1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 /* 22 Module: rt2x00 23 Abstract: rt2x00 global information. 24 */ 25 26 #ifndef RT2X00_H 27 #define RT2X00_H 28 29 #include <linux/bitops.h> 30 #include <linux/interrupt.h> 31 #include <linux/skbuff.h> 32 #include <linux/workqueue.h> 33 #include <linux/firmware.h> 34 #include <linux/leds.h> 35 #include <linux/mutex.h> 36 #include <linux/etherdevice.h> 37 #include <linux/input-polldev.h> 38 #include <linux/kfifo.h> 39 #include <linux/hrtimer.h> 40 #include <linux/average.h> 41 42 #include <net/mac80211.h> 43 44 #include "rt2x00debug.h" 45 #include "rt2x00dump.h" 46 #include "rt2x00leds.h" 47 #include "rt2x00reg.h" 48 #include "rt2x00queue.h" 49 50 /* 51 * Module information. 52 */ 53 #define DRV_VERSION "2.3.0" 54 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 55 56 /* Debug definitions. 57 * Debug output has to be enabled during compile time. 58 */ 59 #ifdef CONFIG_RT2X00_DEBUG 60 #define DEBUG 61 #endif /* CONFIG_RT2X00_DEBUG */ 62 63 /* Utility printing macros 64 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 65 */ 66 #define rt2x00_probe_err(fmt, ...) \ 67 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 68 __func__, ##__VA_ARGS__) 69 #define rt2x00_err(dev, fmt, ...) \ 70 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \ 71 __func__, ##__VA_ARGS__) 72 #define rt2x00_warn(dev, fmt, ...) \ 73 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \ 74 __func__, ##__VA_ARGS__) 75 #define rt2x00_info(dev, fmt, ...) \ 76 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 77 __func__, ##__VA_ARGS__) 78 79 /* Various debug levels */ 80 #define rt2x00_dbg(dev, fmt, ...) \ 81 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 82 __func__, ##__VA_ARGS__) 83 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 84 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 85 __func__, ##__VA_ARGS__) 86 87 /* 88 * Duration calculations 89 * The rate variable passed is: 100kbs. 90 * To convert from bytes to bits we multiply size with 8, 91 * then the size is multiplied with 10 to make the 92 * real rate -> rate argument correction. 93 */ 94 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 95 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 96 97 /* 98 * Determine the number of L2 padding bytes required between the header and 99 * the payload. 100 */ 101 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 102 103 /* 104 * Determine the alignment requirement, 105 * to make sure the 802.11 payload is padded to a 4-byte boundrary 106 * we must determine the address of the payload and calculate the 107 * amount of bytes needed to move the data. 108 */ 109 #define ALIGN_SIZE(__skb, __header) \ 110 ( ((unsigned long)((__skb)->data + (__header))) & 3 ) 111 112 /* 113 * Constants for extra TX headroom for alignment purposes. 114 */ 115 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 116 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 117 118 /* 119 * Standard timing and size defines. 120 * These values should follow the ieee80211 specifications. 121 */ 122 #define ACK_SIZE 14 123 #define IEEE80211_HEADER 24 124 #define PLCP 48 125 #define BEACON 100 126 #define PREAMBLE 144 127 #define SHORT_PREAMBLE 72 128 #define SLOT_TIME 20 129 #define SHORT_SLOT_TIME 9 130 #define SIFS 10 131 #define PIFS ( SIFS + SLOT_TIME ) 132 #define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME ) 133 #define DIFS ( PIFS + SLOT_TIME ) 134 #define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME ) 135 #define EIFS ( SIFS + DIFS + \ 136 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) ) 137 #define SHORT_EIFS ( SIFS + SHORT_DIFS + \ 138 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) ) 139 140 enum rt2x00_chip_intf { 141 RT2X00_CHIP_INTF_PCI, 142 RT2X00_CHIP_INTF_PCIE, 143 RT2X00_CHIP_INTF_USB, 144 RT2X00_CHIP_INTF_SOC, 145 }; 146 147 /* 148 * Chipset identification 149 * The chipset on the device is composed of a RT and RF chip. 150 * The chipset combination is important for determining device capabilities. 151 */ 152 struct rt2x00_chip { 153 u16 rt; 154 #define RT2460 0x2460 155 #define RT2560 0x2560 156 #define RT2570 0x2570 157 #define RT2661 0x2661 158 #define RT2573 0x2573 159 #define RT2860 0x2860 /* 2.4GHz */ 160 #define RT2872 0x2872 /* WSOC */ 161 #define RT2883 0x2883 /* WSOC */ 162 #define RT3070 0x3070 163 #define RT3071 0x3071 164 #define RT3090 0x3090 /* 2.4GHz PCIe */ 165 #define RT3290 0x3290 166 #define RT3352 0x3352 /* WSOC */ 167 #define RT3390 0x3390 168 #define RT3572 0x3572 169 #define RT3593 0x3593 170 #define RT3883 0x3883 /* WSOC */ 171 #define RT5390 0x5390 /* 2.4GHz */ 172 #define RT5392 0x5392 /* 2.4GHz */ 173 #define RT5592 0x5592 174 175 u16 rf; 176 u16 rev; 177 178 enum rt2x00_chip_intf intf; 179 }; 180 181 /* 182 * RF register values that belong to a particular channel. 