1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 /* 22 Module: rt2x00 23 Abstract: rt2x00 global information. 24 */ 25 26 #ifndef RT2X00_H 27 #define RT2X00_H 28 29 #include <linux/bitops.h> 30 #include <linux/interrupt.h> 31 #include <linux/skbuff.h> 32 #include <linux/workqueue.h> 33 #include <linux/firmware.h> 34 #include <linux/leds.h> 35 #include <linux/mutex.h> 36 #include <linux/etherdevice.h> 37 #include <linux/input-polldev.h> 38 #include <linux/kfifo.h> 39 #include <linux/hrtimer.h> 40 #include <linux/average.h> 41 #include <linux/usb.h> 42 #include <linux/clk.h> 43 44 #include <net/mac80211.h> 45 46 #include "rt2x00debug.h" 47 #include "rt2x00dump.h" 48 #include "rt2x00leds.h" 49 #include "rt2x00reg.h" 50 #include "rt2x00queue.h" 51 52 /* 53 * Module information. 54 */ 55 #define DRV_VERSION "2.3.0" 56 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 57 58 /* Debug definitions. 59 * Debug output has to be enabled during compile time. 60 */ 61 #ifdef CONFIG_RT2X00_DEBUG 62 #define DEBUG 63 #endif /* CONFIG_RT2X00_DEBUG */ 64 65 /* Utility printing macros 66 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 67 */ 68 #define rt2x00_probe_err(fmt, ...) \ 69 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 70 __func__, ##__VA_ARGS__) 71 #define rt2x00_err(dev, fmt, ...) \ 72 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \ 73 __func__, ##__VA_ARGS__) 74 #define rt2x00_warn(dev, fmt, ...) \ 75 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \ 76 __func__, ##__VA_ARGS__) 77 #define rt2x00_info(dev, fmt, ...) \ 78 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 79 __func__, ##__VA_ARGS__) 80 81 /* Various debug levels */ 82 #define rt2x00_dbg(dev, fmt, ...) \ 83 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 84 __func__, ##__VA_ARGS__) 85 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 86 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 87 __func__, ##__VA_ARGS__) 88 89 /* 90 * Duration calculations 91 * The rate variable passed is: 100kbs. 92 * To convert from bytes to bits we multiply size with 8, 93 * then the size is multiplied with 10 to make the 94 * real rate -> rate argument correction. 95 */ 96 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 97 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 98 99 /* 100 * Determine the number of L2 padding bytes required between the header and 101 * the payload. 102 */ 103 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 104 105 /* 106 * Determine the alignment requirement, 107 * to make sure the 802.11 payload is padded to a 4-byte boundrary 108 * we must determine the address of the payload and calculate the 109 * amount of bytes needed to move the data. 110 */ 111 #define ALIGN_SIZE(__skb, __header) \ 112 (((unsigned long)((__skb)->data + (__header))) & 3) 113 114 /* 115 * Constants for extra TX headroom for alignment purposes. 116 */ 117 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 118 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 119 120 /* 121 * Standard timing and size defines. 122 * These values should follow the ieee80211 specifications. 123 */ 124 #define ACK_SIZE 14 125 #define IEEE80211_HEADER 24 126 #define PLCP 48 127 #define BEACON 100 128 #define PREAMBLE 144 129 #define SHORT_PREAMBLE 72 130 #define SLOT_TIME 20 131 #define SHORT_SLOT_TIME 9 132 #define SIFS 10 133 #define PIFS (SIFS + SLOT_TIME) 134 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 135 #define DIFS (PIFS + SLOT_TIME) 136 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 137 #define EIFS (SIFS + DIFS + \ 138 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 139 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 140 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 141 142 enum rt2x00_chip_intf { 143 RT2X00_CHIP_INTF_PCI, 144 RT2X00_CHIP_INTF_PCIE, 145 RT2X00_CHIP_INTF_USB, 146 RT2X00_CHIP_INTF_SOC, 147 }; 148 149 /* 150 * Chipset identification 151 * The chipset on the device is composed of a RT and RF chip. 152 * The chipset combination is important for determining device capabilities. 153 */ 154 struct rt2x00_chip { 155 u16 rt; 156 #define RT2460 0x2460 157 #define RT2560 0x2560 158 #define RT2570 0x2570 159 #define RT2661 0x2661 160 #define RT2573 0x2573 161 #define RT2860 0x2860 /* 2.4GHz */ 162 #define RT2872 0x2872 /* WSOC */ 163 #define RT2883 0x2883 /* WSOC */ 164 #define RT3070 0x3070 165 #define RT3071 0x3071 166 #define RT3090 0x3090 /* 2.4GHz PCIe */ 167 #define RT3290 0x3290 168 #define RT3352 0x3352 /* WSOC */ 169 #define RT3390 0x3390 170 #define RT3572 0x3572 171 #define RT3593 0x3593 172 #define RT3883 0x3883 /* WSOC */ 173 #define RT5350 0x5350 /* WSOC 2.4GHz */ 174 #define RT5390 0x5390 /* 2.4GHz */ 175 #define RT5392 0x5392 /* 2.4GHz */ 176 #define RT5592 0x5592 177 178 u16 rf; 179 u16 rev; 180 181 enum rt2x00_chip_intf intf; 182 }; 183 184 /* 185 * RF register values that belong to a particular channel. 