1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 */ 8 9 /* 10 Module: rt2x00lib 11 Abstract: rt2x00 generic device routines. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/log2.h> 18 #include <linux/of.h> 19 #include <linux/of_net.h> 20 21 #include "rt2x00.h" 22 #include "rt2x00lib.h" 23 24 /* 25 * Utility functions. 26 */ 27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 28 struct ieee80211_vif *vif) 29 { 30 /* 31 * When in STA mode, bssidx is always 0 otherwise local_address[5] 32 * contains the bss number, see BSS_ID_MASK comments for details. 33 */ 34 if (rt2x00dev->intf_sta_count) 35 return 0; 36 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 37 } 38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 39 40 /* 41 * Radio control handlers. 42 */ 43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 44 { 45 int status; 46 47 /* 48 * Don't enable the radio twice. 49 * And check if the hardware button has been disabled. 50 */ 51 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 52 return 0; 53 54 /* 55 * Initialize all data queues. 56 */ 57 rt2x00queue_init_queues(rt2x00dev); 58 59 /* 60 * Enable radio. 61 */ 62 status = 63 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 64 if (status) 65 return status; 66 67 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 68 69 rt2x00leds_led_radio(rt2x00dev, true); 70 rt2x00led_led_activity(rt2x00dev, true); 71 72 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 73 74 /* 75 * Enable queues. 76 */ 77 rt2x00queue_start_queues(rt2x00dev); 78 rt2x00link_start_tuner(rt2x00dev); 79 80 /* 81 * Start watchdog monitoring. 82 */ 83 rt2x00link_start_watchdog(rt2x00dev); 84 85 return 0; 86 } 87 88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 89 { 90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 91 return; 92 93 /* 94 * Stop watchdog monitoring. 95 */ 96 rt2x00link_stop_watchdog(rt2x00dev); 97 98 /* 99 * Stop all queues 100 */ 101 rt2x00link_stop_tuner(rt2x00dev); 102 rt2x00queue_stop_queues(rt2x00dev); 103 rt2x00queue_flush_queues(rt2x00dev, true); 104 105 /* 106 * Disable radio. 107 */ 108 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 109 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 110 rt2x00led_led_activity(rt2x00dev, false); 111 rt2x00leds_led_radio(rt2x00dev, false); 112 } 113 114 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 115 struct ieee80211_vif *vif) 116 { 117 struct rt2x00_dev *rt2x00dev = data; 118 struct rt2x00_intf *intf = vif_to_intf(vif); 119 120 /* 121 * It is possible the radio was disabled while the work had been 122 * scheduled. If that happens we should return here immediately, 123 * note that in the spinlock protected area above the delayed_flags 124 * have been cleared correctly. 125 */ 126 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 127 return; 128 129 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 130 mutex_lock(&intf->beacon_skb_mutex); 131 rt2x00queue_update_beacon(rt2x00dev, vif); 132 mutex_unlock(&intf->beacon_skb_mutex); 133 } 134 } 135 136 static void rt2x00lib_intf_scheduled(struct work_struct *work) 137 { 138 struct rt2x00_dev *rt2x00dev = 139 container_of(work, struct rt2x00_dev, intf_work); 140 141 /* 142 * Iterate over each interface and perform the 143 * requested configurations. 144 */ 145 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 146 IEEE80211_IFACE_ITER_RESUME_ALL, 147 rt2x00lib_intf_scheduled_iter, 148 rt2x00dev); 149 } 150 151 static void rt2x00lib_autowakeup(struct work_struct *work) 152 { 153 struct rt2x00_dev *rt2x00dev = 154 container_of(work, struct rt2x00_dev, autowakeup_work.work); 155 156 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 157 return; 158 159 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 160 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 161 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 162 } 163 164 /* 165 * Interrupt context handlers. 166 */ 167 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 168 struct ieee80211_vif *vif) 169 { 170 struct ieee80211_tx_control control = {}; 171 struct rt2x00_dev *rt2x00dev = data; 172 struct sk_buff *skb; 173 174 /* 175 * Only AP mode interfaces do broad- and multicast buffering 176 */ 177 if (vif->type != NL80211_IFTYPE_AP) 178 return; 179 180 /* 181 * Send out buffered broad- and multicast frames 182 */ 183 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 184 while (skb) { 185 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 186 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 187 } 188 } 189 190 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 191 struct ieee80211_vif *vif) 192 { 193 struct rt2x00_dev *rt2x00dev = data; 194 195 if (vif->type != NL80211_IFTYPE_AP && 196 vif->type != NL80211_IFTYPE_ADHOC && 197 vif->type != NL80211_IFTYPE_MESH_POINT && 198 vif->type != NL80211_IFTYPE_WDS) 199 return; 200 201 /* 202 * Update the beacon without locking. This is safe on PCI devices 203 * as they only update the beacon periodically here. This should 204 * never be called for USB devices. 205 */ 206 WARN_ON(rt2x00_is_usb(rt2x00dev)); 207 rt2x00queue_update_beacon(rt2x00dev, vif); 208 } 209 210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 211 { 212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 213 return; 214 215 /* send buffered bc/mc frames out for every bssid */ 216 ieee80211_iterate_active_interfaces_atomic( 217 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 218 rt2x00lib_bc_buffer_iter, rt2x00dev); 219 /* 220 * Devices with pre tbtt interrupt don't need to update the beacon 221 * here as they will fetch the next beacon directly prior to 222 * transmission. 