1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 /* 21 Module: rt2x00lib 22 Abstract: rt2x00 generic device routines. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/log2.h> 29 #include <linux/of.h> 30 #include <linux/of_net.h> 31 32 #include "rt2x00.h" 33 #include "rt2x00lib.h" 34 35 /* 36 * Utility functions. 37 */ 38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40 { 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48 } 49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51 /* 52 * Radio control handlers. 53 */ 54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55 { 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 91 /* 92 * Start watchdog monitoring. 93 */ 94 rt2x00link_start_watchdog(rt2x00dev); 95 96 return 0; 97 } 98 99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 100 { 101 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 102 return; 103 104 /* 105 * Stop watchdog monitoring. 106 */ 107 rt2x00link_stop_watchdog(rt2x00dev); 108 109 /* 110 * Stop all queues 111 */ 112 rt2x00link_stop_tuner(rt2x00dev); 113 rt2x00queue_stop_queues(rt2x00dev); 114 rt2x00queue_flush_queues(rt2x00dev, true); 115 116 /* 117 * Disable radio. 118 */ 119 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 120 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 121 rt2x00led_led_activity(rt2x00dev, false); 122 rt2x00leds_led_radio(rt2x00dev, false); 123 } 124 125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 126 struct ieee80211_vif *vif) 127 { 128 struct rt2x00_dev *rt2x00dev = data; 129 struct rt2x00_intf *intf = vif_to_intf(vif); 130 131 /* 132 * It is possible the radio was disabled while the work had been 133 * scheduled. If that happens we should return here immediately, 134 * note that in the spinlock protected area above the delayed_flags 135 * have been cleared correctly. 136 */ 137 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 138 return; 139 140 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 141 mutex_lock(&intf->beacon_skb_mutex); 142 rt2x00queue_update_beacon(rt2x00dev, vif); 143 mutex_unlock(&intf->beacon_skb_mutex); 144 } 145 } 146 147 static void rt2x00lib_intf_scheduled(struct work_struct *work) 148 { 149 struct rt2x00_dev *rt2x00dev = 150 container_of(work, struct rt2x00_dev, intf_work); 151 152 /* 153 * Iterate over each interface and perform the 154 * requested configurations. 155 */ 156 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 157 IEEE80211_IFACE_ITER_RESUME_ALL, 158 rt2x00lib_intf_scheduled_iter, 159 rt2x00dev); 160 } 161 162 static void rt2x00lib_autowakeup(struct work_struct *work) 163 { 164 struct rt2x00_dev *rt2x00dev = 165 container_of(work, struct rt2x00_dev, autowakeup_work.work); 166 167 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 168 return; 169 170 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 171 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 172 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 173 } 174 175 /* 176 * Interrupt context handlers. 177 */ 178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 179 struct ieee80211_vif *vif) 180 { 181 struct ieee80211_tx_control control = {}; 182 struct rt2x00_dev *rt2x00dev = data; 183 struct sk_buff *skb; 184 185 /* 186 * Only AP mode interfaces do broad- and multicast buffering 187 */ 188 if (vif->type != NL80211_IFTYPE_AP) 189 return; 190 191 /* 192 * Send out buffered broad- and multicast frames 193 */ 194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 195 while (skb) { 196 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 197 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 198 } 199 } 200 201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 202 struct ieee80211_vif *vif) 203 { 204 struct rt2x00_dev *rt2x00dev = data; 205 206 if (vif->type != NL80211_IFTYPE_AP && 207 vif->type != NL80211_IFTYPE_ADHOC && 208 vif->type != NL80211_IFTYPE_MESH_POINT && 209 vif->type != NL80211_IFTYPE_WDS) 210 return; 211 212 /* 213 * Update the beacon without locking. This is safe on PCI devices 214 * as they only update the beacon periodically here. This should 215 * never be called for USB devices. 216 */ 217 WARN_ON(rt2x00_is_usb(rt2x00dev)); 218 rt2x00queue_update_beacon(rt2x00dev, vif); 219 } 220 221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 222 { 223 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 224 return; 225 226 /* send buffered bc/mc frames out for every bssid */ 227 ieee80211_iterate_active_interfaces_atomic( 228 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 229 rt2x00lib_bc_buffer_iter, rt2x00dev); 230 /* 231 * Devices with pre tbtt interrupt don't need to update the beacon 232 * here as they will fetch the next beacon directly prior to 233 * transmission. 