186 */ 187 struct rf_channel { 188 int channel; 189 u32 rf1; 190 u32 rf2; 191 u32 rf3; 192 u32 rf4; 193 }; 194 195 /* 196 * Channel information structure 197 */ 198 struct channel_info { 199 unsigned int flags; 200 #define GEOGRAPHY_ALLOWED 0x00000001 201 202 short max_power; 203 short default_power1; 204 short default_power2; 205 short default_power3; 206 }; 207 208 /* 209 * Antenna setup values. 210 */ 211 struct antenna_setup { 212 enum antenna rx; 213 enum antenna tx; 214 u8 rx_chain_num; 215 u8 tx_chain_num; 216 }; 217 218 /* 219 * Quality statistics about the currently active link. 220 */ 221 struct link_qual { 222 /* 223 * Statistics required for Link tuning by driver 224 * The rssi value is provided by rt2x00lib during the 225 * link_tuner() callback function. 226 * The false_cca field is filled during the link_stats() 227 * callback function and could be used during the 228 * link_tuner() callback function. 229 */ 230 int rssi; 231 int false_cca; 232 233 /* 234 * VGC levels 235 * Hardware driver will tune the VGC level during each call 236 * to the link_tuner() callback function. This vgc_level is 237 * is determined based on the link quality statistics like 238 * average RSSI and the false CCA count. 239 * 240 * In some cases the drivers need to differentiate between 241 * the currently "desired" VGC level and the level configured 242 * in the hardware. The latter is important to reduce the 243 * number of BBP register reads to reduce register access 244 * overhead. For this reason we store both values here. 245 */ 246 u8 vgc_level; 247 u8 vgc_level_reg; 248 249 /* 250 * Statistics required for Signal quality calculation. 251 * These fields might be changed during the link_stats() 252 * callback function. 253 */ 254 int rx_success; 255 int rx_failed; 256 int tx_success; 257 int tx_failed; 258 }; 259 260 DECLARE_EWMA(rssi, 10, 8) 261 262 /* 263 * Antenna settings about the currently active link. 264 */ 265 struct link_ant { 266 /* 267 * Antenna flags 268 */ 269 unsigned int flags; 270 #define ANTENNA_RX_DIVERSITY 0x00000001 271 #define ANTENNA_TX_DIVERSITY 0x00000002 272 #define ANTENNA_MODE_SAMPLE 0x00000004 273 274 /* 275 * Currently active TX/RX antenna setup. 276 * When software diversity is used, this will indicate 277 * which antenna is actually used at this time. 278 */ 279 struct antenna_setup active; 280 281 /* 282 * RSSI history information for the antenna. 283 * Used to determine when to switch antenna 284 * when using software diversity. 285 */ 286 int rssi_history; 287 288 /* 289 * Current RSSI average of the currently active antenna. 290 * Similar to the avg_rssi in the link_qual structure 291 * this value is updated by using the walking average. 292 */ 293 struct ewma_rssi rssi_ant; 294 }; 295 296 /* 297 * To optimize the quality of the link we need to store 298 * the quality of received frames and periodically 299 * optimize the link. 300 */ 301 struct link { 302 /* 303 * Link tuner counter 304 * The number of times the link has been tuned 305 * since the radio has been switched on. 306 */ 307 u32 count; 308 309 /* 310 * Quality measurement values. 311 */ 312 struct link_qual qual; 313 314 /* 315 * TX/RX antenna setup. 316 */ 317 struct link_ant ant; 318 319 /* 320 * Currently active average RSSI value 321 */ 322 struct ewma_rssi avg_rssi; 323 324 /* 325 * Work structure for scheduling periodic link tuning. 326 */ 327 struct delayed_work work; 328 329 /* 330 * Work structure for scheduling periodic watchdog monitoring. 331 * This work must be scheduled on the kernel workqueue, while 332 * all other work structures must be queued on the mac80211 333 * workqueue. This guarantees that the watchdog can schedule 334 * other work structures and wait for their completion in order 335 * to bring the device/driver back into the desired state. 336 */ 337 struct delayed_work watchdog_work; 338 339 /* 340 * Work structure for scheduling periodic AGC adjustments. 341 */ 342 struct delayed_work agc_work; 343 344 /* 345 * Work structure for scheduling periodic VCO calibration. 346 */ 347 struct delayed_work vco_work; 348 }; 349 350 enum rt2x00_delayed_flags { 351 DELAYED_UPDATE_BEACON, 352 }; 353 354 /* 355 * Interface structure 356 * Per interface configuration details, this structure 357 * is allocated as the private data for ieee80211_vif. 358 */ 359 struct rt2x00_intf { 360 /* 361 * beacon->skb must be protected with the mutex. 362 */ 363 struct mutex beacon_skb_mutex; 364 365 /* 366 * Entry in the beacon queue which belongs to 367 * this interface. Each interface has its own 368 * dedicated beacon entry. 369 */ 370 struct queue_entry *beacon; 371 bool enable_beacon; 372 373 /* 374 * Actions that needed rescheduling. 375 */ 376 unsigned long delayed_flags; 377 378 /* 379 * Software sequence counter, this is only required 380 * for hardware which doesn't support hardware 381 * sequence counting. 382 */ 383 atomic_t seqno; 384 }; 385 386 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 387 { 388 return (struct rt2x00_intf *)vif->drv_priv; 389 } 390 391 /** 392 * struct hw_mode_spec: Hardware specifications structure 393 * 394 * Details about the supported modes, rates and channels 395 * of a particular chipset. This is used by rt2x00lib 396 * to build the ieee80211_hw_mode array for mac80211. 