1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 /* 22 Module: rt2x00 23 Abstract: rt2x00 global information. 24 */ 25 26 #ifndef RT2X00_H 27 #define RT2X00_H 28 29 #include <linux/bitops.h> 30 #include <linux/interrupt.h> 31 #include <linux/skbuff.h> 32 #include <linux/workqueue.h> 33 #include <linux/firmware.h> 34 #include <linux/leds.h> 35 #include <linux/mutex.h> 36 #include <linux/etherdevice.h> 37 #include <linux/input-polldev.h> 38 #include <linux/kfifo.h> 39 #include <linux/hrtimer.h> 40 #include <linux/average.h> 41 #include <linux/usb.h> 42 #include <linux/clk.h> 43 44 #include <net/mac80211.h> 45 46 #include "rt2x00debug.h" 47 #include "rt2x00dump.h" 48 #include "rt2x00leds.h" 49 #include "rt2x00reg.h" 50 #include "rt2x00queue.h" 51 52 /* 53 * Module information. 54 */ 55 #define DRV_VERSION "2.3.0" 56 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 57 58 /* Debug definitions. 59 * Debug output has to be enabled during compile time. 60 */ 61 #ifdef CONFIG_RT2X00_DEBUG 62 #define DEBUG 63 #endif /* CONFIG_RT2X00_DEBUG */ 64 65 /* Utility printing macros 66 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 67 */ 68 #define rt2x00_probe_err(fmt, ...) \ 69 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 70 __func__, ##__VA_ARGS__) 71 #define rt2x00_err(dev, fmt, ...) \ 72 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \ 73 __func__, ##__VA_ARGS__) 74 #define rt2x00_warn(dev, fmt, ...) \ 75 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \ 76 __func__, ##__VA_ARGS__) 77 #define rt2x00_info(dev, fmt, ...) \ 78 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 79 __func__, ##__VA_ARGS__) 80 81 /* Various debug levels */ 82 #define rt2x00_dbg(dev, fmt, ...) \ 83 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 84 __func__, ##__VA_ARGS__) 85 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 86 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 87 __func__, ##__VA_ARGS__) 88 89 /* 90 * Duration calculations 91 * The rate variable passed is: 100kbs. 92 * To convert from bytes to bits we multiply size with 8, 93 * then the size is multiplied with 10 to make the 94 * real rate -> rate argument correction. 95 */ 96 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 97 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 98 99 /* 100 * Determine the number of L2 padding bytes required between the header and 101 * the payload. 102 */ 103 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 104 105 /* 106 * Determine the alignment requirement, 107 * to make sure the 802.11 payload is padded to a 4-byte boundrary 108 * we must determine the address of the payload and calculate the 109 * amount of bytes needed to move the data. 110 */ 111 #define ALIGN_SIZE(__skb, __header) \ 112 (((unsigned long)((__skb)->data + (__header))) & 3) 113 114 /* 115 * Constants for extra TX headroom for alignment purposes. 116 */ 117 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 118 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 119 120 /* 121 * Standard timing and size defines. 122 * These values should follow the ieee80211 specifications. 123 */ 124 #define ACK_SIZE 14 125 #define IEEE80211_HEADER 24 126 #define PLCP 48 127 #define BEACON 100 128 #define PREAMBLE 144 129 #define SHORT_PREAMBLE 72 130 #define SLOT_TIME 20 131 #define SHORT_SLOT_TIME 9 132 #define SIFS 10 133 #define PIFS (SIFS + SLOT_TIME) 134 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 135 #define DIFS (PIFS + SLOT_TIME) 136 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 137 #define EIFS (SIFS + DIFS + \ 138 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 139 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 140 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 141 142 enum rt2x00_chip_intf { 143 RT2X00_CHIP_INTF_PCI, 144 RT2X00_CHIP_INTF_PCIE, 145 RT2X00_CHIP_INTF_USB, 146 RT2X00_CHIP_INTF_SOC, 147 }; 148 149 /* 150 * Chipset identification 151 * The chipset on the device is composed of a RT and RF chip. 152 * The chipset combination is important for determining device capabilities. 153 */ 154 struct rt2x00_chip { 155 u16 rt; 156 #define RT2460 0x2460 157 #define RT2560 0x2560 158 #define RT2570 0x2570 159 #define RT2661 0x2661 160 #define RT2573 0x2573 161 #define RT2860 0x2860 /* 2.4GHz */ 162 #define RT2872 0x2872 /* WSOC */ 163 #define RT2883 0x2883 /* WSOC */ 164 #define RT3070 0x3070 165 #define RT3071 0x3071 166 #define RT3090 0x3090 /* 2.4GHz PCIe */ 167 #define RT3290 0x3290 168 #define RT3352 0x3352 /* WSOC */ 169 #define RT3390 0x3390 170 #define RT3572 0x3572 171 #define RT3593 0x3593 172 #define RT3883 0x3883 /* WSOC */ 173 #define RT5350 0x5350 /* WSOC 2.4GHz */ 174 #define RT5390 0x5390 /* 2.4GHz */ 175 #define RT5392 0x5392 /* 2.4GHz */ 176 #define RT5592 0x5592 177 #define RT6352 0x6352 /* WSOC 2.4GHz */ 178 179 u16 rf; 180 u16 rev; 181 182 enum rt2x00_chip_intf intf; 183 }; 184 185 /* 186 * RF register values that belong to a particular channel. 