xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 /*
21 	Module: rt2x00lib
22 	Abstract: rt2x00 generic device routines.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34 
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 			 struct ieee80211_vif *vif)
40 {
41 	/*
42 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 	 * contains the bss number, see BSS_ID_MASK comments for details.
44 	 */
45 	if (rt2x00dev->intf_sta_count)
46 		return 0;
47 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50 
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 	int status;
57 
58 	/*
59 	 * Don't enable the radio twice.
60 	 * And check if the hardware button has been disabled.
61 	 */
62 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 		return 0;
64 
65 	/*
66 	 * Initialize all data queues.
67 	 */
68 	rt2x00queue_init_queues(rt2x00dev);
69 
70 	/*
71 	 * Enable radio.
72 	 */
73 	status =
74 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 	if (status)
76 		return status;
77 
78 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79 
80 	rt2x00leds_led_radio(rt2x00dev, true);
81 	rt2x00led_led_activity(rt2x00dev, true);
82 
83 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84 
85 	/*
86 	 * Enable queues.
87 	 */
88 	rt2x00queue_start_queues(rt2x00dev);
89 	rt2x00link_start_tuner(rt2x00dev);
90 
91 	/*
92 	 * Start watchdog monitoring.
93 	 */
94 	rt2x00link_start_watchdog(rt2x00dev);
95 
96 	return 0;
97 }
98 
99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
100 {
101 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
102 		return;
103 
104 	/*
105 	 * Stop watchdog monitoring.
106 	 */
107 	rt2x00link_stop_watchdog(rt2x00dev);
108 
109 	/*
110 	 * Stop all queues
111 	 */
112 	rt2x00link_stop_tuner(rt2x00dev);
113 	rt2x00queue_stop_queues(rt2x00dev);
114 	rt2x00queue_flush_queues(rt2x00dev, true);
115 
116 	/*
117 	 * Disable radio.
118 	 */
119 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
120 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
121 	rt2x00led_led_activity(rt2x00dev, false);
122 	rt2x00leds_led_radio(rt2x00dev, false);
123 }
124 
125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
126 					  struct ieee80211_vif *vif)
127 {
128 	struct rt2x00_dev *rt2x00dev = data;
129 	struct rt2x00_intf *intf = vif_to_intf(vif);
130 
131 	/*
132 	 * It is possible the radio was disabled while the work had been
133 	 * scheduled. If that happens we should return here immediately,
134 	 * note that in the spinlock protected area above the delayed_flags
135 	 * have been cleared correctly.
136 	 */
137 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138 		return;
139 
140 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
141 		mutex_lock(&intf->beacon_skb_mutex);
142 		rt2x00queue_update_beacon(rt2x00dev, vif);
143 		mutex_unlock(&intf->beacon_skb_mutex);
144 	}
145 }
146 
147 static void rt2x00lib_intf_scheduled(struct work_struct *work)
148 {
149 	struct rt2x00_dev *rt2x00dev =
150 	    container_of(work, struct rt2x00_dev, intf_work);
151 
152 	/*
153 	 * Iterate over each interface and perform the
154 	 * requested configurations.
155 	 */
156 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
157 					    IEEE80211_IFACE_ITER_RESUME_ALL,
158 					    rt2x00lib_intf_scheduled_iter,
159 					    rt2x00dev);
160 }
161 
162 static void rt2x00lib_autowakeup(struct work_struct *work)
163 {
164 	struct rt2x00_dev *rt2x00dev =
165 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
166 
167 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
168 		return;
169 
170 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
171 		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
172 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
173 }
174 
175 /*
176  * Interrupt context handlers.
177  */
178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
179 				     struct ieee80211_vif *vif)
180 {
181 	struct ieee80211_tx_control control = {};
182 	struct rt2x00_dev *rt2x00dev = data;
183 	struct sk_buff *skb;
184 
185 	/*
186 	 * Only AP mode interfaces do broad- and multicast buffering
187 	 */
188 	if (vif->type != NL80211_IFTYPE_AP)
189 		return;
190 
191 	/*
192 	 * Send out buffered broad- and multicast frames
193 	 */
194 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195 	while (skb) {
196 		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
197 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198 	}
199 }
200 
201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
202 					struct ieee80211_vif *vif)
203 {
204 	struct rt2x00_dev *rt2x00dev = data;
205 
206 	if (vif->type != NL80211_IFTYPE_AP &&
207 	    vif->type != NL80211_IFTYPE_ADHOC &&
208 	    vif->type != NL80211_IFTYPE_MESH_POINT &&
209 	    vif->type != NL80211_IFTYPE_WDS)
210 		return;
211 
212 	/*
213 	 * Update the beacon without locking. This is safe on PCI devices
214 	 * as they only update the beacon periodically here. This should
215 	 * never be called for USB devices.
216 	 */
217 	WARN_ON(rt2x00_is_usb(rt2x00dev));
218 	rt2x00queue_update_beacon(rt2x00dev, vif);
219 }
220 
221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
222 {
223 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
224 		return;
225 
226 	/* send buffered bc/mc frames out for every bssid */
227 	ieee80211_iterate_active_interfaces_atomic(
228 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229 		rt2x00lib_bc_buffer_iter, rt2x00dev);
230 	/*
231 	 * Devices with pre tbtt interrupt don't need to update the beacon
232 	 * here as they will fetch the next beacon directly prior to
233 	 * transmission.