397 * 398 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 399 * @supported_rates: Rate types which are supported (CCK, OFDM). 400 * @num_channels: Number of supported channels. This is used as array size 401 * for @tx_power_a, @tx_power_bg and @channels. 402 * @channels: Device/chipset specific channel values (See &struct rf_channel). 403 * @channels_info: Additional information for channels (See &struct channel_info). 404 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 405 */ 406 struct hw_mode_spec { 407 unsigned int supported_bands; 408 #define SUPPORT_BAND_2GHZ 0x00000001 409 #define SUPPORT_BAND_5GHZ 0x00000002 410 411 unsigned int supported_rates; 412 #define SUPPORT_RATE_CCK 0x00000001 413 #define SUPPORT_RATE_OFDM 0x00000002 414 415 unsigned int num_channels; 416 const struct rf_channel *channels; 417 const struct channel_info *channels_info; 418 419 struct ieee80211_sta_ht_cap ht; 420 }; 421 422 /* 423 * Configuration structure wrapper around the 424 * mac80211 configuration structure. 425 * When mac80211 configures the driver, rt2x00lib 426 * can precalculate values which are equal for all 427 * rt2x00 drivers. Those values can be stored in here. 428 */ 429 struct rt2x00lib_conf { 430 struct ieee80211_conf *conf; 431 432 struct rf_channel rf; 433 struct channel_info channel; 434 }; 435 436 /* 437 * Configuration structure for erp settings. 438 */ 439 struct rt2x00lib_erp { 440 int short_preamble; 441 int cts_protection; 442 443 u32 basic_rates; 444 445 int slot_time; 446 447 short sifs; 448 short pifs; 449 short difs; 450 short eifs; 451 452 u16 beacon_int; 453 u16 ht_opmode; 454 }; 455 456 /* 457 * Configuration structure for hardware encryption. 458 */ 459 struct rt2x00lib_crypto { 460 enum cipher cipher; 461 462 enum set_key_cmd cmd; 463 const u8 *address; 464 465 u32 bssidx; 466 467 u8 key[16]; 468 u8 tx_mic[8]; 469 u8 rx_mic[8]; 470 471 int wcid; 472 }; 473 474 /* 475 * Configuration structure wrapper around the 476 * rt2x00 interface configuration handler. 477 */ 478 struct rt2x00intf_conf { 479 /* 480 * Interface type 481 */ 482 enum nl80211_iftype type; 483 484 /* 485 * TSF sync value, this is dependent on the operation type. 486 */ 487 enum tsf_sync sync; 488 489 /* 490 * The MAC and BSSID addresses are simple array of bytes, 491 * these arrays are little endian, so when sending the addresses 492 * to the drivers, copy the it into a endian-signed variable. 493 * 494 * Note that all devices (except rt2500usb) have 32 bits 495 * register word sizes. This means that whatever variable we 496 * pass _must_ be a multiple of 32 bits. Otherwise the device 497 * might not accept what we are sending to it. 498 * This will also make it easier for the driver to write 499 * the data to the device. 500 */ 501 __le32 mac[2]; 502 __le32 bssid[2]; 503 }; 504 505 /* 506 * Private structure for storing STA details 507 * wcid: Wireless Client ID 508 */ 509 struct rt2x00_sta { 510 int wcid; 511 }; 512 513 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 514 { 515 return (struct rt2x00_sta *)sta->drv_priv; 516 } 517 518 /* 519 * rt2x00lib callback functions. 520 */ 521 struct rt2x00lib_ops { 522 /* 523 * Interrupt handlers. 524 */ 525 irq_handler_t irq_handler; 526 527 /* 528 * TX status tasklet handler. 529 */ 530 void (*txstatus_tasklet) (unsigned long data); 531 void (*pretbtt_tasklet) (unsigned long data); 532 void (*tbtt_tasklet) (unsigned long data); 533 void (*rxdone_tasklet) (unsigned long data); 534 void (*autowake_tasklet) (unsigned long data); 535 536 /* 537 * Device init handlers. 538 */ 539 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 540 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 541 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 542 const u8 *data, const size_t len); 543 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 544 const u8 *data, const size_t len); 545 546 /* 547 * Device initialization/deinitialization handlers. 548 */ 549 int (*initialize) (struct rt2x00_dev *rt2x00dev); 550 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 551 552 /* 553 * queue initialization handlers 554 */ 555 bool (*get_entry_state) (struct queue_entry *entry); 556 void (*clear_entry) (struct queue_entry *entry); 557 558 /* 559 * Radio control handlers. 560 */ 561 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 562 enum dev_state state); 563 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 564 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 565 struct link_qual *qual); 566 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 567 struct link_qual *qual); 568 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 569 struct link_qual *qual, const u32 count); 570 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 571 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 572 573 /* 574 * Data queue handlers. 