187 */ 188 struct rf_channel { 189 int channel; 190 u32 rf1; 191 u32 rf2; 192 u32 rf3; 193 u32 rf4; 194 }; 195 196 /* 197 * Channel information structure 198 */ 199 struct channel_info { 200 unsigned int flags; 201 #define GEOGRAPHY_ALLOWED 0x00000001 202 203 short max_power; 204 short default_power1; 205 short default_power2; 206 short default_power3; 207 }; 208 209 /* 210 * Antenna setup values. 211 */ 212 struct antenna_setup { 213 enum antenna rx; 214 enum antenna tx; 215 u8 rx_chain_num; 216 u8 tx_chain_num; 217 }; 218 219 /* 220 * Quality statistics about the currently active link. 221 */ 222 struct link_qual { 223 /* 224 * Statistics required for Link tuning by driver 225 * The rssi value is provided by rt2x00lib during the 226 * link_tuner() callback function. 227 * The false_cca field is filled during the link_stats() 228 * callback function and could be used during the 229 * link_tuner() callback function. 230 */ 231 int rssi; 232 int false_cca; 233 234 /* 235 * VGC levels 236 * Hardware driver will tune the VGC level during each call 237 * to the link_tuner() callback function. This vgc_level is 238 * is determined based on the link quality statistics like 239 * average RSSI and the false CCA count. 240 * 241 * In some cases the drivers need to differentiate between 242 * the currently "desired" VGC level and the level configured 243 * in the hardware. The latter is important to reduce the 244 * number of BBP register reads to reduce register access 245 * overhead. For this reason we store both values here. 246 */ 247 u8 vgc_level; 248 u8 vgc_level_reg; 249 250 /* 251 * Statistics required for Signal quality calculation. 252 * These fields might be changed during the link_stats() 253 * callback function. 254 */ 255 int rx_success; 256 int rx_failed; 257 int tx_success; 258 int tx_failed; 259 }; 260 261 DECLARE_EWMA(rssi, 10, 8) 262 263 /* 264 * Antenna settings about the currently active link. 265 */ 266 struct link_ant { 267 /* 268 * Antenna flags 269 */ 270 unsigned int flags; 271 #define ANTENNA_RX_DIVERSITY 0x00000001 272 #define ANTENNA_TX_DIVERSITY 0x00000002 273 #define ANTENNA_MODE_SAMPLE 0x00000004 274 275 /* 276 * Currently active TX/RX antenna setup. 277 * When software diversity is used, this will indicate 278 * which antenna is actually used at this time. 279 */ 280 struct antenna_setup active; 281 282 /* 283 * RSSI history information for the antenna. 284 * Used to determine when to switch antenna 285 * when using software diversity. 286 */ 287 int rssi_history; 288 289 /* 290 * Current RSSI average of the currently active antenna. 291 * Similar to the avg_rssi in the link_qual structure 292 * this value is updated by using the walking average. 293 */ 294 struct ewma_rssi rssi_ant; 295 }; 296 297 /* 298 * To optimize the quality of the link we need to store 299 * the quality of received frames and periodically 300 * optimize the link. 301 */ 302 struct link { 303 /* 304 * Link tuner counter 305 * The number of times the link has been tuned 306 * since the radio has been switched on. 307 */ 308 u32 count; 309 310 /* 311 * Quality measurement values. 312 */ 313 struct link_qual qual; 314 315 /* 316 * TX/RX antenna setup. 317 */ 318 struct link_ant ant; 319 320 /* 321 * Currently active average RSSI value 322 */ 323 struct ewma_rssi avg_rssi; 324 325 /* 326 * Work structure for scheduling periodic link tuning. 327 */ 328 struct delayed_work work; 329 330 /* 331 * Work structure for scheduling periodic watchdog monitoring. 332 * This work must be scheduled on the kernel workqueue, while 333 * all other work structures must be queued on the mac80211 334 * workqueue. This guarantees that the watchdog can schedule 335 * other work structures and wait for their completion in order 336 * to bring the device/driver back into the desired state. 337 */ 338 struct delayed_work watchdog_work; 339 340 /* 341 * Work structure for scheduling periodic AGC adjustments. 342 */ 343 struct delayed_work agc_work; 344 345 /* 346 * Work structure for scheduling periodic VCO calibration. 347 */ 348 struct delayed_work vco_work; 349 }; 350 351 enum rt2x00_delayed_flags { 352 DELAYED_UPDATE_BEACON, 353 }; 354 355 /* 356 * Interface structure 357 * Per interface configuration details, this structure 358 * is allocated as the private data for ieee80211_vif. 359 */ 360 struct rt2x00_intf { 361 /* 362 * beacon->skb must be protected with the mutex. 363 */ 364 struct mutex beacon_skb_mutex; 365 366 /* 367 * Entry in the beacon queue which belongs to 368 * this interface. Each interface has its own 369 * dedicated beacon entry. 370 */ 371 struct queue_entry *beacon; 372 bool enable_beacon; 373 374 /* 375 * Actions that needed rescheduling. 376 */ 377 unsigned long delayed_flags; 378 379 /* 380 * Software sequence counter, this is only required 381 * for hardware which doesn't support hardware 382 * sequence counting. 383 */ 384 atomic_t seqno; 385 }; 386 387 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 388 { 389 return (struct rt2x00_intf *)vif->drv_priv; 390 } 391 392 /** 393 * struct hw_mode_spec: Hardware specifications structure 394 * 395 * Details about the supported modes, rates and channels 396 * of a particular chipset. This is used by rt2x00lib 397 * to build the ieee80211_hw_mode array for mac80211. 