234 	 */
235 	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
236 		return;
237 
238 	/* fetch next beacon */
239 	ieee80211_iterate_active_interfaces_atomic(
240 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241 		rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
244 
245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
246 {
247 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
248 		return;
249 
250 	/* fetch next beacon */
251 	ieee80211_iterate_active_interfaces_atomic(
252 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
253 		rt2x00lib_beaconupdate_iter, rt2x00dev);
254 }
255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
256 
257 void rt2x00lib_dmastart(struct queue_entry *entry)
258 {
259 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
260 	rt2x00queue_index_inc(entry, Q_INDEX);
261 }
262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
263 
264 void rt2x00lib_dmadone(struct queue_entry *entry)
265 {
266 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
267 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
268 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
269 }
270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
271 
272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
273 {
274 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
275 	struct ieee80211_bar *bar = (void *) entry->skb->data;
276 	struct rt2x00_bar_list_entry *bar_entry;
277 	int ret;
278 
279 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
280 		return 0;
281 
282 	/*
283 	 * Unlike all other frames, the status report for BARs does
284 	 * not directly come from the hardware as it is incapable of
285 	 * matching a BA to a previously send BAR. The hardware will
286 	 * report all BARs as if they weren't acked at all.
287 	 *
288 	 * Instead the RX-path will scan for incoming BAs and set the
289 	 * block_acked flag if it sees one that was likely caused by
290 	 * a BAR from us.
291 	 *
292 	 * Remove remaining BARs here and return their status for
293 	 * TX done processing.
294 	 */
295 	ret = 0;
296 	rcu_read_lock();
297 	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
298 		if (bar_entry->entry != entry)
299 			continue;
300 
301 		spin_lock_bh(&rt2x00dev->bar_list_lock);
302 		/* Return whether this BAR was blockacked or not */
303 		ret = bar_entry->block_acked;
304 		/* Remove the BAR from our checklist */
305 		list_del_rcu(&bar_entry->list);
306 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
307 		kfree_rcu(bar_entry, head);
308 
309 		break;
310 	}
311 	rcu_read_unlock();
312 
313 	return ret;
314 }
315 
316 void rt2x00lib_txdone(struct queue_entry *entry,
317 		      struct txdone_entry_desc *txdesc)
318 {
319 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
320 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
321 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
322 	unsigned int header_length, i;
323 	u8 rate_idx, rate_flags, retry_rates;
324 	u8 skbdesc_flags = skbdesc->flags;
325 	bool success;
326 
327 	/*
328 	 * Unmap the skb.
329 	 */
330 	rt2x00queue_unmap_skb(entry);
331 
332 	/*
333 	 * Remove the extra tx headroom from the skb.
334 	 */
335 	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
336 
337 	/*
338 	 * Signal that the TX descriptor is no longer in the skb.
339 	 */
340 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
341 
342 	/*
343 	 * Determine the length of 802.11 header.
344 	 */
345 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
346 
347 	/*
348 	 * Remove L2 padding which was added during
349 	 */
350 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
351 		rt2x00queue_remove_l2pad(entry->skb, header_length);
352 
353 	/*
354 	 * If the IV/EIV data was stripped from the frame before it was
355 	 * passed to the hardware, we should now reinsert it again because
356 	 * mac80211 will expect the same data to be present it the
357 	 * frame as it was passed to us.
358 	 */
359 	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
360 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
361 
362 	/*
363 	 * Send frame to debugfs immediately, after this call is completed
364 	 * we are going to overwrite the skb->cb array.
365 	 */
366 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
367 
368 	/*
369 	 * Determine if the frame has been successfully transmitted and
370 	 * remove BARs from our check list while checking for their
371 	 * TX status.
372 	 */
373 	success =
374 	    rt2x00lib_txdone_bar_status(entry) ||
375 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
376 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
377 
378 	/*
379 	 * Update TX statistics.
380 	 */
381 	rt2x00dev->link.qual.tx_success += success;
382 	rt2x00dev->link.qual.tx_failed += !success;
383 
384 	rate_idx = skbdesc->tx_rate_idx;
385 	rate_flags = skbdesc->tx_rate_flags;
386 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
387 	    (txdesc->retry + 1) : 1;
388 
389 	/*
390 	 * Initialize TX status
391 	 */
392 	memset(&tx_info->status, 0, sizeof(tx_info->status));
393 	tx_info->status.ack_signal = 0;
394 
395 	/*
396 	 * Frame was send with retries, hardware tried
397 	 * different rates to send out the frame, at each
398 	 * retry it lowered the rate 1 step except when the
399 	 * lowest rate was used.
400 	 */
401 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
402 		tx_info->status.rates[i].idx = rate_idx - i;
403 		tx_info->status.rates[i].flags = rate_flags;
404 
405 		if (rate_idx - i == 0) {
406 			/*
407 			 * The lowest rate (index 0) was used until the
408 			 * number of max retries was reached.
