1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 */ 8 9 /* 10 Module: rt2x00lib 11 Abstract: rt2x00 generic device routines. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/log2.h> 18 #include <linux/of.h> 19 #include <linux/of_net.h> 20 21 #include "rt2x00.h" 22 #include "rt2x00lib.h" 23 24 /* 25 * Utility functions. 26 */ 27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 28 struct ieee80211_vif *vif) 29 { 30 /* 31 * When in STA mode, bssidx is always 0 otherwise local_address[5] 32 * contains the bss number, see BSS_ID_MASK comments for details. 33 */ 34 if (rt2x00dev->intf_sta_count) 35 return 0; 36 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 37 } 38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 39 40 /* 41 * Radio control handlers. 42 */ 43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 44 { 45 int status; 46 47 /* 48 * Don't enable the radio twice. 49 * And check if the hardware button has been disabled. 50 */ 51 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 52 return 0; 53 54 /* 55 * Initialize all data queues. 56 */ 57 rt2x00queue_init_queues(rt2x00dev); 58 59 /* 60 * Enable radio. 61 */ 62 status = 63 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 64 if (status) 65 return status; 66 67 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 68 69 rt2x00leds_led_radio(rt2x00dev, true); 70 rt2x00led_led_activity(rt2x00dev, true); 71 72 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 73 74 /* 75 * Enable queues. 76 */ 77 rt2x00queue_start_queues(rt2x00dev); 78 rt2x00link_start_tuner(rt2x00dev); 79 80 /* 81 * Start watchdog monitoring. 82 */ 83 rt2x00link_start_watchdog(rt2x00dev); 84 85 return 0; 86 } 87 88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 89 { 90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 91 return; 92 93 /* 94 * Stop watchdog monitoring. 95 */ 96 rt2x00link_stop_watchdog(rt2x00dev); 97 98 /* 99 * Stop all queues 100 */ 101 rt2x00link_stop_tuner(rt2x00dev); 102 rt2x00queue_stop_queues(rt2x00dev); 103 rt2x00queue_flush_queues(rt2x00dev, true); 104 105 /* 106 * Disable radio. 107 */ 108 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 109 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 110 rt2x00led_led_activity(rt2x00dev, false); 111 rt2x00leds_led_radio(rt2x00dev, false); 112 } 113 114 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 115 struct ieee80211_vif *vif) 116 { 117 struct rt2x00_dev *rt2x00dev = data; 118 struct rt2x00_intf *intf = vif_to_intf(vif); 119 120 /* 121 * It is possible the radio was disabled while the work had been 122 * scheduled. If that happens we should return here immediately, 123 * note that in the spinlock protected area above the delayed_flags 124 * have been cleared correctly. 125 */ 126 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 127 return; 128 129 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 130 mutex_lock(&intf->beacon_skb_mutex); 131 rt2x00queue_update_beacon(rt2x00dev, vif); 132 mutex_unlock(&intf->beacon_skb_mutex); 133 } 134 } 135 136 static void rt2x00lib_intf_scheduled(struct work_struct *work) 137 { 138 struct rt2x00_dev *rt2x00dev = 139 container_of(work, struct rt2x00_dev, intf_work); 140 141 /* 142 * Iterate over each interface and perform the 143 * requested configurations. 144 */ 145 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 146 IEEE80211_IFACE_ITER_RESUME_ALL, 147 rt2x00lib_intf_scheduled_iter, 148 rt2x00dev); 149 } 150 151 static void rt2x00lib_autowakeup(struct work_struct *work) 152 { 153 struct rt2x00_dev *rt2x00dev = 154 container_of(work, struct rt2x00_dev, autowakeup_work.work); 155 156 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 157 return; 158 159 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 160 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 161 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 162 } 163 164 /* 165 * Interrupt context handlers. 166 */ 167 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 168 struct ieee80211_vif *vif) 169 { 170 struct ieee80211_tx_control control = {}; 171 struct rt2x00_dev *rt2x00dev = data; 172 struct sk_buff *skb; 173 174 /* 175 * Only AP mode interfaces do broad- and multicast buffering 176 */ 177 if (vif->type != NL80211_IFTYPE_AP) 178 return; 179 180 /* 181 * Send out buffered broad- and multicast frames 182 */ 183 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 184 while (skb) { 185 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 186 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 187 } 188 } 189 190 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 191 struct ieee80211_vif *vif) 192 { 193 struct rt2x00_dev *rt2x00dev = data; 194 195 if (vif->type != NL80211_IFTYPE_AP && 196 vif->type != NL80211_IFTYPE_ADHOC && 197 vif->type != NL80211_IFTYPE_MESH_POINT) 198 return; 199 200 /* 201 * Update the beacon without locking. This is safe on PCI devices 202 * as they only update the beacon periodically here. This should 203 * never be called for USB devices. 204 */ 205 WARN_ON(rt2x00_is_usb(rt2x00dev)); 206 rt2x00queue_update_beacon(rt2x00dev, vif); 207 } 208 209 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 210 { 211 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 212 return; 213 214 /* send buffered bc/mc frames out for every bssid */ 215 ieee80211_iterate_active_interfaces_atomic( 216 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 217 rt2x00lib_bc_buffer_iter, rt2x00dev); 218 /* 219 * Devices with pre tbtt interrupt don't need to update the beacon 220 * here as they will fetch the next beacon directly prior to 221 * transmission. 