398 * 399 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 400 * @supported_rates: Rate types which are supported (CCK, OFDM). 401 * @num_channels: Number of supported channels. This is used as array size 402 * for @tx_power_a, @tx_power_bg and @channels. 403 * @channels: Device/chipset specific channel values (See &struct rf_channel). 404 * @channels_info: Additional information for channels (See &struct channel_info). 405 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 406 */ 407 struct hw_mode_spec { 408 unsigned int supported_bands; 409 #define SUPPORT_BAND_2GHZ 0x00000001 410 #define SUPPORT_BAND_5GHZ 0x00000002 411 412 unsigned int supported_rates; 413 #define SUPPORT_RATE_CCK 0x00000001 414 #define SUPPORT_RATE_OFDM 0x00000002 415 416 unsigned int num_channels; 417 const struct rf_channel *channels; 418 const struct channel_info *channels_info; 419 420 struct ieee80211_sta_ht_cap ht; 421 }; 422 423 /* 424 * Configuration structure wrapper around the 425 * mac80211 configuration structure. 426 * When mac80211 configures the driver, rt2x00lib 427 * can precalculate values which are equal for all 428 * rt2x00 drivers. Those values can be stored in here. 429 */ 430 struct rt2x00lib_conf { 431 struct ieee80211_conf *conf; 432 433 struct rf_channel rf; 434 struct channel_info channel; 435 }; 436 437 /* 438 * Configuration structure for erp settings. 439 */ 440 struct rt2x00lib_erp { 441 int short_preamble; 442 int cts_protection; 443 444 u32 basic_rates; 445 446 int slot_time; 447 448 short sifs; 449 short pifs; 450 short difs; 451 short eifs; 452 453 u16 beacon_int; 454 u16 ht_opmode; 455 }; 456 457 /* 458 * Configuration structure for hardware encryption. 459 */ 460 struct rt2x00lib_crypto { 461 enum cipher cipher; 462 463 enum set_key_cmd cmd; 464 const u8 *address; 465 466 u32 bssidx; 467 468 u8 key[16]; 469 u8 tx_mic[8]; 470 u8 rx_mic[8]; 471 472 int wcid; 473 }; 474 475 /* 476 * Configuration structure wrapper around the 477 * rt2x00 interface configuration handler. 478 */ 479 struct rt2x00intf_conf { 480 /* 481 * Interface type 482 */ 483 enum nl80211_iftype type; 484 485 /* 486 * TSF sync value, this is dependent on the operation type. 487 */ 488 enum tsf_sync sync; 489 490 /* 491 * The MAC and BSSID addresses are simple array of bytes, 492 * these arrays are little endian, so when sending the addresses 493 * to the drivers, copy the it into a endian-signed variable. 494 * 495 * Note that all devices (except rt2500usb) have 32 bits 496 * register word sizes. This means that whatever variable we 497 * pass _must_ be a multiple of 32 bits. Otherwise the device 498 * might not accept what we are sending to it. 499 * This will also make it easier for the driver to write 500 * the data to the device. 501 */ 502 __le32 mac[2]; 503 __le32 bssid[2]; 504 }; 505 506 /* 507 * Private structure for storing STA details 508 * wcid: Wireless Client ID 509 */ 510 struct rt2x00_sta { 511 int wcid; 512 }; 513 514 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 515 { 516 return (struct rt2x00_sta *)sta->drv_priv; 517 } 518 519 /* 520 * rt2x00lib callback functions. 521 */ 522 struct rt2x00lib_ops { 523 /* 524 * Interrupt handlers. 525 */ 526 irq_handler_t irq_handler; 527 528 /* 529 * TX status tasklet handler. 530 */ 531 void (*txstatus_tasklet) (unsigned long data); 532 void (*pretbtt_tasklet) (unsigned long data); 533 void (*tbtt_tasklet) (unsigned long data); 534 void (*rxdone_tasklet) (unsigned long data); 535 void (*autowake_tasklet) (unsigned long data); 536 537 /* 538 * Device init handlers. 539 */ 540 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 541 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 542 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 543 const u8 *data, const size_t len); 544 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 545 const u8 *data, const size_t len); 546 547 /* 548 * Device initialization/deinitialization handlers. 549 */ 550 int (*initialize) (struct rt2x00_dev *rt2x00dev); 551 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 552 553 /* 554 * queue initialization handlers 555 */ 556 bool (*get_entry_state) (struct queue_entry *entry); 557 void (*clear_entry) (struct queue_entry *entry); 558 559 /* 560 * Radio control handlers. 561 */ 562 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 563 enum dev_state state); 564 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 565 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 566 struct link_qual *qual); 567 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 568 struct link_qual *qual); 569 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 570 struct link_qual *qual, const u32 count); 571 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 572 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 573 574 /* 575 * Data queue handlers. 