1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 /* 21 Module: rt2x00lib 22 Abstract: rt2x00 generic device routines. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/log2.h> 29 #include <linux/of.h> 30 #include <linux/of_net.h> 31 32 #include "rt2x00.h" 33 #include "rt2x00lib.h" 34 35 /* 36 * Utility functions. 37 */ 38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40 { 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48 } 49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51 /* 52 * Radio control handlers. 53 */ 54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55 { 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 91 /* 92 * Start watchdog monitoring. 93 */ 94 rt2x00link_start_watchdog(rt2x00dev); 95 96 return 0; 97 } 98 99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 100 { 101 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 102 return; 103 104 /* 105 * Stop watchdog monitoring. 106 */ 107 rt2x00link_stop_watchdog(rt2x00dev); 108 109 /* 110 * Stop all queues 111 */ 112 rt2x00link_stop_tuner(rt2x00dev); 113 rt2x00queue_stop_queues(rt2x00dev); 114 rt2x00queue_flush_queues(rt2x00dev, true); 115 116 /* 117 * Disable radio. 118 */ 119 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 120 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 121 rt2x00led_led_activity(rt2x00dev, false); 122 rt2x00leds_led_radio(rt2x00dev, false); 123 } 124 125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 126 struct ieee80211_vif *vif) 127 { 128 struct rt2x00_dev *rt2x00dev = data; 129 struct rt2x00_intf *intf = vif_to_intf(vif); 130 131 /* 132 * It is possible the radio was disabled while the work had been 133 * scheduled. If that happens we should return here immediately, 134 * note that in the spinlock protected area above the delayed_flags 135 * have been cleared correctly. 136 */ 137 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 138 return; 139 140 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 141 mutex_lock(&intf->beacon_skb_mutex); 142 rt2x00queue_update_beacon(rt2x00dev, vif); 143 mutex_unlock(&intf->beacon_skb_mutex); 144 } 145 } 146 147 static void rt2x00lib_intf_scheduled(struct work_struct *work) 148 { 149 struct rt2x00_dev *rt2x00dev = 150 container_of(work, struct rt2x00_dev, intf_work); 151 152 /* 153 * Iterate over each interface and perform the 154 * requested configurations. 155 */ 156 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 157 IEEE80211_IFACE_ITER_RESUME_ALL, 158 rt2x00lib_intf_scheduled_iter, 159 rt2x00dev); 160 } 161 162 static void rt2x00lib_autowakeup(struct work_struct *work) 163 { 164 struct rt2x00_dev *rt2x00dev = 165 container_of(work, struct rt2x00_dev, autowakeup_work.work); 166 167 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 168 return; 169 170 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 171 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 172 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 173 } 174 175 /* 176 * Interrupt context handlers. 177 */ 178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 179 struct ieee80211_vif *vif) 180 { 181 struct ieee80211_tx_control control = {}; 182 struct rt2x00_dev *rt2x00dev = data; 183 struct sk_buff *skb; 184 185 /* 186 * Only AP mode interfaces do broad- and multicast buffering 187 */ 188 if (vif->type != NL80211_IFTYPE_AP) 189 return; 190 191 /* 192 * Send out buffered broad- and multicast frames 193 */ 194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 195 while (skb) { 196 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 197 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 198 } 199 } 200 201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 202 struct ieee80211_vif *vif) 203 { 204 struct rt2x00_dev *rt2x00dev = data; 205 206 if (vif->type != NL80211_IFTYPE_AP && 207 vif->type != NL80211_IFTYPE_ADHOC && 208 vif->type != NL80211_IFTYPE_MESH_POINT && 209 vif->type != NL80211_IFTYPE_WDS) 210 return; 211 212 /* 213 * Update the beacon without locking. This is safe on PCI devices 214 * as they only update the beacon periodically here. This should 215 * never be called for USB devices. 216 */ 217 WARN_ON(rt2x00_is_usb(rt2x00dev)); 218 rt2x00queue_update_beacon(rt2x00dev, vif); 219 } 220 221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 222 { 223 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 224 return; 225 226 /* send buffered bc/mc frames out for every bssid */ 227 ieee80211_iterate_active_interfaces_atomic( 228 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 229 rt2x00lib_bc_buffer_iter, rt2x00dev); 230 /* 231 * Devices with pre tbtt interrupt don't need to update the beacon 232 * here as they will fetch the next beacon directly prior to 233 * transmission. 