1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 /* 21 Module: rt2x00lib 22 Abstract: rt2x00 generic device routines. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/log2.h> 29 #include <linux/of.h> 30 #include <linux/of_net.h> 31 32 #include "rt2x00.h" 33 #include "rt2x00lib.h" 34 35 /* 36 * Utility functions. 37 */ 38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40 { 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48 } 49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51 /* 52 * Radio control handlers. 53 */ 54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55 { 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 if (rt2x00_has_cap_vco_recalibration(rt2x00dev)) 92 rt2x00link_start_vcocal(rt2x00dev); 93 94 /* 95 * Start watchdog monitoring. 96 */ 97 rt2x00link_start_watchdog(rt2x00dev); 98 99 return 0; 100 } 101 102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 103 { 104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 105 return; 106 107 /* 108 * Stop watchdog monitoring. 109 */ 110 rt2x00link_stop_watchdog(rt2x00dev); 111 112 /* 113 * Stop all queues 114 */ 115 rt2x00link_stop_agc(rt2x00dev); 116 if (rt2x00_has_cap_vco_recalibration(rt2x00dev)) 117 rt2x00link_stop_vcocal(rt2x00dev); 118 rt2x00link_stop_tuner(rt2x00dev); 119 rt2x00queue_stop_queues(rt2x00dev); 120 rt2x00queue_flush_queues(rt2x00dev, true); 121 122 /* 123 * Disable radio. 124 */ 125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 127 rt2x00led_led_activity(rt2x00dev, false); 128 rt2x00leds_led_radio(rt2x00dev, false); 129 } 130 131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 132 struct ieee80211_vif *vif) 133 { 134 struct rt2x00_dev *rt2x00dev = data; 135 struct rt2x00_intf *intf = vif_to_intf(vif); 136 137 /* 138 * It is possible the radio was disabled while the work had been 139 * scheduled. If that happens we should return here immediately, 140 * note that in the spinlock protected area above the delayed_flags 141 * have been cleared correctly. 142 */ 143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 144 return; 145 146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 147 mutex_lock(&intf->beacon_skb_mutex); 148 rt2x00queue_update_beacon(rt2x00dev, vif); 149 mutex_unlock(&intf->beacon_skb_mutex); 150 } 151 } 152 153 static void rt2x00lib_intf_scheduled(struct work_struct *work) 154 { 155 struct rt2x00_dev *rt2x00dev = 156 container_of(work, struct rt2x00_dev, intf_work); 157 158 /* 159 * Iterate over each interface and perform the 160 * requested configurations. 161 */ 162 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 163 IEEE80211_IFACE_ITER_RESUME_ALL, 164 rt2x00lib_intf_scheduled_iter, 165 rt2x00dev); 166 } 167 168 static void rt2x00lib_autowakeup(struct work_struct *work) 169 { 170 struct rt2x00_dev *rt2x00dev = 171 container_of(work, struct rt2x00_dev, autowakeup_work.work); 172 173 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 174 return; 175 176 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 177 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 178 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 179 } 180 181 /* 182 * Interrupt context handlers. 183 */ 184 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 185 struct ieee80211_vif *vif) 186 { 187 struct ieee80211_tx_control control = {}; 188 struct rt2x00_dev *rt2x00dev = data; 189 struct sk_buff *skb; 190 191 /* 192 * Only AP mode interfaces do broad- and multicast buffering 193 */ 194 if (vif->type != NL80211_IFTYPE_AP) 195 return; 196 197 /* 198 * Send out buffered broad- and multicast frames 199 */ 200 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 201 while (skb) { 202 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 203 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 204 } 205 } 206 207 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 208 struct ieee80211_vif *vif) 209 { 210 struct rt2x00_dev *rt2x00dev = data; 211 212 if (vif->type != NL80211_IFTYPE_AP && 213 vif->type != NL80211_IFTYPE_ADHOC && 214 vif->type != NL80211_IFTYPE_MESH_POINT && 215 vif->type != NL80211_IFTYPE_WDS) 216 return; 217 218 /* 219 * Update the beacon without locking. This is safe on PCI devices 220 * as they only update the beacon periodically here. This should 221 * never be called for USB devices. 222 */ 223 WARN_ON(rt2x00_is_usb(rt2x00dev)); 224 rt2x00queue_update_beacon(rt2x00dev, vif); 225 } 226 227 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 228 { 229 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 230 return; 231 232 /* send buffered bc/mc frames out for every bssid */ 233 ieee80211_iterate_active_interfaces_atomic( 234 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 235 rt2x00lib_bc_buffer_iter, rt2x00dev); 236 /* 237 * Devices with pre tbtt interrupt don't need to update the beacon 238 * here as they will fetch the next beacon directly prior to 239 * transmission. 