1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 /*
21 	Module: rt2x00lib
22 	Abstract: rt2x00 generic device routines.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34 
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 			 struct ieee80211_vif *vif)
40 {
41 	/*
42 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 	 * contains the bss number, see BSS_ID_MASK comments for details.
44 	 */
45 	if (rt2x00dev->intf_sta_count)
46 		return 0;
47 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50 
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 	int status;
57 
58 	/*
59 	 * Don't enable the radio twice.
60 	 * And check if the hardware button has been disabled.
61 	 */
62 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 		return 0;
64 
65 	/*
66 	 * Initialize all data queues.
67 	 */
68 	rt2x00queue_init_queues(rt2x00dev);
69 
70 	/*
71 	 * Enable radio.
72 	 */
73 	status =
74 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 	if (status)
76 		return status;
77 
78 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79 
80 	rt2x00leds_led_radio(rt2x00dev, true);
81 	rt2x00led_led_activity(rt2x00dev, true);
82 
83 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84 
85 	/*
86 	 * Enable queues.
87 	 */
88 	rt2x00queue_start_queues(rt2x00dev);
89 	rt2x00link_start_tuner(rt2x00dev);
90 	rt2x00link_start_agc(rt2x00dev);
91 	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
92 		rt2x00link_start_vcocal(rt2x00dev);
93 
94 	/*
95 	 * Start watchdog monitoring.
96 	 */
97 	rt2x00link_start_watchdog(rt2x00dev);
98 
99 	return 0;
100 }
101 
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 		return;
106 
107 	/*
108 	 * Stop watchdog monitoring.
109 	 */
110 	rt2x00link_stop_watchdog(rt2x00dev);
111 
112 	/*
113 	 * Stop all queues
114 	 */
115 	rt2x00link_stop_agc(rt2x00dev);
116 	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
117 		rt2x00link_stop_vcocal(rt2x00dev);
118 	rt2x00link_stop_tuner(rt2x00dev);
119 	rt2x00queue_stop_queues(rt2x00dev);
120 	rt2x00queue_flush_queues(rt2x00dev, true);
121 
122 	/*
123 	 * Disable radio.
124 	 */
125 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 	rt2x00led_led_activity(rt2x00dev, false);
128 	rt2x00leds_led_radio(rt2x00dev, false);
129 }
130 
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 					  struct ieee80211_vif *vif)
133 {
134 	struct rt2x00_dev *rt2x00dev = data;
135 	struct rt2x00_intf *intf = vif_to_intf(vif);
136 
137 	/*
138 	 * It is possible the radio was disabled while the work had been
139 	 * scheduled. If that happens we should return here immediately,
140 	 * note that in the spinlock protected area above the delayed_flags
141 	 * have been cleared correctly.
142 	 */
143 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 		return;
145 
146 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
147 		mutex_lock(&intf->beacon_skb_mutex);
148 		rt2x00queue_update_beacon(rt2x00dev, vif);
149 		mutex_unlock(&intf->beacon_skb_mutex);
150 	}
151 }
152 
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
154 {
155 	struct rt2x00_dev *rt2x00dev =
156 	    container_of(work, struct rt2x00_dev, intf_work);
157 
158 	/*
159 	 * Iterate over each interface and perform the
160 	 * requested configurations.
161 	 */
162 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163 					    IEEE80211_IFACE_ITER_RESUME_ALL,
164 					    rt2x00lib_intf_scheduled_iter,
165 					    rt2x00dev);
166 }
167 
168 static void rt2x00lib_autowakeup(struct work_struct *work)
169 {
170 	struct rt2x00_dev *rt2x00dev =
171 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
172 
173 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
174 		return;
175 
176 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
177 		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
178 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
179 }
180 
181 /*
182  * Interrupt context handlers.
183  */
184 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
185 				     struct ieee80211_vif *vif)
186 {
187 	struct ieee80211_tx_control control = {};
188 	struct rt2x00_dev *rt2x00dev = data;
189 	struct sk_buff *skb;
190 
191 	/*
192 	 * Only AP mode interfaces do broad- and multicast buffering
193 	 */
194 	if (vif->type != NL80211_IFTYPE_AP)
195 		return;
196 
197 	/*
198 	 * Send out buffered broad- and multicast frames
199 	 */
200 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
201 	while (skb) {
202 		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
203 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
204 	}
205 }
206 
207 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
208 					struct ieee80211_vif *vif)
209 {
210 	struct rt2x00_dev *rt2x00dev = data;
211 
212 	if (vif->type != NL80211_IFTYPE_AP &&
213 	    vif->type != NL80211_IFTYPE_ADHOC &&
214 	    vif->type != NL80211_IFTYPE_MESH_POINT &&
215 	    vif->type != NL80211_IFTYPE_WDS)
216 		return;
217 
218 	/*
219 	 * Update the beacon without locking. This is safe on PCI devices
220 	 * as they only update the beacon periodically here. This should
221 	 * never be called for USB devices.
222 	 */
223 	WARN_ON(rt2x00_is_usb(rt2x00dev));
224 	rt2x00queue_update_beacon(rt2x00dev, vif);
225 }
226 
227 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
228 {
229 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
230 		return;
231 
232 	/* send buffered bc/mc frames out for every bssid */
233 	ieee80211_iterate_active_interfaces_atomic(
234 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
235 		rt2x00lib_bc_buffer_iter, rt2x00dev);
236 	/*
237 	 * Devices with pre tbtt interrupt don't need to update the beacon
238 	 * here as they will fetch the next beacon directly prior to
239 	 * transmission.
