1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 /* 22 Module: rt2x00 23 Abstract: rt2x00 global information. 24 */ 25 26 #ifndef RT2X00_H 27 #define RT2X00_H 28 29 #include <linux/bitops.h> 30 #include <linux/interrupt.h> 31 #include <linux/skbuff.h> 32 #include <linux/workqueue.h> 33 #include <linux/firmware.h> 34 #include <linux/leds.h> 35 #include <linux/mutex.h> 36 #include <linux/etherdevice.h> 37 #include <linux/input-polldev.h> 38 #include <linux/kfifo.h> 39 #include <linux/hrtimer.h> 40 #include <linux/average.h> 41 #include <linux/usb.h> 42 43 #include <net/mac80211.h> 44 45 #include "rt2x00debug.h" 46 #include "rt2x00dump.h" 47 #include "rt2x00leds.h" 48 #include "rt2x00reg.h" 49 #include "rt2x00queue.h" 50 51 /* 52 * Module information. 53 */ 54 #define DRV_VERSION "2.3.0" 55 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 56 57 /* Debug definitions. 58 * Debug output has to be enabled during compile time. 59 */ 60 #ifdef CONFIG_RT2X00_DEBUG 61 #define DEBUG 62 #endif /* CONFIG_RT2X00_DEBUG */ 63 64 /* Utility printing macros 65 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 66 */ 67 #define rt2x00_probe_err(fmt, ...) \ 68 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 69 __func__, ##__VA_ARGS__) 70 #define rt2x00_err(dev, fmt, ...) \ 71 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \ 72 __func__, ##__VA_ARGS__) 73 #define rt2x00_warn(dev, fmt, ...) \ 74 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \ 75 __func__, ##__VA_ARGS__) 76 #define rt2x00_info(dev, fmt, ...) \ 77 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 78 __func__, ##__VA_ARGS__) 79 80 /* Various debug levels */ 81 #define rt2x00_dbg(dev, fmt, ...) \ 82 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 83 __func__, ##__VA_ARGS__) 84 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 85 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 86 __func__, ##__VA_ARGS__) 87 88 /* 89 * Duration calculations 90 * The rate variable passed is: 100kbs. 91 * To convert from bytes to bits we multiply size with 8, 92 * then the size is multiplied with 10 to make the 93 * real rate -> rate argument correction. 94 */ 95 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 96 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 97 98 /* 99 * Determine the number of L2 padding bytes required between the header and 100 * the payload. 101 */ 102 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 103 104 /* 105 * Determine the alignment requirement, 106 * to make sure the 802.11 payload is padded to a 4-byte boundrary 107 * we must determine the address of the payload and calculate the 108 * amount of bytes needed to move the data. 109 */ 110 #define ALIGN_SIZE(__skb, __header) \ 111 (((unsigned long)((__skb)->data + (__header))) & 3) 112 113 /* 114 * Constants for extra TX headroom for alignment purposes. 115 */ 116 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 117 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 118 119 /* 120 * Standard timing and size defines. 121 * These values should follow the ieee80211 specifications. 122 */ 123 #define ACK_SIZE 14 124 #define IEEE80211_HEADER 24 125 #define PLCP 48 126 #define BEACON 100 127 #define PREAMBLE 144 128 #define SHORT_PREAMBLE 72 129 #define SLOT_TIME 20 130 #define SHORT_SLOT_TIME 9 131 #define SIFS 10 132 #define PIFS (SIFS + SLOT_TIME) 133 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 134 #define DIFS (PIFS + SLOT_TIME) 135 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 136 #define EIFS (SIFS + DIFS + \ 137 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 138 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 139 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 140 141 enum rt2x00_chip_intf { 142 RT2X00_CHIP_INTF_PCI, 143 RT2X00_CHIP_INTF_PCIE, 144 RT2X00_CHIP_INTF_USB, 145 RT2X00_CHIP_INTF_SOC, 146 }; 147 148 /* 149 * Chipset identification 150 * The chipset on the device is composed of a RT and RF chip. 151 * The chipset combination is important for determining device capabilities. 152 */ 153 struct rt2x00_chip { 154 u16 rt; 155 #define RT2460 0x2460 156 #define RT2560 0x2560 157 #define RT2570 0x2570 158 #define RT2661 0x2661 159 #define RT2573 0x2573 160 #define RT2860 0x2860 /* 2.4GHz */ 161 #define RT2872 0x2872 /* WSOC */ 162 #define RT2883 0x2883 /* WSOC */ 163 #define RT3070 0x3070 164 #define RT3071 0x3071 165 #define RT3090 0x3090 /* 2.4GHz PCIe */ 166 #define RT3290 0x3290 167 #define RT3352 0x3352 /* WSOC */ 168 #define RT3390 0x3390 169 #define RT3572 0x3572 170 #define RT3593 0x3593 171 #define RT3883 0x3883 /* WSOC */ 172 #define RT5390 0x5390 /* 2.4GHz */ 173 #define RT5392 0x5392 /* 2.4GHz */ 174 #define RT5592 0x5592 175 176 u16 rf; 177 u16 rev; 178 179 enum rt2x00_chip_intf intf; 180 }; 181 182 /* 183 * RF register values that belong to a particular channel. 