240 */ 241 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 242 return; 243 244 /* fetch next beacon */ 245 ieee80211_iterate_active_interfaces_atomic( 246 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 247 rt2x00lib_beaconupdate_iter, rt2x00dev); 248 } 249 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 250 251 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 252 { 253 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 254 return; 255 256 /* fetch next beacon */ 257 ieee80211_iterate_active_interfaces_atomic( 258 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 259 rt2x00lib_beaconupdate_iter, rt2x00dev); 260 } 261 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 262 263 void rt2x00lib_dmastart(struct queue_entry *entry) 264 { 265 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 266 rt2x00queue_index_inc(entry, Q_INDEX); 267 } 268 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 269 270 void rt2x00lib_dmadone(struct queue_entry *entry) 271 { 272 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 273 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 274 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 275 } 276 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 277 278 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 279 { 280 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 281 struct ieee80211_bar *bar = (void *) entry->skb->data; 282 struct rt2x00_bar_list_entry *bar_entry; 283 int ret; 284 285 if (likely(!ieee80211_is_back_req(bar->frame_control))) 286 return 0; 287 288 /* 289 * Unlike all other frames, the status report for BARs does 290 * not directly come from the hardware as it is incapable of 291 * matching a BA to a previously send BAR. The hardware will 292 * report all BARs as if they weren't acked at all. 293 * 294 * Instead the RX-path will scan for incoming BAs and set the 295 * block_acked flag if it sees one that was likely caused by 296 * a BAR from us. 297 * 298 * Remove remaining BARs here and return their status for 299 * TX done processing. 300 */ 301 ret = 0; 302 rcu_read_lock(); 303 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 304 if (bar_entry->entry != entry) 305 continue; 306 307 spin_lock_bh(&rt2x00dev->bar_list_lock); 308 /* Return whether this BAR was blockacked or not */ 309 ret = bar_entry->block_acked; 310 /* Remove the BAR from our checklist */ 311 list_del_rcu(&bar_entry->list); 312 spin_unlock_bh(&rt2x00dev->bar_list_lock); 313 kfree_rcu(bar_entry, head); 314 315 break; 316 } 317 rcu_read_unlock(); 318 319 return ret; 320 } 321 322 void rt2x00lib_txdone(struct queue_entry *entry, 323 struct txdone_entry_desc *txdesc) 324 { 325 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 326 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 327 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 328 unsigned int header_length, i; 329 u8 rate_idx, rate_flags, retry_rates; 330 u8 skbdesc_flags = skbdesc->flags; 331 bool success; 332 333 /* 334 * Unmap the skb. 335 */ 336 rt2x00queue_unmap_skb(entry); 337 338 /* 339 * Remove the extra tx headroom from the skb. 340 */ 341 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 342 343 /* 344 * Signal that the TX descriptor is no longer in the skb. 345 */ 346 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 347 348 /* 349 * Determine the length of 802.11 header. 350 */ 351 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 352 353 /* 354 * Remove L2 padding which was added during 355 */ 356 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 357 rt2x00queue_remove_l2pad(entry->skb, header_length); 358 359 /* 360 * If the IV/EIV data was stripped from the frame before it was 361 * passed to the hardware, we should now reinsert it again because 362 * mac80211 will expect the same data to be present it the 363 * frame as it was passed to us. 364 */ 365 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 366 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 367 368 /* 369 * Send frame to debugfs immediately, after this call is completed 370 * we are going to overwrite the skb->cb array. 371 */ 372 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 373 374 /* 375 * Determine if the frame has been successfully transmitted and 376 * remove BARs from our check list while checking for their 377 * TX status. 378 */ 379 success = 380 rt2x00lib_txdone_bar_status(entry) || 381 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 382 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 383 384 /* 385 * Update TX statistics. 386 */ 387 rt2x00dev->link.qual.tx_success += success; 388 rt2x00dev->link.qual.tx_failed += !success; 389 390 rate_idx = skbdesc->tx_rate_idx; 391 rate_flags = skbdesc->tx_rate_flags; 392 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 393 (txdesc->retry + 1) : 1; 394 395 /* 396 * Initialize TX status 397 */ 398 memset(&tx_info->status, 0, sizeof(tx_info->status)); 399 tx_info->status.ack_signal = 0; 400 401 /* 402 * Frame was send with retries, hardware tried 403 * different rates to send out the frame, at each 404 * retry it lowered the rate 1 step except when the 405 * lowest rate was used. 406 */ 407 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 408 tx_info->status.rates[i].idx = rate_idx - i; 409 tx_info->status.rates[i].flags = rate_flags; 410 411 if (rate_idx - i == 0) { 412 /* 413 * The lowest rate (index 0) was used until the 414 * number of max retries was reached. 