576 */ 577 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 578 void (*start_queue) (struct data_queue *queue); 579 void (*kick_queue) (struct data_queue *queue); 580 void (*stop_queue) (struct data_queue *queue); 581 void (*flush_queue) (struct data_queue *queue, bool drop); 582 void (*tx_dma_done) (struct queue_entry *entry); 583 584 /* 585 * TX control handlers 586 */ 587 void (*write_tx_desc) (struct queue_entry *entry, 588 struct txentry_desc *txdesc); 589 void (*write_tx_data) (struct queue_entry *entry, 590 struct txentry_desc *txdesc); 591 void (*write_beacon) (struct queue_entry *entry, 592 struct txentry_desc *txdesc); 593 void (*clear_beacon) (struct queue_entry *entry); 594 int (*get_tx_data_len) (struct queue_entry *entry); 595 596 /* 597 * RX control handlers 598 */ 599 void (*fill_rxdone) (struct queue_entry *entry, 600 struct rxdone_entry_desc *rxdesc); 601 602 /* 603 * Configuration handlers. 604 */ 605 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 606 struct rt2x00lib_crypto *crypto, 607 struct ieee80211_key_conf *key); 608 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 609 struct rt2x00lib_crypto *crypto, 610 struct ieee80211_key_conf *key); 611 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 612 const unsigned int filter_flags); 613 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 614 struct rt2x00_intf *intf, 615 struct rt2x00intf_conf *conf, 616 const unsigned int flags); 617 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 618 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 619 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 620 621 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 622 struct rt2x00lib_erp *erp, 623 u32 changed); 624 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 625 struct antenna_setup *ant); 626 void (*config) (struct rt2x00_dev *rt2x00dev, 627 struct rt2x00lib_conf *libconf, 628 const unsigned int changed_flags); 629 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 630 struct ieee80211_vif *vif, 631 struct ieee80211_sta *sta); 632 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 633 struct ieee80211_sta *sta); 634 }; 635 636 /* 637 * rt2x00 driver callback operation structure. 638 */ 639 struct rt2x00_ops { 640 const char *name; 641 const unsigned int drv_data_size; 642 const unsigned int max_ap_intf; 643 const unsigned int eeprom_size; 644 const unsigned int rf_size; 645 const unsigned int tx_queues; 646 void (*queue_init)(struct data_queue *queue); 647 const struct rt2x00lib_ops *lib; 648 const void *drv; 649 const struct ieee80211_ops *hw; 650 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 651 const struct rt2x00debug *debugfs; 652 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 653 }; 654 655 /* 656 * rt2x00 state flags 657 */ 658 enum rt2x00_state_flags { 659 /* 660 * Device flags 661 */ 662 DEVICE_STATE_PRESENT, 663 DEVICE_STATE_REGISTERED_HW, 664 DEVICE_STATE_INITIALIZED, 665 DEVICE_STATE_STARTED, 666 DEVICE_STATE_ENABLED_RADIO, 667 DEVICE_STATE_SCANNING, 668 DEVICE_STATE_FLUSHING, 669 670 /* 671 * Driver configuration 672 */ 673 CONFIG_CHANNEL_HT40, 674 CONFIG_POWERSAVING, 675 CONFIG_HT_DISABLED, 676 CONFIG_QOS_DISABLED, 677 CONFIG_MONITORING, 678 679 /* 680 * Mark we currently are sequentially reading TX_STA_FIFO register 681 * FIXME: this is for only rt2800usb, should go to private data 682 */ 683 TX_STATUS_READING, 684 }; 685 686 /* 687 * rt2x00 capability flags 688 */ 689 enum rt2x00_capability_flags { 690 /* 691 * Requirements 692 */ 693 REQUIRE_FIRMWARE, 694 REQUIRE_BEACON_GUARD, 695 REQUIRE_ATIM_QUEUE, 696 REQUIRE_DMA, 697 REQUIRE_COPY_IV, 698 REQUIRE_L2PAD, 699 REQUIRE_TXSTATUS_FIFO, 700 REQUIRE_TASKLET_CONTEXT, 701 REQUIRE_SW_SEQNO, 702 REQUIRE_HT_TX_DESC, 703 REQUIRE_PS_AUTOWAKE, 704 REQUIRE_DELAYED_RFKILL, 705 706 /* 707 * Capabilities 708 */ 709 CAPABILITY_HW_BUTTON, 710 CAPABILITY_HW_CRYPTO, 711 CAPABILITY_POWER_LIMIT, 712 CAPABILITY_CONTROL_FILTERS, 713 CAPABILITY_CONTROL_FILTER_PSPOLL, 714 CAPABILITY_PRE_TBTT_INTERRUPT, 715 CAPABILITY_LINK_TUNING, 716 CAPABILITY_FRAME_TYPE, 717 CAPABILITY_RF_SEQUENCE, 718 CAPABILITY_EXTERNAL_LNA_A, 719 CAPABILITY_EXTERNAL_LNA_BG, 720 CAPABILITY_DOUBLE_ANTENNA, 721 CAPABILITY_BT_COEXIST, 722 CAPABILITY_VCO_RECALIBRATION, 723 CAPABILITY_EXTERNAL_PA_TX0, 724 CAPABILITY_EXTERNAL_PA_TX1, 725 }; 726 727 /* 728 * Interface combinations 729 */ 730 enum { 731 IF_COMB_AP = 0, 732 NUM_IF_COMB, 733 }; 734 735 /* 736 * rt2x00 device structure. 737 */ 738 struct rt2x00_dev { 739 /* 740 * Device structure. 741 * The structure stored in here depends on the 742 * system bus (PCI or USB). 743 * When accessing this variable, the rt2x00dev_{pci,usb} 744 * macros should be used for correct typecasting. 745 */ 746 struct device *dev; 747 748 /* 749 * Callback functions. 750 */ 751 const struct rt2x00_ops *ops; 752 753 /* 754 * Driver data. 755 */ 756 void *drv_data; 757 758 /* 759 * IEEE80211 control structure. 760 */ 761 struct ieee80211_hw *hw; 762 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 763 enum nl80211_band curr_band; 764 int curr_freq; 765 766 /* 767 * If enabled, the debugfs interface structures 768 * required for deregistration of debugfs. 