234 */ 235 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 236 return; 237 238 /* fetch next beacon */ 239 ieee80211_iterate_active_interfaces_atomic( 240 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 241 rt2x00lib_beaconupdate_iter, rt2x00dev); 242 } 243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 244 245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 246 { 247 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 248 return; 249 250 /* fetch next beacon */ 251 ieee80211_iterate_active_interfaces_atomic( 252 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 253 rt2x00lib_beaconupdate_iter, rt2x00dev); 254 } 255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 256 257 void rt2x00lib_dmastart(struct queue_entry *entry) 258 { 259 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 260 rt2x00queue_index_inc(entry, Q_INDEX); 261 } 262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 263 264 void rt2x00lib_dmadone(struct queue_entry *entry) 265 { 266 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 267 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 268 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 269 } 270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 271 272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 273 { 274 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 275 struct ieee80211_bar *bar = (void *) entry->skb->data; 276 struct rt2x00_bar_list_entry *bar_entry; 277 int ret; 278 279 if (likely(!ieee80211_is_back_req(bar->frame_control))) 280 return 0; 281 282 /* 283 * Unlike all other frames, the status report for BARs does 284 * not directly come from the hardware as it is incapable of 285 * matching a BA to a previously send BAR. The hardware will 286 * report all BARs as if they weren't acked at all. 287 * 288 * Instead the RX-path will scan for incoming BAs and set the 289 * block_acked flag if it sees one that was likely caused by 290 * a BAR from us. 291 * 292 * Remove remaining BARs here and return their status for 293 * TX done processing. 294 */ 295 ret = 0; 296 rcu_read_lock(); 297 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 298 if (bar_entry->entry != entry) 299 continue; 300 301 spin_lock_bh(&rt2x00dev->bar_list_lock); 302 /* Return whether this BAR was blockacked or not */ 303 ret = bar_entry->block_acked; 304 /* Remove the BAR from our checklist */ 305 list_del_rcu(&bar_entry->list); 306 spin_unlock_bh(&rt2x00dev->bar_list_lock); 307 kfree_rcu(bar_entry, head); 308 309 break; 310 } 311 rcu_read_unlock(); 312 313 return ret; 314 } 315 316 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev, 317 struct ieee80211_tx_info *tx_info, 318 struct skb_frame_desc *skbdesc, 319 struct txdone_entry_desc *txdesc, 320 bool success) 321 { 322 u8 rate_idx, rate_flags, retry_rates; 323 int i; 324 325 rate_idx = skbdesc->tx_rate_idx; 326 rate_flags = skbdesc->tx_rate_flags; 327 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 328 (txdesc->retry + 1) : 1; 329 330 /* 331 * Initialize TX status 332 */ 333 memset(&tx_info->status, 0, sizeof(tx_info->status)); 334 tx_info->status.ack_signal = 0; 335 336 /* 337 * Frame was send with retries, hardware tried 338 * different rates to send out the frame, at each 339 * retry it lowered the rate 1 step except when the 340 * lowest rate was used. 341 */ 342 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 343 tx_info->status.rates[i].idx = rate_idx - i; 344 tx_info->status.rates[i].flags = rate_flags; 345 346 if (rate_idx - i == 0) { 347 /* 348 * The lowest rate (index 0) was used until the 349 * number of max retries was reached. 350 */ 351 tx_info->status.rates[i].count = retry_rates - i; 352 i++; 353 break; 354 } 355 tx_info->status.rates[i].count = 1; 356 } 357 if (i < (IEEE80211_TX_MAX_RATES - 1)) 358 tx_info->status.rates[i].idx = -1; /* terminate */ 359 360 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags)) 361 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK; 362 363 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 364 if (success) 365 tx_info->flags |= IEEE80211_TX_STAT_ACK; 366 else 367 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 368 } 369 370 /* 371 * Every single frame has it's own tx status, hence report 372 * every frame as ampdu of size 1. 373 * 374 * TODO: if we can find out how many frames were aggregated 375 * by the hw we could provide the real ampdu_len to mac80211 376 * which would allow the rc algorithm to better decide on 377 * which rates are suitable. 378 */ 379 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 380 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 381 tx_info->flags |= IEEE80211_TX_STAT_AMPDU | 382 IEEE80211_TX_CTL_AMPDU; 383 tx_info->status.ampdu_len = 1; 384 tx_info->status.ampdu_ack_len = success ? 1 : 0; 385 386 if (!success) 387 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 388 } 389 390 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 391 if (success) 392 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 393 else 394 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 395 } 396 } 397 398 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev, 399 struct queue_entry *entry) 400 { 401 /* 402 * Make this entry available for reuse. 403 */ 404 entry->skb = NULL; 405 entry->flags = 0; 406 407 rt2x00dev->ops->lib->clear_entry(entry); 408 409 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 410 411 /* 412 * If the data queue was below the threshold before the txdone 413 * handler we must make sure the packet queue in the mac80211 stack 414 * is reenabled when the txdone handler has finished. This has to be 415 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 416 * before it was stopped. 417 */ 418 spin_lock_bh(&entry->queue->tx_lock); 419 if (!rt2x00queue_threshold(entry->queue)) 420 rt2x00queue_unpause_queue(entry->queue); 421 spin_unlock_bh(&entry->queue->tx_lock); 422 } 423 424 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 425 struct txdone_entry_desc *txdesc) 426 { 427 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 428 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 429 struct ieee80211_tx_info txinfo = {}; 430 bool success; 431 432 /* 433 * Unmap the skb. 434 */ 435 rt2x00queue_unmap_skb(entry); 436 437 /* 438 * Signal that the TX descriptor is no longer in the skb. 439 */ 440 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 441 442 /* 443 * Send frame to debugfs immediately, after this call is completed 444 * we are going to overwrite the skb->cb array. 