234 */ 235 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 236 return; 237 238 /* fetch next beacon */ 239 ieee80211_iterate_active_interfaces_atomic( 240 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 241 rt2x00lib_beaconupdate_iter, rt2x00dev); 242 } 243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 244 245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 246 { 247 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 248 return; 249 250 /* fetch next beacon */ 251 ieee80211_iterate_active_interfaces_atomic( 252 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 253 rt2x00lib_beaconupdate_iter, rt2x00dev); 254 } 255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 256 257 void rt2x00lib_dmastart(struct queue_entry *entry) 258 { 259 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 260 rt2x00queue_index_inc(entry, Q_INDEX); 261 } 262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 263 264 void rt2x00lib_dmadone(struct queue_entry *entry) 265 { 266 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 267 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 268 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 269 } 270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 271 272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 273 { 274 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 275 struct ieee80211_bar *bar = (void *) entry->skb->data; 276 struct rt2x00_bar_list_entry *bar_entry; 277 int ret; 278 279 if (likely(!ieee80211_is_back_req(bar->frame_control))) 280 return 0; 281 282 /* 283 * Unlike all other frames, the status report for BARs does 284 * not directly come from the hardware as it is incapable of 285 * matching a BA to a previously send BAR. The hardware will 286 * report all BARs as if they weren't acked at all. 287 * 288 * Instead the RX-path will scan for incoming BAs and set the 289 * block_acked flag if it sees one that was likely caused by 290 * a BAR from us. 291 * 292 * Remove remaining BARs here and return their status for 293 * TX done processing. 294 */ 295 ret = 0; 296 rcu_read_lock(); 297 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 298 if (bar_entry->entry != entry) 299 continue; 300 301 spin_lock_bh(&rt2x00dev->bar_list_lock); 302 /* Return whether this BAR was blockacked or not */ 303 ret = bar_entry->block_acked; 304 /* Remove the BAR from our checklist */ 305 list_del_rcu(&bar_entry->list); 306 spin_unlock_bh(&rt2x00dev->bar_list_lock); 307 kfree_rcu(bar_entry, head); 308 309 break; 310 } 311 rcu_read_unlock(); 312 313 return ret; 314 } 315 316 void rt2x00lib_txdone(struct queue_entry *entry, 317 struct txdone_entry_desc *txdesc) 318 { 319 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 320 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 321 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 322 unsigned int header_length, i; 323 u8 rate_idx, rate_flags, retry_rates; 324 u8 skbdesc_flags = skbdesc->flags; 325 bool success; 326 327 /* 328 * Unmap the skb. 329 */ 330 rt2x00queue_unmap_skb(entry); 331 332 /* 333 * Remove the extra tx headroom from the skb. 334 */ 335 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 336 337 /* 338 * Signal that the TX descriptor is no longer in the skb. 339 */ 340 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 341 342 /* 343 * Determine the length of 802.11 header. 344 */ 345 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 346 347 /* 348 * Remove L2 padding which was added during 349 */ 350 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 351 rt2x00queue_remove_l2pad(entry->skb, header_length); 352 353 /* 354 * If the IV/EIV data was stripped from the frame before it was 355 * passed to the hardware, we should now reinsert it again because 356 * mac80211 will expect the same data to be present it the 357 * frame as it was passed to us. 358 */ 359 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 360 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 361 362 /* 363 * Send frame to debugfs immediately, after this call is completed 364 * we are going to overwrite the skb->cb array. 365 */ 366 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 367 368 /* 369 * Determine if the frame has been successfully transmitted and 370 * remove BARs from our check list while checking for their 371 * TX status. 372 */ 373 success = 374 rt2x00lib_txdone_bar_status(entry) || 375 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 376 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 377 378 /* 379 * Update TX statistics. 380 */ 381 rt2x00dev->link.qual.tx_success += success; 382 rt2x00dev->link.qual.tx_failed += !success; 383 384 rate_idx = skbdesc->tx_rate_idx; 385 rate_flags = skbdesc->tx_rate_flags; 386 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 387 (txdesc->retry + 1) : 1; 388 389 /* 390 * Initialize TX status 391 */ 392 memset(&tx_info->status, 0, sizeof(tx_info->status)); 393 tx_info->status.ack_signal = 0; 394 395 /* 396 * Frame was send with retries, hardware tried 397 * different rates to send out the frame, at each 398 * retry it lowered the rate 1 step except when the 399 * lowest rate was used. 400 */ 401 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 402 tx_info->status.rates[i].idx = rate_idx - i; 403 tx_info->status.rates[i].flags = rate_flags; 404 405 if (rate_idx - i == 0) { 406 /* 407 * The lowest rate (index 0) was used until the 408 * number of max retries was reached. 409 */ 410 tx_info->status.rates[i].count = retry_rates - i; 411 i++; 412 break; 413 } 414 tx_info->status.rates[i].count = 1; 415 } 416 if (i < (IEEE80211_TX_MAX_RATES - 1)) 417 tx_info->status.rates[i].idx = -1; /* terminate */ 418 419 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 420 if (success) 421 tx_info->flags |= IEEE80211_TX_STAT_ACK; 422 else 423 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 424 } 425 426 /* 427 * Every single frame has it's own tx status, hence report 428 * every frame as ampdu of size 1. 