769 */ 770 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 771 struct rt2x00debug_intf *debugfs_intf; 772 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 773 774 /* 775 * LED structure for changing the LED status 776 * by mac8011 or the kernel. 777 */ 778 #ifdef CONFIG_RT2X00_LIB_LEDS 779 struct rt2x00_led led_radio; 780 struct rt2x00_led led_assoc; 781 struct rt2x00_led led_qual; 782 u16 led_mcu_reg; 783 #endif /* CONFIG_RT2X00_LIB_LEDS */ 784 785 /* 786 * Device state flags. 787 * In these flags the current status is stored. 788 * Access to these flags should occur atomically. 789 */ 790 unsigned long flags; 791 792 /* 793 * Device capabiltiy flags. 794 * In these flags the device/driver capabilities are stored. 795 * Access to these flags should occur non-atomically. 796 */ 797 unsigned long cap_flags; 798 799 /* 800 * Device information, Bus IRQ and name (PCI, SoC) 801 */ 802 int irq; 803 const char *name; 804 805 /* 806 * Chipset identification. 807 */ 808 struct rt2x00_chip chip; 809 810 /* 811 * hw capability specifications. 812 */ 813 struct hw_mode_spec spec; 814 815 /* 816 * This is the default TX/RX antenna setup as indicated 817 * by the device's EEPROM. 818 */ 819 struct antenna_setup default_ant; 820 821 /* 822 * Register pointers 823 * csr.base: CSR base register address. (PCI) 824 * csr.cache: CSR cache for usb_control_msg. (USB) 825 */ 826 union csr { 827 void __iomem *base; 828 void *cache; 829 } csr; 830 831 /* 832 * Mutex to protect register accesses. 833 * For PCI and USB devices it protects against concurrent indirect 834 * register access (BBP, RF, MCU) since accessing those 835 * registers require multiple calls to the CSR registers. 836 * For USB devices it also protects the csr_cache since that 837 * field is used for normal CSR access and it cannot support 838 * multiple callers simultaneously. 839 */ 840 struct mutex csr_mutex; 841 842 /* 843 * Mutex to synchronize config and link tuner. 844 */ 845 struct mutex conf_mutex; 846 /* 847 * Current packet filter configuration for the device. 848 * This contains all currently active FIF_* flags send 849 * to us by mac80211 during configure_filter(). 850 */ 851 unsigned int packet_filter; 852 853 /* 854 * Interface details: 855 * - Open ap interface count. 856 * - Open sta interface count. 857 * - Association count. 858 * - Beaconing enabled count. 859 */ 860 unsigned int intf_ap_count; 861 unsigned int intf_sta_count; 862 unsigned int intf_associated; 863 unsigned int intf_beaconing; 864 865 /* 866 * Interface combinations 867 */ 868 struct ieee80211_iface_limit if_limits_ap; 869 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 870 871 /* 872 * Link quality 873 */ 874 struct link link; 875 876 /* 877 * EEPROM data. 878 */ 879 __le16 *eeprom; 880 881 /* 882 * Active RF register values. 883 * These are stored here so we don't need 884 * to read the rf registers and can directly 885 * use this value instead. 886 * This field should be accessed by using 887 * rt2x00_rf_read() and rt2x00_rf_write(). 888 */ 889 u32 *rf; 890 891 /* 892 * LNA gain 893 */ 894 short lna_gain; 895 896 /* 897 * Current TX power value. 898 */ 899 u16 tx_power; 900 901 /* 902 * Current retry values. 903 */ 904 u8 short_retry; 905 u8 long_retry; 906 907 /* 908 * Rssi <-> Dbm offset 909 */ 910 u8 rssi_offset; 911 912 /* 913 * Frequency offset. 914 */ 915 u8 freq_offset; 916 917 /* 918 * Association id. 919 */ 920 u16 aid; 921 922 /* 923 * Beacon interval. 924 */ 925 u16 beacon_int; 926 927 /** 928 * Timestamp of last received beacon 929 */ 930 unsigned long last_beacon; 931 932 /* 933 * Low level statistics which will have 934 * to be kept up to date while device is running. 935 */ 936 struct ieee80211_low_level_stats low_level_stats; 937 938 /** 939 * Work queue for all work which should not be placed 940 * on the mac80211 workqueue (because of dependencies 941 * between various work structures). 942 */ 943 struct workqueue_struct *workqueue; 944 945 /* 946 * Scheduled work. 947 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 948 * which means it cannot be placed on the hw->workqueue 949 * due to RTNL locking requirements. 950 */ 951 struct work_struct intf_work; 952 953 /** 954 * Scheduled work for TX/RX done handling (USB devices) 955 */ 956 struct work_struct rxdone_work; 957 struct work_struct txdone_work; 958 959 /* 960 * Powersaving work 961 */ 962 struct delayed_work autowakeup_work; 963 struct work_struct sleep_work; 964 965 /* 966 * Data queue arrays for RX, TX, Beacon and ATIM. 967 */ 968 unsigned int data_queues; 969 struct data_queue *rx; 970 struct data_queue *tx; 971 struct data_queue *bcn; 972 struct data_queue *atim; 973 974 /* 975 * Firmware image. 976 */ 977 const struct firmware *fw; 978 979 /* 980 * FIFO for storing tx status reports between isr and tasklet. 981 */ 982 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 983 984 unsigned long last_nostatus_check; 985 986 /* 987 * Timer to ensure tx status reports are read (rt2800usb). 988 */ 989 struct hrtimer txstatus_timer; 990 991 /* 992 * Tasklet for processing tx status reports (rt2800pci). 