1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 */
8
9 /*
10 Module: rt2x00lib
11 Abstract: rt2x00 generic device routines.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/log2.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00lib.h"
23
24 /*
25 * Utility functions.
26 */
rt2x00lib_get_bssidx(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28 struct ieee80211_vif *vif)
29 {
30 /*
31 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32 * contains the bss number, see BSS_ID_MASK comments for details.
33 */
34 if (rt2x00dev->intf_sta_count)
35 return 0;
36 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37 }
38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39
40 /*
41 * Radio control handlers.
42 */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44 {
45 int status;
46
47 /*
48 * Don't enable the radio twice.
49 * And check if the hardware button has been disabled.
50 */
51 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52 return 0;
53
54 /*
55 * Initialize all data queues.
56 */
57 rt2x00queue_init_queues(rt2x00dev);
58
59 /*
60 * Enable radio.
61 */
62 status =
63 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64 if (status)
65 return status;
66
67 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68
69 rt2x00leds_led_radio(rt2x00dev, true);
70 rt2x00led_led_activity(rt2x00dev, true);
71
72 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73
74 /*
75 * Enable queues.
76 */
77 rt2x00queue_start_queues(rt2x00dev);
78 rt2x00link_start_tuner(rt2x00dev);
79
80 /*
81 * Start watchdog monitoring.
82 */
83 rt2x00link_start_watchdog(rt2x00dev);
84
85 return 0;
86 }
87
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89 {
90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91 return;
92
93 /*
94 * Stop watchdog monitoring.
95 */
96 rt2x00link_stop_watchdog(rt2x00dev);
97
98 /*
99 * Stop all queues
100 */
101 rt2x00link_stop_tuner(rt2x00dev);
102 rt2x00queue_stop_queues(rt2x00dev);
103 rt2x00queue_flush_queues(rt2x00dev, true);
104 rt2x00queue_stop_queue(rt2x00dev->bcn);
105
106 /*
107 * Disable radio.
108 */
109 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
110 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
111 rt2x00led_led_activity(rt2x00dev, false);
112 rt2x00leds_led_radio(rt2x00dev, false);
113 }
114
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)115 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
116 struct ieee80211_vif *vif)
117 {
118 struct rt2x00_dev *rt2x00dev = data;
119 struct rt2x00_intf *intf = vif_to_intf(vif);
120
121 /*
122 * It is possible the radio was disabled while the work had been
123 * scheduled. If that happens we should return here immediately,
124 * note that in the spinlock protected area above the delayed_flags
125 * have been cleared correctly.
126 */
127 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
128 return;
129
130 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
131 mutex_lock(&intf->beacon_skb_mutex);
132 rt2x00queue_update_beacon(rt2x00dev, vif);
133 mutex_unlock(&intf->beacon_skb_mutex);
134 }
135 }
136
rt2x00lib_intf_scheduled(struct work_struct * work)137 static void rt2x00lib_intf_scheduled(struct work_struct *work)
138 {
139 struct rt2x00_dev *rt2x00dev =
140 container_of(work, struct rt2x00_dev, intf_work);
141
142 /*
143 * Iterate over each interface and perform the
144 * requested configurations.
145 */
146 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
147 IEEE80211_IFACE_ITER_RESUME_ALL,
148 rt2x00lib_intf_scheduled_iter,
149 rt2x00dev);
150 }
151
rt2x00lib_autowakeup(struct work_struct * work)152 static void rt2x00lib_autowakeup(struct work_struct *work)
153 {
154 struct rt2x00_dev *rt2x00dev =
155 container_of(work, struct rt2x00_dev, autowakeup_work.work);
156
157 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
158 return;
159
160 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
161 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
162 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
163 }
164
165 /*
166 * Interrupt context handlers.
167 */
rt2x00lib_bc_buffer_iter(void * data,u8 * mac,struct ieee80211_vif * vif)168 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
169 struct ieee80211_vif *vif)
170 {
171 struct ieee80211_tx_control control = {};
172 struct rt2x00_dev *rt2x00dev = data;
173 struct sk_buff *skb;
174
175 /*
176 * Only AP mode interfaces do broad- and multicast buffering
177 */
178 if (vif->type != NL80211_IFTYPE_AP)
179 return;
180
181 /*
182 * Send out buffered broad- and multicast frames
183 */
184 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
185 while (skb) {
186 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
187 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
188 }
189 }
190
rt2x00lib_beaconupdate_iter(void * data,u8 * mac,struct ieee80211_vif * vif)191 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
192 struct ieee80211_vif *vif)
193 {
194 struct rt2x00_dev *rt2x00dev = data;
195
196 if (vif->type != NL80211_IFTYPE_AP &&
197 vif->type != NL80211_IFTYPE_ADHOC &&
198 vif->type != NL80211_IFTYPE_MESH_POINT)
199 return;
200
201 /*
202 * Update the beacon without locking. This is safe on PCI devices
203 * as they only update the beacon periodically here. This should
204 * never be called for USB devices.
205 */
206 WARN_ON(rt2x00_is_usb(rt2x00dev));
207 rt2x00queue_update_beacon(rt2x00dev, vif);
208 }
209
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 return;
214
215 /* send buffered bc/mc frames out for every bssid */
216 ieee80211_iterate_active_interfaces_atomic(
217 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
218 rt2x00lib_bc_buffer_iter, rt2x00dev);
219 /*
220 * Devices with pre tbtt interrupt don't need to update the beacon
221 * here as they will fetch the next beacon directly prior to
222 * transmission.