415 */ 416 tx_info->status.rates[i].count = retry_rates - i; 417 i++; 418 break; 419 } 420 tx_info->status.rates[i].count = 1; 421 } 422 if (i < (IEEE80211_TX_MAX_RATES - 1)) 423 tx_info->status.rates[i].idx = -1; /* terminate */ 424 425 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 426 if (success) 427 tx_info->flags |= IEEE80211_TX_STAT_ACK; 428 else 429 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 430 } 431 432 /* 433 * Every single frame has it's own tx status, hence report 434 * every frame as ampdu of size 1. 435 * 436 * TODO: if we can find out how many frames were aggregated 437 * by the hw we could provide the real ampdu_len to mac80211 438 * which would allow the rc algorithm to better decide on 439 * which rates are suitable. 440 */ 441 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 442 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 443 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 444 tx_info->status.ampdu_len = 1; 445 tx_info->status.ampdu_ack_len = success ? 1 : 0; 446 447 if (!success) 448 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 449 } 450 451 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 452 if (success) 453 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 454 else 455 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 456 } 457 458 /* 459 * Only send the status report to mac80211 when it's a frame 460 * that originated in mac80211. If this was a extra frame coming 461 * through a mac80211 library call (RTS/CTS) then we should not 462 * send the status report back. 463 */ 464 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 465 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 466 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 467 else 468 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 469 } else 470 dev_kfree_skb_any(entry->skb); 471 472 /* 473 * Make this entry available for reuse. 474 */ 475 entry->skb = NULL; 476 entry->flags = 0; 477 478 rt2x00dev->ops->lib->clear_entry(entry); 479 480 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 481 482 /* 483 * If the data queue was below the threshold before the txdone 484 * handler we must make sure the packet queue in the mac80211 stack 485 * is reenabled when the txdone handler has finished. This has to be 486 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 487 * before it was stopped. 488 */ 489 spin_lock_bh(&entry->queue->tx_lock); 490 if (!rt2x00queue_threshold(entry->queue)) 491 rt2x00queue_unpause_queue(entry->queue); 492 spin_unlock_bh(&entry->queue->tx_lock); 493 } 494 EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 495 496 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 497 { 498 struct txdone_entry_desc txdesc; 499 500 txdesc.flags = 0; 501 __set_bit(status, &txdesc.flags); 502 txdesc.retry = 0; 503 504 rt2x00lib_txdone(entry, &txdesc); 505 } 506 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 507 508 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 509 { 510 struct ieee80211_mgmt *mgmt = (void *)data; 511 u8 *pos, *end; 512 513 pos = (u8 *)mgmt->u.beacon.variable; 514 end = data + len; 515 while (pos < end) { 516 if (pos + 2 + pos[1] > end) 517 return NULL; 518 519 if (pos[0] == ie) 520 return pos; 521 522 pos += 2 + pos[1]; 523 } 524 525 return NULL; 526 } 527 528 static void rt2x00lib_sleep(struct work_struct *work) 529 { 530 struct rt2x00_dev *rt2x00dev = 531 container_of(work, struct rt2x00_dev, sleep_work); 532 533 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 534 return; 535 536 /* 537 * Check again is powersaving is enabled, to prevent races from delayed 538 * work execution. 539 */ 540 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 541 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 542 IEEE80211_CONF_CHANGE_PS); 543 } 544 545 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 546 struct sk_buff *skb, 547 struct rxdone_entry_desc *rxdesc) 548 { 549 struct rt2x00_bar_list_entry *entry; 550 struct ieee80211_bar *ba = (void *)skb->data; 551 552 if (likely(!ieee80211_is_back(ba->frame_control))) 553 return; 554 555 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 556 return; 557 558 rcu_read_lock(); 559 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 560 561 if (ba->start_seq_num != entry->start_seq_num) 562 continue; 563 564 #define TID_CHECK(a, b) ( \ 565 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 566 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 567 568 if (!TID_CHECK(ba->control, entry->control)) 569 continue; 570 571 #undef TID_CHECK 572 573 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 574 continue; 575 576 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 577 continue; 578 579 /* Mark BAR since we received the according BA */ 580 spin_lock_bh(&rt2x00dev->bar_list_lock); 581 entry->block_acked = 1; 582 spin_unlock_bh(&rt2x00dev->bar_list_lock); 583 break; 584 } 585 rcu_read_unlock(); 586 587 } 588 589 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 590 struct sk_buff *skb, 591 struct rxdone_entry_desc *rxdesc) 592 { 593 struct ieee80211_hdr *hdr = (void *) skb->data; 594 struct ieee80211_tim_ie *tim_ie; 595 u8 *tim; 596 u8 tim_len; 597 bool cam; 598 599 /* If this is not a beacon, or if mac80211 has no powersaving 600 * configured, or if the device is already in powersaving mode 601 * we can exit now. */ 602 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 603 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 604 return; 605 606 /* min. beacon length + FCS_LEN */ 607 if (skb->len <= 40 + FCS_LEN) 608 return; 609 610 /* and only beacons from the associated BSSID, please */ 611 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 612 !rt2x00dev->aid) 613 return; 614 615 rt2x00dev->last_beacon = jiffies; 616 617 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 618 if (!tim) 619 return; 620 621 if (tim[1] < sizeof(*tim_ie)) 622 return; 623 624 tim_len = tim[1]; 625 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 626 627 /* Check whenever the PHY can be turned off again. */ 628 629 /* 1. What about buffered unicast traffic for our AID? */ 630 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 631 632 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 633 cam |= (tim_ie->bitmap_ctrl & 0x01); 634 635 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 636 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 637 } 638 639 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 640 struct rxdone_entry_desc *rxdesc) 641 { 642 struct ieee80211_supported_band *sband; 643 const struct rt2x00_rate *rate; 644 unsigned int i; 645 int signal = rxdesc->signal; 646 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 647 648 switch (rxdesc->rate_mode) { 649 case RATE_MODE_CCK: 650 case RATE_MODE_OFDM: 651 /* 652 * For non-HT rates the MCS value needs to contain the 653 * actually used rate modulation (CCK or OFDM). 654 */ 655 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 656 signal = RATE_MCS(rxdesc->rate_mode, signal); 657 658 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 659 for (i = 0; i < sband->n_bitrates; i++) { 660 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 661 if (((type == RXDONE_SIGNAL_PLCP) && 662 (rate->plcp == signal)) || 663 ((type == RXDONE_SIGNAL_BITRATE) && 664 (rate->bitrate == signal)) || 665 ((type == RXDONE_SIGNAL_MCS) && 666 (rate->mcs == signal))) { 667 return i; 668 } 669 } 670 break; 671 case RATE_MODE_HT_MIX: 672 case RATE_MODE_HT_GREENFIELD: 673 if (signal >= 0 && signal <= 76) 674 return signal; 675 break; 676 default: 677 break; 678 } 679 680 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 681 rxdesc->rate_mode, signal, type); 682 return 0; 683 } 684 685 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 686 { 687 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 688 struct rxdone_entry_desc rxdesc; 689 struct sk_buff *skb; 690 struct ieee80211_rx_status *rx_status; 691 unsigned int header_length; 692 int rate_idx; 693 694 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 695 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 696 goto submit_entry; 697 698 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 699 goto submit_entry; 700 701 /* 702 * Allocate a new sk_buffer. If no new buffer available, drop the 703 * received frame and reuse the existing buffer. 704 */ 705 skb = rt2x00queue_alloc_rxskb(entry, gfp); 706 if (!skb) 707 goto submit_entry; 708 709 /* 710 * Unmap the skb. 711 */ 712 rt2x00queue_unmap_skb(entry); 713 714 /* 715 * Extract the RXD details. 716 */ 717 memset(&rxdesc, 0, sizeof(rxdesc)); 718 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 719 720 /* 721 * Check for valid size in case we get corrupted descriptor from 722 * hardware. 723 */ 724 if (unlikely(rxdesc.size == 0 || 725 rxdesc.size > entry->queue->data_size)) { 726 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 727 rxdesc.size, entry->queue->data_size); 728 dev_kfree_skb(entry->skb); 729 goto renew_skb; 730 } 731 732 /* 733 * The data behind the ieee80211 header must be 734 * aligned on a 4 byte boundary. 735 */ 736 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 737 738 /* 739 * Hardware might have stripped the IV/EIV/ICV data, 740 * in that case it is possible that the data was 741 * provided separately (through hardware descriptor) 742 * in which case we should reinsert the data into the frame. 743 */ 744 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 745 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 746 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 747 &rxdesc); 748 else if (header_length && 749 (rxdesc.size > header_length) && 750 (rxdesc.dev_flags & RXDONE_L2PAD)) 751 rt2x00queue_remove_l2pad(entry->skb, header_length); 752 753 /* Trim buffer to correct size */ 754 skb_trim(entry->skb, rxdesc.size); 755 756 /* 757 * Translate the signal to the correct bitrate index. 758 */ 759 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 760 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 761 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 762 rxdesc.flags |= RX_FLAG_HT; 763 764 /* 765 * Check if this is a beacon, and more frames have been 766 * buffered while we were in powersaving mode. 767 */ 768 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 769 770 /* 771 * Check for incoming BlockAcks to match to the BlockAckReqs 772 * we've send out. 773 */ 774 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 775 776 /* 777 * Update extra components 778 */ 779 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 780 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 781 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 782 783 /* 784 * Initialize RX status information, and send frame 785 * to mac80211. 