993 */ 994 struct tasklet_struct txstatus_tasklet; 995 struct tasklet_struct pretbtt_tasklet; 996 struct tasklet_struct tbtt_tasklet; 997 struct tasklet_struct rxdone_tasklet; 998 struct tasklet_struct autowake_tasklet; 999 1000 /* 1001 * Used for VCO periodic calibration. 1002 */ 1003 int rf_channel; 1004 1005 /* 1006 * Protect the interrupt mask register. 1007 */ 1008 spinlock_t irqmask_lock; 1009 1010 /* 1011 * List of BlockAckReq TX entries that need driver BlockAck processing. 1012 */ 1013 struct list_head bar_list; 1014 spinlock_t bar_list_lock; 1015 1016 /* Extra TX headroom required for alignment purposes. */ 1017 unsigned int extra_tx_headroom; 1018 1019 struct usb_anchor *anchor; 1020 1021 /* Clock for System On Chip devices. */ 1022 struct clk *clk; 1023 }; 1024 1025 struct rt2x00_bar_list_entry { 1026 struct list_head list; 1027 struct rcu_head head; 1028 1029 struct queue_entry *entry; 1030 int block_acked; 1031 1032 /* Relevant parts of the IEEE80211 BAR header */ 1033 __u8 ra[6]; 1034 __u8 ta[6]; 1035 __le16 control; 1036 __le16 start_seq_num; 1037 }; 1038 1039 /* 1040 * Register defines. 1041 * Some registers require multiple attempts before success, 1042 * in those cases REGISTER_BUSY_COUNT attempts should be 1043 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1044 * bus delays, we do not have to loop so many times to wait 1045 * for valid register value on that bus. 1046 */ 1047 #define REGISTER_BUSY_COUNT 100 1048 #define REGISTER_USB_BUSY_COUNT 20 1049 #define REGISTER_BUSY_DELAY 100 1050 1051 /* 1052 * Generic RF access. 1053 * The RF is being accessed by word index. 1054 */ 1055 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1056 const unsigned int word) 1057 { 1058 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1059 return rt2x00dev->rf[word - 1]; 1060 } 1061 1062 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1063 const unsigned int word, u32 data) 1064 { 1065 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1066 rt2x00dev->rf[word - 1] = data; 1067 } 1068 1069 /* 1070 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1071 */ 1072 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1073 const unsigned int word) 1074 { 1075 return (void *)&rt2x00dev->eeprom[word]; 1076 } 1077 1078 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1079 const unsigned int word) 1080 { 1081 return le16_to_cpu(rt2x00dev->eeprom[word]); 1082 } 1083 1084 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1085 const unsigned int word, u16 data) 1086 { 1087 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1088 } 1089 1090 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1091 const unsigned int byte) 1092 { 1093 return *(((u8 *)rt2x00dev->eeprom) + byte); 1094 } 1095 1096 /* 1097 * Chipset handlers 1098 */ 1099 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1100 const u16 rt, const u16 rf, const u16 rev) 1101 { 1102 rt2x00dev->chip.rt = rt; 1103 rt2x00dev->chip.rf = rf; 1104 rt2x00dev->chip.rev = rev; 1105 1106 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1107 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1108 rt2x00dev->chip.rev); 1109 } 1110 1111 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1112 const u16 rt, const u16 rev) 1113 { 1114 rt2x00dev->chip.rt = rt; 1115 rt2x00dev->chip.rev = rev; 1116 1117 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1118 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1119 } 1120 1121 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1122 { 1123 rt2x00dev->chip.rf = rf; 1124 1125 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1126 rt2x00dev->chip.rf); 1127 } 1128 1129 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1130 { 1131 return (rt2x00dev->chip.rt == rt); 1132 } 1133 1134 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1135 { 1136 return (rt2x00dev->chip.rf == rf); 1137 } 1138 1139 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1140 { 1141 return rt2x00dev->chip.rev; 1142 } 1143 1144 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1145 const u16 rt, const u16 rev) 1146 { 1147 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1148 } 1149 1150 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1151 const u16 rt, const u16 rev) 1152 { 1153 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1154 } 1155 1156 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1157 const u16 rt, const u16 rev) 1158 { 1159 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1160 } 1161 1162 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1163 enum rt2x00_chip_intf intf) 1164 { 1165 rt2x00dev->chip.intf = intf; 1166 } 1167 1168 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1169 enum rt2x00_chip_intf intf) 1170 { 1171 return (rt2x00dev->chip.intf == intf); 1172 } 1173 1174 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1175 { 1176 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1177 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1178 } 1179 1180 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1181 { 1182 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1183 } 1184 1185 