xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6 	This program is free software; you can redistribute it and/or modify
7 	it under the terms of the GNU General Public License as published by
8 	the Free Software Foundation; either version 2 of the License, or
9 	(at your option) any later version.
10 
11 	This program is distributed in the hope that it will be useful,
12 	but WITHOUT ANY WARRANTY; without even the implied warranty of
13 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 	GNU General Public License for more details.
15 
16 	You should have received a copy of the GNU General Public License
17 	along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 /*
21 	Module: rt2x00lib
22 	Abstract: rt2x00 generic device routines.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34 
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 			 struct ieee80211_vif *vif)
40 {
41 	/*
42 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 	 * contains the bss number, see BSS_ID_MASK comments for details.
44 	 */
45 	if (rt2x00dev->intf_sta_count)
46 		return 0;
47 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50 
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 	int status;
57 
58 	/*
59 	 * Don't enable the radio twice.
60 	 * And check if the hardware button has been disabled.
61 	 */
62 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 		return 0;
64 
65 	/*
66 	 * Initialize all data queues.
67 	 */
68 	rt2x00queue_init_queues(rt2x00dev);
69 
70 	/*
71 	 * Enable radio.
72 	 */
73 	status =
74 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 	if (status)
76 		return status;
77 
78 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79 
80 	rt2x00leds_led_radio(rt2x00dev, true);
81 	rt2x00led_led_activity(rt2x00dev, true);
82 
83 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84 
85 	/*
86 	 * Enable queues.
87 	 */
88 	rt2x00queue_start_queues(rt2x00dev);
89 	rt2x00link_start_tuner(rt2x00dev);
90 
91 	/*
92 	 * Start watchdog monitoring.
93 	 */
94 	rt2x00link_start_watchdog(rt2x00dev);
95 
96 	return 0;
97 }
98 
99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
100 {
101 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
102 		return;
103 
104 	/*
105 	 * Stop watchdog monitoring.
106 	 */
107 	rt2x00link_stop_watchdog(rt2x00dev);
108 
109 	/*
110 	 * Stop all queues
111 	 */
112 	rt2x00link_stop_tuner(rt2x00dev);
113 	rt2x00queue_stop_queues(rt2x00dev);
114 	rt2x00queue_flush_queues(rt2x00dev, true);
115 
116 	/*
117 	 * Disable radio.
118 	 */
119 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
120 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
121 	rt2x00led_led_activity(rt2x00dev, false);
122 	rt2x00leds_led_radio(rt2x00dev, false);
123 }
124 
125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
126 					  struct ieee80211_vif *vif)
127 {
128 	struct rt2x00_dev *rt2x00dev = data;
129 	struct rt2x00_intf *intf = vif_to_intf(vif);
130 
131 	/*
132 	 * It is possible the radio was disabled while the work had been
133 	 * scheduled. If that happens we should return here immediately,
134 	 * note that in the spinlock protected area above the delayed_flags
135 	 * have been cleared correctly.
136 	 */
137 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138 		return;
139 
140 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
141 		mutex_lock(&intf->beacon_skb_mutex);
142 		rt2x00queue_update_beacon(rt2x00dev, vif);
143 		mutex_unlock(&intf->beacon_skb_mutex);
144 	}
145 }
146 
147 static void rt2x00lib_intf_scheduled(struct work_struct *work)
148 {
149 	struct rt2x00_dev *rt2x00dev =
150 	    container_of(work, struct rt2x00_dev, intf_work);
151 
152 	/*
153 	 * Iterate over each interface and perform the
154 	 * requested configurations.
155 	 */
156 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
157 					    IEEE80211_IFACE_ITER_RESUME_ALL,
158 					    rt2x00lib_intf_scheduled_iter,
159 					    rt2x00dev);
160 }
161 
162 static void rt2x00lib_autowakeup(struct work_struct *work)
163 {
164 	struct rt2x00_dev *rt2x00dev =
165 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
166 
167 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
168 		return;
169 
170 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
171 		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
172 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
173 }
174 
175 /*
176  * Interrupt context handlers.
177  */
178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
179 				     struct ieee80211_vif *vif)
180 {
181 	struct ieee80211_tx_control control = {};
182 	struct rt2x00_dev *rt2x00dev = data;
183 	struct sk_buff *skb;
184 
185 	/*
186 	 * Only AP mode interfaces do broad- and multicast buffering
187 	 */
188 	if (vif->type != NL80211_IFTYPE_AP)
189 		return;
190 
191 	/*
192 	 * Send out buffered broad- and multicast frames
193 	 */
194 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195 	while (skb) {
196 		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
197 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198 	}
199 }
200 
201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
202 					struct ieee80211_vif *vif)
203 {
204 	struct rt2x00_dev *rt2x00dev = data;
205 
206 	if (vif->type != NL80211_IFTYPE_AP &&
207 	    vif->type != NL80211_IFTYPE_ADHOC &&
208 	    vif->type != NL80211_IFTYPE_MESH_POINT &&
209 	    vif->type != NL80211_IFTYPE_WDS)
210 		return;
211 
212 	/*
213 	 * Update the beacon without locking. This is safe on PCI devices
214 	 * as they only update the beacon periodically here. This should
215 	 * never be called for USB devices.
216 	 */
217 	WARN_ON(rt2x00_is_usb(rt2x00dev));
218 	rt2x00queue_update_beacon(rt2x00dev, vif);
219 }
220 
221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
222 {
223 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
224 		return;
225 
226 	/* send buffered bc/mc frames out for every bssid */
227 	ieee80211_iterate_active_interfaces_atomic(
228 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229 		rt2x00lib_bc_buffer_iter, rt2x00dev);
230 	/*
231 	 * Devices with pre tbtt interrupt don't need to update the beacon
232 	 * here as they will fetch the next beacon directly prior to
233 	 * transmission.