409 			 */
410 			tx_info->status.rates[i].count = retry_rates - i;
411 			i++;
412 			break;
413 		}
414 		tx_info->status.rates[i].count = 1;
415 	}
416 	if (i < (IEEE80211_TX_MAX_RATES - 1))
417 		tx_info->status.rates[i].idx = -1; /* terminate */
418 
419 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
420 		if (success)
421 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
422 		else
423 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
424 	}
425 
426 	/*
427 	 * Every single frame has it's own tx status, hence report
428 	 * every frame as ampdu of size 1.
429 	 *
430 	 * TODO: if we can find out how many frames were aggregated
431 	 * by the hw we could provide the real ampdu_len to mac80211
432 	 * which would allow the rc algorithm to better decide on
433 	 * which rates are suitable.
434 	 */
435 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
436 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
437 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
438 		tx_info->status.ampdu_len = 1;
439 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
440 
441 		if (!success)
442 			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
443 	}
444 
445 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
446 		if (success)
447 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
448 		else
449 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
450 	}
451 
452 	/*
453 	 * Only send the status report to mac80211 when it's a frame
454 	 * that originated in mac80211. If this was a extra frame coming
455 	 * through a mac80211 library call (RTS/CTS) then we should not
456 	 * send the status report back.
457 	 */
458 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
459 		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
460 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
461 		else
462 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
463 	} else
464 		dev_kfree_skb_any(entry->skb);
465 
466 	/*
467 	 * Make this entry available for reuse.
468 	 */
469 	entry->skb = NULL;
470 	entry->flags = 0;
471 
472 	rt2x00dev->ops->lib->clear_entry(entry);
473 
474 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
475 
476 	/*
477 	 * If the data queue was below the threshold before the txdone
478 	 * handler we must make sure the packet queue in the mac80211 stack
479 	 * is reenabled when the txdone handler has finished. This has to be
480 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
481 	 * before it was stopped.
482 	 */
483 	spin_lock_bh(&entry->queue->tx_lock);
484 	if (!rt2x00queue_threshold(entry->queue))
485 		rt2x00queue_unpause_queue(entry->queue);
486 	spin_unlock_bh(&entry->queue->tx_lock);
487 }
488 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
489 
490 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
491 {
492 	struct txdone_entry_desc txdesc;
493 
494 	txdesc.flags = 0;
495 	__set_bit(status, &txdesc.flags);
496 	txdesc.retry = 0;
497 
498 	rt2x00lib_txdone(entry, &txdesc);
499 }
500 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
501 
502 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
503 {
504 	struct ieee80211_mgmt *mgmt = (void *)data;
505 	u8 *pos, *end;
506 
507 	pos = (u8 *)mgmt->u.beacon.variable;
508 	end = data + len;
509 	while (pos < end) {
510 		if (pos + 2 + pos[1] > end)
511 			return NULL;
512 
513 		if (pos[0] == ie)
514 			return pos;
515 
516 		pos += 2 + pos[1];
517 	}
518 
519 	return NULL;
520 }
521 
522 static void rt2x00lib_sleep(struct work_struct *work)
523 {
524 	struct rt2x00_dev *rt2x00dev =
525 	    container_of(work, struct rt2x00_dev, sleep_work);
526 
527 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
528 		return;
529 
530 	/*
531 	 * Check again is powersaving is enabled, to prevent races from delayed
532 	 * work execution.
533 	 */
534 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
535 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
536 				 IEEE80211_CONF_CHANGE_PS);
537 }
538 
539 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
540 				      struct sk_buff *skb,
541 				      struct rxdone_entry_desc *rxdesc)
542 {
543 	struct rt2x00_bar_list_entry *entry;
544 	struct ieee80211_bar *ba = (void *)skb->data;
545 
546 	if (likely(!ieee80211_is_back(ba->frame_control)))
547 		return;
548 
549 	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
550 		return;
551 
552 	rcu_read_lock();
553 	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
554 
555 		if (ba->start_seq_num != entry->start_seq_num)
556 			continue;
557 
558 #define TID_CHECK(a, b) (						\
559 	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
560 	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
561 
562 		if (!TID_CHECK(ba->control, entry->control))
563 			continue;
564 
565 #undef TID_CHECK
566 
567 		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
568 			continue;
569 
570 		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
571 			continue;
572 
573 		/* Mark BAR since we received the according BA */
574 		spin_lock_bh(&rt2x00dev->bar_list_lock);
575 		entry->block_acked = 1;
576 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
577 		break;
578 	}
579 	rcu_read_unlock();
580 
581 }
582 
583 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
584 				      struct sk_buff *skb,
585 				      struct rxdone_entry_desc *rxdesc)
586 {
587 	struct ieee80211_hdr *hdr = (void *) skb->data;
588 	struct ieee80211_tim_ie *tim_ie;
589 	u8 *tim;
590 	u8 tim_len;
591 	bool cam;
592 
593 	/* If this is not a beacon, or if mac80211 has no powersaving
594 	 * configured, or if the device is already in powersaving mode
595 	 * we can exit now. */
596 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
597 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
598 		return;
599 
600 	/* min. beacon length + FCS_LEN */
601 	if (skb->len <= 40 + FCS_LEN)
602 		return;
603 
604 	/* and only beacons from the associated BSSID, please */
605 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
606 	    !rt2x00dev->aid)
607 		return;
608 
609 	rt2x00dev->last_beacon = jiffies;
610 
611 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
612 	if (!tim)
613 		return;
614 
615 	if (tim[1] < sizeof(*tim_ie))
616 		return;
617 
618 	tim_len = tim[1];
619 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
620 
621 	/* Check whenever the PHY can be turned off again. */
622 
623 	/* 1. What about buffered unicast traffic for our AID? */
624 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
625 
626 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
627 	cam |= (tim_ie->bitmap_ctrl & 0x01);
628 
629 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
630 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
631 }
632 
633 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
634 					struct rxdone_entry_desc *rxdesc)
635 {
636 	struct ieee80211_supported_band *sband;
637 	const struct rt2x00_rate *rate;
638 	unsigned int i;
639 	int signal = rxdesc->signal;
640 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
641 
642 	switch (rxdesc->rate_mode) {
643 	case RATE_MODE_CCK:
644 	case RATE_MODE_OFDM:
645 		/*
646 		 * For non-HT rates the MCS value needs to contain the
647 		 * actually used rate modulation (CCK or OFDM).