429 * 430 * TODO: if we can find out how many frames were aggregated 431 * by the hw we could provide the real ampdu_len to mac80211 432 * which would allow the rc algorithm to better decide on 433 * which rates are suitable. 434 */ 435 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 436 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 437 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 438 tx_info->status.ampdu_len = 1; 439 tx_info->status.ampdu_ack_len = success ? 1 : 0; 440 441 if (!success) 442 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 443 } 444 445 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 446 if (success) 447 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 448 else 449 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 450 } 451 452 /* 453 * Only send the status report to mac80211 when it's a frame 454 * that originated in mac80211. If this was a extra frame coming 455 * through a mac80211 library call (RTS/CTS) then we should not 456 * send the status report back. 457 */ 458 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 459 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 460 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 461 else 462 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 463 } else 464 dev_kfree_skb_any(entry->skb); 465 466 /* 467 * Make this entry available for reuse. 468 */ 469 entry->skb = NULL; 470 entry->flags = 0; 471 472 rt2x00dev->ops->lib->clear_entry(entry); 473 474 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 475 476 /* 477 * If the data queue was below the threshold before the txdone 478 * handler we must make sure the packet queue in the mac80211 stack 479 * is reenabled when the txdone handler has finished. This has to be 480 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 481 * before it was stopped. 482 */ 483 spin_lock_bh(&entry->queue->tx_lock); 484 if (!rt2x00queue_threshold(entry->queue)) 485 rt2x00queue_unpause_queue(entry->queue); 486 spin_unlock_bh(&entry->queue->tx_lock); 487 } 488 EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 489 490 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 491 { 492 struct txdone_entry_desc txdesc; 493 494 txdesc.flags = 0; 495 __set_bit(status, &txdesc.flags); 496 txdesc.retry = 0; 497 498 rt2x00lib_txdone(entry, &txdesc); 499 } 500 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 501 502 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 503 { 504 struct ieee80211_mgmt *mgmt = (void *)data; 505 u8 *pos, *end; 506 507 pos = (u8 *)mgmt->u.beacon.variable; 508 end = data + len; 509 while (pos < end) { 510 if (pos + 2 + pos[1] > end) 511 return NULL; 512 513 if (pos[0] == ie) 514 return pos; 515 516 pos += 2 + pos[1]; 517 } 518 519 return NULL; 520 } 521 522 static void rt2x00lib_sleep(struct work_struct *work) 523 { 524 struct rt2x00_dev *rt2x00dev = 525 container_of(work, struct rt2x00_dev, sleep_work); 526 527 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 528 return; 529 530 /* 531 * Check again is powersaving is enabled, to prevent races from delayed 532 * work execution. 533 */ 534 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 535 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 536 IEEE80211_CONF_CHANGE_PS); 537 } 538 539 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 540 struct sk_buff *skb, 541 struct rxdone_entry_desc *rxdesc) 542 { 543 struct rt2x00_bar_list_entry *entry; 544 struct ieee80211_bar *ba = (void *)skb->data; 545 546 if (likely(!ieee80211_is_back(ba->frame_control))) 547 return; 548 549 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 550 return; 551 552 rcu_read_lock(); 553 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 554 555 if (ba->start_seq_num != entry->start_seq_num) 556 continue; 557 558 #define TID_CHECK(a, b) ( \ 559 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 560 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 561 562 if (!TID_CHECK(ba->control, entry->control)) 563 continue; 564 565 #undef TID_CHECK 566 567 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 568 continue; 569 570 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 571 continue; 572 573 /* Mark BAR since we received the according BA */ 574 spin_lock_bh(&rt2x00dev->bar_list_lock); 575 entry->block_acked = 1; 576 spin_unlock_bh(&rt2x00dev->bar_list_lock); 577 break; 578 } 579 rcu_read_unlock(); 580 581 } 582 583 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 584 struct sk_buff *skb, 585 struct rxdone_entry_desc *rxdesc) 586 { 587 struct ieee80211_hdr *hdr = (void *) skb->data; 588 struct ieee80211_tim_ie *tim_ie; 589 u8 *tim; 590 u8 tim_len; 591 bool cam; 592 593 /* If this is not a beacon, or if mac80211 has no powersaving 594 * configured, or if the device is already in powersaving mode 595 * we can exit now. */ 596 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 597 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 598 return; 599 600 /* min. beacon length + FCS_LEN */ 601 if (skb->len <= 40 + FCS_LEN) 602 return; 603 604 /* and only beacons from the associated BSSID, please */ 605 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 606 !rt2x00dev->aid) 607 return; 608 609 rt2x00dev->last_beacon = jiffies; 610 611 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 612 if (!tim) 613 return; 614 615 if (tim[1] < sizeof(*tim_ie)) 616 return; 617 618 tim_len = tim[1]; 619 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 620 621 /* Check whenever the PHY can be turned off again. */ 622 623 /* 1. What about buffered unicast traffic for our AID? */ 624 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 625 626 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 627 cam |= (tim_ie->bitmap_ctrl & 0x01); 628 629 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 630 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 631 } 632 633 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 634 struct rxdone_entry_desc *rxdesc) 635 { 636 struct ieee80211_supported_band *sband; 637 const struct rt2x00_rate *rate; 638 unsigned int i; 639 int signal = rxdesc->signal; 640 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 641 642 switch (rxdesc->rate_mode) { 643 case RATE_MODE_CCK: 644 case RATE_MODE_OFDM: 645 /* 646 * For non-HT rates the MCS value needs to contain the 647 * actually used rate modulation (CCK or OFDM). 648 */ 649 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 650 signal = RATE_MCS(rxdesc->rate_mode, signal); 651 652 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 653 for (i = 0; i < sband->n_bitrates; i++) { 654 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 655 if (((type == RXDONE_SIGNAL_PLCP) && 656 (rate->plcp == signal)) || 657 ((type == RXDONE_SIGNAL_BITRATE) && 658 (rate->bitrate == signal)) || 659 ((type == RXDONE_SIGNAL_MCS) && 660 (rate->mcs == signal))) { 661 return i; 662 } 663 } 664 break; 665 case RATE_MODE_HT_MIX: 666 case RATE_MODE_HT_GREENFIELD: 667 if (signal >= 0 && signal <= 76) 668 return signal; 669 break; 670 default: 671 break; 672 } 673 674 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 675 rxdesc->rate_mode, signal, type); 676 return 0; 677 } 678 679 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 680 { 681 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 682 struct rxdone_entry_desc rxdesc; 683 struct sk_buff *skb; 684 struct ieee80211_rx_status *rx_status; 685 unsigned int header_length; 686 int rate_idx; 687 688 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 689 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 690 goto submit_entry; 691 692 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 693 goto submit_entry; 694 695 /* 696 * Allocate a new sk_buffer. If no new buffer available, drop the 697 * received frame and reuse the existing buffer. 698 */ 699 skb = rt2x00queue_alloc_rxskb(entry, gfp); 700 if (!skb) 701 goto submit_entry; 702 703 /* 704 * Unmap the skb. 705 */ 706 rt2x00queue_unmap_skb(entry); 707 708 /* 709 * Extract the RXD details. 710 */ 711 memset(&rxdesc, 0, sizeof(rxdesc)); 712 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 713 714 /* 715 * Check for valid size in case we get corrupted descriptor from 716 * hardware. 717 */ 718 if (unlikely(rxdesc.size == 0 || 719 rxdesc.size > entry->queue->data_size)) { 720 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 721 rxdesc.size, entry->queue->data_size); 722 dev_kfree_skb(entry->skb); 723 goto renew_skb; 724 } 725 726 /* 727 * The data behind the ieee80211 header must be 728 * aligned on a 4 byte boundary. 729 */ 730 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 731 732 /* 733 * Hardware might have stripped the IV/EIV/ICV data, 734 * in that case it is possible that the data was 735 * provided separately (through hardware descriptor) 736 * in which case we should reinsert the data into the frame. 737 */ 738 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 739 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 740 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 741 &rxdesc); 742 else if (header_length && 743 (rxdesc.size > header_length) && 744 (rxdesc.dev_flags & RXDONE_L2PAD)) 745 rt2x00queue_remove_l2pad(entry->skb, header_length); 746 747 /* Trim buffer to correct size */ 748 skb_trim(entry->skb, rxdesc.size); 749 750 /* 751 * Translate the signal to the correct bitrate index. 752 */ 753 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 754 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 755 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 756 rxdesc.flags |= RX_FLAG_HT; 757 758 /* 759 * Check if this is a beacon, and more frames have been 760 * buffered while we were in powersaving mode. 761 */ 762 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 763 764 /* 765 * Check for incoming BlockAcks to match to the BlockAckReqs 766 * we've send out. 767 */ 768 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 769 770 /* 771 * Update extra components 772 */ 773 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 774 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 775 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry); 776 777 /* 778 * Initialize RX status information, and send frame 779 * to mac80211. 