445 */ 446 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 447 448 /* 449 * Determine if the frame has been successfully transmitted and 450 * remove BARs from our check list while checking for their 451 * TX status. 452 */ 453 success = 454 rt2x00lib_txdone_bar_status(entry) || 455 test_bit(TXDONE_SUCCESS, &txdesc->flags); 456 457 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) { 458 /* 459 * Update TX statistics. 460 */ 461 rt2x00dev->link.qual.tx_success += success; 462 rt2x00dev->link.qual.tx_failed += !success; 463 464 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc, 465 success); 466 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo); 467 } 468 469 dev_kfree_skb_any(entry->skb); 470 rt2x00lib_clear_entry(rt2x00dev, entry); 471 } 472 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch); 473 474 void rt2x00lib_txdone(struct queue_entry *entry, 475 struct txdone_entry_desc *txdesc) 476 { 477 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 478 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 479 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 480 u8 skbdesc_flags = skbdesc->flags; 481 unsigned int header_length; 482 bool success; 483 484 /* 485 * Unmap the skb. 486 */ 487 rt2x00queue_unmap_skb(entry); 488 489 /* 490 * Remove the extra tx headroom from the skb. 491 */ 492 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 493 494 /* 495 * Signal that the TX descriptor is no longer in the skb. 496 */ 497 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 498 499 /* 500 * Determine the length of 802.11 header. 501 */ 502 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 503 504 /* 505 * Remove L2 padding which was added during 506 */ 507 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 508 rt2x00queue_remove_l2pad(entry->skb, header_length); 509 510 /* 511 * If the IV/EIV data was stripped from the frame before it was 512 * passed to the hardware, we should now reinsert it again because 513 * mac80211 will expect the same data to be present it the 514 * frame as it was passed to us. 515 */ 516 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 517 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 518 519 /* 520 * Send frame to debugfs immediately, after this call is completed 521 * we are going to overwrite the skb->cb array. 522 */ 523 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 524 525 /* 526 * Determine if the frame has been successfully transmitted and 527 * remove BARs from our check list while checking for their 528 * TX status. 529 */ 530 success = 531 rt2x00lib_txdone_bar_status(entry) || 532 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 533 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 534 535 /* 536 * Update TX statistics. 537 */ 538 rt2x00dev->link.qual.tx_success += success; 539 rt2x00dev->link.qual.tx_failed += !success; 540 541 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success); 542 543 /* 544 * Only send the status report to mac80211 when it's a frame 545 * that originated in mac80211. If this was a extra frame coming 546 * through a mac80211 library call (RTS/CTS) then we should not 547 * send the status report back. 548 */ 549 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 550 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 551 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 552 else 553 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 554 } else { 555 dev_kfree_skb_any(entry->skb); 556 } 557 558 rt2x00lib_clear_entry(rt2x00dev, entry); 559 } 560 EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 561 562 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 563 { 564 struct txdone_entry_desc txdesc; 565 566 txdesc.flags = 0; 567 __set_bit(status, &txdesc.flags); 568 txdesc.retry = 0; 569 570 rt2x00lib_txdone(entry, &txdesc); 571 } 572 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 573 574 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 575 { 576 struct ieee80211_mgmt *mgmt = (void *)data; 577 u8 *pos, *end; 578 579 pos = (u8 *)mgmt->u.beacon.variable; 580 end = data + len; 581 while (pos < end) { 582 if (pos + 2 + pos[1] > end) 583 return NULL; 584 585 if (pos[0] == ie) 586 return pos; 587 588 pos += 2 + pos[1]; 589 } 590 591 return NULL; 592 } 593 594 static void rt2x00lib_sleep(struct work_struct *work) 595 { 596 struct rt2x00_dev *rt2x00dev = 597 container_of(work, struct rt2x00_dev, sleep_work); 598 599 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 600 return; 601 602 /* 603 * Check again is powersaving is enabled, to prevent races from delayed 604 * work execution. 