575 */ 576 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 577 void (*start_queue) (struct data_queue *queue); 578 void (*kick_queue) (struct data_queue *queue); 579 void (*stop_queue) (struct data_queue *queue); 580 void (*flush_queue) (struct data_queue *queue, bool drop); 581 void (*tx_dma_done) (struct queue_entry *entry); 582 583 /* 584 * TX control handlers 585 */ 586 void (*write_tx_desc) (struct queue_entry *entry, 587 struct txentry_desc *txdesc); 588 void (*write_tx_data) (struct queue_entry *entry, 589 struct txentry_desc *txdesc); 590 void (*write_beacon) (struct queue_entry *entry, 591 struct txentry_desc *txdesc); 592 void (*clear_beacon) (struct queue_entry *entry); 593 int (*get_tx_data_len) (struct queue_entry *entry); 594 595 /* 596 * RX control handlers 597 */ 598 void (*fill_rxdone) (struct queue_entry *entry, 599 struct rxdone_entry_desc *rxdesc); 600 601 /* 602 * Configuration handlers. 603 */ 604 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 605 struct rt2x00lib_crypto *crypto, 606 struct ieee80211_key_conf *key); 607 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 608 struct rt2x00lib_crypto *crypto, 609 struct ieee80211_key_conf *key); 610 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 611 const unsigned int filter_flags); 612 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 613 struct rt2x00_intf *intf, 614 struct rt2x00intf_conf *conf, 615 const unsigned int flags); 616 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 617 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 618 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 619 620 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 621 struct rt2x00lib_erp *erp, 622 u32 changed); 623 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 624 struct antenna_setup *ant); 625 void (*config) (struct rt2x00_dev *rt2x00dev, 626 struct rt2x00lib_conf *libconf, 627 const unsigned int changed_flags); 628 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 629 struct ieee80211_vif *vif, 630 struct ieee80211_sta *sta); 631 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 632 struct ieee80211_sta *sta); 633 }; 634 635 /* 636 * rt2x00 driver callback operation structure. 637 */ 638 struct rt2x00_ops { 639 const char *name; 640 const unsigned int drv_data_size; 641 const unsigned int max_ap_intf; 642 const unsigned int eeprom_size; 643 const unsigned int rf_size; 644 const unsigned int tx_queues; 645 void (*queue_init)(struct data_queue *queue); 646 const struct rt2x00lib_ops *lib; 647 const void *drv; 648 const struct ieee80211_ops *hw; 649 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 650 const struct rt2x00debug *debugfs; 651 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 652 }; 653 654 /* 655 * rt2x00 state flags 656 */ 657 enum rt2x00_state_flags { 658 /* 659 * Device flags 660 */ 661 DEVICE_STATE_PRESENT, 662 DEVICE_STATE_REGISTERED_HW, 663 DEVICE_STATE_INITIALIZED, 664 DEVICE_STATE_STARTED, 665 DEVICE_STATE_ENABLED_RADIO, 666 DEVICE_STATE_SCANNING, 667 668 /* 669 * Driver configuration 670 */ 671 CONFIG_CHANNEL_HT40, 672 CONFIG_POWERSAVING, 673 CONFIG_HT_DISABLED, 674 CONFIG_QOS_DISABLED, 675 CONFIG_MONITORING, 676 677 /* 678 * Mark we currently are sequentially reading TX_STA_FIFO register 679 * FIXME: this is for only rt2800usb, should go to private data 680 */ 681 TX_STATUS_READING, 682 }; 683 684 /* 685 * rt2x00 capability flags 686 */ 687 enum rt2x00_capability_flags { 688 /* 689 * Requirements 690 */ 691 REQUIRE_FIRMWARE, 692 REQUIRE_BEACON_GUARD, 693 REQUIRE_ATIM_QUEUE, 694 REQUIRE_DMA, 695 REQUIRE_COPY_IV, 696 REQUIRE_L2PAD, 697 REQUIRE_TXSTATUS_FIFO, 698 REQUIRE_TASKLET_CONTEXT, 699 REQUIRE_SW_SEQNO, 700 REQUIRE_HT_TX_DESC, 701 REQUIRE_PS_AUTOWAKE, 702 REQUIRE_DELAYED_RFKILL, 703 704 /* 705 * Capabilities 706 */ 707 CAPABILITY_HW_BUTTON, 708 CAPABILITY_HW_CRYPTO, 709 CAPABILITY_POWER_LIMIT, 710 CAPABILITY_CONTROL_FILTERS, 711 CAPABILITY_CONTROL_FILTER_PSPOLL, 712 CAPABILITY_PRE_TBTT_INTERRUPT, 713 CAPABILITY_LINK_TUNING, 714 CAPABILITY_FRAME_TYPE, 715 CAPABILITY_RF_SEQUENCE, 716 CAPABILITY_EXTERNAL_LNA_A, 717 CAPABILITY_EXTERNAL_LNA_BG, 718 CAPABILITY_DOUBLE_ANTENNA, 719 CAPABILITY_BT_COEXIST, 720 CAPABILITY_VCO_RECALIBRATION, 721 CAPABILITY_INTERNAL_PA_TX0, 722 CAPABILITY_INTERNAL_PA_TX1, 723 }; 724 725 /* 726 * Interface combinations 727 */ 728 enum { 729 IF_COMB_AP = 0, 730 NUM_IF_COMB, 731 }; 732 733 /* 734 * rt2x00 device structure. 735 */ 736 struct rt2x00_dev { 737 /* 738 * Device structure. 739 * The structure stored in here depends on the 740 * system bus (PCI or USB). 741 * When accessing this variable, the rt2x00dev_{pci,usb} 742 * macros should be used for correct typecasting. 743 */ 744 struct device *dev; 745 746 /* 747 * Callback functions. 748 */ 749 const struct rt2x00_ops *ops; 750 751 /* 752 * Driver data. 753 */ 754 void *drv_data; 755 756 /* 757 * IEEE80211 control structure. 758 */ 759 struct ieee80211_hw *hw; 760 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 761 enum nl80211_band curr_band; 762 int curr_freq; 763 764 /* 765 * If enabled, the debugfs interface structures 766 * required for deregistration of debugfs. 