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1186 { 1187 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1188 } 1189 1190 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1191 { 1192 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1193 } 1194 1195 /* Helpers for capability flags */ 1196 1197 static inline bool 1198 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1199 enum rt2x00_capability_flags cap_flag) 1200 { 1201 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1202 } 1203 1204 static inline bool 1205 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1206 { 1207 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1208 } 1209 1210 static inline bool 1211 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1212 { 1213 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1214 } 1215 1216 static inline bool 1217 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1218 { 1219 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1220 } 1221 1222 static inline bool 1223 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1224 { 1225 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1226 } 1227 1228 static inline bool 1229 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1230 { 1231 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1232 } 1233 1234 static inline bool 1235 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1236 { 1237 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1238 } 1239 1240 static inline bool 1241 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1242 { 1243 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1244 } 1245 1246 static inline bool 1247 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1248 { 1249 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1250 } 1251 1252 static inline bool 1253 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1254 { 1255 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1256 } 1257 1258 static inline bool 1259 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1260 { 1261 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1262 } 1263 1264 static inline bool 1265 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1266 { 1267 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1268 } 1269 1270 static inline bool 1271 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1272 { 1273 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1274 } 1275 1276 static inline bool 1277 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1278 { 1279 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1280 } 1281 1282 /** 1283 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1284 * @entry: Pointer to &struct queue_entry 1285 * 1286 * Returns -ENOMEM if mapping fail, 0 otherwise. 1287 */ 1288 int rt2x00queue_map_txskb(struct queue_entry *entry); 1289 1290 /** 1291 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1292 * @entry: Pointer to &struct queue_entry 1293 */ 1294 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1295 1296 /** 1297 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1298 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1299 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1300 * 1301 * Returns NULL for non tx queues. 1302 */ 1303 static inline struct data_queue * 1304 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1305 const enum data_queue_qid queue) 1306 { 1307 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1308 return &rt2x00dev->tx[queue]; 1309 1310 if (queue == QID_ATIM) 1311 return rt2x00dev->atim; 1312 1313 return NULL; 1314 } 1315 1316 /** 1317 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1318 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1319 * @index: Index identifier for obtaining the correct index. 1320 */ 1321 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1322 enum queue_index index); 1323 1324 /** 1325 * rt2x00queue_pause_queue - Pause a data queue 1326 * @queue: Pointer to &struct data_queue. 1327 * 1328 * This function will pause the data queue locally, preventing 1329 * new frames to be added to the queue (while the hardware is 1330 * still allowed to run). 1331 */ 1332 void rt2x00queue_pause_queue(struct data_queue *queue); 1333 1334 /** 1335 * rt2x00queue_unpause_queue - unpause a data queue 1336 * @queue: Pointer to &struct data_queue. 1337 * 1338 * This function will unpause the data queue locally, allowing 1339 * new frames to be added to the queue again. 1340 */ 1341 void rt2x00queue_unpause_queue(struct data_queue *queue); 1342 1343 /** 1344 * rt2x00queue_start_queue - Start a data queue 1345 * @queue: Pointer to &struct data_queue. 1346 * 1347 * This function will start handling all pending frames in the queue. 1348 */ 1349 void rt2x00queue_start_queue(struct data_queue *queue); 1350 1351 /** 1352 * rt2x00queue_stop_queue - Halt a data queue 1353 * @queue: Pointer to &struct data_queue. 1354 * 1355 * This function will stop all pending frames in the queue. 1356 */ 1357 void rt2x00queue_stop_queue(struct data_queue *queue); 1358 1359 /** 1360 * rt2x00queue_flush_queue - Flush a data queue 1361 * @queue: Pointer to &struct data_queue. 