240 	 */
241 	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
242 		return;
243 
244 	/* fetch next beacon */
245 	ieee80211_iterate_active_interfaces_atomic(
246 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
247 		rt2x00lib_beaconupdate_iter, rt2x00dev);
248 }
249 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
250 
251 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
252 {
253 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
254 		return;
255 
256 	/* fetch next beacon */
257 	ieee80211_iterate_active_interfaces_atomic(
258 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
259 		rt2x00lib_beaconupdate_iter, rt2x00dev);
260 }
261 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
262 
263 void rt2x00lib_dmastart(struct queue_entry *entry)
264 {
265 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
266 	rt2x00queue_index_inc(entry, Q_INDEX);
267 }
268 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
269 
270 void rt2x00lib_dmadone(struct queue_entry *entry)
271 {
272 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
273 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
274 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
275 }
276 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
277 
278 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
279 {
280 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
281 	struct ieee80211_bar *bar = (void *) entry->skb->data;
282 	struct rt2x00_bar_list_entry *bar_entry;
283 	int ret;
284 
285 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
286 		return 0;
287 
288 	/*
289 	 * Unlike all other frames, the status report for BARs does
290 	 * not directly come from the hardware as it is incapable of
291 	 * matching a BA to a previously send BAR. The hardware will
292 	 * report all BARs as if they weren't acked at all.
293 	 *
294 	 * Instead the RX-path will scan for incoming BAs and set the
295 	 * block_acked flag if it sees one that was likely caused by
296 	 * a BAR from us.
297 	 *
298 	 * Remove remaining BARs here and return their status for
299 	 * TX done processing.
300 	 */
301 	ret = 0;
302 	rcu_read_lock();
303 	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
304 		if (bar_entry->entry != entry)
305 			continue;
306 
307 		spin_lock_bh(&rt2x00dev->bar_list_lock);
308 		/* Return whether this BAR was blockacked or not */
309 		ret = bar_entry->block_acked;
310 		/* Remove the BAR from our checklist */
311 		list_del_rcu(&bar_entry->list);
312 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
313 		kfree_rcu(bar_entry, head);
314 
315 		break;
316 	}
317 	rcu_read_unlock();
318 
319 	return ret;
320 }
321 
322 void rt2x00lib_txdone(struct queue_entry *entry,
323 		      struct txdone_entry_desc *txdesc)
324 {
325 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
326 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
327 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
328 	unsigned int header_length, i;
329 	u8 rate_idx, rate_flags, retry_rates;
330 	u8 skbdesc_flags = skbdesc->flags;
331 	bool success;
332 
333 	/*
334 	 * Unmap the skb.
335 	 */
336 	rt2x00queue_unmap_skb(entry);
337 
338 	/*
339 	 * Remove the extra tx headroom from the skb.
340 	 */
341 	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
342 
343 	/*
344 	 * Signal that the TX descriptor is no longer in the skb.
345 	 */
346 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
347 
348 	/*
349 	 * Determine the length of 802.11 header.
350 	 */
351 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
352 
353 	/*
354 	 * Remove L2 padding which was added during
355 	 */
356 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
357 		rt2x00queue_remove_l2pad(entry->skb, header_length);
358 
359 	/*
360 	 * If the IV/EIV data was stripped from the frame before it was
361 	 * passed to the hardware, we should now reinsert it again because
362 	 * mac80211 will expect the same data to be present it the
363 	 * frame as it was passed to us.
364 	 */
365 	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
366 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
367 
368 	/*
369 	 * Send frame to debugfs immediately, after this call is completed
370 	 * we are going to overwrite the skb->cb array.
371 	 */
372 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
373 
374 	/*
375 	 * Determine if the frame has been successfully transmitted and
376 	 * remove BARs from our check list while checking for their
377 	 * TX status.
378 	 */
379 	success =
380 	    rt2x00lib_txdone_bar_status(entry) ||
381 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
382 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
383 
384 	/*
385 	 * Update TX statistics.
386 	 */
387 	rt2x00dev->link.qual.tx_success += success;
388 	rt2x00dev->link.qual.tx_failed += !success;
389 
390 	rate_idx = skbdesc->tx_rate_idx;
391 	rate_flags = skbdesc->tx_rate_flags;
392 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
393 	    (txdesc->retry + 1) : 1;
394 
395 	/*
396 	 * Initialize TX status
397 	 */
398 	memset(&tx_info->status, 0, sizeof(tx_info->status));
399 	tx_info->status.ack_signal = 0;
400 
401 	/*
402 	 * Frame was send with retries, hardware tried
403 	 * different rates to send out the frame, at each
404 	 * retry it lowered the rate 1 step except when the
405 	 * lowest rate was used.
406 	 */
407 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
408 		tx_info->status.rates[i].idx = rate_idx - i;
409 		tx_info->status.rates[i].flags = rate_flags;
410 
411 		if (rate_idx - i == 0) {
412 			/*
413 			 * The lowest rate (index 0) was used until the
414 			 * number of max retries was reached.