223 */ 224 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 225 return; 226 227 /* fetch next beacon */ 228 ieee80211_iterate_active_interfaces_atomic( 229 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 230 rt2x00lib_beaconupdate_iter, rt2x00dev); 231 } 232 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 233 234 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 235 { 236 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 237 return; 238 239 /* fetch next beacon */ 240 ieee80211_iterate_active_interfaces_atomic( 241 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 242 rt2x00lib_beaconupdate_iter, rt2x00dev); 243 } 244 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 245 246 void rt2x00lib_dmastart(struct queue_entry *entry) 247 { 248 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 249 rt2x00queue_index_inc(entry, Q_INDEX); 250 } 251 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 252 253 void rt2x00lib_dmadone(struct queue_entry *entry) 254 { 255 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 256 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 257 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 258 } 259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 260 261 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 262 { 263 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 264 struct ieee80211_bar *bar = (void *) entry->skb->data; 265 struct rt2x00_bar_list_entry *bar_entry; 266 int ret; 267 268 if (likely(!ieee80211_is_back_req(bar->frame_control))) 269 return 0; 270 271 /* 272 * Unlike all other frames, the status report for BARs does 273 * not directly come from the hardware as it is incapable of 274 * matching a BA to a previously send BAR. The hardware will 275 * report all BARs as if they weren't acked at all. 276 * 277 * Instead the RX-path will scan for incoming BAs and set the 278 * block_acked flag if it sees one that was likely caused by 279 * a BAR from us. 280 * 281 * Remove remaining BARs here and return their status for 282 * TX done processing. 283 */ 284 ret = 0; 285 rcu_read_lock(); 286 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 287 if (bar_entry->entry != entry) 288 continue; 289 290 spin_lock_bh(&rt2x00dev->bar_list_lock); 291 /* Return whether this BAR was blockacked or not */ 292 ret = bar_entry->block_acked; 293 /* Remove the BAR from our checklist */ 294 list_del_rcu(&bar_entry->list); 295 spin_unlock_bh(&rt2x00dev->bar_list_lock); 296 kfree_rcu(bar_entry, head); 297 298 break; 299 } 300 rcu_read_unlock(); 301 302 return ret; 303 } 304 305 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev, 306 struct ieee80211_tx_info *tx_info, 307 struct skb_frame_desc *skbdesc, 308 struct txdone_entry_desc *txdesc, 309 bool success) 310 { 311 u8 rate_idx, rate_flags, retry_rates; 312 int i; 313 314 rate_idx = skbdesc->tx_rate_idx; 315 rate_flags = skbdesc->tx_rate_flags; 316 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 317 (txdesc->retry + 1) : 1; 318 319 /* 320 * Initialize TX status 321 */ 322 memset(&tx_info->status, 0, sizeof(tx_info->status)); 323 tx_info->status.ack_signal = 0; 324 325 /* 326 * Frame was send with retries, hardware tried 327 * different rates to send out the frame, at each 328 * retry it lowered the rate 1 step except when the 329 * lowest rate was used. 330 */ 331 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 332 tx_info->status.rates[i].idx = rate_idx - i; 333 tx_info->status.rates[i].flags = rate_flags; 334 335 if (rate_idx - i == 0) { 336 /* 337 * The lowest rate (index 0) was used until the 338 * number of max retries was reached. 339 */ 340 tx_info->status.rates[i].count = retry_rates - i; 341 i++; 342 break; 343 } 344 tx_info->status.rates[i].count = 1; 345 } 346 if (i < (IEEE80211_TX_MAX_RATES - 1)) 347 tx_info->status.rates[i].idx = -1; /* terminate */ 348 349 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags)) 350 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK; 351 352 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 353 if (success) 354 tx_info->flags |= IEEE80211_TX_STAT_ACK; 355 else 356 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 357 } 358 359 /* 360 * Every single frame has it's own tx status, hence report 361 * every frame as ampdu of size 1. 362 * 363 * TODO: if we can find out how many frames were aggregated 364 * by the hw we could provide the real ampdu_len to mac80211 365 * which would allow the rc algorithm to better decide on 366 * which rates are suitable. 367 */ 368 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 369 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 370 tx_info->flags |= IEEE80211_TX_STAT_AMPDU | 371 IEEE80211_TX_CTL_AMPDU; 372 tx_info->status.ampdu_len = 1; 373 tx_info->status.ampdu_ack_len = success ? 1 : 0; 374 375 if (!success) 376 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 377 } 378 379 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 380 if (success) 381 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 382 else 383 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 384 } 385 } 386 387 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev, 388 struct queue_entry *entry) 389 { 390 /* 391 * Make this entry available for reuse. 392 */ 393 entry->skb = NULL; 394 entry->flags = 0; 395 396 rt2x00dev->ops->lib->clear_entry(entry); 397 398 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 399 400 /* 401 * If the data queue was below the threshold before the txdone 402 * handler we must make sure the packet queue in the mac80211 stack 403 * is reenabled when the txdone handler has finished. This has to be 404 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 405 * before it was stopped. 