786 */ 787 rx_status = IEEE80211_SKB_RXCB(entry->skb); 788 789 /* Ensure that all fields of rx_status are initialized 790 * properly. The skb->cb array was used for driver 791 * specific informations, so rx_status might contain 792 * garbage. 793 */ 794 memset(rx_status, 0, sizeof(*rx_status)); 795 796 rx_status->mactime = rxdesc.timestamp; 797 rx_status->band = rt2x00dev->curr_band; 798 rx_status->freq = rt2x00dev->curr_freq; 799 rx_status->rate_idx = rate_idx; 800 rx_status->signal = rxdesc.rssi; 801 rx_status->flag = rxdesc.flags; 802 rx_status->antenna = rt2x00dev->link.ant.active.rx; 803 804 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 805 806 renew_skb: 807 /* 808 * Replace the skb with the freshly allocated one. 809 */ 810 entry->skb = skb; 811 812 submit_entry: 813 entry->flags = 0; 814 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 815 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 816 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 817 rt2x00dev->ops->lib->clear_entry(entry); 818 } 819 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 820 821 /* 822 * Driver initialization handlers. 823 */ 824 const struct rt2x00_rate rt2x00_supported_rates[12] = { 825 { 826 .flags = DEV_RATE_CCK, 827 .bitrate = 10, 828 .ratemask = BIT(0), 829 .plcp = 0x00, 830 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 831 }, 832 { 833 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 834 .bitrate = 20, 835 .ratemask = BIT(1), 836 .plcp = 0x01, 837 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 838 }, 839 { 840 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 841 .bitrate = 55, 842 .ratemask = BIT(2), 843 .plcp = 0x02, 844 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 845 }, 846 { 847 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 848 .bitrate = 110, 849 .ratemask = BIT(3), 850 .plcp = 0x03, 851 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 852 }, 853 { 854 .flags = DEV_RATE_OFDM, 855 .bitrate = 60, 856 .ratemask = BIT(4), 857 .plcp = 0x0b, 858 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 859 }, 860 { 861 .flags = DEV_RATE_OFDM, 862 .bitrate = 90, 863 .ratemask = BIT(5), 864 .plcp = 0x0f, 865 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 866 }, 867 { 868 .flags = DEV_RATE_OFDM, 869 .bitrate = 120, 870 .ratemask = BIT(6), 871 .plcp = 0x0a, 872 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 873 }, 874 { 875 .flags = DEV_RATE_OFDM, 876 .bitrate = 180, 877 .ratemask = BIT(7), 878 .plcp = 0x0e, 879 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 880 }, 881 { 882 .flags = DEV_RATE_OFDM, 883 .bitrate = 240, 884 .ratemask = BIT(8), 885 .plcp = 0x09, 886 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 887 }, 888 { 889 .flags = DEV_RATE_OFDM, 890 .bitrate = 360, 891 .ratemask = BIT(9), 892 .plcp = 0x0d, 893 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 894 }, 895 { 896 .flags = DEV_RATE_OFDM, 897 .bitrate = 480, 898 .ratemask = BIT(10), 899 .plcp = 0x08, 900 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 901 }, 902 { 903 .flags = DEV_RATE_OFDM, 904 .bitrate = 540, 905 .ratemask = BIT(11), 906 .plcp = 0x0c, 907 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 908 }, 909 }; 910 911 static void rt2x00lib_channel(struct ieee80211_channel *entry, 912 const int channel, const int tx_power, 913 const int value) 914 { 915 /* XXX: this assumption about the band is wrong for 802.11j */ 916 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 917 entry->center_freq = ieee80211_channel_to_frequency(channel, 918 entry->band); 919 entry->hw_value = value; 920 entry->max_power = tx_power; 921 entry->max_antenna_gain = 0xff; 922 } 923 924 static void rt2x00lib_rate(struct ieee80211_rate *entry, 925 const u16 index, const struct rt2x00_rate *rate) 926 { 927 entry->flags = 0; 928 entry->bitrate = rate->bitrate; 929 entry->hw_value = index; 930 entry->hw_value_short = index; 931 932 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 933 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 934 } 935 936 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) 937 { 938 const char *mac_addr; 939 940 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node); 941 if (mac_addr) 942 ether_addr_copy(eeprom_mac_addr, mac_addr); 943 944 if (!is_valid_ether_addr(eeprom_mac_addr)) { 945 eth_random_addr(eeprom_mac_addr); 946 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); 947 } 948 } 949 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); 950 951 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 952 struct hw_mode_spec *spec) 953 { 954 struct ieee80211_hw *hw = rt2x00dev->hw; 955 struct ieee80211_channel *channels; 956 struct ieee80211_rate *rates; 957 unsigned int num_rates; 958 unsigned int i; 959 960 num_rates = 0; 961 if (spec->supported_rates & SUPPORT_RATE_CCK) 962 num_rates += 4; 963 if (spec->supported_rates & SUPPORT_RATE_OFDM) 964 num_rates += 8; 965 966 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 967 if (!channels) 968 return -ENOMEM; 969 970 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 971 if (!rates) 972 goto exit_free_channels; 973 974 /* 975 * Initialize Rate list. 976 */ 977 for (i = 0; i < num_rates; i++) 978 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 979 980 /* 981 * Initialize Channel list. 982 */ 983 for (i = 0; i < spec->num_channels; i++) { 984 rt2x00lib_channel(&channels[i], 985 spec->channels[i].channel, 986 spec->channels_info[i].max_power, i); 987 } 988 989 /* 990 * Intitialize 802.11b, 802.11g 991 * Rates: CCK, OFDM. 992 * Channels: 2.4 GHz 993 */ 994 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 995 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 996 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 997 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 998 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 999 hw->wiphy->bands[NL80211_BAND_2GHZ] = 1000 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 1001 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 1002 &spec->ht, sizeof(spec->ht)); 1003 } 1004 1005 /* 1006 * Intitialize 802.11a 1007 * Rates: OFDM. 1008 * Channels: OFDM, UNII, HiperLAN2. 