184 */ 185 struct rf_channel { 186 int channel; 187 u32 rf1; 188 u32 rf2; 189 u32 rf3; 190 u32 rf4; 191 }; 192 193 /* 194 * Channel information structure 195 */ 196 struct channel_info { 197 unsigned int flags; 198 #define GEOGRAPHY_ALLOWED 0x00000001 199 200 short max_power; 201 short default_power1; 202 short default_power2; 203 short default_power3; 204 }; 205 206 /* 207 * Antenna setup values. 208 */ 209 struct antenna_setup { 210 enum antenna rx; 211 enum antenna tx; 212 u8 rx_chain_num; 213 u8 tx_chain_num; 214 }; 215 216 /* 217 * Quality statistics about the currently active link. 218 */ 219 struct link_qual { 220 /* 221 * Statistics required for Link tuning by driver 222 * The rssi value is provided by rt2x00lib during the 223 * link_tuner() callback function. 224 * The false_cca field is filled during the link_stats() 225 * callback function and could be used during the 226 * link_tuner() callback function. 227 */ 228 int rssi; 229 int false_cca; 230 231 /* 232 * VGC levels 233 * Hardware driver will tune the VGC level during each call 234 * to the link_tuner() callback function. This vgc_level is 235 * is determined based on the link quality statistics like 236 * average RSSI and the false CCA count. 237 * 238 * In some cases the drivers need to differentiate between 239 * the currently "desired" VGC level and the level configured 240 * in the hardware. The latter is important to reduce the 241 * number of BBP register reads to reduce register access 242 * overhead. For this reason we store both values here. 243 */ 244 u8 vgc_level; 245 u8 vgc_level_reg; 246 247 /* 248 * Statistics required for Signal quality calculation. 249 * These fields might be changed during the link_stats() 250 * callback function. 251 */ 252 int rx_success; 253 int rx_failed; 254 int tx_success; 255 int tx_failed; 256 }; 257 258 DECLARE_EWMA(rssi, 1024, 8) 259 260 /* 261 * Antenna settings about the currently active link. 262 */ 263 struct link_ant { 264 /* 265 * Antenna flags 266 */ 267 unsigned int flags; 268 #define ANTENNA_RX_DIVERSITY 0x00000001 269 #define ANTENNA_TX_DIVERSITY 0x00000002 270 #define ANTENNA_MODE_SAMPLE 0x00000004 271 272 /* 273 * Currently active TX/RX antenna setup. 274 * When software diversity is used, this will indicate 275 * which antenna is actually used at this time. 276 */ 277 struct antenna_setup active; 278 279 /* 280 * RSSI history information for the antenna. 281 * Used to determine when to switch antenna 282 * when using software diversity. 283 */ 284 int rssi_history; 285 286 /* 287 * Current RSSI average of the currently active antenna. 288 * Similar to the avg_rssi in the link_qual structure 289 * this value is updated by using the walking average. 290 */ 291 struct ewma_rssi rssi_ant; 292 }; 293 294 /* 295 * To optimize the quality of the link we need to store 296 * the quality of received frames and periodically 297 * optimize the link. 298 */ 299 struct link { 300 /* 301 * Link tuner counter 302 * The number of times the link has been tuned 303 * since the radio has been switched on. 304 */ 305 u32 count; 306 307 /* 308 * Quality measurement values. 309 */ 310 struct link_qual qual; 311 312 /* 313 * TX/RX antenna setup. 314 */ 315 struct link_ant ant; 316 317 /* 318 * Currently active average RSSI value 319 */ 320 struct ewma_rssi avg_rssi; 321 322 /* 323 * Work structure for scheduling periodic link tuning. 324 */ 325 struct delayed_work work; 326 327 /* 328 * Work structure for scheduling periodic watchdog monitoring. 329 * This work must be scheduled on the kernel workqueue, while 330 * all other work structures must be queued on the mac80211 331 * workqueue. This guarantees that the watchdog can schedule 332 * other work structures and wait for their completion in order 333 * to bring the device/driver back into the desired state. 334 */ 335 struct delayed_work watchdog_work; 336 337 /* 338 * Work structure for scheduling periodic AGC adjustments. 339 */ 340 struct delayed_work agc_work; 341 342 /* 343 * Work structure for scheduling periodic VCO calibration. 344 */ 345 struct delayed_work vco_work; 346 }; 347 348 enum rt2x00_delayed_flags { 349 DELAYED_UPDATE_BEACON, 350 }; 351 352 /* 353 * Interface structure 354 * Per interface configuration details, this structure 355 * is allocated as the private data for ieee80211_vif. 356 */ 357 struct rt2x00_intf { 358 /* 359 * beacon->skb must be protected with the mutex. 360 */ 361 struct mutex beacon_skb_mutex; 362 363 /* 364 * Entry in the beacon queue which belongs to 365 * this interface. Each interface has its own 366 * dedicated beacon entry. 367 */ 368 struct queue_entry *beacon; 369 bool enable_beacon; 370 371 /* 372 * Actions that needed rescheduling. 373 */ 374 unsigned long delayed_flags; 375 376 /* 377 * Software sequence counter, this is only required 378 * for hardware which doesn't support hardware 379 * sequence counting. 380 */ 381 atomic_t seqno; 382 }; 383 384 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 385 { 386 return (struct rt2x00_intf *)vif->drv_priv; 387 } 388 389 /** 390 * struct hw_mode_spec: Hardware specifications structure 391 * 392 * Details about the supported modes, rates and channels 393 * of a particular chipset. This is used by rt2x00lib 394 * to build the ieee80211_hw_mode array for mac80211. 