406 */ 407 spin_lock_bh(&entry->queue->tx_lock); 408 if (!rt2x00queue_threshold(entry->queue)) 409 rt2x00queue_unpause_queue(entry->queue); 410 spin_unlock_bh(&entry->queue->tx_lock); 411 } 412 413 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 414 struct txdone_entry_desc *txdesc) 415 { 416 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 417 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 418 struct ieee80211_tx_info txinfo = {}; 419 bool success; 420 421 /* 422 * Unmap the skb. 423 */ 424 rt2x00queue_unmap_skb(entry); 425 426 /* 427 * Signal that the TX descriptor is no longer in the skb. 428 */ 429 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 430 431 /* 432 * Send frame to debugfs immediately, after this call is completed 433 * we are going to overwrite the skb->cb array. 434 */ 435 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 436 437 /* 438 * Determine if the frame has been successfully transmitted and 439 * remove BARs from our check list while checking for their 440 * TX status. 441 */ 442 success = 443 rt2x00lib_txdone_bar_status(entry) || 444 test_bit(TXDONE_SUCCESS, &txdesc->flags); 445 446 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) { 447 /* 448 * Update TX statistics. 449 */ 450 rt2x00dev->link.qual.tx_success += success; 451 rt2x00dev->link.qual.tx_failed += !success; 452 453 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc, 454 success); 455 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo); 456 } 457 458 dev_kfree_skb_any(entry->skb); 459 rt2x00lib_clear_entry(rt2x00dev, entry); 460 } 461 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch); 462 463 void rt2x00lib_txdone(struct queue_entry *entry, 464 struct txdone_entry_desc *txdesc) 465 { 466 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 467 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 468 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 469 u8 skbdesc_flags = skbdesc->flags; 470 unsigned int header_length; 471 bool success; 472 473 /* 474 * Unmap the skb. 475 */ 476 rt2x00queue_unmap_skb(entry); 477 478 /* 479 * Remove the extra tx headroom from the skb. 480 */ 481 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 482 483 /* 484 * Signal that the TX descriptor is no longer in the skb. 485 */ 486 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 487 488 /* 489 * Determine the length of 802.11 header. 490 */ 491 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 492 493 /* 494 * Remove L2 padding which was added during 495 */ 496 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 497 rt2x00queue_remove_l2pad(entry->skb, header_length); 498 499 /* 500 * If the IV/EIV data was stripped from the frame before it was 501 * passed to the hardware, we should now reinsert it again because 502 * mac80211 will expect the same data to be present it the 503 * frame as it was passed to us. 504 */ 505 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 506 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 507 508 /* 509 * Send frame to debugfs immediately, after this call is completed 510 * we are going to overwrite the skb->cb array. 511 */ 512 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 513 514 /* 515 * Determine if the frame has been successfully transmitted and 516 * remove BARs from our check list while checking for their 517 * TX status. 518 */ 519 success = 520 rt2x00lib_txdone_bar_status(entry) || 521 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 522 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 523 524 /* 525 * Update TX statistics. 526 */ 527 rt2x00dev->link.qual.tx_success += success; 528 rt2x00dev->link.qual.tx_failed += !success; 529 530 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success); 531 532 /* 533 * Only send the status report to mac80211 when it's a frame 534 * that originated in mac80211. If this was a extra frame coming 535 * through a mac80211 library call (RTS/CTS) then we should not 536 * send the status report back. 537 */ 538 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 539 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 540 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 541 else 542 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 543 } else { 544 dev_kfree_skb_any(entry->skb); 545 } 546 547 rt2x00lib_clear_entry(rt2x00dev, entry); 548 } 549 EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 550 551 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 552 { 553 struct txdone_entry_desc txdesc; 554 555 txdesc.flags = 0; 556 __set_bit(status, &txdesc.flags); 557 txdesc.retry = 0; 558 559 rt2x00lib_txdone(entry, &txdesc); 560 } 561 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 562 563 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 564 { 565 struct ieee80211_mgmt *mgmt = (void *)data; 566 u8 *pos, *end; 567 568 pos = (u8 *)mgmt->u.beacon.variable; 569 end = data + len; 570 while (pos < end) { 571 if (pos + 2 + pos[1] > end) 572 return NULL; 573 574 if (pos[0] == ie) 575 return pos; 576 577 pos += 2 + pos[1]; 578 } 579 580 return NULL; 581 } 582 583 static void rt2x00lib_sleep(struct work_struct *work) 584 { 585 struct rt2x00_dev *rt2x00dev = 586 container_of(work, struct rt2x00_dev, sleep_work); 587 588 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 589 return; 590 591 /* 592 * Check again is powersaving is enabled, to prevent races from delayed 593 * work execution. 