648 		 */
649 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
650 			signal = RATE_MCS(rxdesc->rate_mode, signal);
651 
652 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
653 		for (i = 0; i < sband->n_bitrates; i++) {
654 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
655 			if (((type == RXDONE_SIGNAL_PLCP) &&
656 			     (rate->plcp == signal)) ||
657 			    ((type == RXDONE_SIGNAL_BITRATE) &&
658 			      (rate->bitrate == signal)) ||
659 			    ((type == RXDONE_SIGNAL_MCS) &&
660 			      (rate->mcs == signal))) {
661 				return i;
662 			}
663 		}
664 		break;
665 	case RATE_MODE_HT_MIX:
666 	case RATE_MODE_HT_GREENFIELD:
667 		if (signal >= 0 && signal <= 76)
668 			return signal;
669 		break;
670 	default:
671 		break;
672 	}
673 
674 	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
675 		    rxdesc->rate_mode, signal, type);
676 	return 0;
677 }
678 
679 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
680 {
681 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
682 	struct rxdone_entry_desc rxdesc;
683 	struct sk_buff *skb;
684 	struct ieee80211_rx_status *rx_status;
685 	unsigned int header_length;
686 	int rate_idx;
687 
688 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
689 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
690 		goto submit_entry;
691 
692 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
693 		goto submit_entry;
694 
695 	/*
696 	 * Allocate a new sk_buffer. If no new buffer available, drop the
697 	 * received frame and reuse the existing buffer.
698 	 */
699 	skb = rt2x00queue_alloc_rxskb(entry, gfp);
700 	if (!skb)
701 		goto submit_entry;
702 
703 	/*
704 	 * Unmap the skb.
705 	 */
706 	rt2x00queue_unmap_skb(entry);
707 
708 	/*
709 	 * Extract the RXD details.
710 	 */
711 	memset(&rxdesc, 0, sizeof(rxdesc));
712 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
713 
714 	/*
715 	 * Check for valid size in case we get corrupted descriptor from
716 	 * hardware.
717 	 */
718 	if (unlikely(rxdesc.size == 0 ||
719 		     rxdesc.size > entry->queue->data_size)) {
720 		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
721 			   rxdesc.size, entry->queue->data_size);
722 		dev_kfree_skb(entry->skb);
723 		goto renew_skb;
724 	}
725 
726 	/*
727 	 * The data behind the ieee80211 header must be
728 	 * aligned on a 4 byte boundary.
729 	 */
730 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
731 
732 	/*
733 	 * Hardware might have stripped the IV/EIV/ICV data,
734 	 * in that case it is possible that the data was
735 	 * provided separately (through hardware descriptor)
736 	 * in which case we should reinsert the data into the frame.
737 	 */
738 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
739 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
740 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
741 					  &rxdesc);
742 	else if (header_length &&
743 		 (rxdesc.size > header_length) &&
744 		 (rxdesc.dev_flags & RXDONE_L2PAD))
745 		rt2x00queue_remove_l2pad(entry->skb, header_length);
746 
747 	/* Trim buffer to correct size */
748 	skb_trim(entry->skb, rxdesc.size);
749 
750 	/*
751 	 * Translate the signal to the correct bitrate index.
752 	 */
753 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
754 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
755 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
756 		rxdesc.flags |= RX_FLAG_HT;
757 
758 	/*
759 	 * Check if this is a beacon, and more frames have been
760 	 * buffered while we were in powersaving mode.
761 	 */
762 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
763 
764 	/*
765 	 * Check for incoming BlockAcks to match to the BlockAckReqs
766 	 * we've send out.
767 	 */
768 	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
769 
770 	/*
771 	 * Update extra components
772 	 */
773 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
774 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
775 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
776 
777 	/*
778 	 * Initialize RX status information, and send frame
779 	 * to mac80211.
780 	 */
781 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
782 
783 	/* Ensure that all fields of rx_status are initialized
784 	 * properly. The skb->cb array was used for driver
785 	 * specific informations, so rx_status might contain
786 	 * garbage.
787 	 */
788 	memset(rx_status, 0, sizeof(*rx_status));
789 
790 	rx_status->mactime = rxdesc.timestamp;
791 	rx_status->band = rt2x00dev->curr_band;
792 	rx_status->freq = rt2x00dev->curr_freq;
793 	rx_status->rate_idx = rate_idx;
794 	rx_status->signal = rxdesc.rssi;
795 	rx_status->flag = rxdesc.flags;
796 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
797 
798 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
799 
800 renew_skb:
801 	/*
802 	 * Replace the skb with the freshly allocated one.