234 	 */
235 	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
236 		return;
237 
238 	/* fetch next beacon */
239 	ieee80211_iterate_active_interfaces_atomic(
240 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241 		rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
244 
245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
246 {
247 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
248 		return;
249 
250 	/* fetch next beacon */
251 	ieee80211_iterate_active_interfaces_atomic(
252 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
253 		rt2x00lib_beaconupdate_iter, rt2x00dev);
254 }
255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
256 
257 void rt2x00lib_dmastart(struct queue_entry *entry)
258 {
259 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
260 	rt2x00queue_index_inc(entry, Q_INDEX);
261 }
262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
263 
264 void rt2x00lib_dmadone(struct queue_entry *entry)
265 {
266 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
267 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
268 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
269 }
270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
271 
272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
273 {
274 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
275 	struct ieee80211_bar *bar = (void *) entry->skb->data;
276 	struct rt2x00_bar_list_entry *bar_entry;
277 	int ret;
278 
279 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
280 		return 0;
281 
282 	/*
283 	 * Unlike all other frames, the status report for BARs does
284 	 * not directly come from the hardware as it is incapable of
285 	 * matching a BA to a previously send BAR. The hardware will
286 	 * report all BARs as if they weren't acked at all.
287 	 *
288 	 * Instead the RX-path will scan for incoming BAs and set the
289 	 * block_acked flag if it sees one that was likely caused by
290 	 * a BAR from us.
291 	 *
292 	 * Remove remaining BARs here and return their status for
293 	 * TX done processing.
294 	 */
295 	ret = 0;
296 	rcu_read_lock();
297 	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
298 		if (bar_entry->entry != entry)
299 			continue;
300 
301 		spin_lock_bh(&rt2x00dev->bar_list_lock);
302 		/* Return whether this BAR was blockacked or not */
303 		ret = bar_entry->block_acked;
304 		/* Remove the BAR from our checklist */
305 		list_del_rcu(&bar_entry->list);
306 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
307 		kfree_rcu(bar_entry, head);
308 
309 		break;
310 	}
311 	rcu_read_unlock();
312 
313 	return ret;
314 }
315 
316 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
317 				     struct ieee80211_tx_info *tx_info,
318 				     struct skb_frame_desc *skbdesc,
319 				     struct txdone_entry_desc *txdesc,
320 				     bool success)
321 {
322 	u8 rate_idx, rate_flags, retry_rates;
323 	int i;
324 
325 	rate_idx = skbdesc->tx_rate_idx;
326 	rate_flags = skbdesc->tx_rate_flags;
327 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
328 	    (txdesc->retry + 1) : 1;
329 
330 	/*
331 	 * Initialize TX status
332 	 */
333 	memset(&tx_info->status, 0, sizeof(tx_info->status));
334 	tx_info->status.ack_signal = 0;
335 
336 	/*
337 	 * Frame was send with retries, hardware tried
338 	 * different rates to send out the frame, at each
339 	 * retry it lowered the rate 1 step except when the
340 	 * lowest rate was used.
341 	 */
342 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
343 		tx_info->status.rates[i].idx = rate_idx - i;
344 		tx_info->status.rates[i].flags = rate_flags;
345 
346 		if (rate_idx - i == 0) {
347 			/*
348 			 * The lowest rate (index 0) was used until the
349 			 * number of max retries was reached.
350 			 */
351 			tx_info->status.rates[i].count = retry_rates - i;
352 			i++;
353 			break;
354 		}
355 		tx_info->status.rates[i].count = 1;
356 	}
357 	if (i < (IEEE80211_TX_MAX_RATES - 1))
358 		tx_info->status.rates[i].idx = -1; /* terminate */
359 
360 	if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
361 		tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
362 
363 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
364 		if (success)
365 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
366 		else
367 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
368 	}
369 
370 	/*
371 	 * Every single frame has it's own tx status, hence report
372 	 * every frame as ampdu of size 1.
373 	 *
374 	 * TODO: if we can find out how many frames were aggregated
375 	 * by the hw we could provide the real ampdu_len to mac80211
376 	 * which would allow the rc algorithm to better decide on
377 	 * which rates are suitable.
378 	 */
379 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
380 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
381 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
382 				  IEEE80211_TX_CTL_AMPDU;
383 		tx_info->status.ampdu_len = 1;
384 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
385 
386 		if (!success)
387 			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
388 	}
389 
390 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
391 		if (success)
392 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
393 		else
394 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
395 	}
396 }
397 
398 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
399 				  struct queue_entry *entry)
400 {
401 	/*
402 	 * Make this entry available for reuse.
403 	 */
404 	entry->skb = NULL;
405 	entry->flags = 0;
406 
407 	rt2x00dev->ops->lib->clear_entry(entry);
408 
409 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
410 
411 	/*
412 	 * If the data queue was below the threshold before the txdone
413 	 * handler we must make sure the packet queue in the mac80211 stack
414 	 * is reenabled when the txdone handler has finished. This has to be
415 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
416 	 * before it was stopped.
417 	 */
418 	spin_lock_bh(&entry->queue->tx_lock);
419 	if (!rt2x00queue_threshold(entry->queue))
420 		rt2x00queue_unpause_queue(entry->queue);
421 	spin_unlock_bh(&entry->queue->tx_lock);
422 }
423 
424 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
425 			      struct txdone_entry_desc *txdesc)
426 {
427 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
428 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
429 	struct ieee80211_tx_info txinfo = {};
430 	bool success;
431 
432 	/*
433 	 * Unmap the skb.