594 */ 595 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 596 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 597 IEEE80211_CONF_CHANGE_PS); 598 } 599 600 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 601 struct sk_buff *skb, 602 struct rxdone_entry_desc *rxdesc) 603 { 604 struct rt2x00_bar_list_entry *entry; 605 struct ieee80211_bar *ba = (void *)skb->data; 606 607 if (likely(!ieee80211_is_back(ba->frame_control))) 608 return; 609 610 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 611 return; 612 613 rcu_read_lock(); 614 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 615 616 if (ba->start_seq_num != entry->start_seq_num) 617 continue; 618 619 #define TID_CHECK(a, b) ( \ 620 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 621 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 622 623 if (!TID_CHECK(ba->control, entry->control)) 624 continue; 625 626 #undef TID_CHECK 627 628 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 629 continue; 630 631 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 632 continue; 633 634 /* Mark BAR since we received the according BA */ 635 spin_lock_bh(&rt2x00dev->bar_list_lock); 636 entry->block_acked = 1; 637 spin_unlock_bh(&rt2x00dev->bar_list_lock); 638 break; 639 } 640 rcu_read_unlock(); 641 642 } 643 644 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 645 struct sk_buff *skb, 646 struct rxdone_entry_desc *rxdesc) 647 { 648 struct ieee80211_hdr *hdr = (void *) skb->data; 649 struct ieee80211_tim_ie *tim_ie; 650 u8 *tim; 651 u8 tim_len; 652 bool cam; 653 654 /* If this is not a beacon, or if mac80211 has no powersaving 655 * configured, or if the device is already in powersaving mode 656 * we can exit now. */ 657 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 658 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 659 return; 660 661 /* min. beacon length + FCS_LEN */ 662 if (skb->len <= 40 + FCS_LEN) 663 return; 664 665 /* and only beacons from the associated BSSID, please */ 666 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 667 !rt2x00dev->aid) 668 return; 669 670 rt2x00dev->last_beacon = jiffies; 671 672 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 673 if (!tim) 674 return; 675 676 if (tim[1] < sizeof(*tim_ie)) 677 return; 678 679 tim_len = tim[1]; 680 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 681 682 /* Check whenever the PHY can be turned off again. */ 683 684 /* 1. What about buffered unicast traffic for our AID? */ 685 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 686 687 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 688 cam |= (tim_ie->bitmap_ctrl & 0x01); 689 690 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 691 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 692 } 693 694 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 695 struct rxdone_entry_desc *rxdesc) 696 { 697 struct ieee80211_supported_band *sband; 698 const struct rt2x00_rate *rate; 699 unsigned int i; 700 int signal = rxdesc->signal; 701 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 702 703 switch (rxdesc->rate_mode) { 704 case RATE_MODE_CCK: 705 case RATE_MODE_OFDM: 706 /* 707 * For non-HT rates the MCS value needs to contain the 708 * actually used rate modulation (CCK or OFDM). 709 */ 710 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 711 signal = RATE_MCS(rxdesc->rate_mode, signal); 712 713 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 714 for (i = 0; i < sband->n_bitrates; i++) { 715 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 716 if (((type == RXDONE_SIGNAL_PLCP) && 717 (rate->plcp == signal)) || 718 ((type == RXDONE_SIGNAL_BITRATE) && 719 (rate->bitrate == signal)) || 720 ((type == RXDONE_SIGNAL_MCS) && 721 (rate->mcs == signal))) { 722 return i; 723 } 724 } 725 break; 726 case RATE_MODE_HT_MIX: 727 case RATE_MODE_HT_GREENFIELD: 728 if (signal >= 0 && signal <= 76) 729 return signal; 730 break; 731 default: 732 break; 733 } 734 735 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 736 rxdesc->rate_mode, signal, type); 737 return 0; 738 } 739 740 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 741 { 742 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 743 struct rxdone_entry_desc rxdesc; 744 struct sk_buff *skb; 745 struct ieee80211_rx_status *rx_status; 746 unsigned int header_length; 747 int rate_idx; 748 749 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 750 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 751 goto submit_entry; 752 753 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 754 goto submit_entry; 755 756 /* 757 * Allocate a new sk_buffer. If no new buffer available, drop the 758 * received frame and reuse the existing buffer. 759 */ 760 skb = rt2x00queue_alloc_rxskb(entry, gfp); 761 if (!skb) 762 goto submit_entry; 763 764 /* 765 * Unmap the skb. 766 */ 767 rt2x00queue_unmap_skb(entry); 768 769 /* 770 * Extract the RXD details. 771 */ 772 memset(&rxdesc, 0, sizeof(rxdesc)); 773 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 774 775 /* 776 * Check for valid size in case we get corrupted descriptor from 777 * hardware. 778 */ 779 if (unlikely(rxdesc.size == 0 || 780 rxdesc.size > entry->queue->data_size)) { 781 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 782 rxdesc.size, entry->queue->data_size); 783 dev_kfree_skb(entry->skb); 784 goto renew_skb; 785 } 786 787 /* 788 * The data behind the ieee80211 header must be 789 * aligned on a 4 byte boundary. 790 */ 791 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 792 793 /* 794 * Hardware might have stripped the IV/EIV/ICV data, 795 * in that case it is possible that the data was 796 * provided separately (through hardware descriptor) 797 * in which case we should reinsert the data into the frame. 