415 			 */
416 			tx_info->status.rates[i].count = retry_rates - i;
417 			i++;
418 			break;
419 		}
420 		tx_info->status.rates[i].count = 1;
421 	}
422 	if (i < (IEEE80211_TX_MAX_RATES - 1))
423 		tx_info->status.rates[i].idx = -1; /* terminate */
424 
425 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
426 		if (success)
427 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
428 		else
429 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
430 	}
431 
432 	/*
433 	 * Every single frame has it's own tx status, hence report
434 	 * every frame as ampdu of size 1.
435 	 *
436 	 * TODO: if we can find out how many frames were aggregated
437 	 * by the hw we could provide the real ampdu_len to mac80211
438 	 * which would allow the rc algorithm to better decide on
439 	 * which rates are suitable.
440 	 */
441 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
442 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
443 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
444 		tx_info->status.ampdu_len = 1;
445 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
446 
447 		if (!success)
448 			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
449 	}
450 
451 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
452 		if (success)
453 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
454 		else
455 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
456 	}
457 
458 	/*
459 	 * Only send the status report to mac80211 when it's a frame
460 	 * that originated in mac80211. If this was a extra frame coming
461 	 * through a mac80211 library call (RTS/CTS) then we should not
462 	 * send the status report back.
463 	 */
464 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
465 		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
466 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
467 		else
468 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
469 	} else
470 		dev_kfree_skb_any(entry->skb);
471 
472 	/*
473 	 * Make this entry available for reuse.
474 	 */
475 	entry->skb = NULL;
476 	entry->flags = 0;
477 
478 	rt2x00dev->ops->lib->clear_entry(entry);
479 
480 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
481 
482 	/*
483 	 * If the data queue was below the threshold before the txdone
484 	 * handler we must make sure the packet queue in the mac80211 stack
485 	 * is reenabled when the txdone handler has finished. This has to be
486 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
487 	 * before it was stopped.
488 	 */
489 	spin_lock_bh(&entry->queue->tx_lock);
490 	if (!rt2x00queue_threshold(entry->queue))
491 		rt2x00queue_unpause_queue(entry->queue);
492 	spin_unlock_bh(&entry->queue->tx_lock);
493 }
494 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
495 
496 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
497 {
498 	struct txdone_entry_desc txdesc;
499 
500 	txdesc.flags = 0;
501 	__set_bit(status, &txdesc.flags);
502 	txdesc.retry = 0;
503 
504 	rt2x00lib_txdone(entry, &txdesc);
505 }
506 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
507 
508 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
509 {
510 	struct ieee80211_mgmt *mgmt = (void *)data;
511 	u8 *pos, *end;
512 
513 	pos = (u8 *)mgmt->u.beacon.variable;
514 	end = data + len;
515 	while (pos < end) {
516 		if (pos + 2 + pos[1] > end)
517 			return NULL;
518 
519 		if (pos[0] == ie)
520 			return pos;
521 
522 		pos += 2 + pos[1];
523 	}
524 
525 	return NULL;
526 }
527 
528 static void rt2x00lib_sleep(struct work_struct *work)
529 {
530 	struct rt2x00_dev *rt2x00dev =
531 	    container_of(work, struct rt2x00_dev, sleep_work);
532 
533 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
534 		return;
535 
536 	/*
537 	 * Check again is powersaving is enabled, to prevent races from delayed
538 	 * work execution.
539 	 */
540 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
541 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
542 				 IEEE80211_CONF_CHANGE_PS);
543 }
544 
545 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
546 				      struct sk_buff *skb,
547 				      struct rxdone_entry_desc *rxdesc)
548 {
549 	struct rt2x00_bar_list_entry *entry;
550 	struct ieee80211_bar *ba = (void *)skb->data;
551 
552 	if (likely(!ieee80211_is_back(ba->frame_control)))
553 		return;
554 
555 	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
556 		return;
557 
558 	rcu_read_lock();
559 	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
560 
561 		if (ba->start_seq_num != entry->start_seq_num)
562 			continue;
563 
564 #define TID_CHECK(a, b) (						\
565 	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
566 	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
567 
568 		if (!TID_CHECK(ba->control, entry->control))
569 			continue;
570 
571 #undef TID_CHECK
572 
573 		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
574 			continue;
575 
576 		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
577 			continue;
578 
579 		/* Mark BAR since we received the according BA */
580 		spin_lock_bh(&rt2x00dev->bar_list_lock);
581 		entry->block_acked = 1;
582 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
583 		break;
584 	}
585 	rcu_read_unlock();
586 
587 }
588 
589 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
590 				      struct sk_buff *skb,
591 				      struct rxdone_entry_desc *rxdesc)
592 {
593 	struct ieee80211_hdr *hdr = (void *) skb->data;
594 	struct ieee80211_tim_ie *tim_ie;
595 	u8 *tim;
596 	u8 tim_len;
597 	bool cam;
598 
599 	/* If this is not a beacon, or if mac80211 has no powersaving
600 	 * configured, or if the device is already in powersaving mode
601 	 * we can exit now. */
602 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
603 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
604 		return;
605 
606 	/* min. beacon length + FCS_LEN */
607 	if (skb->len <= 40 + FCS_LEN)
608 		return;
609 
610 	/* and only beacons from the associated BSSID, please */
611 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
612 	    !rt2x00dev->aid)
613 		return;
614 
615 	rt2x00dev->last_beacon = jiffies;
616 
617 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
618 	if (!tim)
619 		return;
620 
621 	if (tim[1] < sizeof(*tim_ie))
622 		return;
623 
624 	tim_len = tim[1];
625 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
626 
627 	/* Check whenever the PHY can be turned off again. */
628 
629 	/* 1. What about buffered unicast traffic for our AID? */
630 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
631 
632 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
633 	cam |= (tim_ie->bitmap_ctrl & 0x01);
634 
635 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
636 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
637 }
638 
639 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
640 					struct rxdone_entry_desc *rxdesc)
641 {
642 	struct ieee80211_supported_band *sband;
643 	const struct rt2x00_rate *rate;
644 	unsigned int i;
645 	int signal = rxdesc->signal;
646 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
647 
648 	switch (rxdesc->rate_mode) {
649 	case RATE_MODE_CCK:
650 	case RATE_MODE_OFDM:
651 		/*
652 		 * For non-HT rates the MCS value needs to contain the
653 		 * actually used rate modulation (CCK or OFDM).