223 */
224 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
225 return;
226
227 /* fetch next beacon */
228 ieee80211_iterate_active_interfaces_atomic(
229 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
230 rt2x00lib_beaconupdate_iter, rt2x00dev);
231 }
232 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
233
rt2x00lib_pretbtt(struct rt2x00_dev * rt2x00dev)234 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
235 {
236 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
237 return;
238
239 /* fetch next beacon */
240 ieee80211_iterate_active_interfaces_atomic(
241 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
242 rt2x00lib_beaconupdate_iter, rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
245
rt2x00lib_dmastart(struct queue_entry * entry)246 void rt2x00lib_dmastart(struct queue_entry *entry)
247 {
248 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249 rt2x00queue_index_inc(entry, Q_INDEX);
250 }
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
252
rt2x00lib_dmadone(struct queue_entry * entry)253 void rt2x00lib_dmadone(struct queue_entry *entry)
254 {
255 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
256 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
260
rt2x00lib_txdone_bar_status(struct queue_entry * entry)261 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
262 {
263 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
264 struct ieee80211_bar *bar = (void *) entry->skb->data;
265 struct rt2x00_bar_list_entry *bar_entry;
266 int ret;
267
268 if (likely(!ieee80211_is_back_req(bar->frame_control)))
269 return 0;
270
271 /*
272 * Unlike all other frames, the status report for BARs does
273 * not directly come from the hardware as it is incapable of
274 * matching a BA to a previously send BAR. The hardware will
275 * report all BARs as if they weren't acked at all.
276 *
277 * Instead the RX-path will scan for incoming BAs and set the
278 * block_acked flag if it sees one that was likely caused by
279 * a BAR from us.
280 *
281 * Remove remaining BARs here and return their status for
282 * TX done processing.
283 */
284 ret = 0;
285 rcu_read_lock();
286 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
287 if (bar_entry->entry != entry)
288 continue;
289
290 spin_lock_bh(&rt2x00dev->bar_list_lock);
291 /* Return whether this BAR was blockacked or not */
292 ret = bar_entry->block_acked;
293 /* Remove the BAR from our checklist */
294 list_del_rcu(&bar_entry->list);
295 spin_unlock_bh(&rt2x00dev->bar_list_lock);
296 kfree_rcu(bar_entry, head);
297
298 break;
299 }
300 rcu_read_unlock();
301
302 return ret;
303 }
304
rt2x00lib_fill_tx_status(struct rt2x00_dev * rt2x00dev,struct ieee80211_tx_info * tx_info,struct skb_frame_desc * skbdesc,struct txdone_entry_desc * txdesc,bool success)305 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
306 struct ieee80211_tx_info *tx_info,
307 struct skb_frame_desc *skbdesc,
308 struct txdone_entry_desc *txdesc,
309 bool success)
310 {
311 u8 rate_idx, rate_flags, retry_rates;
312 int i;
313
314 rate_idx = skbdesc->tx_rate_idx;
315 rate_flags = skbdesc->tx_rate_flags;
316 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
317 (txdesc->retry + 1) : 1;
318
319 /*
320 * Initialize TX status
321 */
322 memset(&tx_info->status, 0, sizeof(tx_info->status));
323 tx_info->status.ack_signal = 0;
324
325 /*
326 * Frame was send with retries, hardware tried
327 * different rates to send out the frame, at each
328 * retry it lowered the rate 1 step except when the
329 * lowest rate was used.
330 */
331 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
332 tx_info->status.rates[i].idx = rate_idx - i;
333 tx_info->status.rates[i].flags = rate_flags;
334
335 if (rate_idx - i == 0) {
336 /*
337 * The lowest rate (index 0) was used until the
338 * number of max retries was reached.
339 */
340 tx_info->status.rates[i].count = retry_rates - i;
341 i++;
342 break;
343 }
344 tx_info->status.rates[i].count = 1;
345 }
346 if (i < (IEEE80211_TX_MAX_RATES - 1))
347 tx_info->status.rates[i].idx = -1; /* terminate */
348
349 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
350 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
351
352 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
353 if (success)
354 tx_info->flags |= IEEE80211_TX_STAT_ACK;
355 else
356 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
357 }
358
359 /*
360 * Every single frame has it's own tx status, hence report
361 * every frame as ampdu of size 1.
362 *
363 * TODO: if we can find out how many frames were aggregated
364 * by the hw we could provide the real ampdu_len to mac80211
365 * which would allow the rc algorithm to better decide on
366 * which rates are suitable.
367 */
368 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
369 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
370 tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
371 IEEE80211_TX_CTL_AMPDU;
372 tx_info->status.ampdu_len = 1;
373 tx_info->status.ampdu_ack_len = success ? 1 : 0;
374 }
375
376 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
377 if (success)
378 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
379 else
380 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
381 }
382 }
383
rt2x00lib_clear_entry(struct rt2x00_dev * rt2x00dev,struct queue_entry * entry)384 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
385 struct queue_entry *entry)
386 {
387 /*
388 * Make this entry available for reuse.
389 */
390 entry->skb = NULL;
391 entry->flags = 0;
392
393 rt2x00dev->ops->lib->clear_entry(entry);
394
395 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
396
397 /*
398 * If the data queue was below the threshold before the txdone
399 * handler we must make sure the packet queue in the mac80211 stack
400 * is reenabled when the txdone handler has finished. This has to be
401 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
402 * before it was stopped.