803 	 */
804 	entry->skb = skb;
805 
806 submit_entry:
807 	entry->flags = 0;
808 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
809 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
810 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
811 		rt2x00dev->ops->lib->clear_entry(entry);
812 }
813 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
814 
815 /*
816  * Driver initialization handlers.
817  */
818 const struct rt2x00_rate rt2x00_supported_rates[12] = {
819 	{
820 		.flags = DEV_RATE_CCK,
821 		.bitrate = 10,
822 		.ratemask = BIT(0),
823 		.plcp = 0x00,
824 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
825 	},
826 	{
827 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
828 		.bitrate = 20,
829 		.ratemask = BIT(1),
830 		.plcp = 0x01,
831 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
832 	},
833 	{
834 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
835 		.bitrate = 55,
836 		.ratemask = BIT(2),
837 		.plcp = 0x02,
838 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
839 	},
840 	{
841 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
842 		.bitrate = 110,
843 		.ratemask = BIT(3),
844 		.plcp = 0x03,
845 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
846 	},
847 	{
848 		.flags = DEV_RATE_OFDM,
849 		.bitrate = 60,
850 		.ratemask = BIT(4),
851 		.plcp = 0x0b,
852 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
853 	},
854 	{
855 		.flags = DEV_RATE_OFDM,
856 		.bitrate = 90,
857 		.ratemask = BIT(5),
858 		.plcp = 0x0f,
859 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
860 	},
861 	{
862 		.flags = DEV_RATE_OFDM,
863 		.bitrate = 120,
864 		.ratemask = BIT(6),
865 		.plcp = 0x0a,
866 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
867 	},
868 	{
869 		.flags = DEV_RATE_OFDM,
870 		.bitrate = 180,
871 		.ratemask = BIT(7),
872 		.plcp = 0x0e,
873 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
874 	},
875 	{
876 		.flags = DEV_RATE_OFDM,
877 		.bitrate = 240,
878 		.ratemask = BIT(8),
879 		.plcp = 0x09,
880 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
881 	},
882 	{
883 		.flags = DEV_RATE_OFDM,
884 		.bitrate = 360,
885 		.ratemask = BIT(9),
886 		.plcp = 0x0d,
887 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
888 	},
889 	{
890 		.flags = DEV_RATE_OFDM,
891 		.bitrate = 480,
892 		.ratemask = BIT(10),
893 		.plcp = 0x08,
894 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
895 	},
896 	{
897 		.flags = DEV_RATE_OFDM,
898 		.bitrate = 540,
899 		.ratemask = BIT(11),
900 		.plcp = 0x0c,
901 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
902 	},
903 };
904 
905 static void rt2x00lib_channel(struct ieee80211_channel *entry,
906 			      const int channel, const int tx_power,
907 			      const int value)
908 {
909 	/* XXX: this assumption about the band is wrong for 802.11j */
910 	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
911 	entry->center_freq = ieee80211_channel_to_frequency(channel,
912 							    entry->band);
913 	entry->hw_value = value;
914 	entry->max_power = tx_power;
915 	entry->max_antenna_gain = 0xff;
916 }
917 
918 static void rt2x00lib_rate(struct ieee80211_rate *entry,
919 			   const u16 index, const struct rt2x00_rate *rate)
920 {
921 	entry->flags = 0;
922 	entry->bitrate = rate->bitrate;
923 	entry->hw_value = index;
924 	entry->hw_value_short = index;
925 
926 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
927 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
928 }
929 
930 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
931 {
932 	const char *mac_addr;
933 
934 	mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
935 	if (mac_addr)
936 		ether_addr_copy(eeprom_mac_addr, mac_addr);
937 
938 	if (!is_valid_ether_addr(eeprom_mac_addr)) {
939 		eth_random_addr(eeprom_mac_addr);
940 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
941 	}
942 }
943 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
944 
945 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
946 				    struct hw_mode_spec *spec)
947 {
948 	struct ieee80211_hw *hw = rt2x00dev->hw;
949 	struct ieee80211_channel *channels;
950 	struct ieee80211_rate *rates;
951 	unsigned int num_rates;
952 	unsigned int i;
953 
954 	num_rates = 0;
955 	if (spec->supported_rates & SUPPORT_RATE_CCK)
956 		num_rates += 4;
957 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
958 		num_rates += 8;
959 
960 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
961 	if (!channels)
962 		return -ENOMEM;
963 
964 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
965 	if (!rates)
966 		goto exit_free_channels;
967 
968 	/*
969 	 * Initialize Rate list.
970 	 */
971 	for (i = 0; i < num_rates; i++)
972 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
973 
974 	/*
975 	 * Initialize Channel list.
976 	 */
977 	for (i = 0; i < spec->num_channels; i++) {
978 		rt2x00lib_channel(&channels[i],
979 				  spec->channels[i].channel,
980 				  spec->channels_info[i].max_power, i);
981 	}
982 
983 	/*
984 	 * Intitialize 802.11b, 802.11g
985 	 * Rates: CCK, OFDM.