395 * 396 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 397 * @supported_rates: Rate types which are supported (CCK, OFDM). 398 * @num_channels: Number of supported channels. This is used as array size 399 * for @tx_power_a, @tx_power_bg and @channels. 400 * @channels: Device/chipset specific channel values (See &struct rf_channel). 401 * @channels_info: Additional information for channels (See &struct channel_info). 402 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 403 */ 404 struct hw_mode_spec { 405 unsigned int supported_bands; 406 #define SUPPORT_BAND_2GHZ 0x00000001 407 #define SUPPORT_BAND_5GHZ 0x00000002 408 409 unsigned int supported_rates; 410 #define SUPPORT_RATE_CCK 0x00000001 411 #define SUPPORT_RATE_OFDM 0x00000002 412 413 unsigned int num_channels; 414 const struct rf_channel *channels; 415 const struct channel_info *channels_info; 416 417 struct ieee80211_sta_ht_cap ht; 418 }; 419 420 /* 421 * Configuration structure wrapper around the 422 * mac80211 configuration structure. 423 * When mac80211 configures the driver, rt2x00lib 424 * can precalculate values which are equal for all 425 * rt2x00 drivers. Those values can be stored in here. 426 */ 427 struct rt2x00lib_conf { 428 struct ieee80211_conf *conf; 429 430 struct rf_channel rf; 431 struct channel_info channel; 432 }; 433 434 /* 435 * Configuration structure for erp settings. 436 */ 437 struct rt2x00lib_erp { 438 int short_preamble; 439 int cts_protection; 440 441 u32 basic_rates; 442 443 int slot_time; 444 445 short sifs; 446 short pifs; 447 short difs; 448 short eifs; 449 450 u16 beacon_int; 451 u16 ht_opmode; 452 }; 453 454 /* 455 * Configuration structure for hardware encryption. 456 */ 457 struct rt2x00lib_crypto { 458 enum cipher cipher; 459 460 enum set_key_cmd cmd; 461 const u8 *address; 462 463 u32 bssidx; 464 465 u8 key[16]; 466 u8 tx_mic[8]; 467 u8 rx_mic[8]; 468 469 int wcid; 470 }; 471 472 /* 473 * Configuration structure wrapper around the 474 * rt2x00 interface configuration handler. 475 */ 476 struct rt2x00intf_conf { 477 /* 478 * Interface type 479 */ 480 enum nl80211_iftype type; 481 482 /* 483 * TSF sync value, this is dependent on the operation type. 484 */ 485 enum tsf_sync sync; 486 487 /* 488 * The MAC and BSSID addresses are simple array of bytes, 489 * these arrays are little endian, so when sending the addresses 490 * to the drivers, copy the it into a endian-signed variable. 491 * 492 * Note that all devices (except rt2500usb) have 32 bits 493 * register word sizes. This means that whatever variable we 494 * pass _must_ be a multiple of 32 bits. Otherwise the device 495 * might not accept what we are sending to it. 496 * This will also make it easier for the driver to write 497 * the data to the device. 498 */ 499 __le32 mac[2]; 500 __le32 bssid[2]; 501 }; 502 503 /* 504 * Private structure for storing STA details 505 * wcid: Wireless Client ID 506 */ 507 struct rt2x00_sta { 508 int wcid; 509 }; 510 511 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 512 { 513 return (struct rt2x00_sta *)sta->drv_priv; 514 } 515 516 /* 517 * rt2x00lib callback functions. 518 */ 519 struct rt2x00lib_ops { 520 /* 521 * Interrupt handlers. 522 */ 523 irq_handler_t irq_handler; 524 525 /* 526 * TX status tasklet handler. 527 */ 528 void (*txstatus_tasklet) (unsigned long data); 529 void (*pretbtt_tasklet) (unsigned long data); 530 void (*tbtt_tasklet) (unsigned long data); 531 void (*rxdone_tasklet) (unsigned long data); 532 void (*autowake_tasklet) (unsigned long data); 533 534 /* 535 * Device init handlers. 536 */ 537 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 538 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 539 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 540 const u8 *data, const size_t len); 541 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 542 const u8 *data, const size_t len); 543 544 /* 545 * Device initialization/deinitialization handlers. 546 */ 547 int (*initialize) (struct rt2x00_dev *rt2x00dev); 548 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 549 550 /* 551 * queue initialization handlers 552 */ 553 bool (*get_entry_state) (struct queue_entry *entry); 554 void (*clear_entry) (struct queue_entry *entry); 555 556 /* 557 * Radio control handlers. 558 */ 559 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 560 enum dev_state state); 561 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 562 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 563 struct link_qual *qual); 564 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 565 struct link_qual *qual); 566 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 567 struct link_qual *qual, const u32 count); 568 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 569 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 570 571 /* 572 * Data queue handlers. 