1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 6 <http://rt2x00.serialmonkey.com> 7 8 */ 9 10 /* 11 Module: rt2x00 12 Abstract: rt2x00 global information. 13 */ 14 15 #ifndef RT2X00_H 16 #define RT2X00_H 17 18 #include <linux/bitops.h> 19 #include <linux/interrupt.h> 20 #include <linux/skbuff.h> 21 #include <linux/workqueue.h> 22 #include <linux/firmware.h> 23 #include <linux/leds.h> 24 #include <linux/mutex.h> 25 #include <linux/etherdevice.h> 26 #include <linux/input-polldev.h> 27 #include <linux/kfifo.h> 28 #include <linux/hrtimer.h> 29 #include <linux/average.h> 30 #include <linux/usb.h> 31 #include <linux/clk.h> 32 33 #include <net/mac80211.h> 34 35 #include "rt2x00debug.h" 36 #include "rt2x00dump.h" 37 #include "rt2x00leds.h" 38 #include "rt2x00reg.h" 39 #include "rt2x00queue.h" 40 41 /* 42 * Module information. 43 */ 44 #define DRV_VERSION "2.3.0" 45 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 46 47 /* Debug definitions. 48 * Debug output has to be enabled during compile time. 49 */ 50 #ifdef CONFIG_RT2X00_DEBUG 51 #define DEBUG 52 #endif /* CONFIG_RT2X00_DEBUG */ 53 54 /* Utility printing macros 55 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 56 */ 57 #define rt2x00_probe_err(fmt, ...) \ 58 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 59 __func__, ##__VA_ARGS__) 60 #define rt2x00_err(dev, fmt, ...) \ 61 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \ 62 __func__, ##__VA_ARGS__) 63 #define rt2x00_warn(dev, fmt, ...) \ 64 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \ 65 __func__, ##__VA_ARGS__) 66 #define rt2x00_info(dev, fmt, ...) \ 67 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 68 __func__, ##__VA_ARGS__) 69 70 /* Various debug levels */ 71 #define rt2x00_dbg(dev, fmt, ...) \ 72 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 73 __func__, ##__VA_ARGS__) 74 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 75 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 76 __func__, ##__VA_ARGS__) 77 78 /* 79 * Duration calculations 80 * The rate variable passed is: 100kbs. 81 * To convert from bytes to bits we multiply size with 8, 82 * then the size is multiplied with 10 to make the 83 * real rate -> rate argument correction. 84 */ 85 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 86 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 87 88 /* 89 * Determine the number of L2 padding bytes required between the header and 90 * the payload. 91 */ 92 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 93 94 /* 95 * Determine the alignment requirement, 96 * to make sure the 802.11 payload is padded to a 4-byte boundrary 97 * we must determine the address of the payload and calculate the 98 * amount of bytes needed to move the data. 99 */ 100 #define ALIGN_SIZE(__skb, __header) \ 101 (((unsigned long)((__skb)->data + (__header))) & 3) 102 103 /* 104 * Constants for extra TX headroom for alignment purposes. 105 */ 106 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 107 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 108 109 /* 110 * Standard timing and size defines. 111 * These values should follow the ieee80211 specifications. 112 */ 113 #define ACK_SIZE 14 114 #define IEEE80211_HEADER 24 115 #define PLCP 48 116 #define BEACON 100 117 #define PREAMBLE 144 118 #define SHORT_PREAMBLE 72 119 #define SLOT_TIME 20 120 #define SHORT_SLOT_TIME 9 121 #define SIFS 10 122 #define PIFS (SIFS + SLOT_TIME) 123 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 124 #define DIFS (PIFS + SLOT_TIME) 125 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 126 #define EIFS (SIFS + DIFS + \ 127 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 128 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 129 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 130 131 enum rt2x00_chip_intf { 132 RT2X00_CHIP_INTF_PCI, 133 RT2X00_CHIP_INTF_PCIE, 134 RT2X00_CHIP_INTF_USB, 135 RT2X00_CHIP_INTF_SOC, 136 }; 137 138 /* 139 * Chipset identification 140 * The chipset on the device is composed of a RT and RF chip. 141 * The chipset combination is important for determining device capabilities. 142 */ 143 struct rt2x00_chip { 144 u16 rt; 145 #define RT2460 0x2460 146 #define RT2560 0x2560 147 #define RT2570 0x2570 148 #define RT2661 0x2661 149 #define RT2573 0x2573 150 #define RT2860 0x2860 /* 2.4GHz */ 151 #define RT2872 0x2872 /* WSOC */ 152 #define RT2883 0x2883 /* WSOC */ 153 #define RT3070 0x3070 154 #define RT3071 0x3071 155 #define RT3090 0x3090 /* 2.4GHz PCIe */ 156 #define RT3290 0x3290 157 #define RT3352 0x3352 /* WSOC */ 158 #define RT3390 0x3390 159 #define RT3572 0x3572 160 #define RT3593 0x3593 161 #define RT3883 0x3883 /* WSOC */ 162 #define RT5350 0x5350 /* WSOC 2.4GHz */ 163 #define RT5390 0x5390 /* 2.4GHz */ 164 #define RT5392 0x5392 /* 2.4GHz */ 165 #define RT5592 0x5592 166 #define RT6352 0x6352 /* WSOC 2.4GHz */ 167 168 u16 rf; 169 u16 rev; 170 171 enum rt2x00_chip_intf intf; 172 }; 173 174 /* 175 * RF register values that belong to a particular channel. 