986 	 * Channels: 2.4 GHz
987 	 */
988 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
989 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
990 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
991 		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
992 		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
993 		hw->wiphy->bands[NL80211_BAND_2GHZ] =
994 		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
995 		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
996 		       &spec->ht, sizeof(spec->ht));
997 	}
998 
999 	/*
1000 	 * Intitialize 802.11a
1001 	 * Rates: OFDM.
1002 	 * Channels: OFDM, UNII, HiperLAN2.
1003 	 */
1004 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1005 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1006 		    spec->num_channels - 14;
1007 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1008 		    num_rates - 4;
1009 		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1010 		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1011 		hw->wiphy->bands[NL80211_BAND_5GHZ] =
1012 		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1013 		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1014 		       &spec->ht, sizeof(spec->ht));
1015 	}
1016 
1017 	return 0;
1018 
1019  exit_free_channels:
1020 	kfree(channels);
1021 	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1022 	return -ENOMEM;
1023 }
1024 
1025 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1026 {
1027 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1028 		ieee80211_unregister_hw(rt2x00dev->hw);
1029 
1030 	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1031 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1032 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1033 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1034 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1035 	}
1036 
1037 	kfree(rt2x00dev->spec.channels_info);
1038 }
1039 
1040 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1041 {
1042 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1043 	int status;
1044 
1045 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1046 		return 0;
1047 
1048 	/*
1049 	 * Initialize HW modes.
1050 	 */
1051 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1052 	if (status)
1053 		return status;
1054 
1055 	/*
1056 	 * Initialize HW fields.
1057 	 */
1058 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1059 
1060 	/*
1061 	 * Initialize extra TX headroom required.
1062 	 */
1063 	rt2x00dev->hw->extra_tx_headroom =
1064 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1065 		      rt2x00dev->extra_tx_headroom);
1066 
1067 	/*
1068 	 * Take TX headroom required for alignment into account.
1069 	 */
1070 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1071 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1072 	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1073 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1074 
1075 	/*
1076 	 * Tell mac80211 about the size of our private STA structure.
1077 	 */
1078 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1079 
1080 	/*
1081 	 * Allocate tx status FIFO for driver use.
1082 	 */
1083 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1084 		/*
1085 		 * Allocate the txstatus fifo. In the worst case the tx
1086 		 * status fifo has to hold the tx status of all entries
1087 		 * in all tx queues. Hence, calculate the kfifo size as
1088 		 * tx_queues * entry_num and round up to the nearest
1089 		 * power of 2.
1090 		 */
1091 		int kfifo_size =
1092 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1093 					   rt2x00dev->tx->limit *
1094 					   sizeof(u32));
1095 
1096 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1097 				     GFP_KERNEL);
1098 		if (status)
1099 			return status;
1100 	}
1101 
1102 	/*
1103 	 * Initialize tasklets if used by the driver. Tasklets are
1104 	 * disabled until the interrupts are turned on. The driver
1105 	 * has to handle that.
1106 	 */
1107 #define RT2X00_TASKLET_INIT(taskletname) \
1108 	if (rt2x00dev->ops->lib->taskletname) { \
1109 		tasklet_init(&rt2x00dev->taskletname, \
1110 			     rt2x00dev->ops->lib->taskletname, \
1111 			     (unsigned long)rt2x00dev); \
1112 	}
1113 
1114 	RT2X00_TASKLET_INIT(txstatus_tasklet);
1115 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1116 	RT2X00_TASKLET_INIT(tbtt_tasklet);
1117 	RT2X00_TASKLET_INIT(rxdone_tasklet);
1118 	RT2X00_TASKLET_INIT(autowake_tasklet);
1119 
1120 #undef RT2X00_TASKLET_INIT
1121 
1122 	/*
1123 	 * Register HW.
1124 	 */
1125 	status = ieee80211_register_hw(rt2x00dev->hw);
1126 	if (status)
1127 		return status;
1128 
1129 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1130 
1131 	return 0;
1132 }
1133 
1134 /*
1135  * Initialization/uninitialization handlers.
1136  */
1137 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1138 {
1139 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1140 		return;
1141 
1142 	/*
1143 	 * Stop rfkill polling.
1144 	 */
1145 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1146 		rt2x00rfkill_unregister(rt2x00dev);
1147 
1148 	/*
1149 	 * Allow the HW to uninitialize.
1150 	 */
1151 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1152 
1153 	/*
1154 	 * Free allocated queue entries.
1155 	 */
1156 	rt2x00queue_uninitialize(rt2x00dev);
1157 }
1158 
1159 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1160 {
1161 	int status;
1162 
1163 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1164 		return 0;
1165 
1166 	/*
1167 	 * Allocate all queue entries.
1168 	 */
1169 	status = rt2x00queue_initialize(rt2x00dev);
1170 	if (status)
1171 		return status;
1172 
1173 	/*
1174 	 * Initialize the device.
1175 	 */
1176 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1177 	if (status) {
1178 		rt2x00queue_uninitialize(rt2x00dev);
1179 		return status;
1180 	}
1181 
1182 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1183 
1184 	/*
1185 	 * Start rfkill polling.
1186 	 */
1187 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1188 		rt2x00rfkill_register(rt2x00dev);
1189 
1190 	return 0;
1191 }
1192 
1193 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1194 {
1195 	int retval;
1196 
1197 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1198 		return 0;
1199 
1200 	/*
1201 	 * If this is the first interface which is added,
1202 	 * we should load the firmware now.