222 */ 223 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 224 return; 225 226 /* fetch next beacon */ 227 ieee80211_iterate_active_interfaces_atomic( 228 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 229 rt2x00lib_beaconupdate_iter, rt2x00dev); 230 } 231 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 232 233 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 234 { 235 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 236 return; 237 238 /* fetch next beacon */ 239 ieee80211_iterate_active_interfaces_atomic( 240 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 241 rt2x00lib_beaconupdate_iter, rt2x00dev); 242 } 243 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 244 245 void rt2x00lib_dmastart(struct queue_entry *entry) 246 { 247 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 248 rt2x00queue_index_inc(entry, Q_INDEX); 249 } 250 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 251 252 void rt2x00lib_dmadone(struct queue_entry *entry) 253 { 254 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 255 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 256 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 257 } 258 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 259 260 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 261 { 262 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 263 struct ieee80211_bar *bar = (void *) entry->skb->data; 264 struct rt2x00_bar_list_entry *bar_entry; 265 int ret; 266 267 if (likely(!ieee80211_is_back_req(bar->frame_control))) 268 return 0; 269 270 /* 271 * Unlike all other frames, the status report for BARs does 272 * not directly come from the hardware as it is incapable of 273 * matching a BA to a previously send BAR. The hardware will 274 * report all BARs as if they weren't acked at all. 275 * 276 * Instead the RX-path will scan for incoming BAs and set the 277 * block_acked flag if it sees one that was likely caused by 278 * a BAR from us. 279 * 280 * Remove remaining BARs here and return their status for 281 * TX done processing. 282 */ 283 ret = 0; 284 rcu_read_lock(); 285 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 286 if (bar_entry->entry != entry) 287 continue; 288 289 spin_lock_bh(&rt2x00dev->bar_list_lock); 290 /* Return whether this BAR was blockacked or not */ 291 ret = bar_entry->block_acked; 292 /* Remove the BAR from our checklist */ 293 list_del_rcu(&bar_entry->list); 294 spin_unlock_bh(&rt2x00dev->bar_list_lock); 295 kfree_rcu(bar_entry, head); 296 297 break; 298 } 299 rcu_read_unlock(); 300 301 return ret; 302 } 303 304 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev, 305 struct ieee80211_tx_info *tx_info, 306 struct skb_frame_desc *skbdesc, 307 struct txdone_entry_desc *txdesc, 308 bool success) 309 { 310 u8 rate_idx, rate_flags, retry_rates; 311 int i; 312 313 rate_idx = skbdesc->tx_rate_idx; 314 rate_flags = skbdesc->tx_rate_flags; 315 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 316 (txdesc->retry + 1) : 1; 317 318 /* 319 * Initialize TX status 320 */ 321 memset(&tx_info->status, 0, sizeof(tx_info->status)); 322 tx_info->status.ack_signal = 0; 323 324 /* 325 * Frame was send with retries, hardware tried 326 * different rates to send out the frame, at each 327 * retry it lowered the rate 1 step except when the 328 * lowest rate was used. 329 */ 330 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 331 tx_info->status.rates[i].idx = rate_idx - i; 332 tx_info->status.rates[i].flags = rate_flags; 333 334 if (rate_idx - i == 0) { 335 /* 336 * The lowest rate (index 0) was used until the 337 * number of max retries was reached. 338 */ 339 tx_info->status.rates[i].count = retry_rates - i; 340 i++; 341 break; 342 } 343 tx_info->status.rates[i].count = 1; 344 } 345 if (i < (IEEE80211_TX_MAX_RATES - 1)) 346 tx_info->status.rates[i].idx = -1; /* terminate */ 347 348 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags)) 349 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK; 350 351 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 352 if (success) 353 tx_info->flags |= IEEE80211_TX_STAT_ACK; 354 else 355 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 356 } 357 358 /* 359 * Every single frame has it's own tx status, hence report 360 * every frame as ampdu of size 1. 361 * 362 * TODO: if we can find out how many frames were aggregated 363 * by the hw we could provide the real ampdu_len to mac80211 364 * which would allow the rc algorithm to better decide on 365 * which rates are suitable. 366 */ 367 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 368 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 369 tx_info->flags |= IEEE80211_TX_STAT_AMPDU | 370 IEEE80211_TX_CTL_AMPDU; 371 tx_info->status.ampdu_len = 1; 372 tx_info->status.ampdu_ack_len = success ? 1 : 0; 373 } 374 375 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 376 if (success) 377 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 378 else 379 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 380 } 381 } 382 383 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev, 384 struct queue_entry *entry) 385 { 386 /* 387 * Make this entry available for reuse. 388 */ 389 entry->skb = NULL; 390 entry->flags = 0; 391 392 rt2x00dev->ops->lib->clear_entry(entry); 393 394 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 395 396 /* 397 * If the data queue was below the threshold before the txdone 398 * handler we must make sure the packet queue in the mac80211 stack 399 * is reenabled when the txdone handler has finished. This has to be 400 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 401 * before it was stopped. 