176 */ 177 struct rf_channel { 178 int channel; 179 u32 rf1; 180 u32 rf2; 181 u32 rf3; 182 u32 rf4; 183 }; 184 185 /* 186 * Channel information structure 187 */ 188 struct channel_info { 189 unsigned int flags; 190 #define GEOGRAPHY_ALLOWED 0x00000001 191 192 short max_power; 193 short default_power1; 194 short default_power2; 195 short default_power3; 196 }; 197 198 /* 199 * Antenna setup values. 200 */ 201 struct antenna_setup { 202 enum antenna rx; 203 enum antenna tx; 204 u8 rx_chain_num; 205 u8 tx_chain_num; 206 }; 207 208 /* 209 * Quality statistics about the currently active link. 210 */ 211 struct link_qual { 212 /* 213 * Statistics required for Link tuning by driver 214 * The rssi value is provided by rt2x00lib during the 215 * link_tuner() callback function. 216 * The false_cca field is filled during the link_stats() 217 * callback function and could be used during the 218 * link_tuner() callback function. 219 */ 220 int rssi; 221 int false_cca; 222 223 /* 224 * VGC levels 225 * Hardware driver will tune the VGC level during each call 226 * to the link_tuner() callback function. This vgc_level is 227 * is determined based on the link quality statistics like 228 * average RSSI and the false CCA count. 229 * 230 * In some cases the drivers need to differentiate between 231 * the currently "desired" VGC level and the level configured 232 * in the hardware. The latter is important to reduce the 233 * number of BBP register reads to reduce register access 234 * overhead. For this reason we store both values here. 235 */ 236 u8 vgc_level; 237 u8 vgc_level_reg; 238 239 /* 240 * Statistics required for Signal quality calculation. 241 * These fields might be changed during the link_stats() 242 * callback function. 243 */ 244 int rx_success; 245 int rx_failed; 246 int tx_success; 247 int tx_failed; 248 }; 249 250 DECLARE_EWMA(rssi, 10, 8) 251 252 /* 253 * Antenna settings about the currently active link. 254 */ 255 struct link_ant { 256 /* 257 * Antenna flags 258 */ 259 unsigned int flags; 260 #define ANTENNA_RX_DIVERSITY 0x00000001 261 #define ANTENNA_TX_DIVERSITY 0x00000002 262 #define ANTENNA_MODE_SAMPLE 0x00000004 263 264 /* 265 * Currently active TX/RX antenna setup. 266 * When software diversity is used, this will indicate 267 * which antenna is actually used at this time. 268 */ 269 struct antenna_setup active; 270 271 /* 272 * RSSI history information for the antenna. 273 * Used to determine when to switch antenna 274 * when using software diversity. 275 */ 276 int rssi_history; 277 278 /* 279 * Current RSSI average of the currently active antenna. 280 * Similar to the avg_rssi in the link_qual structure 281 * this value is updated by using the walking average. 282 */ 283 struct ewma_rssi rssi_ant; 284 }; 285 286 /* 287 * To optimize the quality of the link we need to store 288 * the quality of received frames and periodically 289 * optimize the link. 290 */ 291 struct link { 292 /* 293 * Link tuner counter 294 * The number of times the link has been tuned 295 * since the radio has been switched on. 296 */ 297 u32 count; 298 299 /* 300 * Quality measurement values. 301 */ 302 struct link_qual qual; 303 304 /* 305 * TX/RX antenna setup. 306 */ 307 struct link_ant ant; 308 309 /* 310 * Currently active average RSSI value 311 */ 312 struct ewma_rssi avg_rssi; 313 314 /* 315 * Work structure for scheduling periodic link tuning. 316 */ 317 struct delayed_work work; 318 319 /* 320 * Work structure for scheduling periodic watchdog monitoring. 321 * This work must be scheduled on the kernel workqueue, while 322 * all other work structures must be queued on the mac80211 323 * workqueue. This guarantees that the watchdog can schedule 324 * other work structures and wait for their completion in order 325 * to bring the device/driver back into the desired state. 326 */ 327 struct delayed_work watchdog_work; 328 329 /* 330 * Work structure for scheduling periodic AGC adjustments. 331 */ 332 struct delayed_work agc_work; 333 334 /* 335 * Work structure for scheduling periodic VCO calibration. 336 */ 337 struct delayed_work vco_work; 338 }; 339 340 enum rt2x00_delayed_flags { 341 DELAYED_UPDATE_BEACON, 342 }; 343 344 /* 345 * Interface structure 346 * Per interface configuration details, this structure 347 * is allocated as the private data for ieee80211_vif. 348 */ 349 struct rt2x00_intf { 350 /* 351 * beacon->skb must be protected with the mutex. 352 */ 353 struct mutex beacon_skb_mutex; 354 355 /* 356 * Entry in the beacon queue which belongs to 357 * this interface. Each interface has its own 358 * dedicated beacon entry. 359 */ 360 struct queue_entry *beacon; 361 bool enable_beacon; 362 363 /* 364 * Actions that needed rescheduling. 365 */ 366 unsigned long delayed_flags; 367 368 /* 369 * Software sequence counter, this is only required 370 * for hardware which doesn't support hardware 371 * sequence counting. 372 */ 373 atomic_t seqno; 374 }; 375 376 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 377 { 378 return (struct rt2x00_intf *)vif->drv_priv; 379 } 380 381 /** 382 * struct hw_mode_spec: Hardware specifications structure 383 * 384 * Details about the supported modes, rates and channels 385 * of a particular chipset. This is used by rt2x00lib 386 * to build the ieee80211_hw_mode array for mac80211. 