue->data_size);
726 		dev_kfree_skb(entry->skb);
727 		goto renew_skb;
728 	}
729 
730 	/*
731 	 * The data behind the ieee80211 header must be
732 	 * aligned on a 4 byte boundary.
733 	 */
734 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
735 
736 	/*
737 	 * Hardware might have stripped the IV/EIV/ICV data,
738 	 * in that case it is possible that the data was
739 	 * provided separately (through hardware descriptor)
740 	 * in which case we should reinsert the data into the frame.
741 	 */
742 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
743 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
744 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
745 					  &rxdesc);
746 	else if (header_length &&
747 		 (rxdesc.size > header_length) &&
748 		 (rxdesc.dev_flags & RXDONE_L2PAD))
749 		rt2x00queue_remove_l2pad(entry->skb, header_length);
750 
751 	/* Trim buffer to correct size */
752 	skb_trim(entry->skb, rxdesc.size);
753 
754 	/*
755 	 * Translate the signal to the correct bitrate index.
756 	 */
757 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
758 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
759 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
760 		rxdesc.flags |= RX_FLAG_HT;
761 
762 	/*
763 	 * Check if this is a beacon, and more frames have been
764 	 * buffered while we were in powersaving mode.
765 	 */
766 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
767 
768 	/*
769 	 * Check for incoming BlockAcks to match to the BlockAckReqs
770 	 * we've send out.
771 	 */
772 	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
773 
774 	/*
775 	 * Update extra components
776 	 */
777 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
778 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
779 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
780 
781 	/*
782 	 * Initialize RX status information, and send frame
783 	 * to mac80211.
784 	 */
785 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
786 
787 	/* Ensure that all fields of rx_status are initialized
788 	 * properly. The skb->cb array was used for driver
789 	 * specific informations, so rx_status might contain
790 	 * garbage.
791 	 */
792 	memset(rx_status, 0, sizeof(*rx_status));
793 
794 	rx_status->mactime = rxdesc.timestamp;
795 	rx_status->band = rt2x00dev->curr_band;
796 	rx_status->freq = rt2x00dev->curr_freq;
797 	rx_status->rate_idx = rate_idx;
798 	rx_status->signal = rxdesc.rssi;
799 	rx_status->flag = rxdesc.flags;
800 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
801 
802 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
803 
804 renew_skb:
805 	/*
806 	 * Replace the skb with the freshly allocated one.
807 	 */
808 	entry->skb = skb;
809 
810 submit_entry:
811 	entry->flags = 0;
812 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
813 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
814 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
815 		rt2x00dev->ops->lib->clear_entry(entry);
816 }
817 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
818 
819 /*
820  * Driver initialization handlers.
821  */
822 const struct rt2x00_rate rt2x00_supported_rates[12] = {
823 	{
824 		.flags = DEV_RATE_CCK,
825 		.bitrate = 10,
826 		.ratemask = BIT(0),
827 		.plcp = 0x00,
828 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
829 	},
830 	{
831 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
832 		.bitrate = 20,
833 		.ratemask = BIT(1),
834 		.plcp = 0x01,
835 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
836 	},
837 	{
838 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
839 		.bitrate = 55,
840 		.ratemask = BIT(2),
841 		.plcp = 0x02,
842 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
843 	},
844 	{
845 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
846 		.bitrate = 110,
847 		.ratemask = BIT(3),
848 		.plcp = 0x03,
849 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
850 	},
851 	{
852 		.flags = DEV_RATE_OFDM,
853 		.bitrate = 60,
854 		.ratemask = BIT(4),
855 		.plcp = 0x0b,
856 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
857 	},
858 	{
859 		.flags = DEV_RATE_OFDM,
860 		.bitrate = 90,
861 		.ratemask = BIT(5),
862 		.plcp = 0x0f,
863 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
864 	},
865 	{
866 		.flags = DEV_RATE_OFDM,
867 		.bitrate = 120,
868 		.ratemask = BIT(6),
869 		.plcp = 0x0a,
870 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
871 	},
872 	{
873 		.flags = DEV_RATE_OFDM,
874 		.bitrate = 180,
875 		.ratemask = BIT(7),
876 		.plcp = 0x0e,
877 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
878 	},
879 	{
880 		.flags = DEV_RATE_OFDM,
881 		.bitrate = 240,
882 		.ratemask = BIT(8),
883 		.plcp = 0x09,
884 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
885 	},
886 	{
887 		.flags = DEV_RATE_OFDM,
888 		.bitrate = 360,
889 		.ratemask = BIT(9),
890 		.plcp = 0x0d,
891 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
892 	},
893 	{
894 		.flags = DEV_RATE_OFDM,
895 		.bitrate = 480,
896 		.ratemask = BIT(10),
897 		.plcp = 0x08,
898 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
899 	},
900 	{
901 		.flags = DEV_RATE_OFDM,
902 		.bitrate = 540,
903 		.ratemask = BIT(11),
904 		.plcp = 0x0c,