798 */ 799 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 800 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 801 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 802 &rxdesc); 803 else if (header_length && 804 (rxdesc.size > header_length) && 805 (rxdesc.dev_flags & RXDONE_L2PAD)) 806 rt2x00queue_remove_l2pad(entry->skb, header_length); 807 808 /* Trim buffer to correct size */ 809 skb_trim(entry->skb, rxdesc.size); 810 811 /* 812 * Translate the signal to the correct bitrate index. 813 */ 814 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 815 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 816 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 817 rxdesc.encoding = RX_ENC_HT; 818 819 /* 820 * Check if this is a beacon, and more frames have been 821 * buffered while we were in powersaving mode. 822 */ 823 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 824 825 /* 826 * Check for incoming BlockAcks to match to the BlockAckReqs 827 * we've send out. 828 */ 829 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 830 831 /* 832 * Update extra components 833 */ 834 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 835 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 836 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry); 837 838 /* 839 * Initialize RX status information, and send frame 840 * to mac80211. 841 */ 842 rx_status = IEEE80211_SKB_RXCB(entry->skb); 843 844 /* Ensure that all fields of rx_status are initialized 845 * properly. The skb->cb array was used for driver 846 * specific informations, so rx_status might contain 847 * garbage. 848 */ 849 memset(rx_status, 0, sizeof(*rx_status)); 850 851 rx_status->mactime = rxdesc.timestamp; 852 rx_status->band = rt2x00dev->curr_band; 853 rx_status->freq = rt2x00dev->curr_freq; 854 rx_status->rate_idx = rate_idx; 855 rx_status->signal = rxdesc.rssi; 856 rx_status->flag = rxdesc.flags; 857 rx_status->enc_flags = rxdesc.enc_flags; 858 rx_status->encoding = rxdesc.encoding; 859 rx_status->bw = rxdesc.bw; 860 rx_status->antenna = rt2x00dev->link.ant.active.rx; 861 862 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 863 864 renew_skb: 865 /* 866 * Replace the skb with the freshly allocated one. 867 */ 868 entry->skb = skb; 869 870 submit_entry: 871 entry->flags = 0; 872 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 873 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 874 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 875 rt2x00dev->ops->lib->clear_entry(entry); 876 } 877 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 878 879 /* 880 * Driver initialization handlers. 881 */ 882 const struct rt2x00_rate rt2x00_supported_rates[12] = { 883 { 884 .flags = DEV_RATE_CCK, 885 .bitrate = 10, 886 .ratemask = BIT(0), 887 .plcp = 0x00, 888 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 889 }, 890 { 891 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 892 .bitrate = 20, 893 .ratemask = BIT(1), 894 .plcp = 0x01, 895 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 896 }, 897 { 898 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 899 .bitrate = 55, 900 .ratemask = BIT(2), 901 .plcp = 0x02, 902 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 903 }, 904 { 905 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 906 .bitrate = 110, 907 .ratemask = BIT(3), 908 .plcp = 0x03, 909 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 910 }, 911 { 912 .flags = DEV_RATE_OFDM, 913 .bitrate = 60, 914 .ratemask = BIT(4), 915 .plcp = 0x0b, 916 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 917 }, 918 { 919 .flags = DEV_RATE_OFDM, 920 .bitrate = 90, 921 .ratemask = BIT(5), 922 .plcp = 0x0f, 923 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 924 }, 925 { 926 .flags = DEV_RATE_OFDM, 927 .bitrate = 120, 928 .ratemask = BIT(6), 929 .plcp = 0x0a, 930 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 931 }, 932 { 933 .flags = DEV_RATE_OFDM, 934 .bitrate = 180, 935 .ratemask = BIT(7), 936 .plcp = 0x0e, 937 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 938 }, 939 { 940 .flags = DEV_RATE_OFDM, 941 .bitrate = 240, 942 .ratemask = BIT(8), 943 .plcp = 0x09, 944 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 945 }, 946 { 947 .flags = DEV_RATE_OFDM, 948 .bitrate = 360, 949 .ratemask = BIT(9), 950 .plcp = 0x0d, 951 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 952 }, 953 { 954 .flags = DEV_RATE_OFDM, 955 .bitrate = 480, 956 .ratemask = BIT(10), 957 .plcp = 0x08, 958 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 959 }, 960 { 961 .flags = DEV_RATE_OFDM, 962 .bitrate = 540, 963 .ratemask = BIT(11), 964 .plcp = 0x0c, 965 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 966 }, 967 }; 968 969 static void rt2x00lib_channel(struct ieee80211_channel *entry, 970 const int channel, const int tx_power, 971 const int value) 972 { 973 /* XXX: this assumption about the band is wrong for 802.11j */ 974 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 975 entry->center_freq = ieee80211_channel_to_frequency(channel, 976 entry->band); 977 entry->hw_value = value; 978 entry->max_power = tx_power; 979 entry->max_antenna_gain = 0xff; 980 } 981 982 static void rt2x00lib_rate(struct ieee80211_rate *entry, 983 const u16 index, const struct rt2x00_rate *rate) 984 { 985 entry->flags = 0; 986 entry->bitrate = rate->bitrate; 987 entry->hw_value = index; 988 entry->hw_value_short = index; 989 990 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 991 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 992 } 993 994 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) 995 { 996 const char *mac_addr; 997 998 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node); 999 if (!IS_ERR(mac_addr)) 1000 ether_addr_copy(eeprom_mac_addr, mac_addr); 