403 */
404 spin_lock_bh(&entry->queue->tx_lock);
405 if (!rt2x00queue_threshold(entry->queue))
406 rt2x00queue_unpause_queue(entry->queue);
407 spin_unlock_bh(&entry->queue->tx_lock);
408 }
409
rt2x00lib_txdone_nomatch(struct queue_entry * entry,struct txdone_entry_desc * txdesc)410 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
411 struct txdone_entry_desc *txdesc)
412 {
413 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
414 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
415 struct ieee80211_tx_info txinfo = {};
416 bool success;
417
418 /*
419 * Unmap the skb.
420 */
421 rt2x00queue_unmap_skb(entry);
422
423 /*
424 * Signal that the TX descriptor is no longer in the skb.
425 */
426 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
427
428 /*
429 * Send frame to debugfs immediately, after this call is completed
430 * we are going to overwrite the skb->cb array.
431 */
432 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
433
434 /*
435 * Determine if the frame has been successfully transmitted and
436 * remove BARs from our check list while checking for their
437 * TX status.
438 */
439 success =
440 rt2x00lib_txdone_bar_status(entry) ||
441 test_bit(TXDONE_SUCCESS, &txdesc->flags);
442
443 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
444 /*
445 * Update TX statistics.
446 */
447 rt2x00dev->link.qual.tx_success += success;
448 rt2x00dev->link.qual.tx_failed += !success;
449
450 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
451 success);
452 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
453 }
454
455 dev_kfree_skb_any(entry->skb);
456 rt2x00lib_clear_entry(rt2x00dev, entry);
457 }
458 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
459
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)460 void rt2x00lib_txdone(struct queue_entry *entry,
461 struct txdone_entry_desc *txdesc)
462 {
463 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
464 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
465 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
466 u8 skbdesc_flags = skbdesc->flags;
467 unsigned int header_length;
468 bool success;
469
470 /*
471 * Unmap the skb.
472 */
473 rt2x00queue_unmap_skb(entry);
474
475 /*
476 * Remove the extra tx headroom from the skb.
477 */
478 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
479
480 /*
481 * Signal that the TX descriptor is no longer in the skb.
482 */
483 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
484
485 /*
486 * Determine the length of 802.11 header.
487 */
488 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
489
490 /*
491 * Remove L2 padding which was added during
492 */
493 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
494 rt2x00queue_remove_l2pad(entry->skb, header_length);
495
496 /*
497 * If the IV/EIV data was stripped from the frame before it was
498 * passed to the hardware, we should now reinsert it again because
499 * mac80211 will expect the same data to be present it the
500 * frame as it was passed to us.
501 */
502 if (rt2x00_has_cap_hw_crypto(rt2x00dev))
503 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
504
505 /*
506 * Send frame to debugfs immediately, after this call is completed
507 * we are going to overwrite the skb->cb array.
508 */
509 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
510
511 /*
512 * Determine if the frame has been successfully transmitted and
513 * remove BARs from our check list while checking for their
514 * TX status.
515 */
516 success =
517 rt2x00lib_txdone_bar_status(entry) ||
518 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
519 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
520
521 /*
522 * Update TX statistics.
523 */
524 rt2x00dev->link.qual.tx_success += success;
525 rt2x00dev->link.qual.tx_failed += !success;
526
527 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
528
529 /*
530 * Only send the status report to mac80211 when it's a frame
531 * that originated in mac80211. If this was a extra frame coming
532 * through a mac80211 library call (RTS/CTS) then we should not
533 * send the status report back.
534 */
535 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
536 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
537 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
538 else
539 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
540 } else {
541 dev_kfree_skb_any(entry->skb);
542 }
543
544 rt2x00lib_clear_entry(rt2x00dev, entry);
545 }
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547
rt2x00lib_txdone_noinfo(struct queue_entry * entry,u32 status)548 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
549 {
550 struct txdone_entry_desc txdesc;
551
552 txdesc.flags = 0;
553 __set_bit(status, &txdesc.flags);
554 txdesc.retry = 0;
555
556 rt2x00lib_txdone(entry, &txdesc);
557 }
558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
559
rt2x00lib_find_ie(u8 * data,unsigned int len,u8 ie)560 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
561 {
562 struct ieee80211_mgmt *mgmt = (void *)data;
563 u8 *pos, *end;
564
565 pos = (u8 *)mgmt->u.beacon.variable;
566 end = data + len;
567 while (pos < end) {
568 if (pos + 2 + pos[1] > end)
569 return NULL;
570
571 if (pos[0] == ie)
572 return pos;
573
574 pos += 2 + pos[1];
575 }
576
577 return NULL;
578 }
579
rt2x00lib_sleep(struct work_struct * work)580 static void rt2x00lib_sleep(struct work_struct *work)
581 {
582 struct rt2x00_dev *rt2x00dev =
583 container_of(work, struct rt2x00_dev, sleep_work);
584
585 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
586 return;
587
588 /*
589 * Check again is powersaving is enabled, to prevent races from delayed
590 * work execution.