654 		 */
655 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
656 			signal = RATE_MCS(rxdesc->rate_mode, signal);
657 
658 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
659 		for (i = 0; i < sband->n_bitrates; i++) {
660 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
661 			if (((type == RXDONE_SIGNAL_PLCP) &&
662 			     (rate->plcp == signal)) ||
663 			    ((type == RXDONE_SIGNAL_BITRATE) &&
664 			      (rate->bitrate == signal)) ||
665 			    ((type == RXDONE_SIGNAL_MCS) &&
666 			      (rate->mcs == signal))) {
667 				return i;
668 			}
669 		}
670 		break;
671 	case RATE_MODE_HT_MIX:
672 	case RATE_MODE_HT_GREENFIELD:
673 		if (signal >= 0 && signal <= 76)
674 			return signal;
675 		break;
676 	default:
677 		break;
678 	}
679 
680 	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
681 		    rxdesc->rate_mode, signal, type);
682 	return 0;
683 }
684 
685 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
686 {
687 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
688 	struct rxdone_entry_desc rxdesc;
689 	struct sk_buff *skb;
690 	struct ieee80211_rx_status *rx_status;
691 	unsigned int header_length;
692 	int rate_idx;
693 
694 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
695 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
696 		goto submit_entry;
697 
698 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
699 		goto submit_entry;
700 
701 	/*
702 	 * Allocate a new sk_buffer. If no new buffer available, drop the
703 	 * received frame and reuse the existing buffer.
704 	 */
705 	skb = rt2x00queue_alloc_rxskb(entry, gfp);
706 	if (!skb)
707 		goto submit_entry;
708 
709 	/*
710 	 * Unmap the skb.
711 	 */
712 	rt2x00queue_unmap_skb(entry);
713 
714 	/*
715 	 * Extract the RXD details.
716 	 */
717 	memset(&rxdesc, 0, sizeof(rxdesc));
718 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
719 
720 	/*
721 	 * Check for valid size in case we get corrupted descriptor from
722 	 * hardware.
723 	 */
724 	if (unlikely(rxdesc.size == 0 ||
725 		     rxdesc.size > entry->queue->data_size)) {
726 		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
727 			   rxdesc.size, entry->queue->data_size);
728 		dev_kfree_skb(entry->skb);
729 		goto renew_skb;
730 	}
731 
732 	/*
733 	 * The data behind the ieee80211 header must be
734 	 * aligned on a 4 byte boundary.
735 	 */
736 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
737 
738 	/*
739 	 * Hardware might have stripped the IV/EIV/ICV data,
740 	 * in that case it is possible that the data was
741 	 * provided separately (through hardware descriptor)
742 	 * in which case we should reinsert the data into the frame.
743 	 */
744 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
745 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
746 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
747 					  &rxdesc);
748 	else if (header_length &&
749 		 (rxdesc.size > header_length) &&
750 		 (rxdesc.dev_flags & RXDONE_L2PAD))
751 		rt2x00queue_remove_l2pad(entry->skb, header_length);
752 
753 	/* Trim buffer to correct size */
754 	skb_trim(entry->skb, rxdesc.size);
755 
756 	/*
757 	 * Translate the signal to the correct bitrate index.
758 	 */
759 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
760 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
761 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
762 		rxdesc.flags |= RX_FLAG_HT;
763 
764 	/*
765 	 * Check if this is a beacon, and more frames have been
766 	 * buffered while we were in powersaving mode.
767 	 */
768 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
769 
770 	/*
771 	 * Check for incoming BlockAcks to match to the BlockAckReqs
772 	 * we've send out.
773 	 */
774 	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
775 
776 	/*
777 	 * Update extra components
778 	 */
779 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
780 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
781 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
782 
783 	/*
784 	 * Initialize RX status information, and send frame
785 	 * to mac80211.
786 	 */
787 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
788 
789 	/* Ensure that all fields of rx_status are initialized
790 	 * properly. The skb->cb array was used for driver
791 	 * specific informations, so rx_status might contain
792 	 * garbage.
793 	 */
794 	memset(rx_status, 0, sizeof(*rx_status));
795 
796 	rx_status->mactime = rxdesc.timestamp;
797 	rx_status->band = rt2x00dev->curr_band;
798 	rx_status->freq = rt2x00dev->curr_freq;
799 	rx_status->rate_idx = rate_idx;
800 	rx_status->signal = rxdesc.rssi;
801 	rx_status->flag = rxdesc.flags;
802 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
803 
804 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
805 
806 renew_skb:
807 	/*
808 	 * Replace the skb with the freshly allocated one.