767 */ 768 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 769 struct rt2x00debug_intf *debugfs_intf; 770 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 771 772 /* 773 * LED structure for changing the LED status 774 * by mac8011 or the kernel. 775 */ 776 #ifdef CONFIG_RT2X00_LIB_LEDS 777 struct rt2x00_led led_radio; 778 struct rt2x00_led led_assoc; 779 struct rt2x00_led led_qual; 780 u16 led_mcu_reg; 781 #endif /* CONFIG_RT2X00_LIB_LEDS */ 782 783 /* 784 * Device state flags. 785 * In these flags the current status is stored. 786 * Access to these flags should occur atomically. 787 */ 788 unsigned long flags; 789 790 /* 791 * Device capabiltiy flags. 792 * In these flags the device/driver capabilities are stored. 793 * Access to these flags should occur non-atomically. 794 */ 795 unsigned long cap_flags; 796 797 /* 798 * Device information, Bus IRQ and name (PCI, SoC) 799 */ 800 int irq; 801 const char *name; 802 803 /* 804 * Chipset identification. 805 */ 806 struct rt2x00_chip chip; 807 808 /* 809 * hw capability specifications. 810 */ 811 struct hw_mode_spec spec; 812 813 /* 814 * This is the default TX/RX antenna setup as indicated 815 * by the device's EEPROM. 816 */ 817 struct antenna_setup default_ant; 818 819 /* 820 * Register pointers 821 * csr.base: CSR base register address. (PCI) 822 * csr.cache: CSR cache for usb_control_msg. (USB) 823 */ 824 union csr { 825 void __iomem *base; 826 void *cache; 827 } csr; 828 829 /* 830 * Mutex to protect register accesses. 831 * For PCI and USB devices it protects against concurrent indirect 832 * register access (BBP, RF, MCU) since accessing those 833 * registers require multiple calls to the CSR registers. 834 * For USB devices it also protects the csr_cache since that 835 * field is used for normal CSR access and it cannot support 836 * multiple callers simultaneously. 837 */ 838 struct mutex csr_mutex; 839 840 /* 841 * Mutex to synchronize config and link tuner. 842 */ 843 struct mutex conf_mutex; 844 /* 845 * Current packet filter configuration for the device. 846 * This contains all currently active FIF_* flags send 847 * to us by mac80211 during configure_filter(). 848 */ 849 unsigned int packet_filter; 850 851 /* 852 * Interface details: 853 * - Open ap interface count. 854 * - Open sta interface count. 855 * - Association count. 856 * - Beaconing enabled count. 857 */ 858 unsigned int intf_ap_count; 859 unsigned int intf_sta_count; 860 unsigned int intf_associated; 861 unsigned int intf_beaconing; 862 863 /* 864 * Interface combinations 865 */ 866 struct ieee80211_iface_limit if_limits_ap; 867 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 868 869 /* 870 * Link quality 871 */ 872 struct link link; 873 874 /* 875 * EEPROM data. 876 */ 877 __le16 *eeprom; 878 879 /* 880 * Active RF register values. 881 * These are stored here so we don't need 882 * to read the rf registers and can directly 883 * use this value instead. 884 * This field should be accessed by using 885 * rt2x00_rf_read() and rt2x00_rf_write(). 886 */ 887 u32 *rf; 888 889 /* 890 * LNA gain 891 */ 892 short lna_gain; 893 894 /* 895 * Current TX power value. 896 */ 897 u16 tx_power; 898 899 /* 900 * Current retry values. 901 */ 902 u8 short_retry; 903 u8 long_retry; 904 905 /* 906 * Rssi <-> Dbm offset 907 */ 908 u8 rssi_offset; 909 910 /* 911 * Frequency offset. 912 */ 913 u8 freq_offset; 914 915 /* 916 * Association id. 917 */ 918 u16 aid; 919 920 /* 921 * Beacon interval. 922 */ 923 u16 beacon_int; 924 925 /** 926 * Timestamp of last received beacon 927 */ 928 unsigned long last_beacon; 929 930 /* 931 * Low level statistics which will have 932 * to be kept up to date while device is running. 933 */ 934 struct ieee80211_low_level_stats low_level_stats; 935 936 /** 937 * Work queue for all work which should not be placed 938 * on the mac80211 workqueue (because of dependencies 939 * between various work structures). 940 */ 941 struct workqueue_struct *workqueue; 942 943 /* 944 * Scheduled work. 945 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 946 * which means it cannot be placed on the hw->workqueue 947 * due to RTNL locking requirements. 948 */ 949 struct work_struct intf_work; 950 951 /** 952 * Scheduled work for TX/RX done handling (USB devices) 953 */ 954 struct work_struct rxdone_work; 955 struct work_struct txdone_work; 956 957 /* 958 * Powersaving work 959 */ 960 struct delayed_work autowakeup_work; 961 struct work_struct sleep_work; 962 963 /* 964 * Data queue arrays for RX, TX, Beacon and ATIM. 965 */ 966 unsigned int data_queues; 967 struct data_queue *rx; 968 struct data_queue *tx; 969 struct data_queue *bcn; 970 struct data_queue *atim; 971 972 /* 973 * Firmware image. 974 */ 975 const struct firmware *fw; 976 977 /* 978 * FIFO for storing tx status reports between isr and tasklet. 979 */ 980 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 981 982 /* 983 * Timer to ensure tx status reports are read (rt2800usb). 984 */ 985 struct hrtimer txstatus_timer; 986 987 /* 988 * Tasklet for processing tx status reports (rt2800pci). 989 */ 990 struct tasklet_struct txstatus_tasklet; 991 struct tasklet_struct pretbtt_tasklet; 992 struct tasklet_struct tbtt_tasklet; 993 struct tasklet_struct rxdone_tasklet; 994 struct tasklet_struct autowake_tasklet; 995 996 /* 997 * Used for VCO periodic calibration. 