1001 1002 if (!is_valid_ether_addr(eeprom_mac_addr)) { 1003 eth_random_addr(eeprom_mac_addr); 1004 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); 1005 } 1006 } 1007 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); 1008 1009 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 1010 struct hw_mode_spec *spec) 1011 { 1012 struct ieee80211_hw *hw = rt2x00dev->hw; 1013 struct ieee80211_channel *channels; 1014 struct ieee80211_rate *rates; 1015 unsigned int num_rates; 1016 unsigned int i; 1017 1018 num_rates = 0; 1019 if (spec->supported_rates & SUPPORT_RATE_CCK) 1020 num_rates += 4; 1021 if (spec->supported_rates & SUPPORT_RATE_OFDM) 1022 num_rates += 8; 1023 1024 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 1025 if (!channels) 1026 return -ENOMEM; 1027 1028 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 1029 if (!rates) 1030 goto exit_free_channels; 1031 1032 /* 1033 * Initialize Rate list. 1034 */ 1035 for (i = 0; i < num_rates; i++) 1036 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 1037 1038 /* 1039 * Initialize Channel list. 1040 */ 1041 for (i = 0; i < spec->num_channels; i++) { 1042 rt2x00lib_channel(&channels[i], 1043 spec->channels[i].channel, 1044 spec->channels_info[i].max_power, i); 1045 } 1046 1047 /* 1048 * Intitialize 802.11b, 802.11g 1049 * Rates: CCK, OFDM. 1050 * Channels: 2.4 GHz 1051 */ 1052 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 1053 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 1054 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 1055 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 1056 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 1057 hw->wiphy->bands[NL80211_BAND_2GHZ] = 1058 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 1059 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 1060 &spec->ht, sizeof(spec->ht)); 1061 } 1062 1063 /* 1064 * Intitialize 802.11a 1065 * Rates: OFDM. 1066 * Channels: OFDM, UNII, HiperLAN2. 1067 */ 1068 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 1069 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 1070 spec->num_channels - 14; 1071 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 1072 num_rates - 4; 1073 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 1074 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1075 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1076 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1077 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1078 &spec->ht, sizeof(spec->ht)); 1079 } 1080 1081 return 0; 1082 1083 exit_free_channels: 1084 kfree(channels); 1085 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1086 return -ENOMEM; 1087 } 1088 1089 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1090 { 1091 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1092 ieee80211_unregister_hw(rt2x00dev->hw); 1093 1094 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1095 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1096 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1097 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1098 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1099 } 1100 1101 kfree(rt2x00dev->spec.channels_info); 1102 } 1103 1104 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1105 { 1106 struct hw_mode_spec *spec = &rt2x00dev->spec; 1107 int status; 1108 1109 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1110 return 0; 1111 1112 /* 1113 * Initialize HW modes. 1114 */ 1115 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1116 if (status) 1117 return status; 1118 1119 /* 1120 * Initialize HW fields. 1121 */ 1122 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1123 1124 /* 1125 * Initialize extra TX headroom required. 1126 */ 1127 rt2x00dev->hw->extra_tx_headroom = 1128 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1129 rt2x00dev->extra_tx_headroom); 1130 1131 /* 1132 * Take TX headroom required for alignment into account. 1133 */ 1134 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1135 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1136 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1137 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1138 1139 /* 1140 * Tell mac80211 about the size of our private STA structure. 1141 */ 1142 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1143 1144 /* 1145 * Allocate tx status FIFO for driver use. 1146 */ 1147 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1148 /* 1149 * Allocate the txstatus fifo. In the worst case the tx 1150 * status fifo has to hold the tx status of all entries 1151 * in all tx queues. Hence, calculate the kfifo size as 1152 * tx_queues * entry_num and round up to the nearest 1153 * power of 2. 1154 */ 1155 int kfifo_size = 1156 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1157 rt2x00dev->tx->limit * 1158 sizeof(u32)); 1159 1160 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1161 GFP_KERNEL); 1162 if (status) 1163 return status; 1164 } 1165 1166 /* 1167 * Initialize tasklets if used by the driver. Tasklets are 1168 * disabled until the interrupts are turned on. The driver 1169 * has to handle that. 1170 */ 1171 #define RT2X00_TASKLET_INIT(taskletname) \ 1172 if (rt2x00dev->ops->lib->taskletname) { \ 1173 tasklet_init(&rt2x00dev->taskletname, \ 1174 rt2x00dev->ops->lib->taskletname, \ 1175 (unsigned long)rt2x00dev); \ 1176 } 1177 1178 RT2X00_TASKLET_INIT(txstatus_tasklet); 1179 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1180 RT2X00_TASKLET_INIT(tbtt_tasklet); 1181 RT2X00_TASKLET_INIT(rxdone_tasklet); 1182 RT2X00_TASKLET_INIT(autowake_tasklet); 1183 1184 #undef RT2X00_TASKLET_INIT 1185 1186 /* 1187 * Register HW. 1188 */ 1189 status = ieee80211_register_hw(rt2x00dev->hw); 1190 if (status) 1191 return status; 1192 1193 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1194 1195 return 0; 1196 } 1197 1198 /* 1199 * Initialization/uninitialization handlers. 