809 	 */
810 	entry->skb = skb;
811 
812 submit_entry:
813 	entry->flags = 0;
814 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
815 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
816 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
817 		rt2x00dev->ops->lib->clear_entry(entry);
818 }
819 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
820 
821 /*
822  * Driver initialization handlers.
823  */
824 const struct rt2x00_rate rt2x00_supported_rates[12] = {
825 	{
826 		.flags = DEV_RATE_CCK,
827 		.bitrate = 10,
828 		.ratemask = BIT(0),
829 		.plcp = 0x00,
830 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
831 	},
832 	{
833 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
834 		.bitrate = 20,
835 		.ratemask = BIT(1),
836 		.plcp = 0x01,
837 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
838 	},
839 	{
840 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
841 		.bitrate = 55,
842 		.ratemask = BIT(2),
843 		.plcp = 0x02,
844 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
845 	},
846 	{
847 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
848 		.bitrate = 110,
849 		.ratemask = BIT(3),
850 		.plcp = 0x03,
851 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
852 	},
853 	{
854 		.flags = DEV_RATE_OFDM,
855 		.bitrate = 60,
856 		.ratemask = BIT(4),
857 		.plcp = 0x0b,
858 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
859 	},
860 	{
861 		.flags = DEV_RATE_OFDM,
862 		.bitrate = 90,
863 		.ratemask = BIT(5),
864 		.plcp = 0x0f,
865 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
866 	},
867 	{
868 		.flags = DEV_RATE_OFDM,
869 		.bitrate = 120,
870 		.ratemask = BIT(6),
871 		.plcp = 0x0a,
872 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
873 	},
874 	{
875 		.flags = DEV_RATE_OFDM,
876 		.bitrate = 180,
877 		.ratemask = BIT(7),
878 		.plcp = 0x0e,
879 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
880 	},
881 	{
882 		.flags = DEV_RATE_OFDM,
883 		.bitrate = 240,
884 		.ratemask = BIT(8),
885 		.plcp = 0x09,
886 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
887 	},
888 	{
889 		.flags = DEV_RATE_OFDM,
890 		.bitrate = 360,
891 		.ratemask = BIT(9),
892 		.plcp = 0x0d,
893 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
894 	},
895 	{
896 		.flags = DEV_RATE_OFDM,
897 		.bitrate = 480,
898 		.ratemask = BIT(10),
899 		.plcp = 0x08,
900 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
901 	},
902 	{
903 		.flags = DEV_RATE_OFDM,
904 		.bitrate = 540,
905 		.ratemask = BIT(11),
906 		.plcp = 0x0c,
907 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
908 	},
909 };
910 
911 static void rt2x00lib_channel(struct ieee80211_channel *entry,
912 			      const int channel, const int tx_power,
913 			      const int value)
914 {
915 	/* XXX: this assumption about the band is wrong for 802.11j */
916 	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
917 	entry->center_freq = ieee80211_channel_to_frequency(channel,
918 							    entry->band);
919 	entry->hw_value = value;
920 	entry->max_power = tx_power;
921 	entry->max_antenna_gain = 0xff;
922 }
923 
924 static void rt2x00lib_rate(struct ieee80211_rate *entry,
925 			   const u16 index, const struct rt2x00_rate *rate)
926 {
927 	entry->flags = 0;
928 	entry->bitrate = rate->bitrate;
929 	entry->hw_value = index;
930 	entry->hw_value_short = index;
931 
932 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
933 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
934 }
935 
936 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
937 {
938 	const char *mac_addr;
939 
940 	mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
941 	if (mac_addr)
942 		ether_addr_copy(eeprom_mac_addr, mac_addr);
943 
944 	if (!is_valid_ether_addr(eeprom_mac_addr)) {
945 		eth_random_addr(eeprom_mac_addr);
946 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
947 	}
948 }
949 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
950 
951 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
952 				    struct hw_mode_spec *spec)
953 {
954 	struct ieee80211_hw *hw = rt2x00dev->hw;
955 	struct ieee80211_channel *channels;
956 	struct ieee80211_rate *rates;
957 	unsigned int num_rates;
958 	unsigned int i;
959 
960 	num_rates = 0;
961 	if (spec->supported_rates & SUPPORT_RATE_CCK)
962 		num_rates += 4;
963 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
964 		num_rates += 8;
965 
966 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
967 	if (!channels)
968 		return -ENOMEM;
969 
970 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
971 	if (!rates)
972 		goto exit_free_channels;
973 
974 	/*
975 	 * Initialize Rate list.
976 	 */
977 	for (i = 0; i < num_rates; i++)
978 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
979 
980 	/*
981 	 * Initialize Channel list.
982 	 */
983 	for (i = 0; i < spec->num_channels; i++) {
984 		rt2x00lib_channel(&channels[i],
985 				  spec->channels[i].channel,
986 				  spec->channels_info[i].max_power, i);
987 	}
988 
989 	/*
990 	 * Intitialize 802.11b, 802.11g
991 	 * Rates: CCK, OFDM.