605 */ 606 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 607 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 608 IEEE80211_CONF_CHANGE_PS); 609 } 610 611 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 612 struct sk_buff *skb, 613 struct rxdone_entry_desc *rxdesc) 614 { 615 struct rt2x00_bar_list_entry *entry; 616 struct ieee80211_bar *ba = (void *)skb->data; 617 618 if (likely(!ieee80211_is_back(ba->frame_control))) 619 return; 620 621 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 622 return; 623 624 rcu_read_lock(); 625 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 626 627 if (ba->start_seq_num != entry->start_seq_num) 628 continue; 629 630 #define TID_CHECK(a, b) ( \ 631 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 632 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 633 634 if (!TID_CHECK(ba->control, entry->control)) 635 continue; 636 637 #undef TID_CHECK 638 639 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 640 continue; 641 642 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 643 continue; 644 645 /* Mark BAR since we received the according BA */ 646 spin_lock_bh(&rt2x00dev->bar_list_lock); 647 entry->block_acked = 1; 648 spin_unlock_bh(&rt2x00dev->bar_list_lock); 649 break; 650 } 651 rcu_read_unlock(); 652 653 } 654 655 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 656 struct sk_buff *skb, 657 struct rxdone_entry_desc *rxdesc) 658 { 659 struct ieee80211_hdr *hdr = (void *) skb->data; 660 struct ieee80211_tim_ie *tim_ie; 661 u8 *tim; 662 u8 tim_len; 663 bool cam; 664 665 /* If this is not a beacon, or if mac80211 has no powersaving 666 * configured, or if the device is already in powersaving mode 667 * we can exit now. */ 668 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 669 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 670 return; 671 672 /* min. beacon length + FCS_LEN */ 673 if (skb->len <= 40 + FCS_LEN) 674 return; 675 676 /* and only beacons from the associated BSSID, please */ 677 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 678 !rt2x00dev->aid) 679 return; 680 681 rt2x00dev->last_beacon = jiffies; 682 683 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 684 if (!tim) 685 return; 686 687 if (tim[1] < sizeof(*tim_ie)) 688 return; 689 690 tim_len = tim[1]; 691 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 692 693 /* Check whenever the PHY can be turned off again. */ 694 695 /* 1. What about buffered unicast traffic for our AID? */ 696 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 697 698 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 699 cam |= (tim_ie->bitmap_ctrl & 0x01); 700 701 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 702 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 703 } 704 705 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 706 struct rxdone_entry_desc *rxdesc) 707 { 708 struct ieee80211_supported_band *sband; 709 const struct rt2x00_rate *rate; 710 unsigned int i; 711 int signal = rxdesc->signal; 712 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 713 714 switch (rxdesc->rate_mode) { 715 case RATE_MODE_CCK: 716 case RATE_MODE_OFDM: 717 /* 718 * For non-HT rates the MCS value needs to contain the 719 * actually used rate modulation (CCK or OFDM). 720 */ 721 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 722 signal = RATE_MCS(rxdesc->rate_mode, signal); 723 724 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 725 for (i = 0; i < sband->n_bitrates; i++) { 726 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 727 if (((type == RXDONE_SIGNAL_PLCP) && 728 (rate->plcp == signal)) || 729 ((type == RXDONE_SIGNAL_BITRATE) && 730 (rate->bitrate == signal)) || 731 ((type == RXDONE_SIGNAL_MCS) && 732 (rate->mcs == signal))) { 733 return i; 734 } 735 } 736 break; 737 case RATE_MODE_HT_MIX: 738 case RATE_MODE_HT_GREENFIELD: 739 if (signal >= 0 && signal <= 76) 740 return signal; 741 break; 742 default: 743 break; 744 } 745 746 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 747 rxdesc->rate_mode, signal, type); 748 return 0; 749 } 750 751 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 752 { 753 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 754 struct rxdone_entry_desc rxdesc; 755 struct sk_buff *skb; 756 struct ieee80211_rx_status *rx_status; 757 unsigned int header_length; 758 int rate_idx; 759 760 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 761 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 762 goto submit_entry; 763 764 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 765 goto submit_entry; 766 767 /* 768 * Allocate a new sk_buffer. If no new buffer available, drop the 769 * received frame and reuse the existing buffer. 770 */ 771 skb = rt2x00queue_alloc_rxskb(entry, gfp); 772 if (!skb) 773 goto submit_entry; 774 775 /* 776 * Unmap the skb. 777 */ 778 rt2x00queue_unmap_skb(entry); 779 780 /* 781 * Extract the RXD details. 782 */ 783 memset(&rxdesc, 0, sizeof(rxdesc)); 784 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 785 786 /* 787 * Check for valid size in case we get corrupted descriptor from 788 * hardware. 789 */ 790 if (unlikely(rxdesc.size == 0 || 791 rxdesc.size > entry->queue->data_size)) { 792 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 793 rxdesc.size, entry->queue->data_size); 794 dev_kfree_skb(entry->skb); 795 goto renew_skb; 796 } 797 798 /* 799 * The data behind the ieee80211 header must be 800 * aligned on a 4 byte boundary. 801 */ 802 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 803 804 /* 805 * Hardware might have stripped the IV/EIV/ICV data, 806 * in that case it is possible that the data was 807 * provided separately (through hardware descriptor) 808 * in which case we should reinsert the data into the frame. 809 */ 810 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 811 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 812 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 813 &rxdesc); 814 else if (header_length && 815 (rxdesc.size > header_length) && 816 (rxdesc.dev_flags & RXDONE_L2PAD)) 817 rt2x00queue_remove_l2pad(entry->skb, header_length); 818 819 /* Trim buffer to correct size */ 820 skb_trim(entry->skb, rxdesc.size); 821 822 /* 823 * Translate the signal to the correct bitrate index. 