183 */ 184 struct rf_channel { 185 int channel; 186 u32 rf1; 187 u32 rf2; 188 u32 rf3; 189 u32 rf4; 190 }; 191 192 /* 193 * Channel information structure 194 */ 195 struct channel_info { 196 unsigned int flags; 197 #define GEOGRAPHY_ALLOWED 0x00000001 198 199 short max_power; 200 short default_power1; 201 short default_power2; 202 short default_power3; 203 }; 204 205 /* 206 * Antenna setup values. 207 */ 208 struct antenna_setup { 209 enum antenna rx; 210 enum antenna tx; 211 u8 rx_chain_num; 212 u8 tx_chain_num; 213 }; 214 215 /* 216 * Quality statistics about the currently active link. 217 */ 218 struct link_qual { 219 /* 220 * Statistics required for Link tuning by driver 221 * The rssi value is provided by rt2x00lib during the 222 * link_tuner() callback function. 223 * The false_cca field is filled during the link_stats() 224 * callback function and could be used during the 225 * link_tuner() callback function. 226 */ 227 int rssi; 228 int false_cca; 229 230 /* 231 * VGC levels 232 * Hardware driver will tune the VGC level during each call 233 * to the link_tuner() callback function. This vgc_level is 234 * is determined based on the link quality statistics like 235 * average RSSI and the false CCA count. 236 * 237 * In some cases the drivers need to differentiate between 238 * the currently "desired" VGC level and the level configured 239 * in the hardware. The latter is important to reduce the 240 * number of BBP register reads to reduce register access 241 * overhead. For this reason we store both values here. 242 */ 243 u8 vgc_level; 244 u8 vgc_level_reg; 245 246 /* 247 * Statistics required for Signal quality calculation. 248 * These fields might be changed during the link_stats() 249 * callback function. 250 */ 251 int rx_success; 252 int rx_failed; 253 int tx_success; 254 int tx_failed; 255 }; 256 257 DECLARE_EWMA(rssi, 1024, 8) 258 259 /* 260 * Antenna settings about the currently active link. 261 */ 262 struct link_ant { 263 /* 264 * Antenna flags 265 */ 266 unsigned int flags; 267 #define ANTENNA_RX_DIVERSITY 0x00000001 268 #define ANTENNA_TX_DIVERSITY 0x00000002 269 #define ANTENNA_MODE_SAMPLE 0x00000004 270 271 /* 272 * Currently active TX/RX antenna setup. 273 * When software diversity is used, this will indicate 274 * which antenna is actually used at this time. 275 */ 276 struct antenna_setup active; 277 278 /* 279 * RSSI history information for the antenna. 280 * Used to determine when to switch antenna 281 * when using software diversity. 282 */ 283 int rssi_history; 284 285 /* 286 * Current RSSI average of the currently active antenna. 287 * Similar to the avg_rssi in the link_qual structure 288 * this value is updated by using the walking average. 289 */ 290 struct ewma_rssi rssi_ant; 291 }; 292 293 /* 294 * To optimize the quality of the link we need to store 295 * the quality of received frames and periodically 296 * optimize the link. 297 */ 298 struct link { 299 /* 300 * Link tuner counter 301 * The number of times the link has been tuned 302 * since the radio has been switched on. 303 */ 304 u32 count; 305 306 /* 307 * Quality measurement values. 308 */ 309 struct link_qual qual; 310 311 /* 312 * TX/RX antenna setup. 313 */ 314 struct link_ant ant; 315 316 /* 317 * Currently active average RSSI value 318 */ 319 struct ewma_rssi avg_rssi; 320 321 /* 322 * Work structure for scheduling periodic link tuning. 323 */ 324 struct delayed_work work; 325 326 /* 327 * Work structure for scheduling periodic watchdog monitoring. 328 * This work must be scheduled on the kernel workqueue, while 329 * all other work structures must be queued on the mac80211 330 * workqueue. This guarantees that the watchdog can schedule 331 * other work structures and wait for their completion in order 332 * to bring the device/driver back into the desired state. 333 */ 334 struct delayed_work watchdog_work; 335 336 /* 337 * Work structure for scheduling periodic AGC adjustments. 338 */ 339 struct delayed_work agc_work; 340 341 /* 342 * Work structure for scheduling periodic VCO calibration. 343 */ 344 struct delayed_work vco_work; 345 }; 346 347 enum rt2x00_delayed_flags { 348 DELAYED_UPDATE_BEACON, 349 }; 350 351 /* 352 * Interface structure 353 * Per interface configuration details, this structure 354 * is allocated as the private data for ieee80211_vif. 355 */ 356 struct rt2x00_intf { 357 /* 358 * beacon->skb must be protected with the mutex. 359 */ 360 struct mutex beacon_skb_mutex; 361 362 /* 363 * Entry in the beacon queue which belongs to 364 * this interface. Each interface has its own 365 * dedicated beacon entry. 366 */ 367 struct queue_entry *beacon; 368 bool enable_beacon; 369 370 /* 371 * Actions that needed rescheduling. 372 */ 373 unsigned long delayed_flags; 374 375 /* 376 * Software sequence counter, this is only required 377 * for hardware which doesn't support hardware 378 * sequence counting. 379 */ 380 atomic_t seqno; 381 }; 382 383 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 384 { 385 return (struct rt2x00_intf *)vif->drv_priv; 386 } 387 388 /** 389 * struct hw_mode_spec: Hardware specifications structure 390 * 391 * Details about the supported modes, rates and channels 392 * of a particular chipset. This is used by rt2x00lib 393 * to build the ieee80211_hw_mode array for mac80211. 