591 */
592 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
593 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
594 IEEE80211_CONF_CHANGE_PS);
595 }
596
rt2x00lib_rxdone_check_ba(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)597 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
598 struct sk_buff *skb,
599 struct rxdone_entry_desc *rxdesc)
600 {
601 struct rt2x00_bar_list_entry *entry;
602 struct ieee80211_bar *ba = (void *)skb->data;
603
604 if (likely(!ieee80211_is_back(ba->frame_control)))
605 return;
606
607 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
608 return;
609
610 rcu_read_lock();
611 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
612
613 if (ba->start_seq_num != entry->start_seq_num)
614 continue;
615
616 #define TID_CHECK(a, b) ( \
617 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
618 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
619
620 if (!TID_CHECK(ba->control, entry->control))
621 continue;
622
623 #undef TID_CHECK
624
625 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
626 continue;
627
628 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
629 continue;
630
631 /* Mark BAR since we received the according BA */
632 spin_lock_bh(&rt2x00dev->bar_list_lock);
633 entry->block_acked = 1;
634 spin_unlock_bh(&rt2x00dev->bar_list_lock);
635 break;
636 }
637 rcu_read_unlock();
638
639 }
640
rt2x00lib_rxdone_check_ps(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct rxdone_entry_desc * rxdesc)641 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
642 struct sk_buff *skb,
643 struct rxdone_entry_desc *rxdesc)
644 {
645 struct ieee80211_hdr *hdr = (void *) skb->data;
646 struct ieee80211_tim_ie *tim_ie;
647 u8 *tim;
648 u8 tim_len;
649 bool cam;
650
651 /* If this is not a beacon, or if mac80211 has no powersaving
652 * configured, or if the device is already in powersaving mode
653 * we can exit now. */
654 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
655 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
656 return;
657
658 /* min. beacon length + FCS_LEN */
659 if (skb->len <= 40 + FCS_LEN)
660 return;
661
662 /* and only beacons from the associated BSSID, please */
663 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
664 !rt2x00dev->aid)
665 return;
666
667 rt2x00dev->last_beacon = jiffies;
668
669 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
670 if (!tim)
671 return;
672
673 if (tim[1] < sizeof(*tim_ie))
674 return;
675
676 tim_len = tim[1];
677 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
678
679 /* Check whenever the PHY can be turned off again. */
680
681 /* 1. What about buffered unicast traffic for our AID? */
682 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
683
684 /* 2. Maybe the AP wants to send multicast/broadcast data? */
685 cam |= (tim_ie->bitmap_ctrl & 0x01);
686
687 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
688 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
689 }
690
rt2x00lib_rxdone_read_signal(struct rt2x00_dev * rt2x00dev,struct rxdone_entry_desc * rxdesc)691 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
692 struct rxdone_entry_desc *rxdesc)
693 {
694 struct ieee80211_supported_band *sband;
695 const struct rt2x00_rate *rate;
696 unsigned int i;
697 int signal = rxdesc->signal;
698 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
699
700 switch (rxdesc->rate_mode) {
701 case RATE_MODE_CCK:
702 case RATE_MODE_OFDM:
703 /*
704 * For non-HT rates the MCS value needs to contain the
705 * actually used rate modulation (CCK or OFDM).
706 */
707 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
708 signal = RATE_MCS(rxdesc->rate_mode, signal);
709
710 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
711 for (i = 0; i < sband->n_bitrates; i++) {
712 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
713 if (((type == RXDONE_SIGNAL_PLCP) &&
714 (rate->plcp == signal)) ||
715 ((type == RXDONE_SIGNAL_BITRATE) &&
716 (rate->bitrate == signal)) ||
717 ((type == RXDONE_SIGNAL_MCS) &&
718 (rate->mcs == signal))) {
719 return i;
720 }
721 }
722 break;
723 case RATE_MODE_HT_MIX:
724 case RATE_MODE_HT_GREENFIELD:
725 if (signal >= 0 && signal <= 76)
726 return signal;
727 break;
728 default:
729 break;
730 }
731
732 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
733 rxdesc->rate_mode, signal, type);
734 return 0;
735 }
736
rt2x00lib_rxdone(struct queue_entry * entry,gfp_t gfp)737 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
738 {
739 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
740 struct rxdone_entry_desc rxdesc;
741 struct sk_buff *skb;
742 struct ieee80211_rx_status *rx_status;
743 unsigned int header_length;
744 int rate_idx;
745
746 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
747 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
748 goto submit_entry;
749
750 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
751 goto submit_entry;
752
753 /*
754 * Allocate a new sk_buffer. If no new buffer available, drop the
755 * received frame and reuse the existing buffer.
756 */
757 skb = rt2x00queue_alloc_rxskb(entry, gfp);
758 if (!skb)
759 goto submit_entry;
760
761 /*
762 * Unmap the skb.
763 */
764 rt2x00queue_unmap_skb(entry);
765
766 /*
767 * Extract the RXD details.
768 */
769 memset(&rxdesc, 0, sizeof(rxdesc));
770 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
771
772 /*
773 * Check for valid size in case we get corrupted descriptor from
774 * hardware.
775 */
776 if (unlikely(rxdesc.size == 0 ||
777 rxdesc.size > entry->queue->data_size)) {
778 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
779 rxdesc.size, entry->queue->data_size);
780 dev_kfree_skb(entry->skb);
781 goto renew_skb;
782 }
783
784 /*
785 * The data behind the ieee80211 header must be
786 * aligned on a 4 byte boundary.
787 */
788 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
789
790 /*
791 * Hardware might have stripped the IV/EIV/ICV data,
792 * in that case it is possible that the data was
793 * provided separately (through hardware descriptor)
794 * in which case we should reinsert the data into the frame.
795 */
796 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
797 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
798 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
799 &rxdesc);
800 else if (header_length &&
801 (rxdesc.size > header_length) &&
802 (rxdesc.dev_flags & RXDONE_L2PAD))
803 rt2x00queue_remove_l2pad(entry->skb, header_length);
804
805 /* Trim buffer to correct size */
806 skb_trim(entry->skb, rxdesc.size);
807
808 /*
809 * Translate the signal to the correct bitrate index.