824 */ 825 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 826 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 827 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 828 rxdesc.encoding = RX_ENC_HT; 829 830 /* 831 * Check if this is a beacon, and more frames have been 832 * buffered while we were in powersaving mode. 833 */ 834 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 835 836 /* 837 * Check for incoming BlockAcks to match to the BlockAckReqs 838 * we've send out. 839 */ 840 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 841 842 /* 843 * Update extra components 844 */ 845 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 846 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 847 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry); 848 849 /* 850 * Initialize RX status information, and send frame 851 * to mac80211. 852 */ 853 rx_status = IEEE80211_SKB_RXCB(entry->skb); 854 855 /* Ensure that all fields of rx_status are initialized 856 * properly. The skb->cb array was used for driver 857 * specific informations, so rx_status might contain 858 * garbage. 859 */ 860 memset(rx_status, 0, sizeof(*rx_status)); 861 862 rx_status->mactime = rxdesc.timestamp; 863 rx_status->band = rt2x00dev->curr_band; 864 rx_status->freq = rt2x00dev->curr_freq; 865 rx_status->rate_idx = rate_idx; 866 rx_status->signal = rxdesc.rssi; 867 rx_status->flag = rxdesc.flags; 868 rx_status->enc_flags = rxdesc.enc_flags; 869 rx_status->encoding = rxdesc.encoding; 870 rx_status->bw = rxdesc.bw; 871 rx_status->antenna = rt2x00dev->link.ant.active.rx; 872 873 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 874 875 renew_skb: 876 /* 877 * Replace the skb with the freshly allocated one. 878 */ 879 entry->skb = skb; 880 881 submit_entry: 882 entry->flags = 0; 883 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 884 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 885 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 886 rt2x00dev->ops->lib->clear_entry(entry); 887 } 888 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 889 890 /* 891 * Driver initialization handlers. 892 */ 893 const struct rt2x00_rate rt2x00_supported_rates[12] = { 894 { 895 .flags = DEV_RATE_CCK, 896 .bitrate = 10, 897 .ratemask = BIT(0), 898 .plcp = 0x00, 899 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 900 }, 901 { 902 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 903 .bitrate = 20, 904 .ratemask = BIT(1), 905 .plcp = 0x01, 906 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 907 }, 908 { 909 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 910 .bitrate = 55, 911 .ratemask = BIT(2), 912 .plcp = 0x02, 913 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 914 }, 915 { 916 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 917 .bitrate = 110, 918 .ratemask = BIT(3), 919 .plcp = 0x03, 920 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 921 }, 922 { 923 .flags = DEV_RATE_OFDM, 924 .bitrate = 60, 925 .ratemask = BIT(4), 926 .plcp = 0x0b, 927 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 928 }, 929 { 930 .flags = DEV_RATE_OFDM, 931 .bitrate = 90, 932 .ratemask = BIT(5), 933 .plcp = 0x0f, 934 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 935 }, 936 { 937 .flags = DEV_RATE_OFDM, 938 .bitrate = 120, 939 .ratemask = BIT(6), 940 .plcp = 0x0a, 941 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 942 }, 943 { 944 .flags = DEV_RATE_OFDM, 945 .bitrate = 180, 946 .ratemask = BIT(7), 947 .plcp = 0x0e, 948 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 949 }, 950 { 951 .flags = DEV_RATE_OFDM, 952 .bitrate = 240, 953 .ratemask = BIT(8), 954 .plcp = 0x09, 955 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 956 }, 957 { 958 .flags = DEV_RATE_OFDM, 959 .bitrate = 360, 960 .ratemask = BIT(9), 961 .plcp = 0x0d, 962 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 963 }, 964 { 965 .flags = DEV_RATE_OFDM, 966 .bitrate = 480, 967 .ratemask = BIT(10), 968 .plcp = 0x08, 969 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 970 }, 971 { 972 .flags = DEV_RATE_OFDM, 973 .bitrate = 540, 974 .ratemask = BIT(11), 975 .plcp = 0x0c, 976 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 977 }, 978 }; 979 980 static void rt2x00lib_channel(struct ieee80211_channel *entry, 981 const int channel, const int tx_power, 982 const int value) 983 { 984 /* XXX: this assumption about the band is wrong for 802.11j */ 985 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 986 entry->center_freq = ieee80211_channel_to_frequency(channel, 987 entry->band); 988 entry->hw_value = value; 989 entry->max_power = tx_power; 990 entry->max_antenna_gain = 0xff; 991 } 992 993 static void rt2x00lib_rate(struct ieee80211_rate *entry, 994 const u16 index, const struct rt2x00_rate *rate) 995 { 996 entry->flags = 0; 997 entry->bitrate = rate->bitrate; 998 entry->hw_value = index; 999 entry->hw_value_short = index; 1000 1001 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 1002 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 1003 } 1004 1005 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) 1006 { 1007 const char *mac_addr; 1008 1009 mac_addr = of_get_mac_address(rt2x00dev->dev->of_node); 1010 if (!IS_ERR(mac_addr)) 1011 ether_addr_copy(eeprom_mac_addr, mac_addr); 1012 1013 if (!is_valid_ether_addr(eeprom_mac_addr)) { 1014 eth_random_addr(eeprom_mac_addr); 1015 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); 1016 } 1017 } 1018 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); 1019 1020 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 1021 struct hw_mode_spec *spec) 1022 { 1023 struct