434 	 */
435 	rt2x00queue_unmap_skb(entry);
436 
437 	/*
438 	 * Signal that the TX descriptor is no longer in the skb.
439 	 */
440 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
441 
442 	/*
443 	 * Send frame to debugfs immediately, after this call is completed
444 	 * we are going to overwrite the skb->cb array.
445 	 */
446 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
447 
448 	/*
449 	 * Determine if the frame has been successfully transmitted and
450 	 * remove BARs from our check list while checking for their
451 	 * TX status.
452 	 */
453 	success =
454 	    rt2x00lib_txdone_bar_status(entry) ||
455 	    test_bit(TXDONE_SUCCESS, &txdesc->flags);
456 
457 	if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
458 		/*
459 		 * Update TX statistics.
460 		 */
461 		rt2x00dev->link.qual.tx_success += success;
462 		rt2x00dev->link.qual.tx_failed += !success;
463 
464 		rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
465 					 success);
466 		ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
467 	}
468 
469 	dev_kfree_skb_any(entry->skb);
470 	rt2x00lib_clear_entry(rt2x00dev, entry);
471 }
472 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
473 
474 void rt2x00lib_txdone(struct queue_entry *entry,
475 		      struct txdone_entry_desc *txdesc)
476 {
477 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
478 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
479 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
480 	u8 skbdesc_flags = skbdesc->flags;
481 	unsigned int header_length;
482 	bool success;
483 
484 	/*
485 	 * Unmap the skb.
486 	 */
487 	rt2x00queue_unmap_skb(entry);
488 
489 	/*
490 	 * Remove the extra tx headroom from the skb.
491 	 */
492 	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
493 
494 	/*
495 	 * Signal that the TX descriptor is no longer in the skb.
496 	 */
497 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
498 
499 	/*
500 	 * Determine the length of 802.11 header.
501 	 */
502 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
503 
504 	/*
505 	 * Remove L2 padding which was added during
506 	 */
507 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
508 		rt2x00queue_remove_l2pad(entry->skb, header_length);
509 
510 	/*
511 	 * If the IV/EIV data was stripped from the frame before it was
512 	 * passed to the hardware, we should now reinsert it again because
513 	 * mac80211 will expect the same data to be present it the
514 	 * frame as it was passed to us.
515 	 */
516 	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
517 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
518 
519 	/*
520 	 * Send frame to debugfs immediately, after this call is completed
521 	 * we are going to overwrite the skb->cb array.
522 	 */
523 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
524 
525 	/*
526 	 * Determine if the frame has been successfully transmitted and
527 	 * remove BARs from our check list while checking for their
528 	 * TX status.
529 	 */
530 	success =
531 	    rt2x00lib_txdone_bar_status(entry) ||
532 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
533 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
534 
535 	/*
536 	 * Update TX statistics.
537 	 */
538 	rt2x00dev->link.qual.tx_success += success;
539 	rt2x00dev->link.qual.tx_failed += !success;
540 
541 	rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
542 
543 	/*
544 	 * Only send the status report to mac80211 when it's a frame
545 	 * that originated in mac80211. If this was a extra frame coming
546 	 * through a mac80211 library call (RTS/CTS) then we should not
547 	 * send the status report back.
548 	 */
549 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
550 		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
551 			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
552 		else
553 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
554 	} else {
555 		dev_kfree_skb_any(entry->skb);
556 	}
557 
558 	rt2x00lib_clear_entry(rt2x00dev, entry);
559 }
560 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
561 
562 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
563 {
564 	struct txdone_entry_desc txdesc;
565 
566 	txdesc.flags = 0;
567 	__set_bit(status, &txdesc.flags);
568 	txdesc.retry = 0;
569 
570 	rt2x00lib_txdone(entry, &txdesc);
571 }
572 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
573 
574 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
575 {
576 	struct ieee80211_mgmt *mgmt = (void *)data;
577 	u8 *pos, *end;
578 
579 	pos = (u8 *)mgmt->u.beacon.variable;
580 	end = data + len;
581 	while (pos < end) {
582 		if (pos + 2 + pos[1] > end)
583 			return NULL;
584 
585 		if (pos[0] == ie)
586 			return pos;
587 
588 		pos += 2 + pos[1];
589 	}
590 
591 	return NULL;
592 }
593 
594 static void rt2x00lib_sleep(struct work_struct *work)
595 {
596 	struct rt2x00_dev *rt2x00dev =
597 	    container_of(work, struct rt2x00_dev, sleep_work);
598 
599 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
600 		return;
601 
602 	/*
603 	 * Check again is powersaving is enabled, to prevent races from delayed
604 	 * work execution.