810 */
811 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
812 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
813 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
814 rxdesc.encoding = RX_ENC_HT;
815
816 /*
817 * Check if this is a beacon, and more frames have been
818 * buffered while we were in powersaving mode.
819 */
820 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
821
822 /*
823 * Check for incoming BlockAcks to match to the BlockAckReqs
824 * we've send out.
825 */
826 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
827
828 /*
829 * Update extra components
830 */
831 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
832 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
833 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
834
835 /*
836 * Initialize RX status information, and send frame
837 * to mac80211.
838 */
839 rx_status = IEEE80211_SKB_RXCB(entry->skb);
840
841 /* Ensure that all fields of rx_status are initialized
842 * properly. The skb->cb array was used for driver
843 * specific informations, so rx_status might contain
844 * garbage.
845 */
846 memset(rx_status, 0, sizeof(*rx_status));
847
848 rx_status->mactime = rxdesc.timestamp;
849 rx_status->band = rt2x00dev->curr_band;
850 rx_status->freq = rt2x00dev->curr_freq;
851 rx_status->rate_idx = rate_idx;
852 rx_status->signal = rxdesc.rssi;
853 rx_status->flag = rxdesc.flags;
854 rx_status->enc_flags = rxdesc.enc_flags;
855 rx_status->encoding = rxdesc.encoding;
856 rx_status->bw = rxdesc.bw;
857 rx_status->antenna = rt2x00dev->link.ant.active.rx;
858
859 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
860
861 renew_skb:
862 /*
863 * Replace the skb with the freshly allocated one.
864 */
865 entry->skb = skb;
866
867 submit_entry:
868 entry->flags = 0;
869 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
870 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
871 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
872 rt2x00dev->ops->lib->clear_entry(entry);
873 }
874 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
875
876 /*
877 * Driver initialization handlers.
878 */
879 const struct rt2x00_rate rt2x00_supported_rates[12] = {
880 {
881 .flags = DEV_RATE_CCK,
882 .bitrate = 10,
883 .ratemask = BIT(0),
884 .plcp = 0x00,
885 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
886 },
887 {
888 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
889 .bitrate = 20,
890 .ratemask = BIT(1),
891 .plcp = 0x01,
892 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
893 },
894 {
895 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
896 .bitrate = 55,
897 .ratemask = BIT(2),
898 .plcp = 0x02,
899 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
900 },
901 {
902 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
903 .bitrate = 110,
904 .ratemask = BIT(3),
905 .plcp = 0x03,
906 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
907 },
908 {
909 .flags = DEV_RATE_OFDM,
910 .bitrate = 60,
911 .ratemask = BIT(4),
912 .plcp = 0x0b,
913 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
914 },
915 {
916 .flags = DEV_RATE_OFDM,
917 .bitrate = 90,
918 .ratemask = BIT(5),
919 .plcp = 0x0f,
920 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
921 },
922 {
923 .flags = DEV_RATE_OFDM,
924 .bitrate = 120,
925 .ratemask = BIT(6),
926 .plcp = 0x0a,
927 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
928 },
929 {
930 .flags = DEV_RATE_OFDM,
931 .bitrate = 180,
932 .ratemask = BIT(7),
933 .plcp = 0x0e,
934 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
935 },
936 {
937 .flags = DEV_RATE_OFDM,
938 .bitrate = 240,
939 .ratemask = BIT(8),
940 .plcp = 0x09,
941 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
942 },
943 {
944 .flags = DEV_RATE_OFDM,
945 .bitrate = 360,
946 .ratemask = BIT(9),
947 .plcp = 0x0d,
948 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
949 },
950 {
951 .flags = DEV_RATE_OFDM,
952 .bitrate = 480,
953 .ratemask = BIT(10),
954 .plcp = 0x08,
955 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
956 },
957 {
958 .flags = DEV_RATE_OFDM,
959 .bitrate = 540,
960 .ratemask = BIT(11),
961 .plcp = 0x0c,
962 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
963 },
964 };
965
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)966 static void rt2x00lib_channel(struct ieee80211_channel *entry,
967 const int channel, const int tx_power,
968 const int value)
969 {
970 /* XXX: this assumption about the band is wrong for 802.11j */
971 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
972 entry->center_freq = ieee80211_channel_to_frequency(channel,
973 entry->band);
974 entry->hw_value = value;
975 entry->max_power = tx_power;
976 entry->max_antenna_gain = 0xff;
977 }
978
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)979 static void rt2x00lib_rate(struct ieee80211_rate *entry,
980 const u16 index, const struct rt2x00_rate *rate)
981 {
982 entry->flags = 0;
983 entry->bitrate = rate->bitrate;
984 entry->hw_value = index;
985 entry->hw_value_short = index;
986
987 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
988 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
989 }
990
rt2x00lib_set_mac_address(struct rt2x00_dev * rt2x00dev,u8 * eeprom_mac_addr)991 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
992 {
993 of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
994
995 if (!is_valid_ether_addr(eeprom_mac_addr)) {
996 eth_random_addr(eeprom_mac_addr);
997 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
998 }
999 }
1000 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1001
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)1002 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1003 struct hw_mode_spec *spec)
1004 {
1005 struct ieee80211_hw *hw = rt2x00dev->hw;
1006 struct ieee80211_channel *channels;
1007 struct ieee80211_rate *rates;
1008 unsigned int num_rates;
1009 unsigned int i;
1010
1011 num_rates = 0;
1012 if (spec->supported_rates & SUPPORT_RATE_CCK)
1013 num_rates += 4;
1014 if (spec->supported_rates & SUPPORT_RATE_OFDM)
1015 num_rates += 8;
1016
1017 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1018 if (!channels)
1019 return -ENOMEM;
1020
1021 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1022 if (!rates)
1023 goto exit_free_channels;
1024
1025 /*
1026 * Initialize Rate list.