573 */ 574 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 575 void (*start_queue) (struct data_queue *queue); 576 void (*kick_queue) (struct data_queue *queue); 577 void (*stop_queue) (struct data_queue *queue); 578 void (*flush_queue) (struct data_queue *queue, bool drop); 579 void (*tx_dma_done) (struct queue_entry *entry); 580 581 /* 582 * TX control handlers 583 */ 584 void (*write_tx_desc) (struct queue_entry *entry, 585 struct txentry_desc *txdesc); 586 void (*write_tx_data) (struct queue_entry *entry, 587 struct txentry_desc *txdesc); 588 void (*write_beacon) (struct queue_entry *entry, 589 struct txentry_desc *txdesc); 590 void (*clear_beacon) (struct queue_entry *entry); 591 int (*get_tx_data_len) (struct queue_entry *entry); 592 593 /* 594 * RX control handlers 595 */ 596 void (*fill_rxdone) (struct queue_entry *entry, 597 struct rxdone_entry_desc *rxdesc); 598 599 /* 600 * Configuration handlers. 601 */ 602 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 603 struct rt2x00lib_crypto *crypto, 604 struct ieee80211_key_conf *key); 605 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 606 struct rt2x00lib_crypto *crypto, 607 struct ieee80211_key_conf *key); 608 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 609 const unsigned int filter_flags); 610 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 611 struct rt2x00_intf *intf, 612 struct rt2x00intf_conf *conf, 613 const unsigned int flags); 614 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 615 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 616 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 617 618 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 619 struct rt2x00lib_erp *erp, 620 u32 changed); 621 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 622 struct antenna_setup *ant); 623 void (*config) (struct rt2x00_dev *rt2x00dev, 624 struct rt2x00lib_conf *libconf, 625 const unsigned int changed_flags); 626 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 627 struct ieee80211_vif *vif, 628 struct ieee80211_sta *sta); 629 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 630 struct ieee80211_sta *sta); 631 }; 632 633 /* 634 * rt2x00 driver callback operation structure. 635 */ 636 struct rt2x00_ops { 637 const char *name; 638 const unsigned int drv_data_size; 639 const unsigned int max_ap_intf; 640 const unsigned int eeprom_size; 641 const unsigned int rf_size; 642 const unsigned int tx_queues; 643 void (*queue_init)(struct data_queue *queue); 644 const struct rt2x00lib_ops *lib; 645 const void *drv; 646 const struct ieee80211_ops *hw; 647 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 648 const struct rt2x00debug *debugfs; 649 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 650 }; 651 652 /* 653 * rt2x00 state flags 654 */ 655 enum rt2x00_state_flags { 656 /* 657 * Device flags 658 */ 659 DEVICE_STATE_PRESENT, 660 DEVICE_STATE_REGISTERED_HW, 661 DEVICE_STATE_INITIALIZED, 662 DEVICE_STATE_STARTED, 663 DEVICE_STATE_ENABLED_RADIO, 664 DEVICE_STATE_SCANNING, 665 666 /* 667 * Driver configuration 668 */ 669 CONFIG_CHANNEL_HT40, 670 CONFIG_POWERSAVING, 671 CONFIG_HT_DISABLED, 672 CONFIG_QOS_DISABLED, 673 CONFIG_MONITORING, 674 675 /* 676 * Mark we currently are sequentially reading TX_STA_FIFO register 677 * FIXME: this is for only rt2800usb, should go to private data 678 */ 679 TX_STATUS_READING, 680 }; 681 682 /* 683 * rt2x00 capability flags 684 */ 685 enum rt2x00_capability_flags { 686 /* 687 * Requirements 688 */ 689 REQUIRE_FIRMWARE, 690 REQUIRE_BEACON_GUARD, 691 REQUIRE_ATIM_QUEUE, 692 REQUIRE_DMA, 693 REQUIRE_COPY_IV, 694 REQUIRE_L2PAD, 695 REQUIRE_TXSTATUS_FIFO, 696 REQUIRE_TASKLET_CONTEXT, 697 REQUIRE_SW_SEQNO, 698 REQUIRE_HT_TX_DESC, 699 REQUIRE_PS_AUTOWAKE, 700 REQUIRE_DELAYED_RFKILL, 701 702 /* 703 * Capabilities 704 */ 705 CAPABILITY_HW_BUTTON, 706 CAPABILITY_HW_CRYPTO, 707 CAPABILITY_POWER_LIMIT, 708 CAPABILITY_CONTROL_FILTERS, 709 CAPABILITY_CONTROL_FILTER_PSPOLL, 710 CAPABILITY_PRE_TBTT_INTERRUPT, 711 CAPABILITY_LINK_TUNING, 712 CAPABILITY_FRAME_TYPE, 713 CAPABILITY_RF_SEQUENCE, 714 CAPABILITY_EXTERNAL_LNA_A, 715 CAPABILITY_EXTERNAL_LNA_BG, 716 CAPABILITY_DOUBLE_ANTENNA, 717 CAPABILITY_BT_COEXIST, 718 CAPABILITY_VCO_RECALIBRATION, 719 }; 720 721 /* 722 * Interface combinations 723 */ 724 enum { 725 IF_COMB_AP = 0, 726 NUM_IF_COMB, 727 }; 728 729 /* 730 * rt2x00 device structure. 731 */ 732 struct rt2x00_dev { 733 /* 734 * Device structure. 735 * The structure stored in here depends on the 736 * system bus (PCI or USB). 737 * When accessing this variable, the rt2x00dev_{pci,usb} 738 * macros should be used for correct typecasting. 739 */ 740 struct device *dev; 741 742 /* 743 * Callback functions. 744 */ 745 const struct rt2x00_ops *ops; 746 747 /* 748 * Driver data. 749 */ 750 void *drv_data; 751 752 /* 753 * IEEE80211 control structure. 754 */ 755 struct ieee80211_hw *hw; 756 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 757 enum nl80211_band curr_band; 758 int curr_freq; 759 760 /* 761 * If enabled, the debugfs interface structures 762 * required for deregistration of debugfs. 763 */ 764 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 765 struct rt2x00debug_intf *debugfs_intf; 766 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 767 768 /* 769 * LED structure for changing the LED status 770 * by mac8011 or the kernel. 