1009 */ 1010 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 1011 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 1012 spec->num_channels - 14; 1013 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 1014 num_rates - 4; 1015 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 1016 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1017 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1018 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1019 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1020 &spec->ht, sizeof(spec->ht)); 1021 } 1022 1023 return 0; 1024 1025 exit_free_channels: 1026 kfree(channels); 1027 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1028 return -ENOMEM; 1029 } 1030 1031 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1032 { 1033 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1034 ieee80211_unregister_hw(rt2x00dev->hw); 1035 1036 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1037 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1038 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1039 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1040 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1041 } 1042 1043 kfree(rt2x00dev->spec.channels_info); 1044 } 1045 1046 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1047 { 1048 struct hw_mode_spec *spec = &rt2x00dev->spec; 1049 int status; 1050 1051 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1052 return 0; 1053 1054 /* 1055 * Initialize HW modes. 1056 */ 1057 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1058 if (status) 1059 return status; 1060 1061 /* 1062 * Initialize HW fields. 1063 */ 1064 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1065 1066 /* 1067 * Initialize extra TX headroom required. 1068 */ 1069 rt2x00dev->hw->extra_tx_headroom = 1070 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1071 rt2x00dev->extra_tx_headroom); 1072 1073 /* 1074 * Take TX headroom required for alignment into account. 1075 */ 1076 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1077 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1078 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1079 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1080 1081 /* 1082 * Tell mac80211 about the size of our private STA structure. 1083 */ 1084 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1085 1086 /* 1087 * Allocate tx status FIFO for driver use. 1088 */ 1089 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1090 /* 1091 * Allocate the txstatus fifo. In the worst case the tx 1092 * status fifo has to hold the tx status of all entries 1093 * in all tx queues. Hence, calculate the kfifo size as 1094 * tx_queues * entry_num and round up to the nearest 1095 * power of 2. 1096 */ 1097 int kfifo_size = 1098 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1099 rt2x00dev->tx->limit * 1100 sizeof(u32)); 1101 1102 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1103 GFP_KERNEL); 1104 if (status) 1105 return status; 1106 } 1107 1108 /* 1109 * Initialize tasklets if used by the driver. Tasklets are 1110 * disabled until the interrupts are turned on. The driver 1111 * has to handle that. 1112 */ 1113 #define RT2X00_TASKLET_INIT(taskletname) \ 1114 if (rt2x00dev->ops->lib->taskletname) { \ 1115 tasklet_init(&rt2x00dev->taskletname, \ 1116 rt2x00dev->ops->lib->taskletname, \ 1117 (unsigned long)rt2x00dev); \ 1118 } 1119 1120 RT2X00_TASKLET_INIT(txstatus_tasklet); 1121 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1122 RT2X00_TASKLET_INIT(tbtt_tasklet); 1123 RT2X00_TASKLET_INIT(rxdone_tasklet); 1124 RT2X00_TASKLET_INIT(autowake_tasklet); 1125 1126 #undef RT2X00_TASKLET_INIT 1127 1128 /* 1129 * Register HW. 1130 */ 1131 status = ieee80211_register_hw(rt2x00dev->hw); 1132 if (status) 1133 return status; 1134 1135 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1136 1137 return 0; 1138 } 1139 1140 /* 1141 * Initialization/uninitialization handlers. 1142 */ 1143 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1144 { 1145 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1146 return; 1147 1148 /* 1149 * Stop rfkill polling. 1150 */ 1151 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1152 rt2x00rfkill_unregister(rt2x00dev); 1153 1154 /* 1155 * Allow the HW to uninitialize. 1156 */ 1157 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1158 1159 /* 1160 * Free allocated queue entries. 