1200 */ 1201 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1202 { 1203 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1204 return; 1205 1206 /* 1207 * Stop rfkill polling. 1208 */ 1209 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1210 rt2x00rfkill_unregister(rt2x00dev); 1211 1212 /* 1213 * Allow the HW to uninitialize. 1214 */ 1215 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1216 1217 /* 1218 * Free allocated queue entries. 1219 */ 1220 rt2x00queue_uninitialize(rt2x00dev); 1221 } 1222 1223 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1224 { 1225 int status; 1226 1227 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1228 return 0; 1229 1230 /* 1231 * Allocate all queue entries. 1232 */ 1233 status = rt2x00queue_initialize(rt2x00dev); 1234 if (status) 1235 return status; 1236 1237 /* 1238 * Initialize the device. 1239 */ 1240 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1241 if (status) { 1242 rt2x00queue_uninitialize(rt2x00dev); 1243 return status; 1244 } 1245 1246 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1247 1248 /* 1249 * Start rfkill polling. 1250 */ 1251 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1252 rt2x00rfkill_register(rt2x00dev); 1253 1254 return 0; 1255 } 1256 1257 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1258 { 1259 int retval; 1260 1261 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1262 return 0; 1263 1264 /* 1265 * If this is the first interface which is added, 1266 * we should load the firmware now. 1267 */ 1268 retval = rt2x00lib_load_firmware(rt2x00dev); 1269 if (retval) 1270 return retval; 1271 1272 /* 1273 * Initialize the device. 1274 */ 1275 retval = rt2x00lib_initialize(rt2x00dev); 1276 if (retval) 1277 return retval; 1278 1279 rt2x00dev->intf_ap_count = 0; 1280 rt2x00dev->intf_sta_count = 0; 1281 rt2x00dev->intf_associated = 0; 1282 1283 /* Enable the radio */ 1284 retval = rt2x00lib_enable_radio(rt2x00dev); 1285 if (retval) 1286 return retval; 1287 1288 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1289 1290 return 0; 1291 } 1292 1293 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1294 { 1295 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1296 return; 1297 1298 /* 1299 * Perhaps we can add something smarter here, 1300 * but for now just disabling the radio should do. 1301 */ 1302 rt2x00lib_disable_radio(rt2x00dev); 1303 1304 rt2x00dev->intf_ap_count = 0; 1305 rt2x00dev->intf_sta_count = 0; 1306 rt2x00dev->intf_associated = 0; 1307 } 1308 1309 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1310 { 1311 struct ieee80211_iface_limit *if_limit; 1312 struct ieee80211_iface_combination *if_combination; 1313 1314 if (rt2x00dev->ops->max_ap_intf < 2) 1315 return; 1316 1317 /* 1318 * Build up AP interface limits structure. 1319 */ 1320 if_limit = &rt2x00dev->if_limits_ap; 1321 if_limit->max = rt2x00dev->ops->max_ap_intf; 1322 if_limit->types = BIT(NL80211_IFTYPE_AP); 1323 #ifdef CONFIG_MAC80211_MESH 1324 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1325 #endif 1326 1327 /* 1328 * Build up AP interface combinations structure. 1329 */ 1330 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1331 if_combination->limits = if_limit; 1332 if_combination->n_limits = 1; 1333 if_combination->max_interfaces = if_limit->max; 1334 if_combination->num_different_channels = 1; 1335 1336 /* 1337 * Finally, specify the possible combinations to mac80211. 1338 */ 1339 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1340 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1341 } 1342 1343 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1344 { 1345 if (WARN_ON(!rt2x00dev->tx)) 1346 return 0; 1347 1348 if (rt2x00_is_usb(rt2x00dev)) 1349 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1350 1351 return rt2x00dev->tx[0].winfo_size; 1352 } 1353 1354 /* 1355 * driver allocation handlers. 1356 */ 1357 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1358 { 1359 int retval = -ENOMEM; 1360 1361 /* 1362 * Set possible interface combinations. 1363 */ 1364 rt2x00lib_set_if_combinations(rt2x00dev); 1365 1366 /* 1367 * Allocate the driver data memory, if necessary. 1368 */ 1369 if (rt2x00dev->ops->drv_data_size > 0) { 1370 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1371 GFP_KERNEL); 1372 if (!rt2x00dev->drv_data) { 1373 retval = -ENOMEM; 1374 goto exit; 1375 } 1376 } 1377 1378 spin_lock_init(&rt2x00dev->irqmask_lock); 1379 mutex_init(&rt2x00dev->csr_mutex); 1380 mutex_init(&rt2x00dev->conf_mutex); 1381 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1382 spin_lock_init(&rt2x00dev->bar_list_lock); 1383 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC, 1384 HRTIMER_MODE_REL); 1385 1386 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1387 1388 /* 1389 * Make room for rt2x00_intf inside the per-interface 1390 * structure ieee80211_vif. 1391 */ 1392 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1393 1394 /* 1395 * rt2x00 devices can only use the last n bits of the MAC address 1396 * for virtual interfaces. 1397 */ 1398 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1399 (rt2x00dev->ops->max_ap_intf - 1); 1400 1401 /* 1402 * Initialize work. 1403 */ 1404 rt2x00dev->workqueue = 1405 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1406 if (!rt2x00dev->workqueue) { 1407 retval = -ENOMEM; 1408 goto exit; 1409 } 1410 1411 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1412 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1413 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1414 1415 /* 1416 * Let the driver probe the device to detect the capabilities. 