771 */ 772 #ifdef CONFIG_RT2X00_LIB_LEDS 773 struct rt2x00_led led_radio; 774 struct rt2x00_led led_assoc; 775 struct rt2x00_led led_qual; 776 u16 led_mcu_reg; 777 #endif /* CONFIG_RT2X00_LIB_LEDS */ 778 779 /* 780 * Device state flags. 781 * In these flags the current status is stored. 782 * Access to these flags should occur atomically. 783 */ 784 unsigned long flags; 785 786 /* 787 * Device capabiltiy flags. 788 * In these flags the device/driver capabilities are stored. 789 * Access to these flags should occur non-atomically. 790 */ 791 unsigned long cap_flags; 792 793 /* 794 * Device information, Bus IRQ and name (PCI, SoC) 795 */ 796 int irq; 797 const char *name; 798 799 /* 800 * Chipset identification. 801 */ 802 struct rt2x00_chip chip; 803 804 /* 805 * hw capability specifications. 806 */ 807 struct hw_mode_spec spec; 808 809 /* 810 * This is the default TX/RX antenna setup as indicated 811 * by the device's EEPROM. 812 */ 813 struct antenna_setup default_ant; 814 815 /* 816 * Register pointers 817 * csr.base: CSR base register address. (PCI) 818 * csr.cache: CSR cache for usb_control_msg. (USB) 819 */ 820 union csr { 821 void __iomem *base; 822 void *cache; 823 } csr; 824 825 /* 826 * Mutex to protect register accesses. 827 * For PCI and USB devices it protects against concurrent indirect 828 * register access (BBP, RF, MCU) since accessing those 829 * registers require multiple calls to the CSR registers. 830 * For USB devices it also protects the csr_cache since that 831 * field is used for normal CSR access and it cannot support 832 * multiple callers simultaneously. 833 */ 834 struct mutex csr_mutex; 835 836 /* 837 * Mutex to synchronize config and link tuner. 838 */ 839 struct mutex conf_mutex; 840 /* 841 * Current packet filter configuration for the device. 842 * This contains all currently active FIF_* flags send 843 * to us by mac80211 during configure_filter(). 844 */ 845 unsigned int packet_filter; 846 847 /* 848 * Interface details: 849 * - Open ap interface count. 850 * - Open sta interface count. 851 * - Association count. 852 * - Beaconing enabled count. 853 */ 854 unsigned int intf_ap_count; 855 unsigned int intf_sta_count; 856 unsigned int intf_associated; 857 unsigned int intf_beaconing; 858 859 /* 860 * Interface combinations 861 */ 862 struct ieee80211_iface_limit if_limits_ap; 863 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 864 865 /* 866 * Link quality 867 */ 868 struct link link; 869 870 /* 871 * EEPROM data. 872 */ 873 __le16 *eeprom; 874 875 /* 876 * Active RF register values. 877 * These are stored here so we don't need 878 * to read the rf registers and can directly 879 * use this value instead. 880 * This field should be accessed by using 881 * rt2x00_rf_read() and rt2x00_rf_write(). 882 */ 883 u32 *rf; 884 885 /* 886 * LNA gain 887 */ 888 short lna_gain; 889 890 /* 891 * Current TX power value. 892 */ 893 u16 tx_power; 894 895 /* 896 * Current retry values. 897 */ 898 u8 short_retry; 899 u8 long_retry; 900 901 /* 902 * Rssi <-> Dbm offset 903 */ 904 u8 rssi_offset; 905 906 /* 907 * Frequency offset. 908 */ 909 u8 freq_offset; 910 911 /* 912 * Association id. 913 */ 914 u16 aid; 915 916 /* 917 * Beacon interval. 918 */ 919 u16 beacon_int; 920 921 /** 922 * Timestamp of last received beacon 923 */ 924 unsigned long last_beacon; 925 926 /* 927 * Low level statistics which will have 928 * to be kept up to date while device is running. 929 */ 930 struct ieee80211_low_level_stats low_level_stats; 931 932 /** 933 * Work queue for all work which should not be placed 934 * on the mac80211 workqueue (because of dependencies 935 * between various work structures). 936 */ 937 struct workqueue_struct *workqueue; 938 939 /* 940 * Scheduled work. 941 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 942 * which means it cannot be placed on the hw->workqueue 943 * due to RTNL locking requirements. 944 */ 945 struct work_struct intf_work; 946 947 /** 948 * Scheduled work for TX/RX done handling (USB devices) 949 */ 950 struct work_struct rxdone_work; 951 struct work_struct txdone_work; 952 953 /* 954 * Powersaving work 955 */ 956 struct delayed_work autowakeup_work; 957 struct work_struct sleep_work; 958 959 /* 960 * Data queue arrays for RX, TX, Beacon and ATIM. 961 */ 962 unsigned int data_queues; 963 struct data_queue *rx; 964 struct data_queue *tx; 965 struct data_queue *bcn; 966 struct data_queue *atim; 967 968 /* 969 * Firmware image. 970 */ 971 const struct firmware *fw; 972 973 /* 974 * FIFO for storing tx status reports between isr and tasklet. 975 */ 976 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 977 978 /* 979 * Timer to ensure tx status reports are read (rt2800usb). 980 */ 981 struct hrtimer txstatus_timer; 982 983 /* 984 * Tasklet for processing tx status reports (rt2800pci). 