402 */ 403 spin_lock_bh(&entry->queue->tx_lock); 404 if (!rt2x00queue_threshold(entry->queue)) 405 rt2x00queue_unpause_queue(entry->queue); 406 spin_unlock_bh(&entry->queue->tx_lock); 407 } 408 409 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 410 struct txdone_entry_desc *txdesc) 411 { 412 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 413 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 414 struct ieee80211_tx_info txinfo = {}; 415 bool success; 416 417 /* 418 * Unmap the skb. 419 */ 420 rt2x00queue_unmap_skb(entry); 421 422 /* 423 * Signal that the TX descriptor is no longer in the skb. 424 */ 425 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 426 427 /* 428 * Send frame to debugfs immediately, after this call is completed 429 * we are going to overwrite the skb->cb array. 430 */ 431 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 432 433 /* 434 * Determine if the frame has been successfully transmitted and 435 * remove BARs from our check list while checking for their 436 * TX status. 437 */ 438 success = 439 rt2x00lib_txdone_bar_status(entry) || 440 test_bit(TXDONE_SUCCESS, &txdesc->flags); 441 442 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) { 443 /* 444 * Update TX statistics. 445 */ 446 rt2x00dev->link.qual.tx_success += success; 447 rt2x00dev->link.qual.tx_failed += !success; 448 449 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc, 450 success); 451 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo); 452 } 453 454 dev_kfree_skb_any(entry->skb); 455 rt2x00lib_clear_entry(rt2x00dev, entry); 456 } 457 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch); 458 459 void rt2x00lib_txdone(struct queue_entry *entry, 460 struct txdone_entry_desc *txdesc) 461 { 462 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 463 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 464 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 465 u8 skbdesc_flags = skbdesc->flags; 466 unsigned int header_length; 467 bool success; 468 469 /* 470 * Unmap the skb. 471 */ 472 rt2x00queue_unmap_skb(entry); 473 474 /* 475 * Remove the extra tx headroom from the skb. 476 */ 477 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 478 479 /* 480 * Signal that the TX descriptor is no longer in the skb. 481 */ 482 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 483 484 /* 485 * Determine the length of 802.11 header. 486 */ 487 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 488 489 /* 490 * Remove L2 padding which was added during 491 */ 492 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 493 rt2x00queue_remove_l2pad(entry->skb, header_length); 494 495 /* 496 * If the IV/EIV data was stripped from the frame before it was 497 * passed to the hardware, we should now reinsert it again because 498 * mac80211 will expect the same data to be present it the 499 * frame as it was passed to us. 500 */ 501 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 502 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 503 504 /* 505 * Send frame to debugfs immediately, after this call is completed 506 * we are going to overwrite the skb->cb array. 507 */ 508 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 509 510 /* 511 * Determine if the frame has been successfully transmitted and 512 * remove BARs from our check list while checking for their 513 * TX status. 514 */ 515 success = 516 rt2x00lib_txdone_bar_status(entry) || 517 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 518 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 519 520 /* 521 * Update TX statistics. 522 */ 523 rt2x00dev->link.qual.tx_success += success; 524 rt2x00dev->link.qual.tx_failed += !success; 525 526 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success); 527 528 /* 529 * Only send the status report to mac80211 when it's a frame 530 * that originated in mac80211. If this was a extra frame coming 531 * through a mac80211 library call (RTS/CTS) then we should not 532 * send the status report back. 533 */ 534 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 535 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 536 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 537 else 538 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 539 } else { 540 dev_kfree_skb_any(entry->skb); 541 } 542 543 rt2x00lib_clear_entry(rt2x00dev, entry); 544 } 545 EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 546 547 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 548 { 549 struct txdone_entry_desc txdesc; 550 551 txdesc.flags = 0; 552 __set_bit(status, &txdesc.flags); 553 txdesc.retry = 0; 554 555 rt2x00lib_txdone(entry, &txdesc); 556 } 557 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 558 559 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 560 { 561 struct ieee80211_mgmt *mgmt = (void *)data; 562 u8 *pos, *end; 563 564 pos = (u8 *)mgmt->u.beacon.variable; 565 end = data + len; 566 while (pos < end) { 567 if (pos + 2 + pos[1] > end) 568 return NULL; 569 570 if (pos[0] == ie) 571 return pos; 572 573 pos += 2 + pos[1]; 574 } 575 576 return NULL; 577 } 578 579 static void rt2x00lib_sleep(struct work_struct *work) 580 { 581 struct rt2x00_dev *rt2x00dev = 582 container_of(work, struct rt2x00_dev, sleep_work); 583 584 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 585 return; 586 587 /* 588 * Check again is powersaving is enabled, to prevent races from delayed 589 * work execution. 