1027 */
1028 for (i = 0; i < num_rates; i++)
1029 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1030
1031 /*
1032 * Initialize Channel list.
1033 */
1034 for (i = 0; i < spec->num_channels; i++) {
1035 rt2x00lib_channel(&channels[i],
1036 spec->channels[i].channel,
1037 spec->channels_info[i].max_power, i);
1038 }
1039
1040 /*
1041 * Intitialize 802.11b, 802.11g
1042 * Rates: CCK, OFDM.
1043 * Channels: 2.4 GHz
1044 */
1045 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1046 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1047 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1048 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1049 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1050 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1051 &rt2x00dev->bands[NL80211_BAND_2GHZ];
1052 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1053 &spec->ht, sizeof(spec->ht));
1054 }
1055
1056 /*
1057 * Intitialize 802.11a
1058 * Rates: OFDM.
1059 * Channels: OFDM, UNII, HiperLAN2.
1060 */
1061 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1062 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1063 spec->num_channels - 14;
1064 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1065 num_rates - 4;
1066 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1067 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1068 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1069 &rt2x00dev->bands[NL80211_BAND_5GHZ];
1070 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1071 &spec->ht, sizeof(spec->ht));
1072 }
1073
1074 return 0;
1075
1076 exit_free_channels:
1077 kfree(channels);
1078 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1079 return -ENOMEM;
1080 }
1081
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)1082 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1083 {
1084 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1085 ieee80211_unregister_hw(rt2x00dev->hw);
1086
1087 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1088 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1089 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1090 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1091 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1092 }
1093
1094 kfree(rt2x00dev->spec.channels_info);
1095 kfree(rt2x00dev->chan_survey);
1096 }
1097
1098 static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = {
1099 { .throughput = 0 * 1024, .blink_time = 334 },
1100 { .throughput = 1 * 1024, .blink_time = 260 },
1101 { .throughput = 2 * 1024, .blink_time = 220 },
1102 { .throughput = 5 * 1024, .blink_time = 190 },
1103 { .throughput = 10 * 1024, .blink_time = 170 },
1104 { .throughput = 25 * 1024, .blink_time = 150 },
1105 { .throughput = 54 * 1024, .blink_time = 130 },
1106 { .throughput = 120 * 1024, .blink_time = 110 },
1107 { .throughput = 265 * 1024, .blink_time = 80 },
1108 { .throughput = 586 * 1024, .blink_time = 50 },
1109 };
1110
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)1111 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1112 {
1113 struct hw_mode_spec *spec = &rt2x00dev->spec;
1114 int status;
1115
1116 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1117 return 0;
1118
1119 /*
1120 * Initialize HW modes.
1121 */
1122 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1123 if (status)
1124 return status;
1125
1126 /*
1127 * Initialize HW fields.
1128 */
1129 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1130
1131 /*
1132 * Initialize extra TX headroom required.
1133 */
1134 rt2x00dev->hw->extra_tx_headroom =
1135 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1136 rt2x00dev->extra_tx_headroom);
1137
1138 /*
1139 * Take TX headroom required for alignment into account.
1140 */
1141 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1142 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1143 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1144 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1145
1146 /*
1147 * Tell mac80211 about the size of our private STA structure.
1148 */
1149 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1150
1151 /*
1152 * Allocate tx status FIFO for driver use.
1153 */
1154 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1155 /*
1156 * Allocate the txstatus fifo. In the worst case the tx
1157 * status fifo has to hold the tx status of all entries
1158 * in all tx queues. Hence, calculate the kfifo size as
1159 * tx_queues * entry_num and round up to the nearest
1160 * power of 2.
1161 */
1162 int kfifo_size =
1163 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1164 rt2x00dev->tx->limit *
1165 sizeof(u32));
1166
1167 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1168 GFP_KERNEL);
1169 if (status)
1170 return status;
1171 }
1172
1173 /*
1174 * Initialize tasklets if used by the driver. Tasklets are
1175 * disabled until the interrupts are turned on. The driver
1176 * has to handle that.
1177 */
1178 #define RT2X00_TASKLET_INIT(taskletname) \
1179 if (rt2x00dev->ops->lib->taskletname) { \
1180 tasklet_setup(&rt2x00dev->taskletname, \
1181 rt2x00dev->ops->lib->taskletname); \
1182 }
1183
1184 RT2X00_TASKLET_INIT(txstatus_tasklet);
1185 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1186 RT2X00_TASKLET_INIT(tbtt_tasklet);
1187 RT2X00_TASKLET_INIT(rxdone_tasklet);
1188 RT2X00_TASKLET_INIT(autowake_tasklet);
1189
1190 #undef RT2X00_TASKLET_INIT
1191
1192 ieee80211_create_tpt_led_trigger(rt2x00dev->hw,
1193 IEEE80211_TPT_LEDTRIG_FL_RADIO,
1194 rt2x00_tpt_blink,
1195 ARRAY_SIZE(rt2x00_tpt_blink));
1196
1197 /*
1198 * Register HW.
1199 */
1200 status = ieee80211_register_hw(rt2x00dev->hw);
1201 if (status)
1202 return status;
1203
1204 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205
1206 return 0;
1207 }
1208
1209 /*
1210 * Initialization/uninitialization handlers.