780 */ 781 rx_status = IEEE80211_SKB_RXCB(entry->skb); 782 783 /* Ensure that all fields of rx_status are initialized 784 * properly. The skb->cb array was used for driver 785 * specific informations, so rx_status might contain 786 * garbage. 787 */ 788 memset(rx_status, 0, sizeof(*rx_status)); 789 790 rx_status->mactime = rxdesc.timestamp; 791 rx_status->band = rt2x00dev->curr_band; 792 rx_status->freq = rt2x00dev->curr_freq; 793 rx_status->rate_idx = rate_idx; 794 rx_status->signal = rxdesc.rssi; 795 rx_status->flag = rxdesc.flags; 796 rx_status->antenna = rt2x00dev->link.ant.active.rx; 797 798 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 799 800 renew_skb: 801 /* 802 * Replace the skb with the freshly allocated one. 803 */ 804 entry->skb = skb; 805 806 submit_entry: 807 entry->flags = 0; 808 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 809 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 810 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 811 rt2x00dev->ops->lib->clear_entry(entry); 812 } 813 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 814 815 /* 816 * Driver initialization handlers. 817 */ 818 const struct rt2x00_rate rt2x00_supported_rates[12] = { 819 { 820 .flags = DEV_RATE_CCK, 821 .bitrate = 10, 822 .ratemask = BIT(0), 823 .plcp = 0x00, 824 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 825 }, 826 { 827 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 828 .bitrate = 20, 829 .ratemask = BIT(1), 830 .plcp = 0x01, 831 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 832 }, 833 { 834 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 835 .bitrate = 55, 836 .ratemask = BIT(2), 837 .plcp = 0x02, 838 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 839 }, 840 { 841 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 842 .bitrate = 110, 843 .ratemask = BIT(3), 844 .plcp = 0x03, 845 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 846 }, 847 { 848 .flags = DEV_RATE_OFDM, 849 .bitrate = 60, 850 .ratemask = BIT(4), 851 .plcp = 0x0b, 852 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 853 }, 854 { 855 .flags = DEV_RATE_OFDM, 856 .bitrate = 90, 857 .ratemask = BIT(5), 858 .plcp = 0x0f, 859 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 860 }, 861 { 862 .flags = DEV_RATE_OFDM, 863 .bitrate = 120, 864 .ratemask = BIT(6), 865 .plcp = 0x0a, 866 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 867 }, 868 { 869 .flags = DEV_RATE_OFDM, 870 .bitrate = 180, 871 .ratemask = BIT(7), 872 .plcp = 0x0e, 873 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 874 }, 875 { 876 .flags = DEV_RATE_OFDM, 877 .bitrate = 240, 878 .ratemask = BIT(8), 879 .plcp = 0x09, 880 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 881 }, 882 { 883 .flags = DEV_RATE_OFDM, 884 .bitrate = 360, 885 .ratemask = BIT(9), 886 .plcp = 0x0d, 887 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 888 }, 889 { 890 .flags = DEV_RATE_OFDM, 891 .bitrate = 480, 892 .ratemask = BIT(10), 893 .plcp = 0x08, 894 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 895 }, 896 { 897 .flags = DEV_RATE_OFDM, 898 .bitrate = 540, 899 .ratemask = BIT(11), 900 .plcp = 0x0c, 901 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 902 }, 903 }; 904 905 static void rt2x00lib_channel(struct ieee80211_channel *entry, 906 const int channel, const int tx_power, 907 const int value) 908 { 909 /* XXX: this assumption about the band is wrong for 802.11j */ 910 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 911 entry->center_freq = ieee80211_channel_to_frequency(channel, 912 entry->band); 913 entry->hw_value = value; 914 entry->max_power = tx_power; 915 entry->max_antenna_gain = 0xff; 916 } 917 918 static void rt2x00lib_rate(struct ieee80211_rate *entry, 919 const u16 index, const struct rt2x00_rate *rate) 920 { 921 entry->flags = 0; 922 entry->bitrate = rate->bitrate; 923 entry->hw_value = index; 924 entry->hw_value_short = index; 925 926 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 927 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 928 } 929 930 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) 931 { 932 const char *mac_addr; 933 934 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node); 935 if (mac_addr) 936 ether_addr_copy(eeprom_mac_addr, mac_addr); 937 938 if (!is_valid_ether_addr(eeprom_mac_addr)) { 939 eth_random_addr(eeprom_mac_addr); 940 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); 941 } 942 } 943 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); 944 945 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 946 struct hw_mode_spec *spec) 947 { 948 struct ieee80211_hw *hw = rt2x00dev->hw; 949 struct ieee80211_channel *channels; 950 struct ieee80211_rate *rates; 951 unsigned int num_rates; 952 unsigned int i; 953 954 num_rates = 0; 955 if (spec->supported_rates & SUPPORT_RATE_CCK) 956 num_rates += 4; 957 if (spec->supported_rates & SUPPORT_RATE_OFDM) 958 num_rates += 8; 959 960 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 961 if (!channels) 962 return -ENOMEM; 963 964 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 965 if (!rates) 966 goto exit_free_channels; 967 968 /* 969 * Initialize Rate list. 970 */ 971 for (i = 0; i < num_rates; i++) 972 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 973 974 /* 975 * Initialize Channel list. 976 */ 977 for (i = 0; i < spec->num_channels; i++) { 978 rt2x00lib_channel(&channels[i], 979 spec->channels[i].channel, 980 spec->channels_info[i].max_power, i); 981 } 982 983 /* 984 * Intitialize 802.11b, 802.11g 985 * Rates: CCK, OFDM. 986 * Channels: 2.4 GHz 987 */ 988 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 989 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 990 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 991 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 992 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 993 hw->wiphy->bands[NL80211_BAND_2GHZ] = 994 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 995 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 996 &spec->ht, sizeof(spec->ht)); 997 } 998 999 /* 1000 * Intitialize 802.11a 1001 * Rates: OFDM. 1002 * Channels: OFDM, UNII, HiperLAN2. 1003 */ 1004 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 1005 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 1006 spec->num_channels - 14; 1007 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 1008 num_rates - 4; 1009 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 1010 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1011 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1012 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1013 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1014 &spec->ht, sizeof(spec->ht)); 1015 } 1016 1017 return 0; 1018 1019 exit_free_channels: 1020 kfree(channels); 1021 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1022 return -ENOMEM; 1023 } 1024 1025 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1026 { 1027 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1028 ieee80211_unregister_hw(rt2x00dev->hw); 1029 1030 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1031 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1032 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1033 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1034 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1035 } 1036 1037 kfree(rt2x00dev->spec.channels_info); 1038 } 1039 1040 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1041 { 1042 struct hw_mode_spec *spec = &rt2x00dev->spec; 1043 int status; 1044 1045 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1046 return 0; 1047 1048 /* 1049 * Initialize HW modes. 1050 */ 1051 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1052 if (status) 1053 return status; 1054 1055 /* 1056 * Initialize HW fields. 1057 */ 1058 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1059 1060 /* 1061 * Initialize extra TX headroom required. 1062 */ 1063 rt2x00dev->hw->extra_tx_headroom = 1064 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1065 rt2x00dev->extra_tx_headroom); 1066 1067 /* 1068 * Take TX headroom required for alignment into account. 1069 */ 1070 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1071 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1072 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1073 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1074 1075 /* 1076 * Tell mac80211 about the size of our private STA structure. 1077 */ 1078 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1079 1080 /* 1081 * Allocate tx status FIFO for driver use. 1082 */ 1083 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1084 /* 1085 * Allocate the txstatus fifo. In the worst case the tx 1086 * status fifo has to hold the tx status of all entries 1087 * in all tx queues. Hence, calculate the kfifo size as 1088 * tx_queues * entry_num and round up to the nearest 1089 * power of 2. 1090 */ 1091 int kfifo_size = 1092 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1093 rt2x00dev->tx->limit * 1094 sizeof(u32)); 1095 1096 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1097 GFP_KERNEL); 1098 if (status) 1099 return status; 1100 } 1101 1102 /* 1103 * Initialize tasklets if used by the driver. Tasklets are 1104 * disabled until the interrupts are turned on. The driver 1105 * has to handle that. 1106 */ 1107 #define RT2X00_TASKLET_INIT(taskletname) \ 1108 if (rt2x00dev->ops->lib->taskletname) { \ 1109 tasklet_init(&rt2x00dev->taskletname, \ 1110 rt2x00dev->ops->lib->taskletname, \ 1111 (unsigned long)rt2x00dev); \ 1112 } 1113 1114 RT2X00_TASKLET_INIT(txstatus_tasklet); 1115 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1116 RT2X00_TASKLET_INIT(tbtt_tasklet); 1117 RT2X00_TASKLET_INIT(rxdone_tasklet); 1118 RT2X00_TASKLET_INIT(autowake_tasklet); 1119 1120 #undef RT2X00_TASKLET_INIT 1121 1122 /* 1123 * Register HW. 1124 */ 1125 status = ieee80211_register_hw(rt2x00dev->hw); 1126 if (status) 1127 return status; 1128 1129 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1130 1131 return 0; 1132 } 1133 1134 /* 1135 * Initialization/uninitialization handlers. 1136 */ 1137 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1138 { 1139 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1140 return; 1141 1142 /* 1143 * Stop rfkill polling. 1144 */ 1145 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1146 rt2x00rfkill_unregister(rt2x00dev); 1147 1148 /* 1149 * Allow the HW to uninitialize. 