985 */ 986 struct tasklet_struct txstatus_tasklet; 987 struct tasklet_struct pretbtt_tasklet; 988 struct tasklet_struct tbtt_tasklet; 989 struct tasklet_struct rxdone_tasklet; 990 struct tasklet_struct autowake_tasklet; 991 992 /* 993 * Used for VCO periodic calibration. 994 */ 995 int rf_channel; 996 997 /* 998 * Protect the interrupt mask register. 999 */ 1000 spinlock_t irqmask_lock; 1001 1002 /* 1003 * List of BlockAckReq TX entries that need driver BlockAck processing. 1004 */ 1005 struct list_head bar_list; 1006 spinlock_t bar_list_lock; 1007 1008 /* Extra TX headroom required for alignment purposes. */ 1009 unsigned int extra_tx_headroom; 1010 1011 struct usb_anchor *anchor; 1012 }; 1013 1014 struct rt2x00_bar_list_entry { 1015 struct list_head list; 1016 struct rcu_head head; 1017 1018 struct queue_entry *entry; 1019 int block_acked; 1020 1021 /* Relevant parts of the IEEE80211 BAR header */ 1022 __u8 ra[6]; 1023 __u8 ta[6]; 1024 __le16 control; 1025 __le16 start_seq_num; 1026 }; 1027 1028 /* 1029 * Register defines. 1030 * Some registers require multiple attempts before success, 1031 * in those cases REGISTER_BUSY_COUNT attempts should be 1032 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1033 * bus delays, we do not have to loop so many times to wait 1034 * for valid register value on that bus. 1035 */ 1036 #define REGISTER_BUSY_COUNT 100 1037 #define REGISTER_USB_BUSY_COUNT 20 1038 #define REGISTER_BUSY_DELAY 100 1039 1040 /* 1041 * Generic RF access. 1042 * The RF is being accessed by word index. 1043 */ 1044 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1045 const unsigned int word, u32 *data) 1046 { 1047 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1048 *data = rt2x00dev->rf[word - 1]; 1049 } 1050 1051 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1052 const unsigned int word, u32 data) 1053 { 1054 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1055 rt2x00dev->rf[word - 1] = data; 1056 } 1057 1058 /* 1059 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1060 */ 1061 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1062 const unsigned int word) 1063 { 1064 return (void *)&rt2x00dev->eeprom[word]; 1065 } 1066 1067 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1068 const unsigned int word, u16 *data) 1069 { 1070 *data = le16_to_cpu(rt2x00dev->eeprom[word]); 1071 } 1072 1073 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1074 const unsigned int word, u16 data) 1075 { 1076 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1077 } 1078 1079 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1080 const unsigned int byte) 1081 { 1082 return *(((u8 *)rt2x00dev->eeprom) + byte); 1083 } 1084 1085 /* 1086 * Chipset handlers 1087 */ 1088 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1089 const u16 rt, const u16 rf, const u16 rev) 1090 { 1091 rt2x00dev->chip.rt = rt; 1092 rt2x00dev->chip.rf = rf; 1093 rt2x00dev->chip.rev = rev; 1094 1095 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1096 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1097 rt2x00dev->chip.rev); 1098 } 1099 1100 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1101 const u16 rt, const u16 rev) 1102 { 1103 rt2x00dev->chip.rt = rt; 1104 rt2x00dev->chip.rev = rev; 1105 1106 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1107 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1108 } 1109 1110 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1111 { 1112 rt2x00dev->chip.rf = rf; 1113 1114 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1115 rt2x00dev->chip.rf); 1116 } 1117 1118 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1119 { 1120 return (rt2x00dev->chip.rt == rt); 1121 } 1122 1123 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1124 { 1125 return (rt2x00dev->chip.rf == rf); 1126 } 1127 1128 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1129 { 1130 return rt2x00dev->chip.rev; 1131 } 1132 1133 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1134 const u16 rt, const u16 rev) 1135 { 1136 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1137 } 1138 1139 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1140 const u16 rt, const u16 rev) 1141 { 1142 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1143 } 1144 1145 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1146 const u16 rt, const u16 rev) 1147 { 1148 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1149 } 1150 1151 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1152 enum rt2x00_chip_intf intf) 1153 { 1154 rt2x00dev->chip.intf = intf; 1155 } 1156 1157 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1158 enum rt2x00_chip_intf intf) 1159 { 1160 return (rt2x00dev->chip.intf == intf); 1161 } 1162 1163 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1164 { 1165 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1166 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1167 } 1168 1169 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1170 { 1171 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1172 } 1173 1174 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1175 { 1176 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1177 } 1178 