394 * 395 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 396 * @supported_rates: Rate types which are supported (CCK, OFDM). 397 * @num_channels: Number of supported channels. This is used as array size 398 * for @tx_power_a, @tx_power_bg and @channels. 399 * @channels: Device/chipset specific channel values (See &struct rf_channel). 400 * @channels_info: Additional information for channels (See &struct channel_info). 401 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 402 */ 403 struct hw_mode_spec { 404 unsigned int supported_bands; 405 #define SUPPORT_BAND_2GHZ 0x00000001 406 #define SUPPORT_BAND_5GHZ 0x00000002 407 408 unsigned int supported_rates; 409 #define SUPPORT_RATE_CCK 0x00000001 410 #define SUPPORT_RATE_OFDM 0x00000002 411 412 unsigned int num_channels; 413 const struct rf_channel *channels; 414 const struct channel_info *channels_info; 415 416 struct ieee80211_sta_ht_cap ht; 417 }; 418 419 /* 420 * Configuration structure wrapper around the 421 * mac80211 configuration structure. 422 * When mac80211 configures the driver, rt2x00lib 423 * can precalculate values which are equal for all 424 * rt2x00 drivers. Those values can be stored in here. 425 */ 426 struct rt2x00lib_conf { 427 struct ieee80211_conf *conf; 428 429 struct rf_channel rf; 430 struct channel_info channel; 431 }; 432 433 /* 434 * Configuration structure for erp settings. 435 */ 436 struct rt2x00lib_erp { 437 int short_preamble; 438 int cts_protection; 439 440 u32 basic_rates; 441 442 int slot_time; 443 444 short sifs; 445 short pifs; 446 short difs; 447 short eifs; 448 449 u16 beacon_int; 450 u16 ht_opmode; 451 }; 452 453 /* 454 * Configuration structure for hardware encryption. 455 */ 456 struct rt2x00lib_crypto { 457 enum cipher cipher; 458 459 enum set_key_cmd cmd; 460 const u8 *address; 461 462 u32 bssidx; 463 464 u8 key[16]; 465 u8 tx_mic[8]; 466 u8 rx_mic[8]; 467 468 int wcid; 469 }; 470 471 /* 472 * Configuration structure wrapper around the 473 * rt2x00 interface configuration handler. 474 */ 475 struct rt2x00intf_conf { 476 /* 477 * Interface type 478 */ 479 enum nl80211_iftype type; 480 481 /* 482 * TSF sync value, this is dependent on the operation type. 483 */ 484 enum tsf_sync sync; 485 486 /* 487 * The MAC and BSSID addresses are simple array of bytes, 488 * these arrays are little endian, so when sending the addresses 489 * to the drivers, copy the it into a endian-signed variable. 490 * 491 * Note that all devices (except rt2500usb) have 32 bits 492 * register word sizes. This means that whatever variable we 493 * pass _must_ be a multiple of 32 bits. Otherwise the device 494 * might not accept what we are sending to it. 495 * This will also make it easier for the driver to write 496 * the data to the device. 497 */ 498 __le32 mac[2]; 499 __le32 bssid[2]; 500 }; 501 502 /* 503 * Private structure for storing STA details 504 * wcid: Wireless Client ID 505 */ 506 struct rt2x00_sta { 507 int wcid; 508 }; 509 510 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 511 { 512 return (struct rt2x00_sta *)sta->drv_priv; 513 } 514 515 /* 516 * rt2x00lib callback functions. 517 */ 518 struct rt2x00lib_ops { 519 /* 520 * Interrupt handlers. 521 */ 522 irq_handler_t irq_handler; 523 524 /* 525 * TX status tasklet handler. 526 */ 527 void (*txstatus_tasklet) (unsigned long data); 528 void (*pretbtt_tasklet) (unsigned long data); 529 void (*tbtt_tasklet) (unsigned long data); 530 void (*rxdone_tasklet) (unsigned long data); 531 void (*autowake_tasklet) (unsigned long data); 532 533 /* 534 * Device init handlers. 535 */ 536 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 537 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 538 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 539 const u8 *data, const size_t len); 540 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 541 const u8 *data, const size_t len); 542 543 /* 544 * Device initialization/deinitialization handlers. 545 */ 546 int (*initialize) (struct rt2x00_dev *rt2x00dev); 547 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 548 549 /* 550 * queue initialization handlers 551 */ 552 bool (*get_entry_state) (struct queue_entry *entry); 553 void (*clear_entry) (struct queue_entry *entry); 554 555 /* 556 * Radio control handlers. 557 */ 558 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 559 enum dev_state state); 560 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 561 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 562 struct link_qual *qual); 563 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 564 struct link_qual *qual); 565 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 566 struct link_qual *qual, const u32 count); 567 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 568 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 569 570 /* 571 * Data queue handlers. 