ieee80211_hw *hw = rt2x00dev->hw; 1024 struct ieee80211_channel *channels; 1025 struct ieee80211_rate *rates; 1026 unsigned int num_rates; 1027 unsigned int i; 1028 1029 num_rates = 0; 1030 if (spec->supported_rates & SUPPORT_RATE_CCK) 1031 num_rates += 4; 1032 if (spec->supported_rates & SUPPORT_RATE_OFDM) 1033 num_rates += 8; 1034 1035 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 1036 if (!channels) 1037 return -ENOMEM; 1038 1039 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 1040 if (!rates) 1041 goto exit_free_channels; 1042 1043 /* 1044 * Initialize Rate list. 1045 */ 1046 for (i = 0; i < num_rates; i++) 1047 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 1048 1049 /* 1050 * Initialize Channel list. 1051 */ 1052 for (i = 0; i < spec->num_channels; i++) { 1053 rt2x00lib_channel(&channels[i], 1054 spec->channels[i].channel, 1055 spec->channels_info[i].max_power, i); 1056 } 1057 1058 /* 1059 * Intitialize 802.11b, 802.11g 1060 * Rates: CCK, OFDM. 1061 * Channels: 2.4 GHz 1062 */ 1063 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 1064 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 1065 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 1066 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 1067 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 1068 hw->wiphy->bands[NL80211_BAND_2GHZ] = 1069 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 1070 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 1071 &spec->ht, sizeof(spec->ht)); 1072 } 1073 1074 /* 1075 * Intitialize 802.11a 1076 * Rates: OFDM. 1077 * Channels: OFDM, UNII, HiperLAN2. 1078 */ 1079 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 1080 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 1081 spec->num_channels - 14; 1082 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 1083 num_rates - 4; 1084 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 1085 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1086 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1087 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1088 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1089 &spec->ht, sizeof(spec->ht)); 1090 } 1091 1092 return 0; 1093 1094 exit_free_channels: 1095 kfree(channels); 1096 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1097 return -ENOMEM; 1098 } 1099 1100 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1101 { 1102 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1103 ieee80211_unregister_hw(rt2x00dev->hw); 1104 1105 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1106 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1107 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1108 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1109 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1110 } 1111 1112 kfree(rt2x00dev->spec.channels_info); 1113 } 1114 1115 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1116 { 1117 struct hw_mode_spec *spec = &rt2x00dev->spec; 1118 int status; 1119 1120 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1121 return 0; 1122 1123 /* 1124 * Initialize HW modes. 1125 */ 1126 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1127 if (status) 1128 return status; 1129 1130 /* 1131 * Initialize HW fields. 1132 */ 1133 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1134 1135 /* 1136 * Initialize extra TX headroom required. 1137 */ 1138 rt2x00dev->hw->extra_tx_headroom = 1139 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1140 rt2x00dev->extra_tx_headroom); 1141 1142 /* 1143 * Take TX headroom required for alignment into account. 1144 */ 1145 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1146 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1147 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1148 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1149 1150 /* 1151 * Tell mac80211 about the size of our private STA structure. 1152 */ 1153 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1154 1155 /* 1156 * Allocate tx status FIFO for driver use. 1157 */ 1158 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1159 /* 1160 * Allocate the txstatus fifo. In the worst case the tx 1161 * status fifo has to hold the tx status of all entries 1162 * in all tx queues. Hence, calculate the kfifo size as 1163 * tx_queues * entry_num and round up to the nearest 1164 * power of 2. 1165 */ 1166 int kfifo_size = 1167 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1168 rt2x00dev->tx->limit * 1169 sizeof(u32)); 1170 1171 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1172 GFP_KERNEL); 1173 if (status) 1174 return status; 1175 } 1176 1177 /* 1178 * Initialize tasklets if used by the driver. Tasklets are 1179 * disabled until the interrupts are turned on. The driver 1180 * has to handle that. 1181 */ 1182 #define RT2X00_TASKLET_INIT(taskletname) \ 1183 if (rt2x00dev->ops->lib->taskletname) { \ 1184 tasklet_init(&rt2x00dev->taskletname, \ 1185 rt2x00dev->ops->lib->taskletname, \ 1186 (unsigned long)rt2x00dev); \ 1187 } 1188 1189 RT2X00_TASKLET_INIT(txstatus_tasklet); 1190 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1191 RT2X00_TASKLET_INIT(tbtt_tasklet); 1192 RT2X00_TASKLET_INIT(rxdone_tasklet); 1193 RT2X00_TASKLET_INIT(autowake_tasklet); 1194 1195 #undef RT2X00_TASKLET_INIT 1196 1197 /* 1198 * Register HW. 1199 */ 1200 status = ieee80211_register_hw(rt2x00dev->hw); 1201 if (status) 1202 return status; 1203 1204 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * Initialization/uninitialization handlers. 