605 	 */
606 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
607 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
608 				 IEEE80211_CONF_CHANGE_PS);
609 }
610 
611 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
612 				      struct sk_buff *skb,
613 				      struct rxdone_entry_desc *rxdesc)
614 {
615 	struct rt2x00_bar_list_entry *entry;
616 	struct ieee80211_bar *ba = (void *)skb->data;
617 
618 	if (likely(!ieee80211_is_back(ba->frame_control)))
619 		return;
620 
621 	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
622 		return;
623 
624 	rcu_read_lock();
625 	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
626 
627 		if (ba->start_seq_num != entry->start_seq_num)
628 			continue;
629 
630 #define TID_CHECK(a, b) (						\
631 	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
632 	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
633 
634 		if (!TID_CHECK(ba->control, entry->control))
635 			continue;
636 
637 #undef TID_CHECK
638 
639 		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
640 			continue;
641 
642 		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
643 			continue;
644 
645 		/* Mark BAR since we received the according BA */
646 		spin_lock_bh(&rt2x00dev->bar_list_lock);
647 		entry->block_acked = 1;
648 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
649 		break;
650 	}
651 	rcu_read_unlock();
652 
653 }
654 
655 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
656 				      struct sk_buff *skb,
657 				      struct rxdone_entry_desc *rxdesc)
658 {
659 	struct ieee80211_hdr *hdr = (void *) skb->data;
660 	struct ieee80211_tim_ie *tim_ie;
661 	u8 *tim;
662 	u8 tim_len;
663 	bool cam;
664 
665 	/* If this is not a beacon, or if mac80211 has no powersaving
666 	 * configured, or if the device is already in powersaving mode
667 	 * we can exit now. */
668 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
669 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
670 		return;
671 
672 	/* min. beacon length + FCS_LEN */
673 	if (skb->len <= 40 + FCS_LEN)
674 		return;
675 
676 	/* and only beacons from the associated BSSID, please */
677 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
678 	    !rt2x00dev->aid)
679 		return;
680 
681 	rt2x00dev->last_beacon = jiffies;
682 
683 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
684 	if (!tim)
685 		return;
686 
687 	if (tim[1] < sizeof(*tim_ie))
688 		return;
689 
690 	tim_len = tim[1];
691 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
692 
693 	/* Check whenever the PHY can be turned off again. */
694 
695 	/* 1. What about buffered unicast traffic for our AID? */
696 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
697 
698 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
699 	cam |= (tim_ie->bitmap_ctrl & 0x01);
700 
701 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
702 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
703 }
704 
705 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
706 					struct rxdone_entry_desc *rxdesc)
707 {
708 	struct ieee80211_supported_band *sband;
709 	const struct rt2x00_rate *rate;
710 	unsigned int i;
711 	int signal = rxdesc->signal;
712 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
713 
714 	switch (rxdesc->rate_mode) {
715 	case RATE_MODE_CCK:
716 	case RATE_MODE_OFDM:
717 		/*
718 		 * For non-HT rates the MCS value needs to contain the
719 		 * actually used rate modulation (CCK or OFDM).
720 		 */
721 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
722 			signal = RATE_MCS(rxdesc->rate_mode, signal);
723 
724 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
725 		for (i = 0; i < sband->n_bitrates; i++) {
726 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
727 			if (((type == RXDONE_SIGNAL_PLCP) &&
728 			     (rate->plcp == signal)) ||
729 			    ((type == RXDONE_SIGNAL_BITRATE) &&
730 			      (rate->bitrate == signal)) ||
731 			    ((type == RXDONE_SIGNAL_MCS) &&
732 			      (rate->mcs == signal))) {
733 				return i;
734 			}
735 		}
736 		break;
737 	case RATE_MODE_HT_MIX:
738 	case RATE_MODE_HT_GREENFIELD:
739 		if (signal >= 0 && signal <= 76)
740 			return signal;
741 		break;
742 	default:
743 		break;
744 	}
745 
746 	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
747 		    rxdesc->rate_mode, signal, type);
748 	return 0;
749 }
750 
751 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
752 {
753 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
754 	struct rxdone_entry_desc rxdesc;
755 	struct sk_buff *skb;
756 	struct ieee80211_rx_status *rx_status;
757 	unsigned int header_length;
758 	int rate_idx;
759 
760 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
761 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
762 		goto submit_entry;
763 
764 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
765 		goto submit_entry;
766 
767 	/*
768 	 * Allocate a new sk_buffer. If no new buffer available, drop the
769 	 * received frame and reuse the existing buffer.
770 	 */
771 	skb = rt2x00queue_alloc_rxskb(entry, gfp);
772 	if (!skb)
773 		goto submit_entry;
774 
775 	/*
776 	 * Unmap the skb.
777 	 */
778 	rt2x00queue_unmap_skb(entry);
779 
780 	/*
781 	 * Extract the RXD details.
782 	 */
783 	memset(&rxdesc, 0, sizeof(rxdesc));
784 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
785 
786 	/*
787 	 * Check for valid size in case we get corrupted descriptor from
788 	 * hardware.
789 	 */
790 	if (unlikely(rxdesc.size == 0 ||
791 		     rxdesc.size > entry->queue->data_size)) {
792 		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
793 			   rxdesc.size, entry->queue->data_size);
794 		dev_kfree_skb(entry->skb);
795 		goto renew_skb;
796 	}
797 
798 	/*
799 	 * The data behind the ieee80211 header must be
800 	 * aligned on a 4 byte boundary.
801 	 */
802 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
803 
804 	/*
805 	 * Hardware might have stripped the IV/EIV/ICV data,
806 	 * in that case it is possible that the data was
807 	 * provided separately (through hardware descriptor)
808 	 * in which case we should reinsert the data into the frame.
809 	 */
810 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
811 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
812 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
813 					  &rxdesc);
814 	else if (header_length &&
815 		 (rxdesc.size > header_length) &&
816 		 (rxdesc.dev_flags & RXDONE_L2PAD))
817 		rt2x00queue_remove_l2pad(entry->skb, header_length);
818 
819 	/* Trim buffer to correct size */
820 	skb_trim(entry->skb, rxdesc.size);
821 
822 	/*
823 	 * Translate the signal to the correct bitrate index.