1150 */ 1151 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1152 1153 /* 1154 * Free allocated queue entries. 1155 */ 1156 rt2x00queue_uninitialize(rt2x00dev); 1157 } 1158 1159 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1160 { 1161 int status; 1162 1163 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1164 return 0; 1165 1166 /* 1167 * Allocate all queue entries. 1168 */ 1169 status = rt2x00queue_initialize(rt2x00dev); 1170 if (status) 1171 return status; 1172 1173 /* 1174 * Initialize the device. 1175 */ 1176 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1177 if (status) { 1178 rt2x00queue_uninitialize(rt2x00dev); 1179 return status; 1180 } 1181 1182 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1183 1184 /* 1185 * Start rfkill polling. 1186 */ 1187 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1188 rt2x00rfkill_register(rt2x00dev); 1189 1190 return 0; 1191 } 1192 1193 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1194 { 1195 int retval; 1196 1197 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1198 return 0; 1199 1200 /* 1201 * If this is the first interface which is added, 1202 * we should load the firmware now. 1203 */ 1204 retval = rt2x00lib_load_firmware(rt2x00dev); 1205 if (retval) 1206 return retval; 1207 1208 /* 1209 * Initialize the device. 1210 */ 1211 retval = rt2x00lib_initialize(rt2x00dev); 1212 if (retval) 1213 return retval; 1214 1215 rt2x00dev->intf_ap_count = 0; 1216 rt2x00dev->intf_sta_count = 0; 1217 rt2x00dev->intf_associated = 0; 1218 1219 /* Enable the radio */ 1220 retval = rt2x00lib_enable_radio(rt2x00dev); 1221 if (retval) 1222 return retval; 1223 1224 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1225 1226 return 0; 1227 } 1228 1229 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1230 { 1231 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1232 return; 1233 1234 /* 1235 * Perhaps we can add something smarter here, 1236 * but for now just disabling the radio should do. 1237 */ 1238 rt2x00lib_disable_radio(rt2x00dev); 1239 1240 rt2x00dev->intf_ap_count = 0; 1241 rt2x00dev->intf_sta_count = 0; 1242 rt2x00dev->intf_associated = 0; 1243 } 1244 1245 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1246 { 1247 struct ieee80211_iface_limit *if_limit; 1248 struct ieee80211_iface_combination *if_combination; 1249 1250 if (rt2x00dev->ops->max_ap_intf < 2) 1251 return; 1252 1253 /* 1254 * Build up AP interface limits structure. 1255 */ 1256 if_limit = &rt2x00dev->if_limits_ap; 1257 if_limit->max = rt2x00dev->ops->max_ap_intf; 1258 if_limit->types = BIT(NL80211_IFTYPE_AP); 1259 #ifdef CONFIG_MAC80211_MESH 1260 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1261 #endif 1262 1263 /* 1264 * Build up AP interface combinations structure. 1265 */ 1266 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1267 if_combination->limits = if_limit; 1268 if_combination->n_limits = 1; 1269 if_combination->max_interfaces = if_limit->max; 1270 if_combination->num_different_channels = 1; 1271 1272 /* 1273 * Finally, specify the possible combinations to mac80211. 1274 */ 1275 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1276 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1277 } 1278 1279 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1280 { 1281 if (WARN_ON(!rt2x00dev->tx)) 1282 return 0; 1283 1284 if (rt2x00_is_usb(rt2x00dev)) 1285 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1286 1287 return rt2x00dev->tx[0].winfo_size; 1288 } 1289 1290 /* 1291 * driver allocation handlers. 1292 */ 1293 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1294 { 1295 int retval = -ENOMEM; 1296 1297 /* 1298 * Set possible interface combinations. 1299 */ 1300 rt2x00lib_set_if_combinations(rt2x00dev); 1301 1302 /* 1303 * Allocate the driver data memory, if necessary. 1304 */ 1305 if (rt2x00dev->ops->drv_data_size > 0) { 1306 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1307 GFP_KERNEL); 1308 if (!rt2x00dev->drv_data) { 1309 retval = -ENOMEM; 1310 goto exit; 1311 } 1312 } 1313 1314 spin_lock_init(&rt2x00dev->irqmask_lock); 1315 mutex_init(&rt2x00dev->csr_mutex); 1316 mutex_init(&rt2x00dev->conf_mutex); 1317 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1318 spin_lock_init(&rt2x00dev->bar_list_lock); 1319 1320 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1321 1322 /* 1323 * Make room for rt2x00_intf inside the per-interface 1324 * structure ieee80211_vif. 1325 */ 1326 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1327 1328 /* 1329 * rt2x00 devices can only use the last n bits of the MAC address 1330 * for virtual interfaces. 1331 */ 1332 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1333 (rt2x00dev->ops->max_ap_intf - 1); 1334 1335 /* 1336 * Initialize work. 1337 */ 1338 rt2x00dev->workqueue = 1339 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1340 if (!rt2x00dev->workqueue) { 1341 retval = -ENOMEM; 1342 goto exit; 1343 } 1344 1345 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1346 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1347 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1348 1349 /* 1350 * Let the driver probe the device to detect the capabilities. 1351 */ 1352 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1353 if (retval) { 1354 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1355 goto exit; 1356 } 1357 1358 /* 1359 * Allocate queue array. 