1211 */ 1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1213 { 1214 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1215 return; 1216 1217 /* 1218 * Stop rfkill polling. 1219 */ 1220 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1221 rt2x00rfkill_unregister(rt2x00dev); 1222 1223 /* 1224 * Allow the HW to uninitialize. 1225 */ 1226 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1227 1228 /* 1229 * Free allocated queue entries. 1230 */ 1231 rt2x00queue_uninitialize(rt2x00dev); 1232 } 1233 1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1235 { 1236 int status; 1237 1238 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1239 return 0; 1240 1241 /* 1242 * Allocate all queue entries. 1243 */ 1244 status = rt2x00queue_initialize(rt2x00dev); 1245 if (status) 1246 return status; 1247 1248 /* 1249 * Initialize the device. 1250 */ 1251 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1252 if (status) { 1253 rt2x00queue_uninitialize(rt2x00dev); 1254 return status; 1255 } 1256 1257 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1258 1259 /* 1260 * Start rfkill polling. 1261 */ 1262 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1263 rt2x00rfkill_register(rt2x00dev); 1264 1265 return 0; 1266 } 1267 1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1269 { 1270 int retval; 1271 1272 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1273 return 0; 1274 1275 /* 1276 * If this is the first interface which is added, 1277 * we should load the firmware now. 1278 */ 1279 retval = rt2x00lib_load_firmware(rt2x00dev); 1280 if (retval) 1281 return retval; 1282 1283 /* 1284 * Initialize the device. 1285 */ 1286 retval = rt2x00lib_initialize(rt2x00dev); 1287 if (retval) 1288 return retval; 1289 1290 rt2x00dev->intf_ap_count = 0; 1291 rt2x00dev->intf_sta_count = 0; 1292 rt2x00dev->intf_associated = 0; 1293 1294 /* Enable the radio */ 1295 retval = rt2x00lib_enable_radio(rt2x00dev); 1296 if (retval) 1297 return retval; 1298 1299 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1300 1301 return 0; 1302 } 1303 1304 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1305 { 1306 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1307 return; 1308 1309 /* 1310 * Perhaps we can add something smarter here, 1311 * but for now just disabling the radio should do. 1312 */ 1313 rt2x00lib_disable_radio(rt2x00dev); 1314 1315 rt2x00dev->intf_ap_count = 0; 1316 rt2x00dev->intf_sta_count = 0; 1317 rt2x00dev->intf_associated = 0; 1318 } 1319 1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1321 { 1322 struct ieee80211_iface_limit *if_limit; 1323 struct ieee80211_iface_combination *if_combination; 1324 1325 if (rt2x00dev->ops->max_ap_intf < 2) 1326 return; 1327 1328 /* 1329 * Build up AP interface limits structure. 1330 */ 1331 if_limit = &rt2x00dev->if_limits_ap; 1332 if_limit->max = rt2x00dev->ops->max_ap_intf; 1333 if_limit->types = BIT(NL80211_IFTYPE_AP); 1334 #ifdef CONFIG_MAC80211_MESH 1335 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1336 #endif 1337 1338 /* 1339 * Build up AP interface combinations structure. 1340 */ 1341 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1342 if_combination->limits = if_limit; 1343 if_combination->n_limits = 1; 1344 if_combination->max_interfaces = if_limit->max; 1345 if_combination->num_different_channels = 1; 1346 1347 /* 1348 * Finally, specify the possible combinations to mac80211. 1349 */ 1350 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1351 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1352 } 1353 1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1355 { 1356 if (WARN_ON(!rt2x00dev->tx)) 1357 return 0; 1358 1359 if (rt2x00_is_usb(rt2x00dev)) 1360 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1361 1362 return rt2x00dev->tx[0].winfo_size; 1363 } 1364 1365 /* 1366 * driver allocation handlers. 1367 */ 1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1369 { 1370 int retval = -ENOMEM; 1371 1372 /* 1373 * Set possible interface combinations. 1374 */ 1375 rt2x00lib_set_if_combinations(rt2x00dev); 1376 1377 /* 1378 * Allocate the driver data memory, if necessary. 1379 */ 1380 if (rt2x00dev->ops->drv_data_size > 0) { 1381 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1382 GFP_KERNEL); 1383 if (!rt2x00dev->drv_data) { 1384 retval = -ENOMEM; 1385 goto exit; 1386 } 1387 } 1388 1389 spin_lock_init(&rt2x00dev->irqmask_lock); 1390 mutex_init(&rt2x00dev->csr_mutex); 1391 mutex_init(&rt2x00dev->conf_mutex); 1392 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1393 spin_lock_init(&rt2x00dev->bar_list_lock); 1394 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC, 1395 HRTIMER_MODE_REL); 1396 1397 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1398 1399 /* 1400 * Make room for rt2x00_intf inside the per-interface 1401 * structure ieee80211_vif. 1402 */ 1403 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1404 1405 /* 1406 * rt2x00 devices can only use the last n bits of the MAC address 1407 * for virtual interfaces. 1408 */ 1409 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1410 (rt2x00dev->ops->max_ap_intf - 1); 1411 1412 /* 1413 * Initialize work. 1414 */ 1415 rt2x00dev->workqueue = 1416 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1417 if (!rt2x00dev->workqueue) { 1418 retval = -ENOMEM; 1419 goto exit; 1420 } 1421 1422 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1423 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1424 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1425 1426 /* 1427 * Let the driver probe the device to detect the capabilities. 