1161 */ 1162 rt2x00queue_uninitialize(rt2x00dev); 1163 } 1164 1165 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1166 { 1167 int status; 1168 1169 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1170 return 0; 1171 1172 /* 1173 * Allocate all queue entries. 1174 */ 1175 status = rt2x00queue_initialize(rt2x00dev); 1176 if (status) 1177 return status; 1178 1179 /* 1180 * Initialize the device. 1181 */ 1182 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1183 if (status) { 1184 rt2x00queue_uninitialize(rt2x00dev); 1185 return status; 1186 } 1187 1188 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1189 1190 /* 1191 * Start rfkill polling. 1192 */ 1193 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1194 rt2x00rfkill_register(rt2x00dev); 1195 1196 return 0; 1197 } 1198 1199 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1200 { 1201 int retval; 1202 1203 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1204 return 0; 1205 1206 /* 1207 * If this is the first interface which is added, 1208 * we should load the firmware now. 1209 */ 1210 retval = rt2x00lib_load_firmware(rt2x00dev); 1211 if (retval) 1212 return retval; 1213 1214 /* 1215 * Initialize the device. 1216 */ 1217 retval = rt2x00lib_initialize(rt2x00dev); 1218 if (retval) 1219 return retval; 1220 1221 rt2x00dev->intf_ap_count = 0; 1222 rt2x00dev->intf_sta_count = 0; 1223 rt2x00dev->intf_associated = 0; 1224 1225 /* Enable the radio */ 1226 retval = rt2x00lib_enable_radio(rt2x00dev); 1227 if (retval) 1228 return retval; 1229 1230 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1231 1232 return 0; 1233 } 1234 1235 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1236 { 1237 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1238 return; 1239 1240 /* 1241 * Perhaps we can add something smarter here, 1242 * but for now just disabling the radio should do. 1243 */ 1244 rt2x00lib_disable_radio(rt2x00dev); 1245 1246 rt2x00dev->intf_ap_count = 0; 1247 rt2x00dev->intf_sta_count = 0; 1248 rt2x00dev->intf_associated = 0; 1249 } 1250 1251 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1252 { 1253 struct ieee80211_iface_limit *if_limit; 1254 struct ieee80211_iface_combination *if_combination; 1255 1256 if (rt2x00dev->ops->max_ap_intf < 2) 1257 return; 1258 1259 /* 1260 * Build up AP interface limits structure. 1261 */ 1262 if_limit = &rt2x00dev->if_limits_ap; 1263 if_limit->max = rt2x00dev->ops->max_ap_intf; 1264 if_limit->types = BIT(NL80211_IFTYPE_AP); 1265 #ifdef CONFIG_MAC80211_MESH 1266 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1267 #endif 1268 1269 /* 1270 * Build up AP interface combinations structure. 1271 */ 1272 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1273 if_combination->limits = if_limit; 1274 if_combination->n_limits = 1; 1275 if_combination->max_interfaces = if_limit->max; 1276 if_combination->num_different_channels = 1; 1277 1278 /* 1279 * Finally, specify the possible combinations to mac80211. 1280 */ 1281 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1282 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1283 } 1284 1285 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1286 { 1287 if (WARN_ON(!rt2x00dev->tx)) 1288 return 0; 1289 1290 if (rt2x00_is_usb(rt2x00dev)) 1291 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1292 1293 return rt2x00dev->tx[0].winfo_size; 1294 } 1295 1296 /* 1297 * driver allocation handlers. 1298 */ 1299 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1300 { 1301 int retval = -ENOMEM; 1302 1303 /* 1304 * Set possible interface combinations. 1305 */ 1306 rt2x00lib_set_if_combinations(rt2x00dev); 1307 1308 /* 1309 * Allocate the driver data memory, if necessary. 1310 */ 1311 if (rt2x00dev->ops->drv_data_size > 0) { 1312 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1313 GFP_KERNEL); 1314 if (!rt2x00dev->drv_data) { 1315 retval = -ENOMEM; 1316 goto exit; 1317 } 1318 } 1319 1320 spin_lock_init(&rt2x00dev->irqmask_lock); 1321 mutex_init(&rt2x00dev->csr_mutex); 1322 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1323 spin_lock_init(&rt2x00dev->bar_list_lock); 1324 1325 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1326 1327 /* 1328 * Make room for rt2x00_intf inside the per-interface 1329 * structure ieee80211_vif. 1330 */ 1331 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1332 1333 /* 1334 * rt2x00 devices can only use the last n bits of the MAC address 1335 * for virtual interfaces. 1336 */ 1337 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1338 (rt2x00dev->ops->max_ap_intf - 1); 1339 1340 /* 1341 * Initialize work. 1342 */ 1343 rt2x00dev->workqueue = 1344 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1345 if (!rt2x00dev->workqueue) { 1346 retval = -ENOMEM; 1347 goto exit; 1348 } 1349 1350 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1351 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1352 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1353 1354 /* 1355 * Let the driver probe the device to detect the capabilities. 1356 */ 1357 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1358 if (retval) { 1359 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1360 goto exit; 1361 } 1362 1363 /* 1364 * Allocate queue array. 