387 * 388 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 389 * @supported_rates: Rate types which are supported (CCK, OFDM). 390 * @num_channels: Number of supported channels. This is used as array size 391 * for @tx_power_a, @tx_power_bg and @channels. 392 * @channels: Device/chipset specific channel values (See &struct rf_channel). 393 * @channels_info: Additional information for channels (See &struct channel_info). 394 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 395 */ 396 struct hw_mode_spec { 397 unsigned int supported_bands; 398 #define SUPPORT_BAND_2GHZ 0x00000001 399 #define SUPPORT_BAND_5GHZ 0x00000002 400 401 unsigned int supported_rates; 402 #define SUPPORT_RATE_CCK 0x00000001 403 #define SUPPORT_RATE_OFDM 0x00000002 404 405 unsigned int num_channels; 406 const struct rf_channel *channels; 407 const struct channel_info *channels_info; 408 409 struct ieee80211_sta_ht_cap ht; 410 }; 411 412 /* 413 * Configuration structure wrapper around the 414 * mac80211 configuration structure. 415 * When mac80211 configures the driver, rt2x00lib 416 * can precalculate values which are equal for all 417 * rt2x00 drivers. Those values can be stored in here. 418 */ 419 struct rt2x00lib_conf { 420 struct ieee80211_conf *conf; 421 422 struct rf_channel rf; 423 struct channel_info channel; 424 }; 425 426 /* 427 * Configuration structure for erp settings. 428 */ 429 struct rt2x00lib_erp { 430 int short_preamble; 431 int cts_protection; 432 433 u32 basic_rates; 434 435 int slot_time; 436 437 short sifs; 438 short pifs; 439 short difs; 440 short eifs; 441 442 u16 beacon_int; 443 u16 ht_opmode; 444 }; 445 446 /* 447 * Configuration structure for hardware encryption. 448 */ 449 struct rt2x00lib_crypto { 450 enum cipher cipher; 451 452 enum set_key_cmd cmd; 453 const u8 *address; 454 455 u32 bssidx; 456 457 u8 key[16]; 458 u8 tx_mic[8]; 459 u8 rx_mic[8]; 460 461 int wcid; 462 }; 463 464 /* 465 * Configuration structure wrapper around the 466 * rt2x00 interface configuration handler. 467 */ 468 struct rt2x00intf_conf { 469 /* 470 * Interface type 471 */ 472 enum nl80211_iftype type; 473 474 /* 475 * TSF sync value, this is dependent on the operation type. 476 */ 477 enum tsf_sync sync; 478 479 /* 480 * The MAC and BSSID addresses are simple array of bytes, 481 * these arrays are little endian, so when sending the addresses 482 * to the drivers, copy the it into a endian-signed variable. 483 * 484 * Note that all devices (except rt2500usb) have 32 bits 485 * register word sizes. This means that whatever variable we 486 * pass _must_ be a multiple of 32 bits. Otherwise the device 487 * might not accept what we are sending to it. 488 * This will also make it easier for the driver to write 489 * the data to the device. 490 */ 491 __le32 mac[2]; 492 __le32 bssid[2]; 493 }; 494 495 /* 496 * Private structure for storing STA details 497 * wcid: Wireless Client ID 498 */ 499 struct rt2x00_sta { 500 int wcid; 501 }; 502 503 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 504 { 505 return (struct rt2x00_sta *)sta->drv_priv; 506 } 507 508 /* 509 * rt2x00lib callback functions. 510 */ 511 struct rt2x00lib_ops { 512 /* 513 * Interrupt handlers. 514 */ 515 irq_handler_t irq_handler; 516 517 /* 518 * TX status tasklet handler. 519 */ 520 void (*txstatus_tasklet) (unsigned long data); 521 void (*pretbtt_tasklet) (unsigned long data); 522 void (*tbtt_tasklet) (unsigned long data); 523 void (*rxdone_tasklet) (unsigned long data); 524 void (*autowake_tasklet) (unsigned long data); 525 526 /* 527 * Device init handlers. 528 */ 529 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 530 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 531 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 532 const u8 *data, const size_t len); 533 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 534 const u8 *data, const size_t len); 535 536 /* 537 * Device initialization/deinitialization handlers. 538 */ 539 int (*initialize) (struct rt2x00_dev *rt2x00dev); 540 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 541 542 /* 543 * queue initialization handlers 544 */ 545 bool (*get_entry_state) (struct queue_entry *entry); 546 void (*clear_entry) (struct queue_entry *entry); 547 548 /* 549 * Radio control handlers. 550 */ 551 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 552 enum dev_state state); 553 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 554 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 555 struct link_qual *qual); 556 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 557 struct link_qual *qual); 558 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 559 struct link_qual *qual, const u32 count); 560 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 561 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 562 563 /* 564 * Data queue handlers. 