998 */ 999 int rf_channel; 1000 1001 /* 1002 * Protect the interrupt mask register. 1003 */ 1004 spinlock_t irqmask_lock; 1005 1006 /* 1007 * List of BlockAckReq TX entries that need driver BlockAck processing. 1008 */ 1009 struct list_head bar_list; 1010 spinlock_t bar_list_lock; 1011 1012 /* Extra TX headroom required for alignment purposes. */ 1013 unsigned int extra_tx_headroom; 1014 1015 struct usb_anchor *anchor; 1016 1017 /* Clock for System On Chip devices. */ 1018 struct clk *clk; 1019 }; 1020 1021 struct rt2x00_bar_list_entry { 1022 struct list_head list; 1023 struct rcu_head head; 1024 1025 struct queue_entry *entry; 1026 int block_acked; 1027 1028 /* Relevant parts of the IEEE80211 BAR header */ 1029 __u8 ra[6]; 1030 __u8 ta[6]; 1031 __le16 control; 1032 __le16 start_seq_num; 1033 }; 1034 1035 /* 1036 * Register defines. 1037 * Some registers require multiple attempts before success, 1038 * in those cases REGISTER_BUSY_COUNT attempts should be 1039 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1040 * bus delays, we do not have to loop so many times to wait 1041 * for valid register value on that bus. 1042 */ 1043 #define REGISTER_BUSY_COUNT 100 1044 #define REGISTER_USB_BUSY_COUNT 20 1045 #define REGISTER_BUSY_DELAY 100 1046 1047 /* 1048 * Generic RF access. 1049 * The RF is being accessed by word index. 1050 */ 1051 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1052 const unsigned int word, u32 *data) 1053 { 1054 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1055 *data = rt2x00dev->rf[word - 1]; 1056 } 1057 1058 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1059 const unsigned int word, u32 data) 1060 { 1061 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1062 rt2x00dev->rf[word - 1] = data; 1063 } 1064 1065 /* 1066 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1067 */ 1068 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1069 const unsigned int word) 1070 { 1071 return (void *)&rt2x00dev->eeprom[word]; 1072 } 1073 1074 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1075 const unsigned int word, u16 *data) 1076 { 1077 *data = le16_to_cpu(rt2x00dev->eeprom[word]); 1078 } 1079 1080 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1081 const unsigned int word, u16 data) 1082 { 1083 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1084 } 1085 1086 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1087 const unsigned int byte) 1088 { 1089 return *(((u8 *)rt2x00dev->eeprom) + byte); 1090 } 1091 1092 /* 1093 * Chipset handlers 1094 */ 1095 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1096 const u16 rt, const u16 rf, const u16 rev) 1097 { 1098 rt2x00dev->chip.rt = rt; 1099 rt2x00dev->chip.rf = rf; 1100 rt2x00dev->chip.rev = rev; 1101 1102 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1103 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1104 rt2x00dev->chip.rev); 1105 } 1106 1107 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1108 const u16 rt, const u16 rev) 1109 { 1110 rt2x00dev->chip.rt = rt; 1111 rt2x00dev->chip.rev = rev; 1112 1113 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1114 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1115 } 1116 1117 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1118 { 1119 rt2x00dev->chip.rf = rf; 1120 1121 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1122 rt2x00dev->chip.rf); 1123 } 1124 1125 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1126 { 1127 return (rt2x00dev->chip.rt == rt); 1128 } 1129 1130 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1131 { 1132 return (rt2x00dev->chip.rf == rf); 1133 } 1134 1135 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1136 { 1137 return rt2x00dev->chip.rev; 1138 } 1139 1140 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1141 const u16 rt, const u16 rev) 1142 { 1143 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1144 } 1145 1146 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1147 const u16 rt, const u16 rev) 1148 { 1149 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1150 } 1151 1152 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1153 const u16 rt, const u16 rev) 1154 { 1155 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1156 } 1157 1158 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1159 enum rt2x00_chip_intf intf) 1160 { 1161 rt2x00dev->chip.intf = intf; 1162 } 1163 1164 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1165 enum rt2x00_chip_intf intf) 1166 { 1167 return (rt2x00dev->chip.intf == intf); 1168 } 1169 1170 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1171 { 1172 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1173 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1174 } 1175 1176 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1177 { 1178 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1179 } 1180 1181 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1182 { 1183 