1179 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1180 { 1181 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1182 } 1183 1184 /* Helpers for capability flags */ 1185 1186 static inline bool 1187 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1188 enum rt2x00_capability_flags cap_flag) 1189 { 1190 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1191 } 1192 1193 static inline bool 1194 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1195 { 1196 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1197 } 1198 1199 static inline bool 1200 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1201 { 1202 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1203 } 1204 1205 static inline bool 1206 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1207 { 1208 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1209 } 1210 1211 static inline bool 1212 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1213 { 1214 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1215 } 1216 1217 static inline bool 1218 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1219 { 1220 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1221 } 1222 1223 static inline bool 1224 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1225 { 1226 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1227 } 1228 1229 static inline bool 1230 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1231 { 1232 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1233 } 1234 1235 static inline bool 1236 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1237 { 1238 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1239 } 1240 1241 static inline bool 1242 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1243 { 1244 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1245 } 1246 1247 static inline bool 1248 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1249 { 1250 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1251 } 1252 1253 static inline bool 1254 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1255 { 1256 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1257 } 1258 1259 static inline bool 1260 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1261 { 1262 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1263 } 1264 1265 static inline bool 1266 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1267 { 1268 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1269 } 1270 1271 /** 1272 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1273 * @entry: Pointer to &struct queue_entry 1274 * 1275 * Returns -ENOMEM if mapping fail, 0 otherwise. 1276 */ 1277 int rt2x00queue_map_txskb(struct queue_entry *entry); 1278 1279 /** 1280 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1281 * @entry: Pointer to &struct queue_entry 1282 */ 1283 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1284 1285 /** 1286 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1287 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1288 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1289 * 1290 * Returns NULL for non tx queues. 1291 */ 1292 static inline struct data_queue * 1293 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1294 const enum data_queue_qid queue) 1295 { 1296 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1297 return &rt2x00dev->tx[queue]; 1298 1299 if (queue == QID_ATIM) 1300 return rt2x00dev->atim; 1301 1302 return NULL; 1303 } 1304 1305 /** 1306 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1307 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1308 * @index: Index identifier for obtaining the correct index. 1309 */ 1310 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1311 enum queue_index index); 1312 1313 /** 1314 * rt2x00queue_pause_queue - Pause a data queue 1315 * @queue: Pointer to &struct data_queue. 1316 * 1317 * This function will pause the data queue locally, preventing 1318 * new frames to be added to the queue (while the hardware is 1319 * still allowed to run). 1320 */ 1321 void rt2x00queue_pause_queue(struct data_queue *queue); 1322 1323 /** 1324 * rt2x00queue_unpause_queue - unpause a data queue 1325 * @queue: Pointer to &struct data_queue. 1326 * 1327 * This function will unpause the data queue locally, allowing 1328 * new frames to be added to the queue again. 1329 */ 1330 void rt2x00queue_unpause_queue(struct data_queue *queue); 1331 1332 /** 1333 * rt2x00queue_start_queue - Start a data queue 1334 * @queue: Pointer to &struct data_queue. 1335 * 1336 * This function will start handling all pending frames in the queue. 1337 */ 1338 void rt2x00queue_start_queue(struct data_queue *queue); 1339 1340 /** 1341 * rt2x00queue_stop_queue - Halt a data queue 1342 * @queue: Pointer to &struct data_queue. 1343 * 1344 * This function will stop all pending frames in the queue. 1345 */ 1346 void rt2x00queue_stop_queue(struct data_queue *queue); 1347 1348 /** 1349 * rt2x00queue_flush_queue - Flush a data queue 1350 * @queue: Pointer to &struct data_queue. 1351 * @drop: True to drop all pending frames. 