565 */ 566 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 567 void (*start_queue) (struct data_queue *queue); 568 void (*kick_queue) (struct data_queue *queue); 569 void (*stop_queue) (struct data_queue *queue); 570 void (*flush_queue) (struct data_queue *queue, bool drop); 571 void (*tx_dma_done) (struct queue_entry *entry); 572 573 /* 574 * TX control handlers 575 */ 576 void (*write_tx_desc) (struct queue_entry *entry, 577 struct txentry_desc *txdesc); 578 void (*write_tx_data) (struct queue_entry *entry, 579 struct txentry_desc *txdesc); 580 void (*write_beacon) (struct queue_entry *entry, 581 struct txentry_desc *txdesc); 582 void (*clear_beacon) (struct queue_entry *entry); 583 int (*get_tx_data_len) (struct queue_entry *entry); 584 585 /* 586 * RX control handlers 587 */ 588 void (*fill_rxdone) (struct queue_entry *entry, 589 struct rxdone_entry_desc *rxdesc); 590 591 /* 592 * Configuration handlers. 593 */ 594 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 595 struct rt2x00lib_crypto *crypto, 596 struct ieee80211_key_conf *key); 597 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 598 struct rt2x00lib_crypto *crypto, 599 struct ieee80211_key_conf *key); 600 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 601 const unsigned int filter_flags); 602 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 603 struct rt2x00_intf *intf, 604 struct rt2x00intf_conf *conf, 605 const unsigned int flags); 606 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 607 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 608 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 609 610 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 611 struct rt2x00lib_erp *erp, 612 u32 changed); 613 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 614 struct antenna_setup *ant); 615 void (*config) (struct rt2x00_dev *rt2x00dev, 616 struct rt2x00lib_conf *libconf, 617 const unsigned int changed_flags); 618 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 619 struct ieee80211_vif *vif, 620 struct ieee80211_sta *sta); 621 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 622 struct ieee80211_sta *sta); 623 }; 624 625 /* 626 * rt2x00 driver callback operation structure. 627 */ 628 struct rt2x00_ops { 629 const char *name; 630 const unsigned int drv_data_size; 631 const unsigned int max_ap_intf; 632 const unsigned int eeprom_size; 633 const unsigned int rf_size; 634 const unsigned int tx_queues; 635 void (*queue_init)(struct data_queue *queue); 636 const struct rt2x00lib_ops *lib; 637 const void *drv; 638 const struct ieee80211_ops *hw; 639 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 640 const struct rt2x00debug *debugfs; 641 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 642 }; 643 644 /* 645 * rt2x00 state flags 646 */ 647 enum rt2x00_state_flags { 648 /* 649 * Device flags 650 */ 651 DEVICE_STATE_PRESENT, 652 DEVICE_STATE_REGISTERED_HW, 653 DEVICE_STATE_INITIALIZED, 654 DEVICE_STATE_STARTED, 655 DEVICE_STATE_ENABLED_RADIO, 656 DEVICE_STATE_SCANNING, 657 DEVICE_STATE_FLUSHING, 658 659 /* 660 * Driver configuration 661 */ 662 CONFIG_CHANNEL_HT40, 663 CONFIG_POWERSAVING, 664 CONFIG_HT_DISABLED, 665 CONFIG_MONITORING, 666 667 /* 668 * Mark we currently are sequentially reading TX_STA_FIFO register 669 * FIXME: this is for only rt2800usb, should go to private data 670 */ 671 TX_STATUS_READING, 672 }; 673 674 /* 675 * rt2x00 capability flags 676 */ 677 enum rt2x00_capability_flags { 678 /* 679 * Requirements 680 */ 681 REQUIRE_FIRMWARE, 682 REQUIRE_BEACON_GUARD, 683 REQUIRE_ATIM_QUEUE, 684 REQUIRE_DMA, 685 REQUIRE_COPY_IV, 686 REQUIRE_L2PAD, 687 REQUIRE_TXSTATUS_FIFO, 688 REQUIRE_TASKLET_CONTEXT, 689 REQUIRE_SW_SEQNO, 690 REQUIRE_HT_TX_DESC, 691 REQUIRE_PS_AUTOWAKE, 692 REQUIRE_DELAYED_RFKILL, 693 694 /* 695 * Capabilities 696 */ 697 CAPABILITY_HW_BUTTON, 698 CAPABILITY_HW_CRYPTO, 699 CAPABILITY_POWER_LIMIT, 700 CAPABILITY_CONTROL_FILTERS, 701 CAPABILITY_CONTROL_FILTER_PSPOLL, 702 CAPABILITY_PRE_TBTT_INTERRUPT, 703 CAPABILITY_LINK_TUNING, 704 CAPABILITY_FRAME_TYPE, 705 CAPABILITY_RF_SEQUENCE, 706 CAPABILITY_EXTERNAL_LNA_A, 707 CAPABILITY_EXTERNAL_LNA_BG, 708 CAPABILITY_DOUBLE_ANTENNA, 709 CAPABILITY_BT_COEXIST, 710 CAPABILITY_VCO_RECALIBRATION, 711 CAPABILITY_EXTERNAL_PA_TX0, 712 CAPABILITY_EXTERNAL_PA_TX1, 713 }; 714 715 /* 716 * Interface combinations 717 */ 718 enum { 719 IF_COMB_AP = 0, 720 NUM_IF_COMB, 721 }; 722 723 /* 724 * rt2x00 device structure. 725 */ 726 struct rt2x00_dev { 727 /* 728 * Device structure. 729 * The structure stored in here depends on the 730 * system bus (PCI or USB). 731 * When accessing this variable, the rt2x00dev_{pci,usb} 732 * macros should be used for correct typecasting. 733 */ 734 struct device *dev; 735 736 /* 737 * Callback functions. 738 */ 739 const struct rt2x00_ops *ops; 740 741 /* 742 * Driver data. 743 */ 744 void *drv_data; 745 746 /* 747 * IEEE80211 control structure. 748 */ 749 struct ieee80211_hw *hw; 750 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 751 enum nl80211_band curr_band; 752 int curr_freq; 753 754 /* 755 * If enabled, the debugfs interface structures 756 * required for deregistration of debugfs. 