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1184 } 1185 1186 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1187 { 1188 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1189 } 1190 1191 /* Helpers for capability flags */ 1192 1193 static inline bool 1194 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1195 enum rt2x00_capability_flags cap_flag) 1196 { 1197 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1198 } 1199 1200 static inline bool 1201 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1202 { 1203 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1204 } 1205 1206 static inline bool 1207 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1208 { 1209 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1210 } 1211 1212 static inline bool 1213 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1214 { 1215 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1216 } 1217 1218 static inline bool 1219 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1220 { 1221 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1222 } 1223 1224 static inline bool 1225 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1226 { 1227 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1228 } 1229 1230 static inline bool 1231 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1232 { 1233 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1234 } 1235 1236 static inline bool 1237 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1238 { 1239 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1240 } 1241 1242 static inline bool 1243 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1244 { 1245 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1246 } 1247 1248 static inline bool 1249 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1250 { 1251 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1252 } 1253 1254 static inline bool 1255 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1256 { 1257 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1258 } 1259 1260 static inline bool 1261 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1262 { 1263 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1264 } 1265 1266 static inline bool 1267 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1268 { 1269 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1270 } 1271 1272 static inline bool 1273 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1274 { 1275 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1276 } 1277 1278 /** 1279 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1280 * @entry: Pointer to &struct queue_entry 1281 * 1282 * Returns -ENOMEM if mapping fail, 0 otherwise. 1283 */ 1284 int rt2x00queue_map_txskb(struct queue_entry *entry); 1285 1286 /** 1287 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1288 * @entry: Pointer to &struct queue_entry 1289 */ 1290 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1291 1292 /** 1293 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1294 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1295 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1296 * 1297 * Returns NULL for non tx queues. 1298 */ 1299 static inline struct data_queue * 1300 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1301 const enum data_queue_qid queue) 1302 { 1303 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1304 return &rt2x00dev->tx[queue]; 1305 1306 if (queue == QID_ATIM) 1307 return rt2x00dev->atim; 1308 1309 return NULL; 1310 } 1311 1312 /** 1313 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1314 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1315 * @index: Index identifier for obtaining the correct index. 1316 */ 1317 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1318 enum queue_index index); 1319 1320 /** 1321 * rt2x00queue_pause_queue - Pause a data queue 1322 * @queue: Pointer to &struct data_queue. 1323 * 1324 * This function will pause the data queue locally, preventing 1325 * new frames to be added to the queue (while the hardware is 1326 * still allowed to run). 1327 */ 1328 void rt2x00queue_pause_queue(struct data_queue *queue); 1329 1330 /** 1331 * rt2x00queue_unpause_queue - unpause a data queue 1332 * @queue: Pointer to &struct data_queue. 1333 * 1334 * This function will unpause the data queue locally, allowing 1335 * new frames to be added to the queue again. 1336 */ 1337 void rt2x00queue_unpause_queue(struct data_queue *queue); 1338 1339 /** 1340 * rt2x00queue_start_queue - Start a data queue 1341 * @queue: Pointer to &struct data_queue. 1342 * 1343 * This function will start handling all pending frames in the queue. 1344 */ 1345 void rt2x00queue_start_queue(struct data_queue *queue); 1346 1347 /** 1348 * rt2x00queue_stop_queue - Halt a data queue 1349 * @queue: Pointer to &struct data_queue. 1350 * 1351 * This function will stop all pending frames in the queue. 1352 */ 1353 void rt2x00queue_stop_queue(struct data_queue *queue); 1354 1355 /** 1356 * rt2x00queue_flush_queue - Flush a data queue 1357 * @queue: Pointer to &struct data_queue. 1358 * @drop: True to drop all pending frames. 