905 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
906 	},
907 };
908 
909 static void rt2x00lib_channel(struct ieee80211_channel *entry,
910 			      const int channel, const int tx_power,
911 			      const int value)
912 {
913 	/* XXX: this assumption about the band is wrong for 802.11j */
914 	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
915 	entry->center_freq = ieee80211_channel_to_frequency(channel,
916 							    entry->band);
917 	entry->hw_value = value;
918 	entry->max_power = tx_power;
919 	entry->max_antenna_gain = 0xff;
920 }
921 
922 static void rt2x00lib_rate(struct ieee80211_rate *entry,
923 			   const u16 index, const struct rt2x00_rate *rate)
924 {
925 	entry->flags = 0;
926 	entry->bitrate = rate->bitrate;
927 	entry->hw_value = index;
928 	entry->hw_value_short = index;
929 
930 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
931 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
932 }
933 
934 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
935 				    struct hw_mode_spec *spec)
936 {
937 	struct ieee80211_hw *hw = rt2x00dev->hw;
938 	struct ieee80211_channel *channels;
939 	struct ieee80211_rate *rates;
940 	unsigned int num_rates;
941 	unsigned int i;
942 
943 	num_rates = 0;
944 	if (spec->supported_rates & SUPPORT_RATE_CCK)
945 		num_rates += 4;
946 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
947 		num_rates += 8;
948 
949 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
950 	if (!channels)
951 		return -ENOMEM;
952 
953 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
954 	if (!rates)
955 		goto exit_free_channels;
956 
957 	/*
958 	 * Initialize Rate list.
959 	 */
960 	for (i = 0; i < num_rates; i++)
961 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
962 
963 	/*
964 	 * Initialize Channel list.
965 	 */
966 	for (i = 0; i < spec->num_channels; i++) {
967 		rt2x00lib_channel(&channels[i],
968 				  spec->channels[i].channel,
969 				  spec->channels_info[i].max_power, i);
970 	}
971 
972 	/*
973 	 * Intitialize 802.11b, 802.11g
974 	 * Rates: CCK, OFDM.
975 	 * Channels: 2.4 GHz
976 	 */
977 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
978 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
979 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
980 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
981 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
982 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
983 		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
984 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
985 		       &spec->ht, sizeof(spec->ht));
986 	}
987 
988 	/*
989 	 * Intitialize 802.11a
990 	 * Rates: OFDM.
991 	 * Channels: OFDM, UNII, HiperLAN2.
992 	 */
993 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
994 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
995 		    spec->num_channels - 14;
996 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
997 		    num_rates - 4;
998 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
999 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
1000 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1001 		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1002 		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1003 		       &spec->ht, sizeof(spec->ht));
1004 	}
1005 
1006 	return 0;
1007 
1008  exit_free_channels:
1009 	kfree(channels);
1010 	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1011 	return -ENOMEM;
1012 }
1013 
1014 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1015 {
1016 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1017 		ieee80211_unregister_hw(rt2x00dev->hw);
1018 
1019 	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1020 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1021 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1022 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1023 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1024 	}
1025 
1026 	kfree(rt2x00dev->spec.channels_info);
1027 }
1028 
1029 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1030 {
1031 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1032 	int status;
1033 
1034 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1035 		return 0;
1036 
1037 	/*
1038 	 * Initialize HW modes.
1039 	 */
1040 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1041 	if (status)
1042 		return status;
1043 
1044 	/*
1045 	 * Initialize HW fields.
1046 	 */
1047 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1048 
1049 	/*
1050 	 * Initialize extra TX headroom required.
1051 	 */
1052 	rt2x00dev->hw->extra_tx_headroom =
1053 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1054 		      rt2x00dev->extra_tx_headroom);
1055 
1056 	/*
1057 	 * Take TX headroom required for alignment into account.
1058 	 */
1059 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1060 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1061 	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1062 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1063 
1064 	/*
1065 	 * Tell mac80211 about the size of our private STA structure.
1066 	 */
1067 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1068 
1069 	/*
1070 	 * Allocate tx status FIFO for driver use.