824 	 */
825 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
826 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
827 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
828 		rxdesc.encoding = RX_ENC_HT;
829 
830 	/*
831 	 * Check if this is a beacon, and more frames have been
832 	 * buffered while we were in powersaving mode.
833 	 */
834 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
835 
836 	/*
837 	 * Check for incoming BlockAcks to match to the BlockAckReqs
838 	 * we've send out.
839 	 */
840 	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
841 
842 	/*
843 	 * Update extra components
844 	 */
845 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
846 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
847 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
848 
849 	/*
850 	 * Initialize RX status information, and send frame
851 	 * to mac80211.
852 	 */
853 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
854 
855 	/* Ensure that all fields of rx_status are initialized
856 	 * properly. The skb->cb array was used for driver
857 	 * specific informations, so rx_status might contain
858 	 * garbage.
859 	 */
860 	memset(rx_status, 0, sizeof(*rx_status));
861 
862 	rx_status->mactime = rxdesc.timestamp;
863 	rx_status->band = rt2x00dev->curr_band;
864 	rx_status->freq = rt2x00dev->curr_freq;
865 	rx_status->rate_idx = rate_idx;
866 	rx_status->signal = rxdesc.rssi;
867 	rx_status->flag = rxdesc.flags;
868 	rx_status->enc_flags = rxdesc.enc_flags;
869 	rx_status->encoding = rxdesc.encoding;
870 	rx_status->bw = rxdesc.bw;
871 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
872 
873 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
874 
875 renew_skb:
876 	/*
877 	 * Replace the skb with the freshly allocated one.
878 	 */
879 	entry->skb = skb;
880 
881 submit_entry:
882 	entry->flags = 0;
883 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
884 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
885 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
886 		rt2x00dev->ops->lib->clear_entry(entry);
887 }
888 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
889 
890 /*
891  * Driver initialization handlers.
892  */
893 const struct rt2x00_rate rt2x00_supported_rates[12] = {
894 	{
895 		.flags = DEV_RATE_CCK,
896 		.bitrate = 10,
897 		.ratemask = BIT(0),
898 		.plcp = 0x00,
899 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
900 	},
901 	{
902 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
903 		.bitrate = 20,
904 		.ratemask = BIT(1),
905 		.plcp = 0x01,
906 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
907 	},
908 	{
909 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
910 		.bitrate = 55,
911 		.ratemask = BIT(2),
912 		.plcp = 0x02,
913 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
914 	},
915 	{
916 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
917 		.bitrate = 110,
918 		.ratemask = BIT(3),
919 		.plcp = 0x03,
920 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
921 	},
922 	{
923 		.flags = DEV_RATE_OFDM,
924 		.bitrate = 60,
925 		.ratemask = BIT(4),
926 		.plcp = 0x0b,
927 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
928 	},
929 	{
930 		.flags = DEV_RATE_OFDM,
931 		.bitrate = 90,
932 		.ratemask = BIT(5),
933 		.plcp = 0x0f,
934 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
935 	},
936 	{
937 		.flags = DEV_RATE_OFDM,
938 		.bitrate = 120,
939 		.ratemask = BIT(6),
940 		.plcp = 0x0a,
941 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
942 	},
943 	{
944 		.flags = DEV_RATE_OFDM,
945 		.bitrate = 180,
946 		.ratemask = BIT(7),
947 		.plcp = 0x0e,
948 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
949 	},
950 	{
951 		.flags = DEV_RATE_OFDM,
952 		.bitrate = 240,
953 		.ratemask = BIT(8),
954 		.plcp = 0x09,
955 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
956 	},
957 	{
958 		.flags = DEV_RATE_OFDM,
959 		.bitrate = 360,
960 		.ratemask = BIT(9),
961 		.plcp = 0x0d,
962 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
963 	},
964 	{
965 		.flags = DEV_RATE_OFDM,
966 		.bitrate = 480,
967 		.ratemask = BIT(10),
968 		.plcp = 0x08,
969 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
970 	},
971 	{
972 		.flags = DEV_RATE_OFDM,
973 		.bitrate = 540,
974 		.ratemask = BIT(11),
975 		.plcp = 0x0c,
976 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
977 	},
978 };
979 
980 static void rt2x00lib_channel(struct ieee80211_channel *entry,
981 			      const int channel, const int tx_power,
982 			      const int value)
983 {
984 	/* XXX: this assumption about the band is wrong for 802.11j */
985 	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
986 	entry->center_freq = ieee80211_channel_to_frequency(channel,
987 							    entry->band);
988 	entry->hw_value = value;
989 	entry->max_power = tx_power;
990 	entry->max_antenna_gain = 0xff;
991 }
992 
993 static void rt2x00lib_rate(struct ieee80211_rate *entry,
994 			   const u16 index, const struct rt2x00_rate *rate)
995 {
996 	entry->flags = 0;
997 	entry->bitrate = rate->bitrate;
998 	entry->hw_value = index;
999 	entry->hw_value_short = index;
1000 
1001 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
1002 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
1003 }
1004 
1005 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
1006 {
1007 	const char *mac_addr;
1008 
1009 	mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
1010 	if (mac_addr)
1011 		ether_addr_copy(eeprom_mac_addr, mac_addr);
1012 
1013 	if (!is_valid_ether_addr(eeprom_mac_addr)) {
1014 		eth_random_addr(eeprom_mac_addr);
1015 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1016 	}
1017 }
1018 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1019 
1020 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1021 				    struct hw_mode_spec *spec)
1022 {
1023 	struct ieee80211_hw *hw = rt2x00dev->hw;
1024 	struct ieee80211_channel *channels;
1025 	struct ieee80211_rate *rates;
1026 	unsigned int num_rates;
1027 	unsigned int i;
1028 
1029 	num_rates = 0;
1030 	if (spec->supported_rates & SUPPORT_RATE_CCK)
1031 		num_rates += 4;
1032 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
1033 		num_rates += 8;
1034 
1035 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1036 	if (!channels)
1037 		return -ENOMEM;
1038 
1039 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1040 	if (!rates)
1041 		goto exit_free_channels;
1042 
1043 	/*
1044 	 * Initialize Rate list.