1359 * 1360 * This function will flush the queue. After this call 1361 * the queue is guaranteed to be empty. 1362 */ 1363 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1364 1365 /** 1366 * rt2x00queue_start_queues - Start all data queues 1367 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1368 * 1369 * This function will loop through all available queues to start them 1370 */ 1371 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1372 1373 /** 1374 * rt2x00queue_stop_queues - Halt all data queues 1375 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1376 * 1377 * This function will loop through all available queues to stop 1378 * any pending frames. 1379 */ 1380 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1381 1382 /** 1383 * rt2x00queue_flush_queues - Flush all data queues 1384 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1385 * @drop: True to drop all pending frames. 1386 * 1387 * This function will loop through all available queues to flush 1388 * any pending frames. 1389 */ 1390 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1391 1392 /* 1393 * Debugfs handlers. 1394 */ 1395 /** 1396 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1397 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1398 * @type: The type of frame that is being dumped. 1399 * @skb: The skb containing the frame to be dumped. 1400 */ 1401 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1402 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1403 enum rt2x00_dump_type type, struct queue_entry *entry); 1404 #else 1405 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1406 enum rt2x00_dump_type type, 1407 struct queue_entry *entry) 1408 { 1409 } 1410 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1411 1412 /* 1413 * Utility functions. 1414 */ 1415 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1416 struct ieee80211_vif *vif); 1417 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1418 1419 /* 1420 * Interrupt context handlers. 1421 */ 1422 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1423 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1424 void rt2x00lib_dmastart(struct queue_entry *entry); 1425 void rt2x00lib_dmadone(struct queue_entry *entry); 1426 void rt2x00lib_txdone(struct queue_entry *entry, 1427 struct txdone_entry_desc *txdesc); 1428 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1429 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1430 1431 /* 1432 * mac80211 handlers. 1433 */ 1434 void rt2x00mac_tx(struct ieee80211_hw *hw, 1435 struct ieee80211_tx_control *control, 1436 struct sk_buff *skb); 1437 int rt2x00mac_start(struct ieee80211_hw *hw); 1438 void rt2x00mac_stop(struct ieee80211_hw *hw); 1439 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1440 struct ieee80211_vif *vif); 1441 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1442 struct ieee80211_vif *vif); 1443 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1444 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1445 unsigned int changed_flags, 1446 unsigned int *total_flags, 1447 u64 multicast); 1448 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1449 bool set); 1450 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1451 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1452 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1453 struct ieee80211_key_conf *key); 1454 #else 1455 #define rt2x00mac_set_key NULL 1456 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1457 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1458 struct ieee80211_sta *sta); 1459 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1460 struct ieee80211_sta *sta); 1461 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1462 struct ieee80211_vif *vif, 1463 const u8 *mac_addr); 1464 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1465 struct ieee80211_vif *vif); 1466 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1467 struct ieee80211_low_level_stats *stats); 1468 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1469 struct ieee80211_vif *vif, 1470 struct ieee80211_bss_conf *bss_conf, 1471 u32 changes); 1472 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1473 struct ieee80211_vif *vif, u16 queue, 1474 const struct ieee80211_tx_queue_params *params); 1475 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1476 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1477 u32 queues, bool drop); 1478 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1479 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1480 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1481 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1482 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1483 1484 /* 1485 * Driver allocation handlers. 1486 */ 1487 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1488 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1489 #ifdef CONFIG_PM 1490 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1491 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1492 #endif /* CONFIG_PM */ 1493 1494 #endif /* RT2X00_H */ 1495