992 	 * Channels: 2.4 GHz
993 	 */
994 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
995 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
996 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
997 		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
998 		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
999 		hw->wiphy->bands[NL80211_BAND_2GHZ] =
1000 		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1001 		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1002 		       &spec->ht, sizeof(spec->ht));
1003 	}
1004 
1005 	/*
1006 	 * Intitialize 802.11a
1007 	 * Rates: OFDM.
1008 	 * Channels: OFDM, UNII, HiperLAN2.
1009 	 */
1010 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1011 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1012 		    spec->num_channels - 14;
1013 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1014 		    num_rates - 4;
1015 		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1016 		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1017 		hw->wiphy->bands[NL80211_BAND_5GHZ] =
1018 		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1019 		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1020 		       &spec->ht, sizeof(spec->ht));
1021 	}
1022 
1023 	return 0;
1024 
1025  exit_free_channels:
1026 	kfree(channels);
1027 	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1028 	return -ENOMEM;
1029 }
1030 
1031 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1032 {
1033 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1034 		ieee80211_unregister_hw(rt2x00dev->hw);
1035 
1036 	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1037 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1038 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1039 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1040 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1041 	}
1042 
1043 	kfree(rt2x00dev->spec.channels_info);
1044 }
1045 
1046 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1047 {
1048 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1049 	int status;
1050 
1051 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1052 		return 0;
1053 
1054 	/*
1055 	 * Initialize HW modes.
1056 	 */
1057 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1058 	if (status)
1059 		return status;
1060 
1061 	/*
1062 	 * Initialize HW fields.
1063 	 */
1064 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1065 
1066 	/*
1067 	 * Initialize extra TX headroom required.
1068 	 */
1069 	rt2x00dev->hw->extra_tx_headroom =
1070 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1071 		      rt2x00dev->extra_tx_headroom);
1072 
1073 	/*
1074 	 * Take TX headroom required for alignment into account.
1075 	 */
1076 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1077 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1078 	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1079 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1080 
1081 	/*
1082 	 * Tell mac80211 about the size of our private STA structure.
1083 	 */
1084 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1085 
1086 	/*
1087 	 * Allocate tx status FIFO for driver use.
1088 	 */
1089 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1090 		/*
1091 		 * Allocate the txstatus fifo. In the worst case the tx
1092 		 * status fifo has to hold the tx status of all entries
1093 		 * in all tx queues. Hence, calculate the kfifo size as
1094 		 * tx_queues * entry_num and round up to the nearest
1095 		 * power of 2.
1096 		 */
1097 		int kfifo_size =
1098 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1099 					   rt2x00dev->tx->limit *
1100 					   sizeof(u32));
1101 
1102 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1103 				     GFP_KERNEL);
1104 		if (status)
1105 			return status;
1106 	}
1107 
1108 	/*
1109 	 * Initialize tasklets if used by the driver. Tasklets are
1110 	 * disabled until the interrupts are turned on. The driver
1111 	 * has to handle that.
1112 	 */
1113 #define RT2X00_TASKLET_INIT(taskletname) \
1114 	if (rt2x00dev->ops->lib->taskletname) { \
1115 		tasklet_init(&rt2x00dev->taskletname, \
1116 			     rt2x00dev->ops->lib->taskletname, \
1117 			     (unsigned long)rt2x00dev); \
1118 	}
1119 
1120 	RT2X00_TASKLET_INIT(txstatus_tasklet);
1121 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1122 	RT2X00_TASKLET_INIT(tbtt_tasklet);
1123 	RT2X00_TASKLET_INIT(rxdone_tasklet);
1124 	RT2X00_TASKLET_INIT(autowake_tasklet);
1125 
1126 #undef RT2X00_TASKLET_INIT
1127 
1128 	/*
1129 	 * Register HW.
1130 	 */
1131 	status = ieee80211_register_hw(rt2x00dev->hw);
1132 	if (status)
1133 		return status;
1134 
1135 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1136 
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Initialization/uninitialization handlers.
1142  */
1143 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1144 {
1145 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1146 		return;
1147 
1148 	/*
1149 	 * Stop rfkill polling.
1150 	 */
1151 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1152 		rt2x00rfkill_unregister(rt2x00dev);
1153 
1154 	/*
1155 	 * Allow the HW to uninitialize.
1156 	 */
1157 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1158 
1159 	/*
1160 	 * Free allocated queue entries.
1161 	 */
1162 	rt2x00queue_uninitialize(rt2x00dev);
1163 }
1164 
1165 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1166 {
1167 	int status;
1168 
1169 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1170 		return 0;
1171 
1172 	/*
1173 	 * Allocate all queue entries.
1174 	 */
1175 	status = rt2x00queue_initialize(rt2x00dev);
1176 	if (status)
1177 		return status;
1178 
1179 	/*
1180 	 * Initialize the device.
1181 	 */
1182 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1183 	if (status) {
1184 		rt2x00queue_uninitialize(rt2x00dev);
1185 		return status;
1186 	}
1187 
1188 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1189 
1190 	/*
1191 	 * Start rfkill polling.
1192 	 */
1193 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1194 		rt2x00rfkill_register(rt2x00dev);
1195 
1196 	return 0;
1197 }
1198 
1199 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1200 {
1201 	int retval;
1202 
1203 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1204 		return 0;
1205 
1206 	/*
1207 	 * If this is the first interface which is added,
1208 	 * we should load the firmware now.
1209 	 */
1210 	retval = rt2x00lib_load_firmware(rt2x00dev);
1211 	if (retval)
1212 		return retval;
1213 
1214 	/*
1215 	 * Initialize the device.