1045 	 */
1046 	for (i = 0; i < num_rates; i++)
1047 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1048 
1049 	/*
1050 	 * Initialize Channel list.
1051 	 */
1052 	for (i = 0; i < spec->num_channels; i++) {
1053 		rt2x00lib_channel(&channels[i],
1054 				  spec->channels[i].channel,
1055 				  spec->channels_info[i].max_power, i);
1056 	}
1057 
1058 	/*
1059 	 * Intitialize 802.11b, 802.11g
1060 	 * Rates: CCK, OFDM.
1061 	 * Channels: 2.4 GHz
1062 	 */
1063 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1064 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1065 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1066 		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1067 		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1068 		hw->wiphy->bands[NL80211_BAND_2GHZ] =
1069 		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1070 		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1071 		       &spec->ht, sizeof(spec->ht));
1072 	}
1073 
1074 	/*
1075 	 * Intitialize 802.11a
1076 	 * Rates: OFDM.
1077 	 * Channels: OFDM, UNII, HiperLAN2.
1078 	 */
1079 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1080 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1081 		    spec->num_channels - 14;
1082 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1083 		    num_rates - 4;
1084 		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1085 		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1086 		hw->wiphy->bands[NL80211_BAND_5GHZ] =
1087 		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1088 		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1089 		       &spec->ht, sizeof(spec->ht));
1090 	}
1091 
1092 	return 0;
1093 
1094  exit_free_channels:
1095 	kfree(channels);
1096 	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1097 	return -ENOMEM;
1098 }
1099 
1100 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1101 {
1102 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1103 		ieee80211_unregister_hw(rt2x00dev->hw);
1104 
1105 	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1106 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1107 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1108 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1109 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1110 	}
1111 
1112 	kfree(rt2x00dev->spec.channels_info);
1113 }
1114 
1115 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1116 {
1117 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1118 	int status;
1119 
1120 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1121 		return 0;
1122 
1123 	/*
1124 	 * Initialize HW modes.
1125 	 */
1126 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1127 	if (status)
1128 		return status;
1129 
1130 	/*
1131 	 * Initialize HW fields.
1132 	 */
1133 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1134 
1135 	/*
1136 	 * Initialize extra TX headroom required.
1137 	 */
1138 	rt2x00dev->hw->extra_tx_headroom =
1139 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1140 		      rt2x00dev->extra_tx_headroom);
1141 
1142 	/*
1143 	 * Take TX headroom required for alignment into account.
1144 	 */
1145 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1146 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1147 	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1148 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1149 
1150 	/*
1151 	 * Tell mac80211 about the size of our private STA structure.
1152 	 */
1153 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1154 
1155 	/*
1156 	 * Allocate tx status FIFO for driver use.
1157 	 */
1158 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1159 		/*
1160 		 * Allocate the txstatus fifo. In the worst case the tx
1161 		 * status fifo has to hold the tx status of all entries
1162 		 * in all tx queues. Hence, calculate the kfifo size as
1163 		 * tx_queues * entry_num and round up to the nearest
1164 		 * power of 2.
1165 		 */
1166 		int kfifo_size =
1167 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1168 					   rt2x00dev->tx->limit *
1169 					   sizeof(u32));
1170 
1171 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1172 				     GFP_KERNEL);
1173 		if (status)
1174 			return status;
1175 	}
1176 
1177 	/*
1178 	 * Initialize tasklets if used by the driver. Tasklets are
1179 	 * disabled until the interrupts are turned on. The driver
1180 	 * has to handle that.
1181 	 */
1182 #define RT2X00_TASKLET_INIT(taskletname) \
1183 	if (rt2x00dev->ops->lib->taskletname) { \
1184 		tasklet_init(&rt2x00dev->taskletname, \
1185 			     rt2x00dev->ops->lib->taskletname, \
1186 			     (unsigned long)rt2x00dev); \
1187 	}
1188 
1189 	RT2X00_TASKLET_INIT(txstatus_tasklet);
1190 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1191 	RT2X00_TASKLET_INIT(tbtt_tasklet);
1192 	RT2X00_TASKLET_INIT(rxdone_tasklet);
1193 	RT2X00_TASKLET_INIT(autowake_tasklet);
1194 
1195 #undef RT2X00_TASKLET_INIT
1196 
1197 	/*
1198 	 * Register HW.
1199 	 */
1200 	status = ieee80211_register_hw(rt2x00dev->hw);
1201 	if (status)
1202 		return status;
1203 
1204 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Initialization/uninitialization handlers.
1211  */
1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213 {
1214 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215 		return;
1216 
1217 	/*
1218 	 * Stop rfkill polling.
1219 	 */
1220 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221 		rt2x00rfkill_unregister(rt2x00dev);
1222 
1223 	/*
1224 	 * Allow the HW to uninitialize.
1225 	 */
1226 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227 
1228 	/*
1229 	 * Free allocated queue entries.
1230 	 */
1231 	rt2x00queue_uninitialize(rt2x00dev);
1232 }
1233 
1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235 {
1236 	int status;
1237 
1238 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239 		return 0;
1240 
1241 	/*
1242 	 * Allocate all queue entries.