1071 	 */
1072 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1073 		/*
1074 		 * Allocate the txstatus fifo. In the worst case the tx
1075 		 * status fifo has to hold the tx status of all entries
1076 		 * in all tx queues. Hence, calculate the kfifo size as
1077 		 * tx_queues * entry_num and round up to the nearest
1078 		 * power of 2.
1079 		 */
1080 		int kfifo_size =
1081 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1082 					   rt2x00dev->tx->limit *
1083 					   sizeof(u32));
1084 
1085 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1086 				     GFP_KERNEL);
1087 		if (status)
1088 			return status;
1089 	}
1090 
1091 	/*
1092 	 * Initialize tasklets if used by the driver. Tasklets are
1093 	 * disabled until the interrupts are turned on. The driver
1094 	 * has to handle that.
1095 	 */
1096 #define RT2X00_TASKLET_INIT(taskletname) \
1097 	if (rt2x00dev->ops->lib->taskletname) { \
1098 		tasklet_init(&rt2x00dev->taskletname, \
1099 			     rt2x00dev->ops->lib->taskletname, \
1100 			     (unsigned long)rt2x00dev); \
1101 	}
1102 
1103 	RT2X00_TASKLET_INIT(txstatus_tasklet);
1104 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1105 	RT2X00_TASKLET_INIT(tbtt_tasklet);
1106 	RT2X00_TASKLET_INIT(rxdone_tasklet);
1107 	RT2X00_TASKLET_INIT(autowake_tasklet);
1108 
1109 #undef RT2X00_TASKLET_INIT
1110 
1111 	/*
1112 	 * Register HW.
1113 	 */
1114 	status = ieee80211_register_hw(rt2x00dev->hw);
1115 	if (status)
1116 		return status;
1117 
1118 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1119 
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Initialization/uninitialization handlers.
1125  */
1126 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1127 {
1128 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1129 		return;
1130 
1131 	/*
1132 	 * Stop rfkill polling.
1133 	 */
1134 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1135 		rt2x00rfkill_unregister(rt2x00dev);
1136 
1137 	/*
1138 	 * Allow the HW to uninitialize.
1139 	 */
1140 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1141 
1142 	/*
1143 	 * Free allocated queue entries.
1144 	 */
1145 	rt2x00queue_uninitialize(rt2x00dev);
1146 }
1147 
1148 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1149 {
1150 	int status;
1151 
1152 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1153 		return 0;
1154 
1155 	/*
1156 	 * Allocate all queue entries.
1157 	 */
1158 	status = rt2x00queue_initialize(rt2x00dev);
1159 	if (status)
1160 		return status;
1161 
1162 	/*
1163 	 * Initialize the device.
1164 	 */
1165 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1166 	if (status) {
1167 		rt2x00queue_uninitialize(rt2x00dev);
1168 		return status;
1169 	}
1170 
1171 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1172 
1173 	/*
1174 	 * Start rfkill polling.
1175 	 */
1176 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1177 		rt2x00rfkill_register(rt2x00dev);
1178 
1179 	return 0;
1180 }
1181 
1182 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1183 {
1184 	int retval;
1185 
1186 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1187 		return 0;
1188 
1189 	/*
1190 	 * If this is the first interface which is added,
1191 	 * we should load the firmware now.
1192 	 */
1193 	retval = rt2x00lib_load_firmware(rt2x00dev);
1194 	if (retval)
1195 		return retval;
1196 
1197 	/*
1198 	 * Initialize the device.
1199 	 */
1200 	retval = rt2x00lib_initialize(rt2x00dev);
1201 	if (retval)
1202 		return retval;
1203 
1204 	rt2x00dev->intf_ap_count = 0;
1205 	rt2x00dev->intf_sta_count = 0;
1206 	rt2x00dev->intf_associated = 0;
1207 
1208 	/* Enable the radio */
1209 	retval = rt2x00lib_enable_radio(rt2x00dev);
1210 	if (retval)
1211 		return retval;
1212 
1213 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1214 
1215 	return 0;
1216 }
1217 
1218 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1219 {
1220 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1221 		return;
1222 
1223 	/*
1224 	 * Perhaps we can add something smarter here,
1225 	 * but for now just disabling the radio should do.
1226 	 */
1227 	rt2x00lib_disable_radio(rt2x00dev);
1228 
1229 	rt2x00dev->intf_ap_count = 0;
1230 	rt2x00dev->intf_sta_count = 0;
1231 	rt2x00dev->intf_associated = 0;
1232 }
1233 
1234 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1235 {
1236 	struct ieee80211_iface_limit *if_limit;
1237 	struct ieee80211_iface_combination *if_combination;
1238 
1239 	if (rt2x00dev->ops->max_ap_intf < 2)
1240 		return;
1241 
1242 	/*
1243 	 * Build up AP interface limits structure.