590 */ 591 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 592 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 593 IEEE80211_CONF_CHANGE_PS); 594 } 595 596 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 597 struct sk_buff *skb, 598 struct rxdone_entry_desc *rxdesc) 599 { 600 struct rt2x00_bar_list_entry *entry; 601 struct ieee80211_bar *ba = (void *)skb->data; 602 603 if (likely(!ieee80211_is_back(ba->frame_control))) 604 return; 605 606 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 607 return; 608 609 rcu_read_lock(); 610 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 611 612 if (ba->start_seq_num != entry->start_seq_num) 613 continue; 614 615 #define TID_CHECK(a, b) ( \ 616 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 617 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 618 619 if (!TID_CHECK(ba->control, entry->control)) 620 continue; 621 622 #undef TID_CHECK 623 624 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 625 continue; 626 627 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 628 continue; 629 630 /* Mark BAR since we received the according BA */ 631 spin_lock_bh(&rt2x00dev->bar_list_lock); 632 entry->block_acked = 1; 633 spin_unlock_bh(&rt2x00dev->bar_list_lock); 634 break; 635 } 636 rcu_read_unlock(); 637 638 } 639 640 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 641 struct sk_buff *skb, 642 struct rxdone_entry_desc *rxdesc) 643 { 644 struct ieee80211_hdr *hdr = (void *) skb->data; 645 struct ieee80211_tim_ie *tim_ie; 646 u8 *tim; 647 u8 tim_len; 648 bool cam; 649 650 /* If this is not a beacon, or if mac80211 has no powersaving 651 * configured, or if the device is already in powersaving mode 652 * we can exit now. */ 653 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 654 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 655 return; 656 657 /* min. beacon length + FCS_LEN */ 658 if (skb->len <= 40 + FCS_LEN) 659 return; 660 661 /* and only beacons from the associated BSSID, please */ 662 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 663 !rt2x00dev->aid) 664 return; 665 666 rt2x00dev->last_beacon = jiffies; 667 668 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 669 if (!tim) 670 return; 671 672 if (tim[1] < sizeof(*tim_ie)) 673 return; 674 675 tim_len = tim[1]; 676 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 677 678 /* Check whenever the PHY can be turned off again. */ 679 680 /* 1. What about buffered unicast traffic for our AID? */ 681 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 682 683 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 684 cam |= (tim_ie->bitmap_ctrl & 0x01); 685 686 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 687 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 688 } 689 690 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 691 struct rxdone_entry_desc *rxdesc) 692 { 693 struct ieee80211_supported_band *sband; 694 const struct rt2x00_rate *rate; 695 unsigned int i; 696 int signal = rxdesc->signal; 697 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 698 699 switch (rxdesc->rate_mode) { 700 case RATE_MODE_CCK: 701 case RATE_MODE_OFDM: 702 /* 703 * For non-HT rates the MCS value needs to contain the 704 * actually used rate modulation (CCK or OFDM). 705 */ 706 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 707 signal = RATE_MCS(rxdesc->rate_mode, signal); 708 709 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 710 for (i = 0; i < sband->n_bitrates; i++) { 711 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 712 if (((type == RXDONE_SIGNAL_PLCP) && 713 (rate->plcp == signal)) || 714 ((type == RXDONE_SIGNAL_BITRATE) && 715 (rate->bitrate == signal)) || 716 ((type == RXDONE_SIGNAL_MCS) && 717 (rate->mcs == signal))) { 718 return i; 719 } 720 } 721 break; 722 case RATE_MODE_HT_MIX: 723 case RATE_MODE_HT_GREENFIELD: 724 if (signal >= 0 && signal <= 76) 725 return signal; 726 break; 727 default: 728 break; 729 } 730 731 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 732 rxdesc->rate_mode, signal, type); 733 return 0; 734 } 735 736 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 737 { 738 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 739 struct rxdone_entry_desc rxdesc; 740 struct sk_buff *skb; 741 struct ieee80211_rx_status *rx_status; 742 unsigned int header_length; 743 int rate_idx; 744 745 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 746 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 747 goto submit_entry; 748 749 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 750 goto submit_entry; 751 752 /* 753 * Allocate a new sk_buffer. If no new buffer available, drop the 754 * received frame and reuse the existing buffer. 755 */ 756 skb = rt2x00queue_alloc_rxskb(entry, gfp); 757 if (!skb) 758 goto submit_entry; 759 760 /* 761 * Unmap the skb. 762 */ 763 rt2x00queue_unmap_skb(entry); 764 765 /* 766 * Extract the RXD details. 767 */ 768 memset(&rxdesc, 0, sizeof(rxdesc)); 769 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 770 771 /* 772 * Check for valid size in case we get corrupted descriptor from 773 * hardware. 774 */ 775 if (unlikely(rxdesc.size == 0 || 776 rxdesc.size > entry->queue->data_size)) { 777 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 778 rxdesc.size, entry->queue->data_size); 779 dev_kfree_skb(entry->skb); 780 goto renew_skb; 781 } 782 783 /* 784 * The data behind the ieee80211 header must be 785 * aligned on a 4 byte boundary. 786 */ 787 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 788 789 /* 790 * Hardware might have stripped the IV/EIV/ICV data, 791 * in that case it is possible that the data was 792 * provided separately (through hardware descriptor) 793 * in which case we should reinsert the data into the frame. 794 */ 795 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 796 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 797 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 798 &rxdesc); 799 else if (header_length && 800 (rxdesc.size > header_length) && 801 (rxdesc.dev_flags & RXDONE_L2PAD)) 802 rt2x00queue_remove_l2pad(entry->skb, header_length); 803 804 /* Trim buffer to correct size */ 805 skb_trim(entry->skb, rxdesc.size); 806 807 /* 808 * Translate the signal to the correct bitrate index. 