1352 * 1353 * This function will flush the queue. After this call 1354 * the queue is guaranteed to be empty. 1355 */ 1356 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1357 1358 /** 1359 * rt2x00queue_start_queues - Start all data queues 1360 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1361 * 1362 * This function will loop through all available queues to start them 1363 */ 1364 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1365 1366 /** 1367 * rt2x00queue_stop_queues - Halt all data queues 1368 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1369 * 1370 * This function will loop through all available queues to stop 1371 * any pending frames. 1372 */ 1373 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1374 1375 /** 1376 * rt2x00queue_flush_queues - Flush all data queues 1377 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1378 * @drop: True to drop all pending frames. 1379 * 1380 * This function will loop through all available queues to flush 1381 * any pending frames. 1382 */ 1383 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1384 1385 /* 1386 * Debugfs handlers. 1387 */ 1388 /** 1389 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1390 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1391 * @type: The type of frame that is being dumped. 1392 * @skb: The skb containing the frame to be dumped. 1393 */ 1394 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1395 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1396 enum rt2x00_dump_type type, struct sk_buff *skb); 1397 #else 1398 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1399 enum rt2x00_dump_type type, 1400 struct sk_buff *skb) 1401 { 1402 } 1403 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1404 1405 /* 1406 * Utility functions. 1407 */ 1408 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1409 struct ieee80211_vif *vif); 1410 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1411 1412 /* 1413 * Interrupt context handlers. 1414 */ 1415 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1416 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1417 void rt2x00lib_dmastart(struct queue_entry *entry); 1418 void rt2x00lib_dmadone(struct queue_entry *entry); 1419 void rt2x00lib_txdone(struct queue_entry *entry, 1420 struct txdone_entry_desc *txdesc); 1421 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1422 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1423 1424 /* 1425 * mac80211 handlers. 1426 */ 1427 void rt2x00mac_tx(struct ieee80211_hw *hw, 1428 struct ieee80211_tx_control *control, 1429 struct sk_buff *skb); 1430 int rt2x00mac_start(struct ieee80211_hw *hw); 1431 void rt2x00mac_stop(struct ieee80211_hw *hw); 1432 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1433 struct ieee80211_vif *vif); 1434 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1435 struct ieee80211_vif *vif); 1436 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1437 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1438 unsigned int changed_flags, 1439 unsigned int *total_flags, 1440 u64 multicast); 1441 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1442 bool set); 1443 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1444 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1445 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1446 struct ieee80211_key_conf *key); 1447 #else 1448 #define rt2x00mac_set_key NULL 1449 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1450 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1451 struct ieee80211_sta *sta); 1452 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1453 struct ieee80211_sta *sta); 1454 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1455 struct ieee80211_vif *vif, 1456 const u8 *mac_addr); 1457 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1458 struct ieee80211_vif *vif); 1459 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1460 struct ieee80211_low_level_stats *stats); 1461 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1462 struct ieee80211_vif *vif, 1463 struct ieee80211_bss_conf *bss_conf, 1464 u32 changes); 1465 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1466 struct ieee80211_vif *vif, u16 queue, 1467 const struct ieee80211_tx_queue_params *params); 1468 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1469 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1470 u32 queues, bool drop); 1471 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1472 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1473 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1474 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1475 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1476 1477 /* 1478 * Driver allocation handlers. 1479 */ 1480 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1481 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1482 #ifdef CONFIG_PM 1483 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1484 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1485 #endif /* CONFIG_PM */ 1486 1487 #endif /* RT2X00_H */ 1488