1365 */ 1366 retval = rt2x00queue_allocate(rt2x00dev); 1367 if (retval) 1368 goto exit; 1369 1370 /* Cache TX headroom value */ 1371 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1372 1373 /* 1374 * Determine which operating modes are supported, all modes 1375 * which require beaconing, depend on the availability of 1376 * beacon entries. 1377 */ 1378 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1379 if (rt2x00dev->bcn->limit > 0) 1380 rt2x00dev->hw->wiphy->interface_modes |= 1381 BIT(NL80211_IFTYPE_ADHOC) | 1382 #ifdef CONFIG_MAC80211_MESH 1383 BIT(NL80211_IFTYPE_MESH_POINT) | 1384 #endif 1385 #ifdef CONFIG_WIRELESS_WDS 1386 BIT(NL80211_IFTYPE_WDS) | 1387 #endif 1388 BIT(NL80211_IFTYPE_AP); 1389 1390 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1391 1392 /* 1393 * Initialize ieee80211 structure. 1394 */ 1395 retval = rt2x00lib_probe_hw(rt2x00dev); 1396 if (retval) { 1397 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1398 goto exit; 1399 } 1400 1401 /* 1402 * Register extra components. 1403 */ 1404 rt2x00link_register(rt2x00dev); 1405 rt2x00leds_register(rt2x00dev); 1406 rt2x00debug_register(rt2x00dev); 1407 1408 /* 1409 * Start rfkill polling. 1410 */ 1411 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1412 rt2x00rfkill_register(rt2x00dev); 1413 1414 return 0; 1415 1416 exit: 1417 rt2x00lib_remove_dev(rt2x00dev); 1418 1419 return retval; 1420 } 1421 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1422 1423 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1424 { 1425 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1426 1427 /* 1428 * Stop rfkill polling. 1429 */ 1430 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1431 rt2x00rfkill_unregister(rt2x00dev); 1432 1433 /* 1434 * Disable radio. 1435 */ 1436 rt2x00lib_disable_radio(rt2x00dev); 1437 1438 /* 1439 * Stop all work. 1440 */ 1441 cancel_work_sync(&rt2x00dev->intf_work); 1442 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1443 cancel_work_sync(&rt2x00dev->sleep_work); 1444 #if IS_ENABLED(CONFIG_RT2X00_LIB_USB) 1445 if (rt2x00_is_usb(rt2x00dev)) { 1446 usb_kill_anchored_urbs(rt2x00dev->anchor); 1447 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1448 cancel_work_sync(&rt2x00dev->rxdone_work); 1449 cancel_work_sync(&rt2x00dev->txdone_work); 1450 } 1451 #endif 1452 if (rt2x00dev->workqueue) 1453 destroy_workqueue(rt2x00dev->workqueue); 1454 1455 /* 1456 * Free the tx status fifo. 1457 */ 1458 kfifo_free(&rt2x00dev->txstatus_fifo); 1459 1460 /* 1461 * Kill the tx status tasklet. 1462 */ 1463 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1464 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1465 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1466 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1467 tasklet_kill(&rt2x00dev->autowake_tasklet); 1468 1469 /* 1470 * Uninitialize device. 1471 */ 1472 rt2x00lib_uninitialize(rt2x00dev); 1473 1474 /* 1475 * Free extra components 1476 */ 1477 rt2x00debug_deregister(rt2x00dev); 1478 rt2x00leds_unregister(rt2x00dev); 1479 1480 /* 1481 * Free ieee80211_hw memory. 1482 */ 1483 rt2x00lib_remove_hw(rt2x00dev); 1484 1485 /* 1486 * Free firmware image. 1487 */ 1488 rt2x00lib_free_firmware(rt2x00dev); 1489 1490 /* 1491 * Free queue structures. 1492 */ 1493 rt2x00queue_free(rt2x00dev); 1494 1495 /* 1496 * Free the driver data. 1497 */ 1498 kfree(rt2x00dev->drv_data); 1499 } 1500 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1501 1502 /* 1503 * Device state handlers 1504 */ 1505 #ifdef CONFIG_PM 1506 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1507 { 1508 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1509 1510 /* 1511 * Prevent mac80211 from accessing driver while suspended. 1512 */ 1513 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1514 return 0; 1515 1516 /* 1517 * Cleanup as much as possible. 1518 */ 1519 rt2x00lib_uninitialize(rt2x00dev); 1520 1521 /* 1522 * Suspend/disable extra components. 1523 */ 1524 rt2x00leds_suspend(rt2x00dev); 1525 rt2x00debug_deregister(rt2x00dev); 1526 1527 /* 1528 * Set device mode to sleep for power management, 1529 * on some hardware this call seems to consistently fail. 1530 * From the specifications it is hard to tell why it fails, 1531 * and if this is a "bad thing". 1532 * Overall it is safe to just ignore the failure and 1533 * continue suspending. The only downside is that the 1534 * device will not be in optimal power save mode, but with 1535 * the radio and the other components already disabled the 1536 * device is as good as disabled. 1537 */ 1538 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1539 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1540 1541 return 0; 1542 } 1543 EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1544 1545 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1546 { 1547 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1548 1549 /* 1550 * Restore/enable extra components. 1551 */ 1552 rt2x00debug_register(rt2x00dev); 1553 rt2x00leds_resume(rt2x00dev); 1554 1555 /* 1556 * We are ready again to receive requests from mac80211. 1557 */ 1558 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1559 1560 return 0; 1561 } 1562 EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1563 #endif /* CONFIG_PM */ 1564 1565 /* 1566 * rt2x00lib module information. 1567 */ 1568 MODULE_AUTHOR(DRV_PROJECT); 1569 MODULE_VERSION(DRV_VERSION); 1570 MODULE_DESCRIPTION("rt2x00 library"); 1571 MODULE_LICENSE("GPL"); 1572