809 */ 810 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 811 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 812 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 813 rxdesc.encoding = RX_ENC_HT; 814 815 /* 816 * Check if this is a beacon, and more frames have been 817 * buffered while we were in powersaving mode. 818 */ 819 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 820 821 /* 822 * Check for incoming BlockAcks to match to the BlockAckReqs 823 * we've send out. 824 */ 825 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 826 827 /* 828 * Update extra components 829 */ 830 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 831 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 832 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry); 833 834 /* 835 * Initialize RX status information, and send frame 836 * to mac80211. 837 */ 838 rx_status = IEEE80211_SKB_RXCB(entry->skb); 839 840 /* Ensure that all fields of rx_status are initialized 841 * properly. The skb->cb array was used for driver 842 * specific informations, so rx_status might contain 843 * garbage. 844 */ 845 memset(rx_status, 0, sizeof(*rx_status)); 846 847 rx_status->mactime = rxdesc.timestamp; 848 rx_status->band = rt2x00dev->curr_band; 849 rx_status->freq = rt2x00dev->curr_freq; 850 rx_status->rate_idx = rate_idx; 851 rx_status->signal = rxdesc.rssi; 852 rx_status->flag = rxdesc.flags; 853 rx_status->enc_flags = rxdesc.enc_flags; 854 rx_status->encoding = rxdesc.encoding; 855 rx_status->bw = rxdesc.bw; 856 rx_status->antenna = rt2x00dev->link.ant.active.rx; 857 858 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 859 860 renew_skb: 861 /* 862 * Replace the skb with the freshly allocated one. 863 */ 864 entry->skb = skb; 865 866 submit_entry: 867 entry->flags = 0; 868 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 869 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 870 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 871 rt2x00dev->ops->lib->clear_entry(entry); 872 } 873 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 874 875 /* 876 * Driver initialization handlers. 877 */ 878 const struct rt2x00_rate rt2x00_supported_rates[12] = { 879 { 880 .flags = DEV_RATE_CCK, 881 .bitrate = 10, 882 .ratemask = BIT(0), 883 .plcp = 0x00, 884 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 885 }, 886 { 887 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 888 .bitrate = 20, 889 .ratemask = BIT(1), 890 .plcp = 0x01, 891 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 892 }, 893 { 894 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 895 .bitrate = 55, 896 .ratemask = BIT(2), 897 .plcp = 0x02, 898 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 899 }, 900 { 901 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 902 .bitrate = 110, 903 .ratemask = BIT(3), 904 .plcp = 0x03, 905 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 906 }, 907 { 908 .flags = DEV_RATE_OFDM, 909 .bitrate = 60, 910 .ratemask = BIT(4), 911 .plcp = 0x0b, 912 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 913 }, 914 { 915 .flags = DEV_RATE_OFDM, 916 .bitrate = 90, 917 .ratemask = BIT(5), 918 .plcp = 0x0f, 919 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 920 }, 921 { 922 .flags = DEV_RATE_OFDM, 923 .bitrate = 120, 924 .ratemask = BIT(6), 925 .plcp = 0x0a, 926 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 927 }, 928 { 929 .flags = DEV_RATE_OFDM, 930 .bitrate = 180, 931 .ratemask = BIT(7), 932 .plcp = 0x0e, 933 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 934 }, 935 { 936 .flags = DEV_RATE_OFDM, 937 .bitrate = 240, 938 .ratemask = BIT(8), 939 .plcp = 0x09, 940 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 941 }, 942 { 943 .flags = DEV_RATE_OFDM, 944 .bitrate = 360, 945 .ratemask = BIT(9), 946 .plcp = 0x0d, 947 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 948 }, 949 { 950 .flags = DEV_RATE_OFDM, 951 .bitrate = 480, 952 .ratemask = BIT(10), 953 .plcp = 0x08, 954 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 955 }, 956 { 957 .flags = DEV_RATE_OFDM, 958 .bitrate = 540, 959 .ratemask = BIT(11), 960 .plcp = 0x0c, 961 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 962 }, 963 }; 964 965 static void rt2x00lib_channel(struct ieee80211_channel *entry, 966 const int channel, const int tx_power, 967 const int value) 968 { 969 /* XXX: this assumption about the band is wrong for 802.11j */ 970 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 971 entry->center_freq = ieee80211_channel_to_frequency(channel, 972 entry->band); 973 entry->hw_value = value; 974 entry->max_power = tx_power; 975 entry->max_antenna_gain = 0xff; 976 } 977 978 static void rt2x00lib_rate(struct ieee80211_rate *entry, 979 const u16 index, const struct rt2x00_rate *rate) 980 { 981 entry->flags = 0; 982 entry->bitrate = rate->bitrate; 983 entry->hw_value = index; 984 entry->hw_value_short = index; 985 986 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 987 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 988 } 989 990 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) 991 { 992 of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr); 993 994 if (!is_valid_ether_addr(eeprom_mac_addr)) { 995 eth_random_addr(eeprom_mac_addr); 996 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); 997 } 998 } 999 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); 1000 1001 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 1002 struct hw_mode_spec *spec) 1003 { 1004 struct ieee80211_hw *hw = rt2x00dev->hw; 1005 struct ieee80211_channel *channels; 1006 struct ieee80211_rate *rates; 1007 unsigned