1203 	 */
1204 	retval = rt2x00lib_load_firmware(rt2x00dev);
1205 	if (retval)
1206 		return retval;
1207 
1208 	/*
1209 	 * Initialize the device.
1210 	 */
1211 	retval = rt2x00lib_initialize(rt2x00dev);
1212 	if (retval)
1213 		return retval;
1214 
1215 	rt2x00dev->intf_ap_count = 0;
1216 	rt2x00dev->intf_sta_count = 0;
1217 	rt2x00dev->intf_associated = 0;
1218 
1219 	/* Enable the radio */
1220 	retval = rt2x00lib_enable_radio(rt2x00dev);
1221 	if (retval)
1222 		return retval;
1223 
1224 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1225 
1226 	return 0;
1227 }
1228 
1229 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1230 {
1231 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1232 		return;
1233 
1234 	/*
1235 	 * Perhaps we can add something smarter here,
1236 	 * but for now just disabling the radio should do.
1237 	 */
1238 	rt2x00lib_disable_radio(rt2x00dev);
1239 
1240 	rt2x00dev->intf_ap_count = 0;
1241 	rt2x00dev->intf_sta_count = 0;
1242 	rt2x00dev->intf_associated = 0;
1243 }
1244 
1245 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1246 {
1247 	struct ieee80211_iface_limit *if_limit;
1248 	struct ieee80211_iface_combination *if_combination;
1249 
1250 	if (rt2x00dev->ops->max_ap_intf < 2)
1251 		return;
1252 
1253 	/*
1254 	 * Build up AP interface limits structure.
1255 	 */
1256 	if_limit = &rt2x00dev->if_limits_ap;
1257 	if_limit->max = rt2x00dev->ops->max_ap_intf;
1258 	if_limit->types = BIT(NL80211_IFTYPE_AP);
1259 #ifdef CONFIG_MAC80211_MESH
1260 	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1261 #endif
1262 
1263 	/*
1264 	 * Build up AP interface combinations structure.
1265 	 */
1266 	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1267 	if_combination->limits = if_limit;
1268 	if_combination->n_limits = 1;
1269 	if_combination->max_interfaces = if_limit->max;
1270 	if_combination->num_different_channels = 1;
1271 
1272 	/*
1273 	 * Finally, specify the possible combinations to mac80211.
1274 	 */
1275 	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1276 	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1277 }
1278 
1279 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1280 {
1281 	if (WARN_ON(!rt2x00dev->tx))
1282 		return 0;
1283 
1284 	if (rt2x00_is_usb(rt2x00dev))
1285 		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1286 
1287 	return rt2x00dev->tx[0].winfo_size;
1288 }
1289 
1290 /*
1291  * driver allocation handlers.
1292  */
1293 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1294 {
1295 	int retval = -ENOMEM;
1296 
1297 	/*
1298 	 * Set possible interface combinations.
1299 	 */
1300 	rt2x00lib_set_if_combinations(rt2x00dev);
1301 
1302 	/*
1303 	 * Allocate the driver data memory, if necessary.
1304 	 */
1305 	if (rt2x00dev->ops->drv_data_size > 0) {
1306 		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1307 			                      GFP_KERNEL);
1308 		if (!rt2x00dev->drv_data) {
1309 			retval = -ENOMEM;
1310 			goto exit;
1311 		}
1312 	}
1313 
1314 	spin_lock_init(&rt2x00dev->irqmask_lock);
1315 	mutex_init(&rt2x00dev->csr_mutex);
1316 	mutex_init(&rt2x00dev->conf_mutex);
1317 	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1318 	spin_lock_init(&rt2x00dev->bar_list_lock);
1319 
1320 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1321 
1322 	/*
1323 	 * Make room for rt2x00_intf inside the per-interface
1324 	 * structure ieee80211_vif.
1325 	 */
1326 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1327 
1328 	/*
1329 	 * rt2x00 devices can only use the last n bits of the MAC address
1330 	 * for virtual interfaces.
1331 	 */
1332 	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1333 		(rt2x00dev->ops->max_ap_intf - 1);
1334 
1335 	/*
1336 	 * Initialize work.
1337 	 */
1338 	rt2x00dev->workqueue =
1339 	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1340 	if (!rt2x00dev->workqueue) {
1341 		retval = -ENOMEM;
1342 		goto exit;
1343 	}
1344 
1345 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1346 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1347 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1348 
1349 	/*
1350 	 * Let the driver probe the device to detect the capabilities.
1351 	 */
1352 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1353 	if (retval) {
1354 		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1355 		goto exit;
1356 	}
1357 
1358 	/*
1359 	 * Allocate queue array.
1360 	 */
1361 	retval = rt2x00queue_allocate(rt2x00dev);
1362 	if (retval)
1363 		goto exit;
1364 
1365 	/* Cache TX headroom value */
1366 	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1367 
1368 	/*
1369 	 * Determine which operating modes are supported, all modes
1370 	 * which require beaconing, depend on the availability of
1371 	 * beacon entries.