1360 */ 1361 retval = rt2x00queue_allocate(rt2x00dev); 1362 if (retval) 1363 goto exit; 1364 1365 /* Cache TX headroom value */ 1366 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1367 1368 /* 1369 * Determine which operating modes are supported, all modes 1370 * which require beaconing, depend on the availability of 1371 * beacon entries. 1372 */ 1373 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1374 if (rt2x00dev->bcn->limit > 0) 1375 rt2x00dev->hw->wiphy->interface_modes |= 1376 BIT(NL80211_IFTYPE_ADHOC) | 1377 #ifdef CONFIG_MAC80211_MESH 1378 BIT(NL80211_IFTYPE_MESH_POINT) | 1379 #endif 1380 #ifdef CONFIG_WIRELESS_WDS 1381 BIT(NL80211_IFTYPE_WDS) | 1382 #endif 1383 BIT(NL80211_IFTYPE_AP); 1384 1385 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1386 1387 /* 1388 * Initialize ieee80211 structure. 1389 */ 1390 retval = rt2x00lib_probe_hw(rt2x00dev); 1391 if (retval) { 1392 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1393 goto exit; 1394 } 1395 1396 /* 1397 * Register extra components. 1398 */ 1399 rt2x00link_register(rt2x00dev); 1400 rt2x00leds_register(rt2x00dev); 1401 rt2x00debug_register(rt2x00dev); 1402 1403 /* 1404 * Start rfkill polling. 1405 */ 1406 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1407 rt2x00rfkill_register(rt2x00dev); 1408 1409 return 0; 1410 1411 exit: 1412 rt2x00lib_remove_dev(rt2x00dev); 1413 1414 return retval; 1415 } 1416 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1417 1418 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1419 { 1420 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1421 1422 /* 1423 * Stop rfkill polling. 1424 */ 1425 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1426 rt2x00rfkill_unregister(rt2x00dev); 1427 1428 /* 1429 * Disable radio. 1430 */ 1431 rt2x00lib_disable_radio(rt2x00dev); 1432 1433 /* 1434 * Stop all work. 1435 */ 1436 cancel_work_sync(&rt2x00dev->intf_work); 1437 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1438 cancel_work_sync(&rt2x00dev->sleep_work); 1439 1440 /* 1441 * Kill the tx status tasklet. 1442 */ 1443 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1444 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1445 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1446 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1447 tasklet_kill(&rt2x00dev->autowake_tasklet); 1448 1449 /* 1450 * Uninitialize device. 1451 */ 1452 rt2x00lib_uninitialize(rt2x00dev); 1453 1454 if (rt2x00dev->workqueue) 1455 destroy_workqueue(rt2x00dev->workqueue); 1456 1457 /* 1458 * Free the tx status fifo. 1459 */ 1460 kfifo_free(&rt2x00dev->txstatus_fifo); 1461 1462 /* 1463 * Free extra components 1464 */ 1465 rt2x00debug_deregister(rt2x00dev); 1466 rt2x00leds_unregister(rt2x00dev); 1467 1468 /* 1469 * Free ieee80211_hw memory. 1470 */ 1471 rt2x00lib_remove_hw(rt2x00dev); 1472 1473 /* 1474 * Free firmware image. 1475 */ 1476 rt2x00lib_free_firmware(rt2x00dev); 1477 1478 /* 1479 * Free queue structures. 1480 */ 1481 rt2x00queue_free(rt2x00dev); 1482 1483 /* 1484 * Free the driver data. 1485 */ 1486 kfree(rt2x00dev->drv_data); 1487 } 1488 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1489 1490 /* 1491 * Device state handlers 1492 */ 1493 #ifdef CONFIG_PM 1494 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1495 { 1496 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1497 1498 /* 1499 * Prevent mac80211 from accessing driver while suspended. 1500 */ 1501 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1502 return 0; 1503 1504 /* 1505 * Cleanup as much as possible. 1506 */ 1507 rt2x00lib_uninitialize(rt2x00dev); 1508 1509 /* 1510 * Suspend/disable extra components. 1511 */ 1512 rt2x00leds_suspend(rt2x00dev); 1513 rt2x00debug_deregister(rt2x00dev); 1514 1515 /* 1516 * Set device mode to sleep for power management, 1517 * on some hardware this call seems to consistently fail. 1518 * From the specifications it is hard to tell why it fails, 1519 * and if this is a "bad thing". 1520 * Overall it is safe to just ignore the failure and 1521 * continue suspending. The only downside is that the 1522 * device will not be in optimal power save mode, but with 1523 * the radio and the other components already disabled the 1524 * device is as good as disabled. 1525 */ 1526 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1527 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1528 1529 return 0; 1530 } 1531 EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1532 1533 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1534 { 1535 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1536 1537 /* 1538 * Restore/enable extra components. 1539 */ 1540 rt2x00debug_register(rt2x00dev); 1541 rt2x00leds_resume(rt2x00dev); 1542 1543 /* 1544 * We are ready again to receive requests from mac80211. 1545 */ 1546 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1547 1548 return 0; 1549 } 1550 EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1551 #endif /* CONFIG_PM */ 1552 1553 /* 1554 * rt2x00lib module information. 1555 */ 1556 MODULE_AUTHOR(DRV_PROJECT); 1557 MODULE_VERSION(DRV_VERSION); 1558 MODULE_DESCRIPTION("rt2x00 library"); 1559 MODULE_LICENSE("GPL"); 1560