int num_rates; 1008 unsigned int i; 1009 1010 num_rates = 0; 1011 if (spec->supported_rates & SUPPORT_RATE_CCK) 1012 num_rates += 4; 1013 if (spec->supported_rates & SUPPORT_RATE_OFDM) 1014 num_rates += 8; 1015 1016 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 1017 if (!channels) 1018 return -ENOMEM; 1019 1020 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 1021 if (!rates) 1022 goto exit_free_channels; 1023 1024 /* 1025 * Initialize Rate list. 1026 */ 1027 for (i = 0; i < num_rates; i++) 1028 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 1029 1030 /* 1031 * Initialize Channel list. 1032 */ 1033 for (i = 0; i < spec->num_channels; i++) { 1034 rt2x00lib_channel(&channels[i], 1035 spec->channels[i].channel, 1036 spec->channels_info[i].max_power, i); 1037 } 1038 1039 /* 1040 * Intitialize 802.11b, 802.11g 1041 * Rates: CCK, OFDM. 1042 * Channels: 2.4 GHz 1043 */ 1044 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 1045 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 1046 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 1047 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 1048 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 1049 hw->wiphy->bands[NL80211_BAND_2GHZ] = 1050 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 1051 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 1052 &spec->ht, sizeof(spec->ht)); 1053 } 1054 1055 /* 1056 * Intitialize 802.11a 1057 * Rates: OFDM. 1058 * Channels: OFDM, UNII, HiperLAN2. 1059 */ 1060 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 1061 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 1062 spec->num_channels - 14; 1063 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 1064 num_rates - 4; 1065 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 1066 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1067 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1068 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1069 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1070 &spec->ht, sizeof(spec->ht)); 1071 } 1072 1073 return 0; 1074 1075 exit_free_channels: 1076 kfree(channels); 1077 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1078 return -ENOMEM; 1079 } 1080 1081 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1082 { 1083 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1084 ieee80211_unregister_hw(rt2x00dev->hw); 1085 1086 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1087 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1088 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1089 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1090 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1091 } 1092 1093 kfree(rt2x00dev->spec.channels_info); 1094 } 1095 1096 static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = { 1097 { .throughput = 0 * 1024, .blink_time = 334 }, 1098 { .throughput = 1 * 1024, .blink_time = 260 }, 1099 { .throughput = 2 * 1024, .blink_time = 220 }, 1100 { .throughput = 5 * 1024, .blink_time = 190 }, 1101 { .throughput = 10 * 1024, .blink_time = 170 }, 1102 { .throughput = 25 * 1024, .blink_time = 150 }, 1103 { .throughput = 54 * 1024, .blink_time = 130 }, 1104 { .throughput = 120 * 1024, .blink_time = 110 }, 1105 { .throughput = 265 * 1024, .blink_time = 80 }, 1106 { .throughput = 586 * 1024, .blink_time = 50 }, 1107 }; 1108 1109 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1110 { 1111 struct hw_mode_spec *spec = &rt2x00dev->spec; 1112 int status; 1113 1114 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1115 return 0; 1116 1117 /* 1118 * Initialize HW modes. 1119 */ 1120 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1121 if (status) 1122 return status; 1123 1124 /* 1125 * Initialize HW fields. 1126 */ 1127 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1128 1129 /* 1130 * Initialize extra TX headroom required. 1131 */ 1132 rt2x00dev->hw->extra_tx_headroom = 1133 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1134 rt2x00dev->extra_tx_headroom); 1135 1136 /* 1137 * Take TX headroom required for alignment into account. 1138 */ 1139 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1140 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1141 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1142 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1143 1144 /* 1145 * Tell mac80211 about the size of our private STA structure. 1146 */ 1147 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1148 1149 /* 1150 * Allocate tx status FIFO for driver use. 1151 */ 1152 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1153 /* 1154 * Allocate the txstatus fifo. In the worst case the tx 1155 * status fifo has to hold the tx status of all entries 1156 * in all tx queues. Hence, calculate the kfifo size as 1157 * tx_queues * entry_num and round up to the nearest 1158 * power of 2. 1159 */ 1160 int kfifo_size = 1161 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1162 rt2x00dev->tx->limit * 1163 sizeof(u32)); 1164 1165 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1166 GFP_KERNEL); 1167 if (status) 1168 return status; 1169 } 1170 1171 /* 1172 * Initialize tasklets if used by the driver. Tasklets are 1173 * disabled until the interrupts are turned on. The driver 1174 * has to handle that. 1175 */ 1176 #define RT2X00_TASKLET_INIT(taskletname) \ 1177 if (rt2x00dev->ops->lib->taskletname) { \ 1178 tasklet_setup(&rt2x00dev->taskletname, \ 1179 rt2x00dev->ops->lib->taskletname); \ 1180 } 1181 1182 RT2X00_TASKLET_INIT(txstatus_tasklet); 1183 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1184 RT2X00_TASKLET_INIT(tbtt_tasklet); 1185 RT2X00_TASKLET_INIT(rxdone_tasklet); 1186 RT2X00_TASKLET_INIT(autowake_tasklet); 1187 1188 #undef RT2X00_TASKLET_INIT 1189 1190 ieee80211_create_tpt_led_trigger(rt2x00dev->hw, 1191 IEEE80211_TPT_LEDTRIG_FL_RADIO, 1192 rt2x00_tpt_blink, 1193 ARRAY_SIZE(rt2x00_tpt_blink)); 1194 1195 /* 1196 * Register HW. 1197 */ 1198 status = ieee80211_register_hw(rt2x00dev->hw); 1199 if (status) 1200 return status; 1201 1202 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1203 1204 return 0; 1205 } 1206 1207 /* 1208 * Initialization/uninitialization handlers. 