572 */ 573 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 574 void (*start_queue) (struct data_queue *queue); 575 void (*kick_queue) (struct data_queue *queue); 576 void (*stop_queue) (struct data_queue *queue); 577 void (*flush_queue) (struct data_queue *queue, bool drop); 578 void (*tx_dma_done) (struct queue_entry *entry); 579 580 /* 581 * TX control handlers 582 */ 583 void (*write_tx_desc) (struct queue_entry *entry, 584 struct txentry_desc *txdesc); 585 void (*write_tx_data) (struct queue_entry *entry, 586 struct txentry_desc *txdesc); 587 void (*write_beacon) (struct queue_entry *entry, 588 struct txentry_desc *txdesc); 589 void (*clear_beacon) (struct queue_entry *entry); 590 int (*get_tx_data_len) (struct queue_entry *entry); 591 592 /* 593 * RX control handlers 594 */ 595 void (*fill_rxdone) (struct queue_entry *entry, 596 struct rxdone_entry_desc *rxdesc); 597 598 /* 599 * Configuration handlers. 600 */ 601 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 602 struct rt2x00lib_crypto *crypto, 603 struct ieee80211_key_conf *key); 604 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 605 struct rt2x00lib_crypto *crypto, 606 struct ieee80211_key_conf *key); 607 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 608 const unsigned int filter_flags); 609 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 610 struct rt2x00_intf *intf, 611 struct rt2x00intf_conf *conf, 612 const unsigned int flags); 613 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 614 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 615 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 616 617 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 618 struct rt2x00lib_erp *erp, 619 u32 changed); 620 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 621 struct antenna_setup *ant); 622 void (*config) (struct rt2x00_dev *rt2x00dev, 623 struct rt2x00lib_conf *libconf, 624 const unsigned int changed_flags); 625 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 626 struct ieee80211_vif *vif, 627 struct ieee80211_sta *sta); 628 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 629 int wcid); 630 }; 631 632 /* 633 * rt2x00 driver callback operation structure. 634 */ 635 struct rt2x00_ops { 636 const char *name; 637 const unsigned int drv_data_size; 638 const unsigned int max_ap_intf; 639 const unsigned int eeprom_size; 640 const unsigned int rf_size; 641 const unsigned int tx_queues; 642 void (*queue_init)(struct data_queue *queue); 643 const struct rt2x00lib_ops *lib; 644 const void *drv; 645 const struct ieee80211_ops *hw; 646 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 647 const struct rt2x00debug *debugfs; 648 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 649 }; 650 651 /* 652 * rt2x00 state flags 653 */ 654 enum rt2x00_state_flags { 655 /* 656 * Device flags 657 */ 658 DEVICE_STATE_PRESENT, 659 DEVICE_STATE_REGISTERED_HW, 660 DEVICE_STATE_INITIALIZED, 661 DEVICE_STATE_STARTED, 662 DEVICE_STATE_ENABLED_RADIO, 663 DEVICE_STATE_SCANNING, 664 665 /* 666 * Driver configuration 667 */ 668 CONFIG_CHANNEL_HT40, 669 CONFIG_POWERSAVING, 670 CONFIG_HT_DISABLED, 671 CONFIG_QOS_DISABLED, 672 CONFIG_MONITORING, 673 674 /* 675 * Mark we currently are sequentially reading TX_STA_FIFO register 676 * FIXME: this is for only rt2800usb, should go to private data 677 */ 678 TX_STATUS_READING, 679 }; 680 681 /* 682 * rt2x00 capability flags 683 */ 684 enum rt2x00_capability_flags { 685 /* 686 * Requirements 687 */ 688 REQUIRE_FIRMWARE, 689 REQUIRE_BEACON_GUARD, 690 REQUIRE_ATIM_QUEUE, 691 REQUIRE_DMA, 692 REQUIRE_COPY_IV, 693 REQUIRE_L2PAD, 694 REQUIRE_TXSTATUS_FIFO, 695 REQUIRE_TASKLET_CONTEXT, 696 REQUIRE_SW_SEQNO, 697 REQUIRE_HT_TX_DESC, 698 REQUIRE_PS_AUTOWAKE, 699 REQUIRE_DELAYED_RFKILL, 700 701 /* 702 * Capabilities 703 */ 704 CAPABILITY_HW_BUTTON, 705 CAPABILITY_HW_CRYPTO, 706 CAPABILITY_POWER_LIMIT, 707 CAPABILITY_CONTROL_FILTERS, 708 CAPABILITY_CONTROL_FILTER_PSPOLL, 709 CAPABILITY_PRE_TBTT_INTERRUPT, 710 CAPABILITY_LINK_TUNING, 711 CAPABILITY_FRAME_TYPE, 712 CAPABILITY_RF_SEQUENCE, 713 CAPABILITY_EXTERNAL_LNA_A, 714 CAPABILITY_EXTERNAL_LNA_BG, 715 CAPABILITY_DOUBLE_ANTENNA, 716 CAPABILITY_BT_COEXIST, 717 CAPABILITY_VCO_RECALIBRATION, 718 }; 719 720 /* 721 * Interface combinations 722 */ 723 enum { 724 IF_COMB_AP = 0, 725 NUM_IF_COMB, 726 }; 727 728 /* 729 * rt2x00 device structure. 730 */ 731 struct rt2x00_dev { 732 /* 733 * Device structure. 734 * The structure stored in here depends on the 735 * system bus (PCI or USB). 736 * When accessing this variable, the rt2x00dev_{pci,usb} 737 * macros should be used for correct typecasting. 738 */ 739 struct device *dev; 740 741 /* 742 * Callback functions. 743 */ 744 const struct rt2x00_ops *ops; 745 746 /* 747 * Driver data. 748 */ 749 void *drv_data; 750 751 /* 752 * IEEE80211 control structure. 753 */ 754 struct ieee80211_hw *hw; 755 struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS]; 756 enum ieee80211_band curr_band; 757 int curr_freq; 758 759 /* 760 * If enabled, the debugfs interface structures 761 * required for deregistration of debugfs. 