1244 	 */
1245 	if_limit = &rt2x00dev->if_limits_ap;
1246 	if_limit->max = rt2x00dev->ops->max_ap_intf;
1247 	if_limit->types = BIT(NL80211_IFTYPE_AP);
1248 #ifdef CONFIG_MAC80211_MESH
1249 	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1250 #endif
1251 
1252 	/*
1253 	 * Build up AP interface combinations structure.
1254 	 */
1255 	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1256 	if_combination->limits = if_limit;
1257 	if_combination->n_limits = 1;
1258 	if_combination->max_interfaces = if_limit->max;
1259 	if_combination->num_different_channels = 1;
1260 
1261 	/*
1262 	 * Finally, specify the possible combinations to mac80211.
1263 	 */
1264 	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1265 	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1266 }
1267 
1268 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1269 {
1270 	if (WARN_ON(!rt2x00dev->tx))
1271 		return 0;
1272 
1273 	if (rt2x00_is_usb(rt2x00dev))
1274 		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1275 
1276 	return rt2x00dev->tx[0].winfo_size;
1277 }
1278 
1279 /*
1280  * driver allocation handlers.
1281  */
1282 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1283 {
1284 	int retval = -ENOMEM;
1285 
1286 	/*
1287 	 * Set possible interface combinations.
1288 	 */
1289 	rt2x00lib_set_if_combinations(rt2x00dev);
1290 
1291 	/*
1292 	 * Allocate the driver data memory, if necessary.
1293 	 */
1294 	if (rt2x00dev->ops->drv_data_size > 0) {
1295 		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1296 			                      GFP_KERNEL);
1297 		if (!rt2x00dev->drv_data) {
1298 			retval = -ENOMEM;
1299 			goto exit;
1300 		}
1301 	}
1302 
1303 	spin_lock_init(&rt2x00dev->irqmask_lock);
1304 	mutex_init(&rt2x00dev->csr_mutex);
1305 	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1306 	spin_lock_init(&rt2x00dev->bar_list_lock);
1307 
1308 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1309 
1310 	/*
1311 	 * Make room for rt2x00_intf inside the per-interface
1312 	 * structure ieee80211_vif.
1313 	 */
1314 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1315 
1316 	/*
1317 	 * rt2x00 devices can only use the last n bits of the MAC address
1318 	 * for virtual interfaces.
1319 	 */
1320 	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1321 		(rt2x00dev->ops->max_ap_intf - 1);
1322 
1323 	/*
1324 	 * Initialize work.
1325 	 */
1326 	rt2x00dev->workqueue =
1327 	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1328 	if (!rt2x00dev->workqueue) {
1329 		retval = -ENOMEM;
1330 		goto exit;
1331 	}
1332 
1333 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1334 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1335 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1336 
1337 	/*
1338 	 * Let the driver probe the device to detect the capabilities.
1339 	 */
1340 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1341 	if (retval) {
1342 		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1343 		goto exit;
1344 	}
1345 
1346 	/*
1347 	 * Allocate queue array.
1348 	 */
1349 	retval = rt2x00queue_allocate(rt2x00dev);
1350 	if (retval)
1351 		goto exit;
1352 
1353 	/* Cache TX headroom value */
1354 	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1355 
1356 	/*
1357 	 * Determine which operating modes are supported, all modes
1358 	 * which require beaconing, depend on the availability of
1359 	 * beacon entries.
1360 	 */
1361 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1362 	if (rt2x00dev->bcn->limit > 0)
1363 		rt2x00dev->hw->wiphy->interface_modes |=
1364 		    BIT(NL80211_IFTYPE_ADHOC) |
1365 		    BIT(NL80211_IFTYPE_AP) |
1366 #ifdef CONFIG_MAC80211_MESH
1367 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1368 #endif
1369 		    BIT(NL80211_IFTYPE_WDS);
1370 
1371 	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1372 
1373 	/*
1374 	 * Initialize ieee80211 structure.
1375 	 */
1376 	retval = rt2x00lib_probe_hw(rt2x00dev);
1377 	if (retval) {
1378 		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1379 		goto exit;
1380 	}
1381 
1382 	/*
1383 	 * Register extra components.
1384 	 */
1385 	rt2x00link_register(rt2x00dev);
1386 	rt2x00leds_register(rt2x00dev);
1387 	rt2x00debug_register(rt2x00dev);
1388 
1389 	/*
1390 	 * Start rfkill polling.