1211 */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213 {
1214 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215 return;
1216
1217 /*
1218 * Stop rfkill polling.
1219 */
1220 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221 rt2x00rfkill_unregister(rt2x00dev);
1222
1223 /*
1224 * Allow the HW to uninitialize.
1225 */
1226 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227
1228 /*
1229 * Free allocated queue entries.
1230 */
1231 rt2x00queue_uninitialize(rt2x00dev);
1232 }
1233
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235 {
1236 int status;
1237
1238 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239 return 0;
1240
1241 /*
1242 * Allocate all queue entries.
1243 */
1244 status = rt2x00queue_initialize(rt2x00dev);
1245 if (status)
1246 return status;
1247
1248 /*
1249 * Initialize the device.
1250 */
1251 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252 if (status) {
1253 rt2x00queue_uninitialize(rt2x00dev);
1254 return status;
1255 }
1256
1257 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258
1259 /*
1260 * Start rfkill polling.
1261 */
1262 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263 rt2x00rfkill_register(rt2x00dev);
1264
1265 return 0;
1266 }
1267
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269 {
1270 int retval = 0;
1271
1272 /*
1273 * If this is the first interface which is added,
1274 * we should load the firmware now.
1275 */
1276 retval = rt2x00lib_load_firmware(rt2x00dev);
1277 if (retval)
1278 goto out;
1279
1280 /*
1281 * Initialize the device.
1282 */
1283 retval = rt2x00lib_initialize(rt2x00dev);
1284 if (retval)
1285 goto out;
1286
1287 rt2x00dev->intf_ap_count = 0;
1288 rt2x00dev->intf_sta_count = 0;
1289 rt2x00dev->intf_associated = 0;
1290 rt2x00dev->intf_beaconing = 0;
1291
1292 /* Enable the radio */
1293 retval = rt2x00lib_enable_radio(rt2x00dev);
1294 if (retval)
1295 goto out;
1296
1297 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1298
1299 out:
1300 return retval;
1301 }
1302
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1303 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1304 {
1305 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1306 return;
1307
1308 /*
1309 * Perhaps we can add something smarter here,
1310 * but for now just disabling the radio should do.
1311 */
1312 rt2x00lib_disable_radio(rt2x00dev);
1313
1314 rt2x00dev->intf_ap_count = 0;
1315 rt2x00dev->intf_sta_count = 0;
1316 rt2x00dev->intf_associated = 0;
1317 rt2x00dev->intf_beaconing = 0;
1318 }
1319
rt2x00lib_set_if_combinations(struct rt2x00_dev * rt2x00dev)1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321 {
1322 struct ieee80211_iface_limit *if_limit;
1323 struct ieee80211_iface_combination *if_combination;
1324
1325 if (rt2x00dev->ops->max_ap_intf < 2)
1326 return;
1327
1328 /*
1329 * Build up AP interface limits structure.
1330 */
1331 if_limit = &rt2x00dev->if_limits_ap;
1332 if_limit->max = rt2x00dev->ops->max_ap_intf;
1333 if_limit->types = BIT(NL80211_IFTYPE_AP);
1334 #ifdef CONFIG_MAC80211_MESH
1335 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336 #endif
1337
1338 /*
1339 * Build up AP interface combinations structure.
1340 */
1341 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342 if_combination->limits = if_limit;
1343 if_combination->n_limits = 1;
1344 if_combination->max_interfaces = if_limit->max;
1345 if_combination->num_different_channels = 1;
1346
1347 /*
1348 * Finally, specify the possible combinations to mac80211.
1349 */
1350 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352 }
1353
rt2x00dev_extra_tx_headroom(struct rt2x00_dev * rt2x00dev)1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355 {
1356 if (WARN_ON(!rt2x00dev->tx))
1357 return 0;
1358
1359 if (rt2x00_is_usb(rt2x00dev))
1360 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361
1362 return rt2x00dev->tx[0].winfo_size;
1363 }
1364
1365 /*
1366 * driver allocation handlers.
1367 */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369 {
1370 int retval = -ENOMEM;
1371
1372 /*
1373 * Set possible interface combinations.
1374 */
1375 rt2x00lib_set_if_combinations(rt2x00dev);
1376
1377 /*
1378 * Allocate the driver data memory, if necessary.
1379 */
1380 if (rt2x00dev->ops->drv_data_size > 0) {
1381 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382 GFP_KERNEL);
1383 if (!rt2x00dev->drv_data) {
1384 retval = -ENOMEM;
1385 goto exit;
1386 }
1387 }
1388
1389 spin_lock_init(&rt2x00dev->irqmask_lock);
1390 mutex_init(&rt2x00dev->csr_mutex);
1391 mutex_init(&rt2x00dev->conf_mutex);
1392 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393 spin_lock_init(&rt2x00dev->bar_list_lock);
1394 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1395 HRTIMER_MODE_REL);
1396
1397 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1398
1399 /*
1400 * Make room for rt2x00_intf inside the per-interface
1401 * structure ieee80211_vif.
1402 */
1403 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1404
1405 /*
1406 * rt2x00 devices can only use the last n bits of the MAC address
1407 * for virtual interfaces.
1408 */
1409 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1410 (rt2x00dev->ops->max_ap_intf - 1);
1411
1412 /*
1413 * Initialize work.