762 */ 763 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 764 struct rt2x00debug_intf *debugfs_intf; 765 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 766 767 /* 768 * LED structure for changing the LED status 769 * by mac8011 or the kernel. 770 */ 771 #ifdef CONFIG_RT2X00_LIB_LEDS 772 struct rt2x00_led led_radio; 773 struct rt2x00_led led_assoc; 774 struct rt2x00_led led_qual; 775 u16 led_mcu_reg; 776 #endif /* CONFIG_RT2X00_LIB_LEDS */ 777 778 /* 779 * Device state flags. 780 * In these flags the current status is stored. 781 * Access to these flags should occur atomically. 782 */ 783 unsigned long flags; 784 785 /* 786 * Device capabiltiy flags. 787 * In these flags the device/driver capabilities are stored. 788 * Access to these flags should occur non-atomically. 789 */ 790 unsigned long cap_flags; 791 792 /* 793 * Device information, Bus IRQ and name (PCI, SoC) 794 */ 795 int irq; 796 const char *name; 797 798 /* 799 * Chipset identification. 800 */ 801 struct rt2x00_chip chip; 802 803 /* 804 * hw capability specifications. 805 */ 806 struct hw_mode_spec spec; 807 808 /* 809 * This is the default TX/RX antenna setup as indicated 810 * by the device's EEPROM. 811 */ 812 struct antenna_setup default_ant; 813 814 /* 815 * Register pointers 816 * csr.base: CSR base register address. (PCI) 817 * csr.cache: CSR cache for usb_control_msg. (USB) 818 */ 819 union csr { 820 void __iomem *base; 821 void *cache; 822 } csr; 823 824 /* 825 * Mutex to protect register accesses. 826 * For PCI and USB devices it protects against concurrent indirect 827 * register access (BBP, RF, MCU) since accessing those 828 * registers require multiple calls to the CSR registers. 829 * For USB devices it also protects the csr_cache since that 830 * field is used for normal CSR access and it cannot support 831 * multiple callers simultaneously. 832 */ 833 struct mutex csr_mutex; 834 835 /* 836 * Current packet filter configuration for the device. 837 * This contains all currently active FIF_* flags send 838 * to us by mac80211 during configure_filter(). 839 */ 840 unsigned int packet_filter; 841 842 /* 843 * Interface details: 844 * - Open ap interface count. 845 * - Open sta interface count. 846 * - Association count. 847 * - Beaconing enabled count. 848 */ 849 unsigned int intf_ap_count; 850 unsigned int intf_sta_count; 851 unsigned int intf_associated; 852 unsigned int intf_beaconing; 853 854 /* 855 * Interface combinations 856 */ 857 struct ieee80211_iface_limit if_limits_ap; 858 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 859 860 /* 861 * Link quality 862 */ 863 struct link link; 864 865 /* 866 * EEPROM data. 867 */ 868 __le16 *eeprom; 869 870 /* 871 * Active RF register values. 872 * These are stored here so we don't need 873 * to read the rf registers and can directly 874 * use this value instead. 875 * This field should be accessed by using 876 * rt2x00_rf_read() and rt2x00_rf_write(). 877 */ 878 u32 *rf; 879 880 /* 881 * LNA gain 882 */ 883 short lna_gain; 884 885 /* 886 * Current TX power value. 887 */ 888 u16 tx_power; 889 890 /* 891 * Current retry values. 892 */ 893 u8 short_retry; 894 u8 long_retry; 895 896 /* 897 * Rssi <-> Dbm offset 898 */ 899 u8 rssi_offset; 900 901 /* 902 * Frequency offset. 903 */ 904 u8 freq_offset; 905 906 /* 907 * Association id. 908 */ 909 u16 aid; 910 911 /* 912 * Beacon interval. 913 */ 914 u16 beacon_int; 915 916 /** 917 * Timestamp of last received beacon 918 */ 919 unsigned long last_beacon; 920 921 /* 922 * Low level statistics which will have 923 * to be kept up to date while device is running. 924 */ 925 struct ieee80211_low_level_stats low_level_stats; 926 927 /** 928 * Work queue for all work which should not be placed 929 * on the mac80211 workqueue (because of dependencies 930 * between various work structures). 931 */ 932 struct workqueue_struct *workqueue; 933 934 /* 935 * Scheduled work. 936 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 937 * which means it cannot be placed on the hw->workqueue 938 * due to RTNL locking requirements. 939 */ 940 struct work_struct intf_work; 941 942 /** 943 * Scheduled work for TX/RX done handling (USB devices) 944 */ 945 struct work_struct rxdone_work; 946 struct work_struct txdone_work; 947 948 /* 949 * Powersaving work 950 */ 951 struct delayed_work autowakeup_work; 952 struct work_struct sleep_work; 953 954 /* 955 * Data queue arrays for RX, TX, Beacon and ATIM. 956 */ 957 unsigned int data_queues; 958 struct data_queue *rx; 959 struct data_queue *tx; 960 struct data_queue *bcn; 961 struct data_queue *atim; 962 963 /* 964 * Firmware image. 965 */ 966 const struct firmware *fw; 967 968 /* 969 * FIFO for storing tx status reports between isr and tasklet. 970 */ 971 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 972 973 /* 974 * Timer to ensure tx status reports are read (rt2800usb). 975 */ 976 struct hrtimer txstatus_timer; 977 978 /* 979 * Tasklet for processing tx status reports (rt2800pci). 