757 */ 758 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 759 struct rt2x00debug_intf *debugfs_intf; 760 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 761 762 /* 763 * LED structure for changing the LED status 764 * by mac8011 or the kernel. 765 */ 766 #ifdef CONFIG_RT2X00_LIB_LEDS 767 struct rt2x00_led led_radio; 768 struct rt2x00_led led_assoc; 769 struct rt2x00_led led_qual; 770 u16 led_mcu_reg; 771 #endif /* CONFIG_RT2X00_LIB_LEDS */ 772 773 /* 774 * Device state flags. 775 * In these flags the current status is stored. 776 * Access to these flags should occur atomically. 777 */ 778 unsigned long flags; 779 780 /* 781 * Device capabiltiy flags. 782 * In these flags the device/driver capabilities are stored. 783 * Access to these flags should occur non-atomically. 784 */ 785 unsigned long cap_flags; 786 787 /* 788 * Device information, Bus IRQ and name (PCI, SoC) 789 */ 790 int irq; 791 const char *name; 792 793 /* 794 * Chipset identification. 795 */ 796 struct rt2x00_chip chip; 797 798 /* 799 * hw capability specifications. 800 */ 801 struct hw_mode_spec spec; 802 803 /* 804 * This is the default TX/RX antenna setup as indicated 805 * by the device's EEPROM. 806 */ 807 struct antenna_setup default_ant; 808 809 /* 810 * Register pointers 811 * csr.base: CSR base register address. (PCI) 812 * csr.cache: CSR cache for usb_control_msg. (USB) 813 */ 814 union csr { 815 void __iomem *base; 816 void *cache; 817 } csr; 818 819 /* 820 * Mutex to protect register accesses. 821 * For PCI and USB devices it protects against concurrent indirect 822 * register access (BBP, RF, MCU) since accessing those 823 * registers require multiple calls to the CSR registers. 824 * For USB devices it also protects the csr_cache since that 825 * field is used for normal CSR access and it cannot support 826 * multiple callers simultaneously. 827 */ 828 struct mutex csr_mutex; 829 830 /* 831 * Mutex to synchronize config and link tuner. 832 */ 833 struct mutex conf_mutex; 834 /* 835 * Current packet filter configuration for the device. 836 * This contains all currently active FIF_* flags send 837 * to us by mac80211 during configure_filter(). 838 */ 839 unsigned int packet_filter; 840 841 /* 842 * Interface details: 843 * - Open ap interface count. 844 * - Open sta interface count. 845 * - Association count. 846 * - Beaconing enabled count. 847 */ 848 unsigned int intf_ap_count; 849 unsigned int intf_sta_count; 850 unsigned int intf_associated; 851 unsigned int intf_beaconing; 852 853 /* 854 * Interface combinations 855 */ 856 struct ieee80211_iface_limit if_limits_ap; 857 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 858 859 /* 860 * Link quality 861 */ 862 struct link link; 863 864 /* 865 * EEPROM data. 866 */ 867 __le16 *eeprom; 868 869 /* 870 * Active RF register values. 871 * These are stored here so we don't need 872 * to read the rf registers and can directly 873 * use this value instead. 874 * This field should be accessed by using 875 * rt2x00_rf_read() and rt2x00_rf_write(). 876 */ 877 u32 *rf; 878 879 /* 880 * LNA gain 881 */ 882 short lna_gain; 883 884 /* 885 * Current TX power value. 886 */ 887 u16 tx_power; 888 889 /* 890 * Current retry values. 891 */ 892 u8 short_retry; 893 u8 long_retry; 894 895 /* 896 * Rssi <-> Dbm offset 897 */ 898 u8 rssi_offset; 899 900 /* 901 * Frequency offset. 902 */ 903 u8 freq_offset; 904 905 /* 906 * Association id. 907 */ 908 u16 aid; 909 910 /* 911 * Beacon interval. 912 */ 913 u16 beacon_int; 914 915 /** 916 * Timestamp of last received beacon 917 */ 918 unsigned long last_beacon; 919 920 /* 921 * Low level statistics which will have 922 * to be kept up to date while device is running. 923 */ 924 struct ieee80211_low_level_stats low_level_stats; 925 926 /** 927 * Work queue for all work which should not be placed 928 * on the mac80211 workqueue (because of dependencies 929 * between various work structures). 930 */ 931 struct workqueue_struct *workqueue; 932 933 /* 934 * Scheduled work. 935 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 936 * which means it cannot be placed on the hw->workqueue 937 * due to RTNL locking requirements. 938 */ 939 struct work_struct intf_work; 940 941 /** 942 * Scheduled work for TX/RX done handling (USB devices) 943 */ 944 struct work_struct rxdone_work; 945 struct work_struct txdone_work; 946 947 /* 948 * Powersaving work 949 */ 950 struct delayed_work autowakeup_work; 951 struct work_struct sleep_work; 952 953 /* 954 * Data queue arrays for RX, TX, Beacon and ATIM. 955 */ 956 unsigned int data_queues; 957 struct data_queue *rx; 958 struct data_queue *tx; 959 struct data_queue *bcn; 960 struct data_queue *atim; 961 962 /* 963 * Firmware image. 964 */ 965 const struct firmware *fw; 966 967 /* 968 * FIFO for storing tx status reports between isr and tasklet. 969 */ 970 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 971 972 /* 973 * Timer to ensure tx status reports are read (rt2800usb). 974 */ 975 struct hrtimer txstatus_timer; 976 977 /* 978 * Tasklet for processing tx status reports (rt2800pci). 