1417 */ 1418 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1419 if (retval) { 1420 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1421 goto exit; 1422 } 1423 1424 /* 1425 * Allocate queue array. 1426 */ 1427 retval = rt2x00queue_allocate(rt2x00dev); 1428 if (retval) 1429 goto exit; 1430 1431 /* Cache TX headroom value */ 1432 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1433 1434 /* 1435 * Determine which operating modes are supported, all modes 1436 * which require beaconing, depend on the availability of 1437 * beacon entries. 1438 */ 1439 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1440 if (rt2x00dev->bcn->limit > 0) 1441 rt2x00dev->hw->wiphy->interface_modes |= 1442 BIT(NL80211_IFTYPE_ADHOC) | 1443 #ifdef CONFIG_MAC80211_MESH 1444 BIT(NL80211_IFTYPE_MESH_POINT) | 1445 #endif 1446 #ifdef CONFIG_WIRELESS_WDS 1447 BIT(NL80211_IFTYPE_WDS) | 1448 #endif 1449 BIT(NL80211_IFTYPE_AP); 1450 1451 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1452 1453 wiphy_ext_feature_set(rt2x00dev->hw->wiphy, 1454 NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1455 1456 /* 1457 * Initialize ieee80211 structure. 1458 */ 1459 retval = rt2x00lib_probe_hw(rt2x00dev); 1460 if (retval) { 1461 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1462 goto exit; 1463 } 1464 1465 /* 1466 * Register extra components. 1467 */ 1468 rt2x00link_register(rt2x00dev); 1469 rt2x00leds_register(rt2x00dev); 1470 rt2x00debug_register(rt2x00dev); 1471 1472 /* 1473 * Start rfkill polling. 1474 */ 1475 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1476 rt2x00rfkill_register(rt2x00dev); 1477 1478 return 0; 1479 1480 exit: 1481 rt2x00lib_remove_dev(rt2x00dev); 1482 1483 return retval; 1484 } 1485 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1486 1487 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1488 { 1489 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1490 1491 /* 1492 * Stop rfkill polling. 1493 */ 1494 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1495 rt2x00rfkill_unregister(rt2x00dev); 1496 1497 /* 1498 * Disable radio. 1499 */ 1500 rt2x00lib_disable_radio(rt2x00dev); 1501 1502 /* 1503 * Stop all work. 1504 */ 1505 cancel_work_sync(&rt2x00dev->intf_work); 1506 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1507 cancel_work_sync(&rt2x00dev->sleep_work); 1508 1509 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1510 1511 /* 1512 * Kill the tx status tasklet. 1513 */ 1514 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1515 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1516 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1517 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1518 tasklet_kill(&rt2x00dev->autowake_tasklet); 1519 1520 /* 1521 * Uninitialize device. 1522 */ 1523 rt2x00lib_uninitialize(rt2x00dev); 1524 1525 if (rt2x00dev->workqueue) 1526 destroy_workqueue(rt2x00dev->workqueue); 1527 1528 /* 1529 * Free the tx status fifo. 1530 */ 1531 kfifo_free(&rt2x00dev->txstatus_fifo); 1532 1533 /* 1534 * Free extra components 1535 */ 1536 rt2x00debug_deregister(rt2x00dev); 1537 rt2x00leds_unregister(rt2x00dev); 1538 1539 /* 1540 * Free ieee80211_hw memory. 1541 */ 1542 rt2x00lib_remove_hw(rt2x00dev); 1543 1544 /* 1545 * Free firmware image. 1546 */ 1547 rt2x00lib_free_firmware(rt2x00dev); 1548 1549 /* 1550 * Free queue structures. 1551 */ 1552 rt2x00queue_free(rt2x00dev); 1553 1554 /* 1555 * Free the driver data. 1556 */ 1557 kfree(rt2x00dev->drv_data); 1558 } 1559 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1560 1561 /* 1562 * Device state handlers 1563 */ 1564 #ifdef CONFIG_PM 1565 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1566 { 1567 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1568 1569 /* 1570 * Prevent mac80211 from accessing driver while suspended. 1571 */ 1572 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1573 return 0; 1574 1575 /* 1576 * Cleanup as much as possible. 1577 */ 1578 rt2x00lib_uninitialize(rt2x00dev); 1579 1580 /* 1581 * Suspend/disable extra components. 1582 */ 1583 rt2x00leds_suspend(rt2x00dev); 1584 rt2x00debug_deregister(rt2x00dev); 1585 1586 /* 1587 * Set device mode to sleep for power management, 1588 * on some hardware this call seems to consistently fail. 1589 * From the specifications it is hard to tell why it fails, 1590 * and if this is a "bad thing". 1591 * Overall it is safe to just ignore the failure and 1592 * continue suspending. The only downside is that the 1593 * device will not be in optimal power save mode, but with 1594 * the radio and the other components already disabled the 1595 * device is as good as disabled. 1596 */ 1597 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1598 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1599 1600 return 0; 1601 } 1602 EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1603 1604 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1605 { 1606 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1607 1608 /* 1609 * Restore/enable extra components. 1610 */ 1611 rt2x00debug_register(rt2x00dev); 1612 rt2x00leds_resume(rt2x00dev); 1613 1614 /* 1615 * We are ready again to receive requests from mac80211. 1616 */ 1617 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1622 #endif /* CONFIG_PM */ 1623 1624 /* 1625 * rt2x00lib module information. 1626 */ 1627 MODULE_AUTHOR(DRV_PROJECT); 1628 MODULE_VERSION(DRV_VERSION); 1629 MODULE_DESCRIPTION("rt2x00 library"); 1630 MODULE_LICENSE("GPL"); 1631