980 */ 981 struct tasklet_struct txstatus_tasklet; 982 struct tasklet_struct pretbtt_tasklet; 983 struct tasklet_struct tbtt_tasklet; 984 struct tasklet_struct rxdone_tasklet; 985 struct tasklet_struct autowake_tasklet; 986 987 /* 988 * Used for VCO periodic calibration. 989 */ 990 int rf_channel; 991 992 /* 993 * Protect the interrupt mask register. 994 */ 995 spinlock_t irqmask_lock; 996 997 /* 998 * List of BlockAckReq TX entries that need driver BlockAck processing. 999 */ 1000 struct list_head bar_list; 1001 spinlock_t bar_list_lock; 1002 1003 /* Extra TX headroom required for alignment purposes. */ 1004 unsigned int extra_tx_headroom; 1005 }; 1006 1007 struct rt2x00_bar_list_entry { 1008 struct list_head list; 1009 struct rcu_head head; 1010 1011 struct queue_entry *entry; 1012 int block_acked; 1013 1014 /* Relevant parts of the IEEE80211 BAR header */ 1015 __u8 ra[6]; 1016 __u8 ta[6]; 1017 __le16 control; 1018 __le16 start_seq_num; 1019 }; 1020 1021 /* 1022 * Register defines. 1023 * Some registers require multiple attempts before success, 1024 * in those cases REGISTER_BUSY_COUNT attempts should be 1025 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1026 * bus delays, we do not have to loop so many times to wait 1027 * for valid register value on that bus. 1028 */ 1029 #define REGISTER_BUSY_COUNT 100 1030 #define REGISTER_USB_BUSY_COUNT 20 1031 #define REGISTER_BUSY_DELAY 100 1032 1033 /* 1034 * Generic RF access. 1035 * The RF is being accessed by word index. 1036 */ 1037 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1038 const unsigned int word, u32 *data) 1039 { 1040 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1041 *data = rt2x00dev->rf[word - 1]; 1042 } 1043 1044 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1045 const unsigned int word, u32 data) 1046 { 1047 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1048 rt2x00dev->rf[word - 1] = data; 1049 } 1050 1051 /* 1052 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1053 */ 1054 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1055 const unsigned int word) 1056 { 1057 return (void *)&rt2x00dev->eeprom[word]; 1058 } 1059 1060 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1061 const unsigned int word, u16 *data) 1062 { 1063 *data = le16_to_cpu(rt2x00dev->eeprom[word]); 1064 } 1065 1066 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1067 const unsigned int word, u16 data) 1068 { 1069 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1070 } 1071 1072 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1073 const unsigned int byte) 1074 { 1075 return *(((u8 *)rt2x00dev->eeprom) + byte); 1076 } 1077 1078 /* 1079 * Chipset handlers 1080 */ 1081 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1082 const u16 rt, const u16 rf, const u16 rev) 1083 { 1084 rt2x00dev->chip.rt = rt; 1085 rt2x00dev->chip.rf = rf; 1086 rt2x00dev->chip.rev = rev; 1087 1088 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1089 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1090 rt2x00dev->chip.rev); 1091 } 1092 1093 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1094 const u16 rt, const u16 rev) 1095 { 1096 rt2x00dev->chip.rt = rt; 1097 rt2x00dev->chip.rev = rev; 1098 1099 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1100 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1101 } 1102 1103 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1104 { 1105 rt2x00dev->chip.rf = rf; 1106 1107 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1108 rt2x00dev->chip.rf); 1109 } 1110 1111 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1112 { 1113 return (rt2x00dev->chip.rt == rt); 1114 } 1115 1116 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1117 { 1118 return (rt2x00dev->chip.rf == rf); 1119 } 1120 1121 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1122 { 1123 return rt2x00dev->chip.rev; 1124 } 1125 1126 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1127 const u16 rt, const u16 rev) 1128 { 1129 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1130 } 1131 1132 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1133 const u16 rt, const u16 rev) 1134 { 1135 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1136 } 1137 1138 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1139 const u16 rt, const u16 rev) 1140 { 1141 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1142 } 1143 1144 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1145 enum rt2x00_chip_intf intf) 1146 { 1147 rt2x00dev->chip.intf = intf; 1148 } 1149 1150 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1151 enum rt2x00_chip_intf intf) 1152 { 1153 return (rt2x00dev->chip.intf == intf); 1154 } 1155 1156 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1157 { 1158 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1159 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1160 } 1161 1162 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1163 { 1164 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1165 } 1166 1167 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1168 { 1169 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1170 } 1171 1172 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1173 { 1174 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1175 } 1176 1177 /* Helpers for capability flags */ 1178 1179 static inline bool 1180 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1181 enum rt2x00_capability_flags cap_flag) 1182 { 1183 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1184 } 1185 1186 static inline bool 1187 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1188 { 1189 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1190 } 1191 1192 static inline bool 1193 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1194 { 1195 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1196 } 1197 1198 static inline bool 1199 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1200 { 1201 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1202 } 1203 1204 static inline bool 1205 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1206 { 1207 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1208 } 1209 1210 static inline bool 1211 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1212 { 1213 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1214 } 1215 1216 static inline bool 1217 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1218 { 1219 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1220 } 1221 1222 static inline bool 1223 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1224 { 1225 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1226 } 1227 1228 static inline bool 1229 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1230 { 1231 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1232 } 1233 1234 static inline bool 1235 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1236 { 1237 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1238 } 1239 1240 static inline bool 1241 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1242 { 1243 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1244 } 1245 1246 static inline bool 1247 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1248 { 1249 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1250 } 1251 1252 static inline bool 1253 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1254 { 1255 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1256 } 1257 1258 static inline bool 1259 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1260 { 1261 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1262 } 1263 1264 /** 1265 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1266 * @entry: Pointer to &struct queue_entry 1267 * 1268 * Returns -ENOMEM if mapping fail, 0 otherwise. 1269 */ 1270 int rt2x00queue_map_txskb(struct queue_entry *entry); 1271 1272 /** 1273 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1274 * @entry: Pointer to &struct queue_entry 1275 */ 1276 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1277 1278 /** 1279 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1280 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1281 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1282 * 1283 * Returns NULL for non tx queues. 1284 */ 1285 static inline struct data_queue * 1286 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1287 const enum data_queue_qid queue) 1288 { 1289 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1290 return &rt2x00dev->tx[queue]; 1291 1292 if (queue == QID_ATIM) 1293 return rt2x00dev->atim; 1294 1295 return NULL; 1296 } 1297 1298 /** 1299 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1300 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1301 * @index: Index identifier for obtaining the correct index. 1302 */ 1303 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1304 enum queue_index index); 1305 1306 /** 1307 * rt2x00queue_pause_queue - Pause a data queue 1308 * @queue: Pointer to &struct data_queue. 1309 * 1310 * This function will pause the data queue locally, preventing 1311 * new frames to be added to the queue (while the hardware is 1312 * still allowed to run). 1313 */ 1314 void rt2x00queue_pause_queue(struct data_queue *queue); 1315 1316 /** 1317 * rt2x00queue_unpause_queue - unpause a data queue 1318 * @queue: Pointer to &struct data_queue. 1319 * 1320 * This function will unpause the data queue locally, allowing 1321 * new frames to be added to the queue again. 1322 */ 1323 void rt2x00queue_unpause_queue(struct data_queue *queue); 1324 1325 /** 1326 * rt2x00queue_start_queue - Start a data queue 1327 * @queue: Pointer to &struct data_queue. 1328 * 1329 * This function will start handling all pending frames in the queue. 1330 */ 1331 void rt2x00queue_start_queue(struct data_queue *queue); 1332 1333 /** 1334 * rt2x00queue_stop_queue - Halt a data queue 1335 * @queue: Pointer to &struct data_queue. 1336 * 1337 * This function will stop all pending frames in the queue. 1338 */ 1339 void rt2x00queue_stop_queue(struct data_queue *queue); 1340 1341 /** 1342 * rt2x00queue_flush_queue - Flush a data queue 1343 * @queue: Pointer to &struct data_queue. 1344 * @drop: True to drop all pending frames. 