979 */ 980 struct tasklet_struct txstatus_tasklet; 981 struct tasklet_struct pretbtt_tasklet; 982 struct tasklet_struct tbtt_tasklet; 983 struct tasklet_struct rxdone_tasklet; 984 struct tasklet_struct autowake_tasklet; 985 986 /* 987 * Used for VCO periodic calibration. 988 */ 989 int rf_channel; 990 991 /* 992 * Protect the interrupt mask register. 993 */ 994 spinlock_t irqmask_lock; 995 996 /* 997 * List of BlockAckReq TX entries that need driver BlockAck processing. 998 */ 999 struct list_head bar_list; 1000 spinlock_t bar_list_lock; 1001 1002 /* Extra TX headroom required for alignment purposes. */ 1003 unsigned int extra_tx_headroom; 1004 1005 struct usb_anchor *anchor; 1006 unsigned int num_proto_errs; 1007 1008 /* Clock for System On Chip devices. */ 1009 struct clk *clk; 1010 }; 1011 1012 struct rt2x00_bar_list_entry { 1013 struct list_head list; 1014 struct rcu_head head; 1015 1016 struct queue_entry *entry; 1017 int block_acked; 1018 1019 /* Relevant parts of the IEEE80211 BAR header */ 1020 __u8 ra[6]; 1021 __u8 ta[6]; 1022 __le16 control; 1023 __le16 start_seq_num; 1024 }; 1025 1026 /* 1027 * Register defines. 1028 * Some registers require multiple attempts before success, 1029 * in those cases REGISTER_BUSY_COUNT attempts should be 1030 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1031 * bus delays, we do not have to loop so many times to wait 1032 * for valid register value on that bus. 1033 */ 1034 #define REGISTER_BUSY_COUNT 100 1035 #define REGISTER_USB_BUSY_COUNT 20 1036 #define REGISTER_BUSY_DELAY 100 1037 1038 /* 1039 * Generic RF access. 1040 * The RF is being accessed by word index. 1041 */ 1042 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1043 const unsigned int word) 1044 { 1045 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1046 return rt2x00dev->rf[word - 1]; 1047 } 1048 1049 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1050 const unsigned int word, u32 data) 1051 { 1052 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1053 rt2x00dev->rf[word - 1] = data; 1054 } 1055 1056 /* 1057 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1058 */ 1059 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1060 const unsigned int word) 1061 { 1062 return (void *)&rt2x00dev->eeprom[word]; 1063 } 1064 1065 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1066 const unsigned int word) 1067 { 1068 return le16_to_cpu(rt2x00dev->eeprom[word]); 1069 } 1070 1071 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1072 const unsigned int word, u16 data) 1073 { 1074 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1075 } 1076 1077 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1078 const unsigned int byte) 1079 { 1080 return *(((u8 *)rt2x00dev->eeprom) + byte); 1081 } 1082 1083 /* 1084 * Chipset handlers 1085 */ 1086 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1087 const u16 rt, const u16 rf, const u16 rev) 1088 { 1089 rt2x00dev->chip.rt = rt; 1090 rt2x00dev->chip.rf = rf; 1091 rt2x00dev->chip.rev = rev; 1092 1093 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1094 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1095 rt2x00dev->chip.rev); 1096 } 1097 1098 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1099 const u16 rt, const u16 rev) 1100 { 1101 rt2x00dev->chip.rt = rt; 1102 rt2x00dev->chip.rev = rev; 1103 1104 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1105 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1106 } 1107 1108 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1109 { 1110 rt2x00dev->chip.rf = rf; 1111 1112 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1113 rt2x00dev->chip.rf); 1114 } 1115 1116 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1117 { 1118 return (rt2x00dev->chip.rt == rt); 1119 } 1120 1121 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1122 { 1123 return (rt2x00dev->chip.rf == rf); 1124 } 1125 1126 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1127 { 1128 return rt2x00dev->chip.rev; 1129 } 1130 1131 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1132 const u16 rt, const u16 rev) 1133 { 1134 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1135 } 1136 1137 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1138 const u16 rt, const u16 rev) 1139 { 1140 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1141 } 1142 1143 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1144 const u16 rt, const u16 rev) 1145 { 1146 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1147 } 1148 1149 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1150 enum rt2x00_chip_intf intf) 1151 { 1152 rt2x00dev->chip.intf = intf; 1153 } 1154 1155 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1156 enum rt2x00_chip_intf intf) 1157 { 1158 return (rt2x00dev->chip.intf == intf); 1159 } 1160 1161 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1162 { 1163 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1164 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1165 } 1166 1167 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1168 { 1169 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1170 } 1171 1172 