1209 */ 1210 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1211 { 1212 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1213 return; 1214 1215 /* 1216 * Stop rfkill polling. 1217 */ 1218 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1219 rt2x00rfkill_unregister(rt2x00dev); 1220 1221 /* 1222 * Allow the HW to uninitialize. 1223 */ 1224 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1225 1226 /* 1227 * Free allocated queue entries. 1228 */ 1229 rt2x00queue_uninitialize(rt2x00dev); 1230 } 1231 1232 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1233 { 1234 int status; 1235 1236 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1237 return 0; 1238 1239 /* 1240 * Allocate all queue entries. 1241 */ 1242 status = rt2x00queue_initialize(rt2x00dev); 1243 if (status) 1244 return status; 1245 1246 /* 1247 * Initialize the device. 1248 */ 1249 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1250 if (status) { 1251 rt2x00queue_uninitialize(rt2x00dev); 1252 return status; 1253 } 1254 1255 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1256 1257 /* 1258 * Start rfkill polling. 1259 */ 1260 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1261 rt2x00rfkill_register(rt2x00dev); 1262 1263 return 0; 1264 } 1265 1266 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1267 { 1268 int retval = 0; 1269 1270 /* 1271 * If this is the first interface which is added, 1272 * we should load the firmware now. 1273 */ 1274 retval = rt2x00lib_load_firmware(rt2x00dev); 1275 if (retval) 1276 goto out; 1277 1278 /* 1279 * Initialize the device. 1280 */ 1281 retval = rt2x00lib_initialize(rt2x00dev); 1282 if (retval) 1283 goto out; 1284 1285 rt2x00dev->intf_ap_count = 0; 1286 rt2x00dev->intf_sta_count = 0; 1287 rt2x00dev->intf_associated = 0; 1288 1289 /* Enable the radio */ 1290 retval = rt2x00lib_enable_radio(rt2x00dev); 1291 if (retval) 1292 goto out; 1293 1294 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1295 1296 out: 1297 return retval; 1298 } 1299 1300 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1301 { 1302 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1303 return; 1304 1305 /* 1306 * Perhaps we can add something smarter here, 1307 * but for now just disabling the radio should do. 1308 */ 1309 rt2x00lib_disable_radio(rt2x00dev); 1310 1311 rt2x00dev->intf_ap_count = 0; 1312 rt2x00dev->intf_sta_count = 0; 1313 rt2x00dev->intf_associated = 0; 1314 } 1315 1316 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1317 { 1318 struct ieee80211_iface_limit *if_limit; 1319 struct ieee80211_iface_combination *if_combination; 1320 1321 if (rt2x00dev->ops->max_ap_intf < 2) 1322 return; 1323 1324 /* 1325 * Build up AP interface limits structure. 1326 */ 1327 if_limit = &rt2x00dev->if_limits_ap; 1328 if_limit->max = rt2x00dev->ops->max_ap_intf; 1329 if_limit->types = BIT(NL80211_IFTYPE_AP); 1330 #ifdef CONFIG_MAC80211_MESH 1331 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1332 #endif 1333 1334 /* 1335 * Build up AP interface combinations structure. 1336 */ 1337 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1338 if_combination->limits = if_limit; 1339 if_combination->n_limits = 1; 1340 if_combination->max_interfaces = if_limit->max; 1341 if_combination->num_different_channels = 1; 1342 1343 /* 1344 * Finally, specify the possible combinations to mac80211. 1345 */ 1346 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1347 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1348 } 1349 1350 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1351 { 1352 if (WARN_ON(!rt2x00dev->tx)) 1353 return 0; 1354 1355 if (rt2x00_is_usb(rt2x00dev)) 1356 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1357 1358 return rt2x00dev->tx[0].winfo_size; 1359 } 1360 1361 /* 1362 * driver allocation handlers. 1363 */ 1364 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1365 { 1366 int retval = -ENOMEM; 1367 1368 /* 1369 * Set possible interface combinations. 1370 */ 1371 rt2x00lib_set_if_combinations(rt2x00dev); 1372 1373 /* 1374 * Allocate the driver data memory, if necessary. 1375 */ 1376 if (rt2x00dev->ops->drv_data_size > 0) { 1377 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1378 GFP_KERNEL); 1379 if (!rt2x00dev->drv_data) { 1380 retval = -ENOMEM; 1381 goto exit; 1382 } 1383 } 1384 1385 spin_lock_init(&rt2x00dev->irqmask_lock); 1386 mutex_init(&rt2x00dev->csr_mutex); 1387 mutex_init(&rt2x00dev->conf_mutex); 1388 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1389 spin_lock_init(&rt2x00dev->bar_list_lock); 1390 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC, 1391 HRTIMER_MODE_REL); 1392 1393 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1394 1395 /* 1396 * Make room for rt2x00_intf inside the per-interface 1397 * structure ieee80211_vif. 1398 */ 1399 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1400 1401 /* 1402 * rt2x00 devices can only use the last n bits of the MAC address 1403 * for virtual interfaces. 1404 */ 1405 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1406 (rt2x00dev->ops->max_ap_intf - 1); 1407 1408 /* 1409 * Initialize work. 1410 */ 1411 rt2x00dev->workqueue = 1412 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1413 if (!rt2x00dev->workqueue) { 1414 retval = -ENOMEM; 1415 goto exit; 1416 } 1417 1418 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1419 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1420 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1421 1422 /* 1423 * Let the driver probe the device to detect the capabilities. 