1362 * @drop: True to drop all pending frames. 1363 * 1364 * This function will flush the queue. After this call 1365 * the queue is guaranteed to be empty. 1366 */ 1367 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1368 1369 /** 1370 * rt2x00queue_start_queues - Start all data queues 1371 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1372 * 1373 * This function will loop through all available queues to start them 1374 */ 1375 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1376 1377 /** 1378 * rt2x00queue_stop_queues - Halt all data queues 1379 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1380 * 1381 * This function will loop through all available queues to stop 1382 * any pending frames. 1383 */ 1384 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1385 1386 /** 1387 * rt2x00queue_flush_queues - Flush all data queues 1388 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1389 * @drop: True to drop all pending frames. 1390 * 1391 * This function will loop through all available queues to flush 1392 * any pending frames. 1393 */ 1394 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1395 1396 /* 1397 * Debugfs handlers. 1398 */ 1399 /** 1400 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1401 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1402 * @type: The type of frame that is being dumped. 1403 * @entry: The queue entry containing the frame to be dumped. 1404 */ 1405 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1406 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1407 enum rt2x00_dump_type type, struct queue_entry *entry); 1408 #else 1409 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1410 enum rt2x00_dump_type type, 1411 struct queue_entry *entry) 1412 { 1413 } 1414 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1415 1416 /* 1417 * Utility functions. 1418 */ 1419 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1420 struct ieee80211_vif *vif); 1421 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1422 1423 /* 1424 * Interrupt context handlers. 1425 */ 1426 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1427 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1428 void rt2x00lib_dmastart(struct queue_entry *entry); 1429 void rt2x00lib_dmadone(struct queue_entry *entry); 1430 void rt2x00lib_txdone(struct queue_entry *entry, 1431 struct txdone_entry_desc *txdesc); 1432 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 1433 struct txdone_entry_desc *txdesc); 1434 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1435 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1436 1437 /* 1438 * mac80211 handlers. 1439 */ 1440 void rt2x00mac_tx(struct ieee80211_hw *hw, 1441 struct ieee80211_tx_control *control, 1442 struct sk_buff *skb); 1443 int rt2x00mac_start(struct ieee80211_hw *hw); 1444 void rt2x00mac_stop(struct ieee80211_hw *hw); 1445 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1446 struct ieee80211_vif *vif); 1447 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1448 struct ieee80211_vif *vif); 1449 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1450 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1451 unsigned int changed_flags, 1452 unsigned int *total_flags, 1453 u64 multicast); 1454 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1455 bool set); 1456 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1457 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1458 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1459 struct ieee80211_key_conf *key); 1460 #else 1461 #define rt2x00mac_set_key NULL 1462 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1463 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1464 struct ieee80211_vif *vif, 1465 const u8 *mac_addr); 1466 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1467 struct ieee80211_vif *vif); 1468 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1469 struct ieee80211_low_level_stats *stats); 1470 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1471 struct ieee80211_vif *vif, 1472 struct ieee80211_bss_conf *bss_conf, 1473 u32 changes); 1474 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1475 struct ieee80211_vif *vif, u16 queue, 1476 const struct ieee80211_tx_queue_params *params); 1477 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1478 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1479 u32 queues, bool drop); 1480 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1481 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1482 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1483 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1484 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1485 1486 /* 1487 * Driver allocation handlers. 1488 */ 1489 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1490 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1491 #ifdef CONFIG_PM 1492 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1493 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1494 #endif /* CONFIG_PM */ 1495 1496 #endif /* RT2X00_H */ 1497