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1173 { 1174 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1175 } 1176 1177 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1178 { 1179 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1180 } 1181 1182 /* Helpers for capability flags */ 1183 1184 static inline bool 1185 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1186 enum rt2x00_capability_flags cap_flag) 1187 { 1188 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1189 } 1190 1191 static inline bool 1192 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1193 { 1194 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1195 } 1196 1197 static inline bool 1198 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1199 { 1200 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1201 } 1202 1203 static inline bool 1204 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1205 { 1206 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1207 } 1208 1209 static inline bool 1210 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1211 { 1212 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1213 } 1214 1215 static inline bool 1216 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1217 { 1218 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1219 } 1220 1221 static inline bool 1222 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1223 { 1224 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1225 } 1226 1227 static inline bool 1228 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1229 { 1230 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1231 } 1232 1233 static inline bool 1234 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1235 { 1236 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1237 } 1238 1239 static inline bool 1240 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1241 { 1242 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1243 } 1244 1245 static inline bool 1246 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1247 { 1248 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1249 } 1250 1251 static inline bool 1252 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1253 { 1254 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1255 } 1256 1257 static inline bool 1258 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1259 { 1260 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1261 } 1262 1263 static inline bool 1264 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1265 { 1266 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1267 } 1268 1269 /** 1270 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1271 * @entry: Pointer to &struct queue_entry 1272 * 1273 * Returns -ENOMEM if mapping fail, 0 otherwise. 1274 */ 1275 int rt2x00queue_map_txskb(struct queue_entry *entry); 1276 1277 /** 1278 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1279 * @entry: Pointer to &struct queue_entry 1280 */ 1281 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1282 1283 /** 1284 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1285 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1286 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1287 * 1288 * Returns NULL for non tx queues. 1289 */ 1290 static inline struct data_queue * 1291 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1292 const enum data_queue_qid queue) 1293 { 1294 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1295 return &rt2x00dev->tx[queue]; 1296 1297 if (queue == QID_ATIM) 1298 return rt2x00dev->atim; 1299 1300 return NULL; 1301 } 1302 1303 /** 1304 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1305 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1306 * @index: Index identifier for obtaining the correct index. 1307 */ 1308 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1309 enum queue_index index); 1310 1311 /** 1312 * rt2x00queue_pause_queue - Pause a data queue 1313 * @queue: Pointer to &struct data_queue. 1314 * 1315 * This function will pause the data queue locally, preventing 1316 * new frames to be added to the queue (while the hardware is 1317 * still allowed to run). 1318 */ 1319 void rt2x00queue_pause_queue(struct data_queue *queue); 1320 1321 /** 1322 * rt2x00queue_unpause_queue - unpause a data queue 1323 * @queue: Pointer to &struct data_queue. 1324 * 1325 * This function will unpause the data queue locally, allowing 1326 * new frames to be added to the queue again. 1327 */ 1328 void rt2x00queue_unpause_queue(struct data_queue *queue); 1329 1330 /** 1331 * rt2x00queue_start_queue - Start a data queue 1332 * @queue: Pointer to &struct data_queue. 1333 * 1334 * This function will start handling all pending frames in the queue. 1335 */ 1336 void rt2x00queue_start_queue(struct data_queue *queue); 1337 1338 /** 1339 * rt2x00queue_stop_queue - Halt a data queue 1340 * @queue: Pointer to &struct data_queue. 1341 * 1342 * This function will stop all pending frames in the queue. 1343 */ 1344 void rt2x00queue_stop_queue(struct data_queue *queue); 1345 1346 /** 1347 * rt2x00queue_flush_queue - Flush a data queue 1348 * @queue: Pointer to &struct data_queue. 