1372 	 */
1373 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1374 	if (rt2x00dev->bcn->limit > 0)
1375 		rt2x00dev->hw->wiphy->interface_modes |=
1376 		    BIT(NL80211_IFTYPE_ADHOC) |
1377 #ifdef CONFIG_MAC80211_MESH
1378 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1379 #endif
1380 #ifdef CONFIG_WIRELESS_WDS
1381 		    BIT(NL80211_IFTYPE_WDS) |
1382 #endif
1383 		    BIT(NL80211_IFTYPE_AP);
1384 
1385 	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1386 
1387 	/*
1388 	 * Initialize ieee80211 structure.
1389 	 */
1390 	retval = rt2x00lib_probe_hw(rt2x00dev);
1391 	if (retval) {
1392 		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1393 		goto exit;
1394 	}
1395 
1396 	/*
1397 	 * Register extra components.
1398 	 */
1399 	rt2x00link_register(rt2x00dev);
1400 	rt2x00leds_register(rt2x00dev);
1401 	rt2x00debug_register(rt2x00dev);
1402 
1403 	/*
1404 	 * Start rfkill polling.
1405 	 */
1406 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1407 		rt2x00rfkill_register(rt2x00dev);
1408 
1409 	return 0;
1410 
1411 exit:
1412 	rt2x00lib_remove_dev(rt2x00dev);
1413 
1414 	return retval;
1415 }
1416 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1417 
1418 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1419 {
1420 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1421 
1422 	/*
1423 	 * Stop rfkill polling.
1424 	 */
1425 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1426 		rt2x00rfkill_unregister(rt2x00dev);
1427 
1428 	/*
1429 	 * Disable radio.
1430 	 */
1431 	rt2x00lib_disable_radio(rt2x00dev);
1432 
1433 	/*
1434 	 * Stop all work.
1435 	 */
1436 	cancel_work_sync(&rt2x00dev->intf_work);
1437 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1438 	cancel_work_sync(&rt2x00dev->sleep_work);
1439 
1440 	/*
1441 	 * Kill the tx status tasklet.
1442 	 */
1443 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1444 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1445 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1446 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1447 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1448 
1449 	/*
1450 	 * Uninitialize device.
1451 	 */
1452 	rt2x00lib_uninitialize(rt2x00dev);
1453 
1454 	if (rt2x00dev->workqueue)
1455 		destroy_workqueue(rt2x00dev->workqueue);
1456 
1457 	/*
1458 	 * Free the tx status fifo.
1459 	 */
1460 	kfifo_free(&rt2x00dev->txstatus_fifo);
1461 
1462 	/*
1463 	 * Free extra components
1464 	 */
1465 	rt2x00debug_deregister(rt2x00dev);
1466 	rt2x00leds_unregister(rt2x00dev);
1467 
1468 	/*
1469 	 * Free ieee80211_hw memory.
1470 	 */
1471 	rt2x00lib_remove_hw(rt2x00dev);
1472 
1473 	/*
1474 	 * Free firmware image.
1475 	 */
1476 	rt2x00lib_free_firmware(rt2x00dev);
1477 
1478 	/*
1479 	 * Free queue structures.
1480 	 */
1481 	rt2x00queue_free(rt2x00dev);
1482 
1483 	/*
1484 	 * Free the driver data.
1485 	 */
1486 	kfree(rt2x00dev->drv_data);
1487 }
1488 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1489 
1490 /*
1491  * Device state handlers
1492  */
1493 #ifdef CONFIG_PM
1494 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1495 {
1496 	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1497 
1498 	/*
1499 	 * Prevent mac80211 from accessing driver while suspended.
1500 	 */
1501 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1502 		return 0;
1503 
1504 	/*
1505 	 * Cleanup as much as possible.
1506 	 */
1507 	rt2x00lib_uninitialize(rt2x00dev);
1508 
1509 	/*
1510 	 * Suspend/disable extra components.
1511 	 */
1512 	rt2x00leds_suspend(rt2x00dev);
1513 	rt2x00debug_deregister(rt2x00dev);
1514 
1515 	/*
1516 	 * Set device mode to sleep for power management,
1517 	 * on some hardware this call seems to consistently fail.
1518 	 * From the specifications it is hard to tell why it fails,
1519 	 * and if this is a "bad thing".
1520 	 * Overall it is safe to just ignore the failure and
1521 	 * continue suspending. The only downside is that the
1522 	 * device will not be in optimal power save mode, but with
1523 	 * the radio and the other components already disabled the
1524 	 * device is as good as disabled.
1525 	 */
1526 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1527 		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1528 
1529 	return 0;
1530 }
1531 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1532 
1533 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1534 {
1535 	rt2x00_dbg(rt2x00dev, "Waking up\n");
1536 
1537 	/*
1538 	 * Restore/enable extra components.
1539 	 */
1540 	rt2x00debug_register(rt2x00dev);
1541 	rt2x00leds_resume(rt2x00dev);
1542 
1543 	/*
1544 	 * We are ready again to receive requests from mac80211.
1545 	 */
1546 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1547 
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1551 #endif /* CONFIG_PM */
1552 
1553 /*
1554  * rt2x00lib module information.
1555  */
1556 MODULE_AUTHOR(DRV_PROJECT);
1557 MODULE_VERSION(DRV_VERSION);
1558 MODULE_DESCRIPTION("rt2x00 library");
1559 MODULE_LICENSE("GPL");
1560