1424 */ 1425 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1426 if (retval) { 1427 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1428 goto exit; 1429 } 1430 1431 /* 1432 * Allocate queue array. 1433 */ 1434 retval = rt2x00queue_allocate(rt2x00dev); 1435 if (retval) 1436 goto exit; 1437 1438 /* Cache TX headroom value */ 1439 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1440 1441 /* 1442 * Determine which operating modes are supported, all modes 1443 * which require beaconing, depend on the availability of 1444 * beacon entries. 1445 */ 1446 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1447 if (rt2x00dev->bcn->limit > 0) 1448 rt2x00dev->hw->wiphy->interface_modes |= 1449 BIT(NL80211_IFTYPE_ADHOC) | 1450 #ifdef CONFIG_MAC80211_MESH 1451 BIT(NL80211_IFTYPE_MESH_POINT) | 1452 #endif 1453 BIT(NL80211_IFTYPE_AP); 1454 1455 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1456 1457 wiphy_ext_feature_set(rt2x00dev->hw->wiphy, 1458 NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1459 1460 /* 1461 * Initialize ieee80211 structure. 1462 */ 1463 retval = rt2x00lib_probe_hw(rt2x00dev); 1464 if (retval) { 1465 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1466 goto exit; 1467 } 1468 1469 /* 1470 * Register extra components. 1471 */ 1472 rt2x00link_register(rt2x00dev); 1473 rt2x00leds_register(rt2x00dev); 1474 rt2x00debug_register(rt2x00dev); 1475 1476 /* 1477 * Start rfkill polling. 1478 */ 1479 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1480 rt2x00rfkill_register(rt2x00dev); 1481 1482 return 0; 1483 1484 exit: 1485 rt2x00lib_remove_dev(rt2x00dev); 1486 1487 return retval; 1488 } 1489 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1490 1491 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1492 { 1493 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1494 1495 /* 1496 * Stop rfkill polling. 1497 */ 1498 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1499 rt2x00rfkill_unregister(rt2x00dev); 1500 1501 /* 1502 * Disable radio. 1503 */ 1504 rt2x00lib_disable_radio(rt2x00dev); 1505 1506 /* 1507 * Stop all work. 1508 */ 1509 cancel_work_sync(&rt2x00dev->intf_work); 1510 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1511 cancel_work_sync(&rt2x00dev->sleep_work); 1512 1513 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1514 1515 /* 1516 * Kill the tx status tasklet. 1517 */ 1518 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1519 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1520 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1521 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1522 tasklet_kill(&rt2x00dev->autowake_tasklet); 1523 1524 /* 1525 * Uninitialize device. 1526 */ 1527 rt2x00lib_uninitialize(rt2x00dev); 1528 1529 if (rt2x00dev->workqueue) 1530 destroy_workqueue(rt2x00dev->workqueue); 1531 1532 /* 1533 * Free the tx status fifo. 1534 */ 1535 kfifo_free(&rt2x00dev->txstatus_fifo); 1536 1537 /* 1538 * Free extra components 1539 */ 1540 rt2x00debug_deregister(rt2x00dev); 1541 rt2x00leds_unregister(rt2x00dev); 1542 1543 /* 1544 * Free ieee80211_hw memory. 1545 */ 1546 rt2x00lib_remove_hw(rt2x00dev); 1547 1548 /* 1549 * Free firmware image. 1550 */ 1551 rt2x00lib_free_firmware(rt2x00dev); 1552 1553 /* 1554 * Free queue structures. 1555 */ 1556 rt2x00queue_free(rt2x00dev); 1557 1558 /* 1559 * Free the driver data. 1560 */ 1561 kfree(rt2x00dev->drv_data); 1562 } 1563 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1564 1565 /* 1566 * Device state handlers 1567 */ 1568 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev) 1569 { 1570 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1571 1572 /* 1573 * Prevent mac80211 from accessing driver while suspended. 1574 */ 1575 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1576 return 0; 1577 1578 /* 1579 * Cleanup as much as possible. 1580 */ 1581 rt2x00lib_uninitialize(rt2x00dev); 1582 1583 /* 1584 * Suspend/disable extra components. 1585 */ 1586 rt2x00leds_suspend(rt2x00dev); 1587 rt2x00debug_deregister(rt2x00dev); 1588 1589 /* 1590 * Set device mode to sleep for power management, 1591 * on some hardware this call seems to consistently fail. 1592 * From the specifications it is hard to tell why it fails, 1593 * and if this is a "bad thing". 1594 * Overall it is safe to just ignore the failure and 1595 * continue suspending. The only downside is that the 1596 * device will not be in optimal power save mode, but with 1597 * the radio and the other components already disabled the 1598 * device is as good as disabled. 1599 */ 1600 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1601 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1602 1603 return 0; 1604 } 1605 EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1606 1607 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1608 { 1609 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1610 1611 /* 1612 * Restore/enable extra components. 1613 */ 1614 rt2x00debug_register(rt2x00dev); 1615 rt2x00leds_resume(rt2x00dev); 1616 1617 /* 1618 * We are ready again to receive requests from mac80211. 1619 */ 1620 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1621 1622 return 0; 1623 } 1624 EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1625 1626 /* 1627 * rt2x00lib module information. 1628 */ 1629 MODULE_AUTHOR(DRV_PROJECT); 1630 MODULE_VERSION(DRV_VERSION); 1631 MODULE_DESCRIPTION("rt2x00 library"); 1632 MODULE_LICENSE("GPL"); 1633