1391 	 */
1392 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1393 		rt2x00rfkill_register(rt2x00dev);
1394 
1395 	return 0;
1396 
1397 exit:
1398 	rt2x00lib_remove_dev(rt2x00dev);
1399 
1400 	return retval;
1401 }
1402 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1403 
1404 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1405 {
1406 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1407 
1408 	/*
1409 	 * Stop rfkill polling.
1410 	 */
1411 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1412 		rt2x00rfkill_unregister(rt2x00dev);
1413 
1414 	/*
1415 	 * Disable radio.
1416 	 */
1417 	rt2x00lib_disable_radio(rt2x00dev);
1418 
1419 	/*
1420 	 * Stop all work.
1421 	 */
1422 	cancel_work_sync(&rt2x00dev->intf_work);
1423 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1424 	cancel_work_sync(&rt2x00dev->sleep_work);
1425 	if (rt2x00_is_usb(rt2x00dev)) {
1426 		hrtimer_cancel(&rt2x00dev->txstatus_timer);
1427 		cancel_work_sync(&rt2x00dev->rxdone_work);
1428 		cancel_work_sync(&rt2x00dev->txdone_work);
1429 	}
1430 	if (rt2x00dev->workqueue)
1431 		destroy_workqueue(rt2x00dev->workqueue);
1432 
1433 	/*
1434 	 * Free the tx status fifo.
1435 	 */
1436 	kfifo_free(&rt2x00dev->txstatus_fifo);
1437 
1438 	/*
1439 	 * Kill the tx status tasklet.
1440 	 */
1441 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1442 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1443 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1444 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1445 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1446 
1447 	/*
1448 	 * Uninitialize device.
1449 	 */
1450 	rt2x00lib_uninitialize(rt2x00dev);
1451 
1452 	/*
1453 	 * Free extra components
1454 	 */
1455 	rt2x00debug_deregister(rt2x00dev);
1456 	rt2x00leds_unregister(rt2x00dev);
1457 
1458 	/*
1459 	 * Free ieee80211_hw memory.
1460 	 */
1461 	rt2x00lib_remove_hw(rt2x00dev);
1462 
1463 	/*
1464 	 * Free firmware image.
1465 	 */
1466 	rt2x00lib_free_firmware(rt2x00dev);
1467 
1468 	/*
1469 	 * Free queue structures.
1470 	 */
1471 	rt2x00queue_free(rt2x00dev);
1472 
1473 	/*
1474 	 * Free the driver data.
1475 	 */
1476 	kfree(rt2x00dev->drv_data);
1477 }
1478 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1479 
1480 /*
1481  * Device state handlers
1482  */
1483 #ifdef CONFIG_PM
1484 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1485 {
1486 	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1487 
1488 	/*
1489 	 * Prevent mac80211 from accessing driver while suspended.
1490 	 */
1491 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1492 		return 0;
1493 
1494 	/*
1495 	 * Cleanup as much as possible.
1496 	 */
1497 	rt2x00lib_uninitialize(rt2x00dev);
1498 
1499 	/*
1500 	 * Suspend/disable extra components.
1501 	 */
1502 	rt2x00leds_suspend(rt2x00dev);
1503 	rt2x00debug_deregister(rt2x00dev);
1504 
1505 	/*
1506 	 * Set device mode to sleep for power management,
1507 	 * on some hardware this call seems to consistently fail.
1508 	 * From the specifications it is hard to tell why it fails,
1509 	 * and if this is a "bad thing".
1510 	 * Overall it is safe to just ignore the failure and
1511 	 * continue suspending. The only downside is that the
1512 	 * device will not be in optimal power save mode, but with
1513 	 * the radio and the other components already disabled the
1514 	 * device is as good as disabled.
1515 	 */
1516 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1517 		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1522 
1523 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1524 {
1525 	rt2x00_dbg(rt2x00dev, "Waking up\n");
1526 
1527 	/*
1528 	 * Restore/enable extra components.
1529 	 */
1530 	rt2x00debug_register(rt2x00dev);
1531 	rt2x00leds_resume(rt2x00dev);
1532 
1533 	/*
1534 	 * We are ready again to receive requests from mac80211.
1535 	 */
1536 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1541 #endif /* CONFIG_PM */
1542 
1543 /*
1544  * rt2x00lib module information.
1545  */
1546 MODULE_AUTHOR(DRV_PROJECT);
1547 MODULE_VERSION(DRV_VERSION);
1548 MODULE_DESCRIPTION("rt2x00 library");
1549 MODULE_LICENSE("GPL");
1550