1216 	 */
1217 	retval = rt2x00lib_initialize(rt2x00dev);
1218 	if (retval)
1219 		return retval;
1220 
1221 	rt2x00dev->intf_ap_count = 0;
1222 	rt2x00dev->intf_sta_count = 0;
1223 	rt2x00dev->intf_associated = 0;
1224 
1225 	/* Enable the radio */
1226 	retval = rt2x00lib_enable_radio(rt2x00dev);
1227 	if (retval)
1228 		return retval;
1229 
1230 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1231 
1232 	return 0;
1233 }
1234 
1235 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1236 {
1237 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1238 		return;
1239 
1240 	/*
1241 	 * Perhaps we can add something smarter here,
1242 	 * but for now just disabling the radio should do.
1243 	 */
1244 	rt2x00lib_disable_radio(rt2x00dev);
1245 
1246 	rt2x00dev->intf_ap_count = 0;
1247 	rt2x00dev->intf_sta_count = 0;
1248 	rt2x00dev->intf_associated = 0;
1249 }
1250 
1251 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1252 {
1253 	struct ieee80211_iface_limit *if_limit;
1254 	struct ieee80211_iface_combination *if_combination;
1255 
1256 	if (rt2x00dev->ops->max_ap_intf < 2)
1257 		return;
1258 
1259 	/*
1260 	 * Build up AP interface limits structure.
1261 	 */
1262 	if_limit = &rt2x00dev->if_limits_ap;
1263 	if_limit->max = rt2x00dev->ops->max_ap_intf;
1264 	if_limit->types = BIT(NL80211_IFTYPE_AP);
1265 #ifdef CONFIG_MAC80211_MESH
1266 	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1267 #endif
1268 
1269 	/*
1270 	 * Build up AP interface combinations structure.
1271 	 */
1272 	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1273 	if_combination->limits = if_limit;
1274 	if_combination->n_limits = 1;
1275 	if_combination->max_interfaces = if_limit->max;
1276 	if_combination->num_different_channels = 1;
1277 
1278 	/*
1279 	 * Finally, specify the possible combinations to mac80211.
1280 	 */
1281 	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1282 	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1283 }
1284 
1285 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1286 {
1287 	if (WARN_ON(!rt2x00dev->tx))
1288 		return 0;
1289 
1290 	if (rt2x00_is_usb(rt2x00dev))
1291 		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1292 
1293 	return rt2x00dev->tx[0].winfo_size;
1294 }
1295 
1296 /*
1297  * driver allocation handlers.
1298  */
1299 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1300 {
1301 	int retval = -ENOMEM;
1302 
1303 	/*
1304 	 * Set possible interface combinations.
1305 	 */
1306 	rt2x00lib_set_if_combinations(rt2x00dev);
1307 
1308 	/*
1309 	 * Allocate the driver data memory, if necessary.
1310 	 */
1311 	if (rt2x00dev->ops->drv_data_size > 0) {
1312 		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1313 			                      GFP_KERNEL);
1314 		if (!rt2x00dev->drv_data) {
1315 			retval = -ENOMEM;
1316 			goto exit;
1317 		}
1318 	}
1319 
1320 	spin_lock_init(&rt2x00dev->irqmask_lock);
1321 	mutex_init(&rt2x00dev->csr_mutex);
1322 	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1323 	spin_lock_init(&rt2x00dev->bar_list_lock);
1324 
1325 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1326 
1327 	/*
1328 	 * Make room for rt2x00_intf inside the per-interface
1329 	 * structure ieee80211_vif.
1330 	 */
1331 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1332 
1333 	/*
1334 	 * rt2x00 devices can only use the last n bits of the MAC address
1335 	 * for virtual interfaces.
1336 	 */
1337 	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1338 		(rt2x00dev->ops->max_ap_intf - 1);
1339 
1340 	/*
1341 	 * Initialize work.
1342 	 */
1343 	rt2x00dev->workqueue =
1344 	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1345 	if (!rt2x00dev->workqueue) {
1346 		retval = -ENOMEM;
1347 		goto exit;
1348 	}
1349 
1350 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1351 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1352 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1353 
1354 	/*
1355 	 * Let the driver probe the device to detect the capabilities.
1356 	 */
1357 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1358 	if (retval) {
1359 		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1360 		goto exit;
1361 	}
1362 
1363 	/*
1364 	 * Allocate queue array.
1365 	 */
1366 	retval = rt2x00queue_allocate(rt2x00dev);
1367 	if (retval)
1368 		goto exit;
1369 
1370 	/* Cache TX headroom value */
1371 	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1372 
1373 	/*
1374 	 * Determine which operating modes are supported, all modes
1375 	 * which require beaconing, depend on the availability of
1376 	 * beacon entries.
1377 	 */
1378 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1379 	if (rt2x00dev->bcn->limit > 0)
1380 		rt2x00dev->hw->wiphy->interface_modes |=
1381 		    BIT(NL80211_IFTYPE_ADHOC) |
1382 #ifdef CONFIG_MAC80211_MESH
1383 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1384 #endif
1385 #ifdef CONFIG_WIRELESS_WDS
1386 		    BIT(NL80211_IFTYPE_WDS) |
1387 #endif
1388 		    BIT(NL80211_IFTYPE_AP);
1389 
1390 	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1391 
1392 	/*
1393 	 * Initialize ieee80211 structure.