1428 */ 1429 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1430 if (retval) { 1431 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1432 goto exit; 1433 } 1434 1435 /* 1436 * Allocate queue array. 1437 */ 1438 retval = rt2x00queue_allocate(rt2x00dev); 1439 if (retval) 1440 goto exit; 1441 1442 /* Cache TX headroom value */ 1443 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1444 1445 /* 1446 * Determine which operating modes are supported, all modes 1447 * which require beaconing, depend on the availability of 1448 * beacon entries. 1449 */ 1450 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1451 if (rt2x00dev->bcn->limit > 0) 1452 rt2x00dev->hw->wiphy->interface_modes |= 1453 BIT(NL80211_IFTYPE_ADHOC) | 1454 #ifdef CONFIG_MAC80211_MESH 1455 BIT(NL80211_IFTYPE_MESH_POINT) | 1456 #endif 1457 #ifdef CONFIG_WIRELESS_WDS 1458 BIT(NL80211_IFTYPE_WDS) | 1459 #endif 1460 BIT(NL80211_IFTYPE_AP); 1461 1462 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1463 1464 wiphy_ext_feature_set(rt2x00dev->hw->wiphy, 1465 NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1466 1467 /* 1468 * Initialize ieee80211 structure. 1469 */ 1470 retval = rt2x00lib_probe_hw(rt2x00dev); 1471 if (retval) { 1472 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1473 goto exit; 1474 } 1475 1476 /* 1477 * Register extra components. 1478 */ 1479 rt2x00link_register(rt2x00dev); 1480 rt2x00leds_register(rt2x00dev); 1481 rt2x00debug_register(rt2x00dev); 1482 1483 /* 1484 * Start rfkill polling. 1485 */ 1486 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1487 rt2x00rfkill_register(rt2x00dev); 1488 1489 return 0; 1490 1491 exit: 1492 rt2x00lib_remove_dev(rt2x00dev); 1493 1494 return retval; 1495 } 1496 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1497 1498 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1499 { 1500 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1501 1502 /* 1503 * Stop rfkill polling. 1504 */ 1505 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1506 rt2x00rfkill_unregister(rt2x00dev); 1507 1508 /* 1509 * Disable radio. 1510 */ 1511 rt2x00lib_disable_radio(rt2x00dev); 1512 1513 /* 1514 * Stop all work. 1515 */ 1516 cancel_work_sync(&rt2x00dev->intf_work); 1517 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1518 cancel_work_sync(&rt2x00dev->sleep_work); 1519 1520 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1521 1522 /* 1523 * Kill the tx status tasklet. 1524 */ 1525 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1526 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1527 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1528 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1529 tasklet_kill(&rt2x00dev->autowake_tasklet); 1530 1531 /* 1532 * Uninitialize device. 1533 */ 1534 rt2x00lib_uninitialize(rt2x00dev); 1535 1536 if (rt2x00dev->workqueue) 1537 destroy_workqueue(rt2x00dev->workqueue); 1538 1539 /* 1540 * Free the tx status fifo. 1541 */ 1542 kfifo_free(&rt2x00dev->txstatus_fifo); 1543 1544 /* 1545 * Free extra components 1546 */ 1547 rt2x00debug_deregister(rt2x00dev); 1548 rt2x00leds_unregister(rt2x00dev); 1549 1550 /* 1551 * Free ieee80211_hw memory. 1552 */ 1553 rt2x00lib_remove_hw(rt2x00dev); 1554 1555 /* 1556 * Free firmware image. 1557 */ 1558 rt2x00lib_free_firmware(rt2x00dev); 1559 1560 /* 1561 * Free queue structures. 1562 */ 1563 rt2x00queue_free(rt2x00dev); 1564 1565 /* 1566 * Free the driver data. 1567 */ 1568 kfree(rt2x00dev->drv_data); 1569 } 1570 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1571 1572 /* 1573 * Device state handlers 1574 */ 1575 #ifdef CONFIG_PM 1576 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1577 { 1578 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1579 1580 /* 1581 * Prevent mac80211 from accessing driver while suspended. 1582 */ 1583 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1584 return 0; 1585 1586 /* 1587 * Cleanup as much as possible. 1588 */ 1589 rt2x00lib_uninitialize(rt2x00dev); 1590 1591 /* 1592 * Suspend/disable extra components. 1593 */ 1594 rt2x00leds_suspend(rt2x00dev); 1595 rt2x00debug_deregister(rt2x00dev); 1596 1597 /* 1598 * Set device mode to sleep for power management, 1599 * on some hardware this call seems to consistently fail. 1600 * From the specifications it is hard to tell why it fails, 1601 * and if this is a "bad thing". 1602 * Overall it is safe to just ignore the failure and 1603 * continue suspending. The only downside is that the 1604 * device will not be in optimal power save mode, but with 1605 * the radio and the other components already disabled the 1606 * device is as good as disabled. 1607 */ 1608 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1609 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1610 1611 return 0; 1612 } 1613 EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1614 1615 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1616 { 1617 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1618 1619 /* 1620 * Restore/enable extra components. 1621 */ 1622 rt2x00debug_register(rt2x00dev); 1623 rt2x00leds_resume(rt2x00dev); 1624 1625 /* 1626 * We are ready again to receive requests from mac80211. 1627 */ 1628 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1629 1630 return 0; 1631 } 1632 EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1633 #endif /* CONFIG_PM */ 1634 1635 /* 1636 * rt2x00lib module information. 1637 */ 1638 MODULE_AUTHOR(DRV_PROJECT); 1639 MODULE_VERSION(DRV_VERSION); 1640 MODULE_DESCRIPTION("rt2x00 library"); 1641 MODULE_LICENSE("GPL"); 1642