1414 */
1415 rt2x00dev->workqueue =
1416 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1417 if (!rt2x00dev->workqueue) {
1418 retval = -ENOMEM;
1419 goto exit;
1420 }
1421
1422 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1423 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1424 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1425
1426 /*
1427 * Let the driver probe the device to detect the capabilities.
1428 */
1429 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1430 if (retval) {
1431 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1432 goto exit;
1433 }
1434
1435 /*
1436 * Allocate queue array.
1437 */
1438 retval = rt2x00queue_allocate(rt2x00dev);
1439 if (retval)
1440 goto exit;
1441
1442 /* Cache TX headroom value */
1443 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1444
1445 /*
1446 * Determine which operating modes are supported, all modes
1447 * which require beaconing, depend on the availability of
1448 * beacon entries.
1449 */
1450 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1451 if (rt2x00dev->bcn->limit > 0)
1452 rt2x00dev->hw->wiphy->interface_modes |=
1453 BIT(NL80211_IFTYPE_ADHOC) |
1454 #ifdef CONFIG_MAC80211_MESH
1455 BIT(NL80211_IFTYPE_MESH_POINT) |
1456 #endif
1457 BIT(NL80211_IFTYPE_AP);
1458
1459 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1460
1461 wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1462 NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1463
1464 /*
1465 * Initialize ieee80211 structure.
1466 */
1467 retval = rt2x00lib_probe_hw(rt2x00dev);
1468 if (retval) {
1469 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1470 goto exit;
1471 }
1472
1473 /*
1474 * Register extra components.
1475 */
1476 rt2x00link_register(rt2x00dev);
1477 rt2x00leds_register(rt2x00dev);
1478 rt2x00debug_register(rt2x00dev);
1479
1480 /*
1481 * Start rfkill polling.
1482 */
1483 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1484 rt2x00rfkill_register(rt2x00dev);
1485
1486 return 0;
1487
1488 exit:
1489 rt2x00lib_remove_dev(rt2x00dev);
1490
1491 return retval;
1492 }
1493 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1494
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1495 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1496 {
1497 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1498
1499 /*
1500 * Stop rfkill polling.
1501 */
1502 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1503 rt2x00rfkill_unregister(rt2x00dev);
1504
1505 /*
1506 * Disable radio.
1507 */
1508 rt2x00lib_disable_radio(rt2x00dev);
1509
1510 /*
1511 * Stop all work.
1512 */
1513 cancel_work_sync(&rt2x00dev->intf_work);
1514 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1515 cancel_work_sync(&rt2x00dev->sleep_work);
1516
1517 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1518
1519 /*
1520 * Kill the tx status tasklet.
1521 */
1522 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1523 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1524 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1525 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1526 tasklet_kill(&rt2x00dev->autowake_tasklet);
1527
1528 /*
1529 * Uninitialize device.
1530 */
1531 rt2x00lib_uninitialize(rt2x00dev);
1532
1533 if (rt2x00dev->workqueue)
1534 destroy_workqueue(rt2x00dev->workqueue);
1535
1536 /*
1537 * Free the tx status fifo.
1538 */
1539 kfifo_free(&rt2x00dev->txstatus_fifo);
1540
1541 /*
1542 * Free extra components
1543 */
1544 rt2x00debug_deregister(rt2x00dev);
1545 rt2x00leds_unregister(rt2x00dev);
1546
1547 /*
1548 * Free ieee80211_hw memory.
1549 */
1550 rt2x00lib_remove_hw(rt2x00dev);
1551
1552 /*
1553 * Free firmware image.
1554 */
1555 rt2x00lib_free_firmware(rt2x00dev);
1556
1557 /*
1558 * Free queue structures.
1559 */
1560 rt2x00queue_free(rt2x00dev);
1561
1562 /*
1563 * Free the driver data.
1564 */
1565 kfree(rt2x00dev->drv_data);
1566 }
1567 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1568
1569 /*
1570 * Device state handlers
1571 */
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev)1572 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1573 {
1574 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575
1576 /*
1577 * Prevent mac80211 from accessing driver while suspended.
1578 */
1579 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580 return 0;
1581
1582 /*
1583 * Cleanup as much as possible.
1584 */
1585 rt2x00lib_uninitialize(rt2x00dev);
1586
1587 /*
1588 * Suspend/disable extra components.
1589 */
1590 rt2x00leds_suspend(rt2x00dev);
1591 rt2x00debug_deregister(rt2x00dev);
1592
1593 /*
1594 * Set device mode to sleep for power management,
1595 * on some hardware this call seems to consistently fail.
1596 * From the specifications it is hard to tell why it fails,
1597 * and if this is a "bad thing".
1598 * Overall it is safe to just ignore the failure and
1599 * continue suspending. The only downside is that the
1600 * device will not be in optimal power save mode, but with
1601 * the radio and the other components already disabled the
1602 * device is as good as disabled.
1603 */
1604 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606
1607 return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1611 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612 {
1613 rt2x00_dbg(rt2x00dev, "Waking up\n");
1614
1615 /*
1616 * Restore/enable extra components.
1617 */
1618 rt2x00debug_register(rt2x00dev);
1619 rt2x00leds_resume(rt2x00dev);
1620
1621 /*
1622 * We are ready again to receive requests from mac80211.
1623 */
1624 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625
1626 return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629
1630 /*
1631 * rt2x00lib module information.
1632 */
1633 MODULE_AUTHOR(DRV_PROJECT);
1634 MODULE_VERSION(DRV_VERSION);
1635 MODULE_DESCRIPTION("rt2x00 library");
1636 MODULE_LICENSE("GPL");
1637