1243 	 */
1244 	status = rt2x00queue_initialize(rt2x00dev);
1245 	if (status)
1246 		return status;
1247 
1248 	/*
1249 	 * Initialize the device.
1250 	 */
1251 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252 	if (status) {
1253 		rt2x00queue_uninitialize(rt2x00dev);
1254 		return status;
1255 	}
1256 
1257 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258 
1259 	/*
1260 	 * Start rfkill polling.
1261 	 */
1262 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263 		rt2x00rfkill_register(rt2x00dev);
1264 
1265 	return 0;
1266 }
1267 
1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269 {
1270 	int retval;
1271 
1272 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1273 		return 0;
1274 
1275 	/*
1276 	 * If this is the first interface which is added,
1277 	 * we should load the firmware now.
1278 	 */
1279 	retval = rt2x00lib_load_firmware(rt2x00dev);
1280 	if (retval)
1281 		return retval;
1282 
1283 	/*
1284 	 * Initialize the device.
1285 	 */
1286 	retval = rt2x00lib_initialize(rt2x00dev);
1287 	if (retval)
1288 		return retval;
1289 
1290 	rt2x00dev->intf_ap_count = 0;
1291 	rt2x00dev->intf_sta_count = 0;
1292 	rt2x00dev->intf_associated = 0;
1293 
1294 	/* Enable the radio */
1295 	retval = rt2x00lib_enable_radio(rt2x00dev);
1296 	if (retval)
1297 		return retval;
1298 
1299 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1300 
1301 	return 0;
1302 }
1303 
1304 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1305 {
1306 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1307 		return;
1308 
1309 	/*
1310 	 * Perhaps we can add something smarter here,
1311 	 * but for now just disabling the radio should do.
1312 	 */
1313 	rt2x00lib_disable_radio(rt2x00dev);
1314 
1315 	rt2x00dev->intf_ap_count = 0;
1316 	rt2x00dev->intf_sta_count = 0;
1317 	rt2x00dev->intf_associated = 0;
1318 }
1319 
1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321 {
1322 	struct ieee80211_iface_limit *if_limit;
1323 	struct ieee80211_iface_combination *if_combination;
1324 
1325 	if (rt2x00dev->ops->max_ap_intf < 2)
1326 		return;
1327 
1328 	/*
1329 	 * Build up AP interface limits structure.
1330 	 */
1331 	if_limit = &rt2x00dev->if_limits_ap;
1332 	if_limit->max = rt2x00dev->ops->max_ap_intf;
1333 	if_limit->types = BIT(NL80211_IFTYPE_AP);
1334 #ifdef CONFIG_MAC80211_MESH
1335 	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336 #endif
1337 
1338 	/*
1339 	 * Build up AP interface combinations structure.
1340 	 */
1341 	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342 	if_combination->limits = if_limit;
1343 	if_combination->n_limits = 1;
1344 	if_combination->max_interfaces = if_limit->max;
1345 	if_combination->num_different_channels = 1;
1346 
1347 	/*
1348 	 * Finally, specify the possible combinations to mac80211.
1349 	 */
1350 	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351 	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352 }
1353 
1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355 {
1356 	if (WARN_ON(!rt2x00dev->tx))
1357 		return 0;
1358 
1359 	if (rt2x00_is_usb(rt2x00dev))
1360 		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361 
1362 	return rt2x00dev->tx[0].winfo_size;
1363 }
1364 
1365 /*
1366  * driver allocation handlers.
1367  */
1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369 {
1370 	int retval = -ENOMEM;
1371 
1372 	/*
1373 	 * Set possible interface combinations.
1374 	 */
1375 	rt2x00lib_set_if_combinations(rt2x00dev);
1376 
1377 	/*
1378 	 * Allocate the driver data memory, if necessary.
1379 	 */
1380 	if (rt2x00dev->ops->drv_data_size > 0) {
1381 		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382 			                      GFP_KERNEL);
1383 		if (!rt2x00dev->drv_data) {
1384 			retval = -ENOMEM;
1385 			goto exit;
1386 		}
1387 	}
1388 
1389 	spin_lock_init(&rt2x00dev->irqmask_lock);
1390 	mutex_init(&rt2x00dev->csr_mutex);
1391 	mutex_init(&rt2x00dev->conf_mutex);
1392 	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393 	spin_lock_init(&rt2x00dev->bar_list_lock);
1394 
1395 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1396 
1397 	/*
1398 	 * Make room for rt2x00_intf inside the per-interface
1399 	 * structure ieee80211_vif.
1400 	 */
1401 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1402 
1403 	/*
1404 	 * rt2x00 devices can only use the last n bits of the MAC address
1405 	 * for virtual interfaces.
1406 	 */
1407 	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1408 		(rt2x00dev->ops->max_ap_intf - 1);
1409 
1410 	/*
1411 	 * Initialize work.
1412 	 */
1413 	rt2x00dev->workqueue =
1414 	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1415 	if (!rt2x00dev->workqueue) {
1416 		retval = -ENOMEM;
1417 		goto exit;
1418 	}
1419 
1420 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1421 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1422 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1423 
1424 	/*
1425 	 * Let the driver probe the device to detect the capabilities.
1426 	 */
1427 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1428 	if (retval) {
1429 		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1430 		goto exit;
1431 	}
1432 
1433 	/*
1434 	 * Allocate queue array.
1435 	 */
1436 	retval = rt2x00queue_allocate(rt2x00dev);
1437 	if (retval)
1438 		goto exit;
1439 
1440 	/* Cache TX headroom value */
1441 	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1442 
1443 	/*
1444 	 * Determine which operating modes are supported, all modes
1445 	 * which require beaconing, depend on the availability of
1446 	 * beacon entries.