1394 	 */
1395 	retval = rt2x00lib_probe_hw(rt2x00dev);
1396 	if (retval) {
1397 		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1398 		goto exit;
1399 	}
1400 
1401 	/*
1402 	 * Register extra components.
1403 	 */
1404 	rt2x00link_register(rt2x00dev);
1405 	rt2x00leds_register(rt2x00dev);
1406 	rt2x00debug_register(rt2x00dev);
1407 
1408 	/*
1409 	 * Start rfkill polling.
1410 	 */
1411 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1412 		rt2x00rfkill_register(rt2x00dev);
1413 
1414 	return 0;
1415 
1416 exit:
1417 	rt2x00lib_remove_dev(rt2x00dev);
1418 
1419 	return retval;
1420 }
1421 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1422 
1423 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1424 {
1425 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1426 
1427 	/*
1428 	 * Stop rfkill polling.
1429 	 */
1430 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1431 		rt2x00rfkill_unregister(rt2x00dev);
1432 
1433 	/*
1434 	 * Disable radio.
1435 	 */
1436 	rt2x00lib_disable_radio(rt2x00dev);
1437 
1438 	/*
1439 	 * Stop all work.
1440 	 */
1441 	cancel_work_sync(&rt2x00dev->intf_work);
1442 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1443 	cancel_work_sync(&rt2x00dev->sleep_work);
1444 #if IS_ENABLED(CONFIG_RT2X00_LIB_USB)
1445 	if (rt2x00_is_usb(rt2x00dev)) {
1446 		usb_kill_anchored_urbs(rt2x00dev->anchor);
1447 		hrtimer_cancel(&rt2x00dev->txstatus_timer);
1448 		cancel_work_sync(&rt2x00dev->rxdone_work);
1449 		cancel_work_sync(&rt2x00dev->txdone_work);
1450 	}
1451 #endif
1452 	if (rt2x00dev->workqueue)
1453 		destroy_workqueue(rt2x00dev->workqueue);
1454 
1455 	/*
1456 	 * Free the tx status fifo.
1457 	 */
1458 	kfifo_free(&rt2x00dev->txstatus_fifo);
1459 
1460 	/*
1461 	 * Kill the tx status tasklet.
1462 	 */
1463 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1464 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1465 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1466 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1467 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1468 
1469 	/*
1470 	 * Uninitialize device.
1471 	 */
1472 	rt2x00lib_uninitialize(rt2x00dev);
1473 
1474 	/*
1475 	 * Free extra components
1476 	 */
1477 	rt2x00debug_deregister(rt2x00dev);
1478 	rt2x00leds_unregister(rt2x00dev);
1479 
1480 	/*
1481 	 * Free ieee80211_hw memory.
1482 	 */
1483 	rt2x00lib_remove_hw(rt2x00dev);
1484 
1485 	/*
1486 	 * Free firmware image.
1487 	 */
1488 	rt2x00lib_free_firmware(rt2x00dev);
1489 
1490 	/*
1491 	 * Free queue structures.
1492 	 */
1493 	rt2x00queue_free(rt2x00dev);
1494 
1495 	/*
1496 	 * Free the driver data.
1497 	 */
1498 	kfree(rt2x00dev->drv_data);
1499 }
1500 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1501 
1502 /*
1503  * Device state handlers
1504  */
1505 #ifdef CONFIG_PM
1506 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1507 {
1508 	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1509 
1510 	/*
1511 	 * Prevent mac80211 from accessing driver while suspended.
1512 	 */
1513 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1514 		return 0;
1515 
1516 	/*
1517 	 * Cleanup as much as possible.
1518 	 */
1519 	rt2x00lib_uninitialize(rt2x00dev);
1520 
1521 	/*
1522 	 * Suspend/disable extra components.
1523 	 */
1524 	rt2x00leds_suspend(rt2x00dev);
1525 	rt2x00debug_deregister(rt2x00dev);
1526 
1527 	/*
1528 	 * Set device mode to sleep for power management,
1529 	 * on some hardware this call seems to consistently fail.
1530 	 * From the specifications it is hard to tell why it fails,
1531 	 * and if this is a "bad thing".
1532 	 * Overall it is safe to just ignore the failure and
1533 	 * continue suspending. The only downside is that the
1534 	 * device will not be in optimal power save mode, but with
1535 	 * the radio and the other components already disabled the
1536 	 * device is as good as disabled.
1537 	 */
1538 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1539 		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1540 
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1544 
1545 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1546 {
1547 	rt2x00_dbg(rt2x00dev, "Waking up\n");
1548 
1549 	/*
1550 	 * Restore/enable extra components.
1551 	 */
1552 	rt2x00debug_register(rt2x00dev);
1553 	rt2x00leds_resume(rt2x00dev);
1554 
1555 	/*
1556 	 * We are ready again to receive requests from mac80211.
1557 	 */
1558 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1559 
1560 	return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1563 #endif /* CONFIG_PM */
1564 
1565 /*
1566  * rt2x00lib module information.
1567  */
1568 MODULE_AUTHOR(DRV_PROJECT);
1569 MODULE_VERSION(DRV_VERSION);
1570 MODULE_DESCRIPTION("rt2x00 library");
1571 MODULE_LICENSE("GPL");
1572