1345 * 1346 * This function will flush the queue. After this call 1347 * the queue is guaranteed to be empty. 1348 */ 1349 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1350 1351 /** 1352 * rt2x00queue_start_queues - Start all data queues 1353 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1354 * 1355 * This function will loop through all available queues to start them 1356 */ 1357 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1358 1359 /** 1360 * rt2x00queue_stop_queues - Halt all data queues 1361 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1362 * 1363 * This function will loop through all available queues to stop 1364 * any pending frames. 1365 */ 1366 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1367 1368 /** 1369 * rt2x00queue_flush_queues - Flush all data queues 1370 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1371 * @drop: True to drop all pending frames. 1372 * 1373 * This function will loop through all available queues to flush 1374 * any pending frames. 1375 */ 1376 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1377 1378 /* 1379 * Debugfs handlers. 1380 */ 1381 /** 1382 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1383 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1384 * @type: The type of frame that is being dumped. 1385 * @skb: The skb containing the frame to be dumped. 1386 */ 1387 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1388 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1389 enum rt2x00_dump_type type, struct sk_buff *skb); 1390 #else 1391 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1392 enum rt2x00_dump_type type, 1393 struct sk_buff *skb) 1394 { 1395 } 1396 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1397 1398 /* 1399 * Utility functions. 1400 */ 1401 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1402 struct ieee80211_vif *vif); 1403 1404 /* 1405 * Interrupt context handlers. 1406 */ 1407 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1408 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1409 void rt2x00lib_dmastart(struct queue_entry *entry); 1410 void rt2x00lib_dmadone(struct queue_entry *entry); 1411 void rt2x00lib_txdone(struct queue_entry *entry, 1412 struct txdone_entry_desc *txdesc); 1413 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1414 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1415 1416 /* 1417 * mac80211 handlers. 1418 */ 1419 void rt2x00mac_tx(struct ieee80211_hw *hw, 1420 struct ieee80211_tx_control *control, 1421 struct sk_buff *skb); 1422 int rt2x00mac_start(struct ieee80211_hw *hw); 1423 void rt2x00mac_stop(struct ieee80211_hw *hw); 1424 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1425 struct ieee80211_vif *vif); 1426 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1427 struct ieee80211_vif *vif); 1428 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1429 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1430 unsigned int changed_flags, 1431 unsigned int *total_flags, 1432 u64 multicast); 1433 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1434 bool set); 1435 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1436 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1437 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1438 struct ieee80211_key_conf *key); 1439 #else 1440 #define rt2x00mac_set_key NULL 1441 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1442 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1443 struct ieee80211_sta *sta); 1444 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1445 struct ieee80211_sta *sta); 1446 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1447 struct ieee80211_vif *vif, 1448 const u8 *mac_addr); 1449 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1450 struct ieee80211_vif *vif); 1451 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1452 struct ieee80211_low_level_stats *stats); 1453 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1454 struct ieee80211_vif *vif, 1455 struct ieee80211_bss_conf *bss_conf, 1456 u32 changes); 1457 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1458 struct ieee80211_vif *vif, u16 queue, 1459 const struct ieee80211_tx_queue_params *params); 1460 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1461 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1462 u32 queues, bool drop); 1463 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1464 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1465 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1466 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1467 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1468 1469 /* 1470 * Driver allocation handlers. 1471 */ 1472 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1473 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1474 #ifdef CONFIG_PM 1475 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1476 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1477 #endif /* CONFIG_PM */ 1478 1479 #endif /* RT2X00_H */ 1480