1349 * @drop: True to drop all pending frames. 1350 * 1351 * This function will flush the queue. After this call 1352 * the queue is guaranteed to be empty. 1353 */ 1354 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1355 1356 /** 1357 * rt2x00queue_start_queues - Start all data queues 1358 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1359 * 1360 * This function will loop through all available queues to start them 1361 */ 1362 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1363 1364 /** 1365 * rt2x00queue_stop_queues - Halt all data queues 1366 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1367 * 1368 * This function will loop through all available queues to stop 1369 * any pending frames. 1370 */ 1371 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1372 1373 /** 1374 * rt2x00queue_flush_queues - Flush all data queues 1375 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1376 * @drop: True to drop all pending frames. 1377 * 1378 * This function will loop through all available queues to flush 1379 * any pending frames. 1380 */ 1381 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1382 1383 /* 1384 * Debugfs handlers. 1385 */ 1386 /** 1387 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1388 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1389 * @type: The type of frame that is being dumped. 1390 * @entry: The queue entry containing the frame to be dumped. 1391 */ 1392 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1393 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1394 enum rt2x00_dump_type type, struct queue_entry *entry); 1395 #else 1396 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1397 enum rt2x00_dump_type type, 1398 struct queue_entry *entry) 1399 { 1400 } 1401 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1402 1403 /* 1404 * Utility functions. 1405 */ 1406 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1407 struct ieee80211_vif *vif); 1408 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1409 1410 /* 1411 * Interrupt context handlers. 1412 */ 1413 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1414 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1415 void rt2x00lib_dmastart(struct queue_entry *entry); 1416 void rt2x00lib_dmadone(struct queue_entry *entry); 1417 void rt2x00lib_txdone(struct queue_entry *entry, 1418 struct txdone_entry_desc *txdesc); 1419 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 1420 struct txdone_entry_desc *txdesc); 1421 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1422 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1423 1424 /* 1425 * mac80211 handlers. 1426 */ 1427 void rt2x00mac_tx(struct ieee80211_hw *hw, 1428 struct ieee80211_tx_control *control, 1429 struct sk_buff *skb); 1430 int rt2x00mac_start(struct ieee80211_hw *hw); 1431 void rt2x00mac_stop(struct ieee80211_hw *hw); 1432 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1433 struct ieee80211_vif *vif); 1434 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1435 struct ieee80211_vif *vif); 1436 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1437 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1438 unsigned int changed_flags, 1439 unsigned int *total_flags, 1440 u64 multicast); 1441 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1442 bool set); 1443 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1444 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1445 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1446 struct ieee80211_key_conf *key); 1447 #else 1448 #define rt2x00mac_set_key NULL 1449 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1450 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1451 struct ieee80211_vif *vif, 1452 const u8 *mac_addr); 1453 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1454 struct ieee80211_vif *vif); 1455 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1456 struct ieee80211_low_level_stats *stats); 1457 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1458 struct ieee80211_vif *vif, 1459 struct ieee80211_bss_conf *bss_conf, 1460 u32 changes); 1461 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1462 struct ieee80211_vif *vif, u16 queue, 1463 const struct ieee80211_tx_queue_params *params); 1464 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1465 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1466 u32 queues, bool drop); 1467 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1468 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1469 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1470 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1471 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1472 1473 /* 1474 * Driver allocation handlers. 1475 */ 1476 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1477 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1478 #ifdef CONFIG_PM 1479 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1480 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1481 #endif /* CONFIG_PM */ 1482 1483 #endif /* RT2X00_H */ 1484