1447 	 */
1448 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1449 	if (rt2x00dev->bcn->limit > 0)
1450 		rt2x00dev->hw->wiphy->interface_modes |=
1451 		    BIT(NL80211_IFTYPE_ADHOC) |
1452 #ifdef CONFIG_MAC80211_MESH
1453 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1454 #endif
1455 #ifdef CONFIG_WIRELESS_WDS
1456 		    BIT(NL80211_IFTYPE_WDS) |
1457 #endif
1458 		    BIT(NL80211_IFTYPE_AP);
1459 
1460 	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1461 
1462 	wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1463 			      NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1464 
1465 	/*
1466 	 * Initialize ieee80211 structure.
1467 	 */
1468 	retval = rt2x00lib_probe_hw(rt2x00dev);
1469 	if (retval) {
1470 		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1471 		goto exit;
1472 	}
1473 
1474 	/*
1475 	 * Register extra components.
1476 	 */
1477 	rt2x00link_register(rt2x00dev);
1478 	rt2x00leds_register(rt2x00dev);
1479 	rt2x00debug_register(rt2x00dev);
1480 
1481 	/*
1482 	 * Start rfkill polling.
1483 	 */
1484 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1485 		rt2x00rfkill_register(rt2x00dev);
1486 
1487 	return 0;
1488 
1489 exit:
1490 	rt2x00lib_remove_dev(rt2x00dev);
1491 
1492 	return retval;
1493 }
1494 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1495 
1496 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1497 {
1498 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1499 
1500 	/*
1501 	 * Stop rfkill polling.
1502 	 */
1503 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1504 		rt2x00rfkill_unregister(rt2x00dev);
1505 
1506 	/*
1507 	 * Disable radio.
1508 	 */
1509 	rt2x00lib_disable_radio(rt2x00dev);
1510 
1511 	/*
1512 	 * Stop all work.
1513 	 */
1514 	cancel_work_sync(&rt2x00dev->intf_work);
1515 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1516 	cancel_work_sync(&rt2x00dev->sleep_work);
1517 
1518 	/*
1519 	 * Kill the tx status tasklet.
1520 	 */
1521 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1522 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1523 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1524 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1525 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1526 
1527 	/*
1528 	 * Uninitialize device.
1529 	 */
1530 	rt2x00lib_uninitialize(rt2x00dev);
1531 
1532 	if (rt2x00dev->workqueue)
1533 		destroy_workqueue(rt2x00dev->workqueue);
1534 
1535 	/*
1536 	 * Free the tx status fifo.
1537 	 */
1538 	kfifo_free(&rt2x00dev->txstatus_fifo);
1539 
1540 	/*
1541 	 * Free extra components
1542 	 */
1543 	rt2x00debug_deregister(rt2x00dev);
1544 	rt2x00leds_unregister(rt2x00dev);
1545 
1546 	/*
1547 	 * Free ieee80211_hw memory.
1548 	 */
1549 	rt2x00lib_remove_hw(rt2x00dev);
1550 
1551 	/*
1552 	 * Free firmware image.
1553 	 */
1554 	rt2x00lib_free_firmware(rt2x00dev);
1555 
1556 	/*
1557 	 * Free queue structures.
1558 	 */
1559 	rt2x00queue_free(rt2x00dev);
1560 
1561 	/*
1562 	 * Free the driver data.
1563 	 */
1564 	kfree(rt2x00dev->drv_data);
1565 }
1566 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1567 
1568 /*
1569  * Device state handlers
1570  */
1571 #ifdef CONFIG_PM
1572 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1573 {
1574 	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575 
1576 	/*
1577 	 * Prevent mac80211 from accessing driver while suspended.
1578 	 */
1579 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580 		return 0;
1581 
1582 	/*
1583 	 * Cleanup as much as possible.
1584 	 */
1585 	rt2x00lib_uninitialize(rt2x00dev);
1586 
1587 	/*
1588 	 * Suspend/disable extra components.
1589 	 */
1590 	rt2x00leds_suspend(rt2x00dev);
1591 	rt2x00debug_deregister(rt2x00dev);
1592 
1593 	/*
1594 	 * Set device mode to sleep for power management,
1595 	 * on some hardware this call seems to consistently fail.
1596 	 * From the specifications it is hard to tell why it fails,
1597 	 * and if this is a "bad thing".
1598 	 * Overall it is safe to just ignore the failure and
1599 	 * continue suspending. The only downside is that the
1600 	 * device will not be in optimal power save mode, but with
1601 	 * the radio and the other components already disabled the
1602 	 * device is as good as disabled.
1603 	 */
1604 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605 		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606 
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610 
1611 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612 {
1613 	rt2x00_dbg(rt2x00dev, "Waking up\n");
1614 
1615 	/*
1616 	 * Restore/enable extra components.
1617 	 */
1618 	rt2x00debug_register(rt2x00dev);
1619 	rt2x00leds_resume(rt2x00dev);
1620 
1621 	/*
1622 	 * We are ready again to receive requests from mac80211.
1623 	 */
1624 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625 
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629 #endif /* CONFIG_PM */
1630 
1631 /*
1632  * rt2x00lib module information.
1633  */
1634 MODULE_AUTHOR(DRV_PROJECT);
1635 MODULE_VERSION(DRV_VERSION);
1636 MODULE_DESCRIPTION("rt2x00 library");
1637 MODULE_LICENSE("GPL");
1638