1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 /* 22 Module: rt2x00 23 Abstract: rt2x00 global information. 24 */ 25 26 #ifndef RT2X00_H 27 #define RT2X00_H 28 29 #include <linux/bitops.h> 30 #include <linux/interrupt.h> 31 #include <linux/skbuff.h> 32 #include <linux/workqueue.h> 33 #include <linux/firmware.h> 34 #include <linux/leds.h> 35 #include <linux/mutex.h> 36 #include <linux/etherdevice.h> 37 #include <linux/input-polldev.h> 38 #include <linux/kfifo.h> 39 #include <linux/hrtimer.h> 40 #include <linux/average.h> 41 #include <linux/usb.h> 42 #include <linux/clk.h> 43 44 #include <net/mac80211.h> 45 46 #include "rt2x00debug.h" 47 #include "rt2x00dump.h" 48 #include "rt2x00leds.h" 49 #include "rt2x00reg.h" 50 #include "rt2x00queue.h" 51 52 /* 53 * Module information. 54 */ 55 #define DRV_VERSION "2.3.0" 56 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 57 58 /* Debug definitions. 59 * Debug output has to be enabled during compile time. 60 */ 61 #ifdef CONFIG_RT2X00_DEBUG 62 #define DEBUG 63 #endif /* CONFIG_RT2X00_DEBUG */ 64 65 /* Utility printing macros 66 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 67 */ 68 #define rt2x00_probe_err(fmt, ...) \ 69 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 70 __func__, ##__VA_ARGS__) 71 #define rt2x00_err(dev, fmt, ...) \ 72 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \ 73 __func__, ##__VA_ARGS__) 74 #define rt2x00_warn(dev, fmt, ...) \ 75 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \ 76 __func__, ##__VA_ARGS__) 77 #define rt2x00_info(dev, fmt, ...) \ 78 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 79 __func__, ##__VA_ARGS__) 80 81 /* Various debug levels */ 82 #define rt2x00_dbg(dev, fmt, ...) \ 83 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 84 __func__, ##__VA_ARGS__) 85 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 86 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 87 __func__, ##__VA_ARGS__) 88 89 /* 90 * Duration calculations 91 * The rate variable passed is: 100kbs. 92 * To convert from bytes to bits we multiply size with 8, 93 * then the size is multiplied with 10 to make the 94 * real rate -> rate argument correction. 95 */ 96 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 97 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 98 99 /* 100 * Determine the number of L2 padding bytes required between the header and 101 * the payload. 102 */ 103 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 104 105 /* 106 * Determine the alignment requirement, 107 * to make sure the 802.11 payload is padded to a 4-byte boundrary 108 * we must determine the address of the payload and calculate the 109 * amount of bytes needed to move the data. 110 */ 111 #define ALIGN_SIZE(__skb, __header) \ 112 (((unsigned long)((__skb)->data + (__header))) & 3) 113 114 /* 115 * Constants for extra TX headroom for alignment purposes. 116 */ 117 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 118 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 119 120 /* 121 * Standard timing and size defines. 122 * These values should follow the ieee80211 specifications. 123 */ 124 #define ACK_SIZE 14 125 #define IEEE80211_HEADER 24 126 #define PLCP 48 127 #define BEACON 100 128 #define PREAMBLE 144 129 #define SHORT_PREAMBLE 72 130 #define SLOT_TIME 20 131 #define SHORT_SLOT_TIME 9 132 #define SIFS 10 133 #define PIFS (SIFS + SLOT_TIME) 134 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 135 #define DIFS (PIFS + SLOT_TIME) 136 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 137 #define EIFS (SIFS + DIFS + \ 138 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 139 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 140 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 141 142 enum rt2x00_chip_intf { 143 RT2X00_CHIP_INTF_PCI, 144 RT2X00_CHIP_INTF_PCIE, 145 RT2X00_CHIP_INTF_USB, 146 RT2X00_CHIP_INTF_SOC, 147 }; 148 149 /* 150 * Chipset identification 151 * The chipset on the device is composed of a RT and RF chip. 152 * The chipset combination is important for determining device capabilities. 153 */ 154 struct rt2x00_chip { 155 u16 rt; 156 #define RT2460 0x2460 157 #define RT2560 0x2560 158 #define RT2570 0x2570 159 #define RT2661 0x2661 160 #define RT2573 0x2573 161 #define RT2860 0x2860 /* 2.4GHz */ 162 #define RT2872 0x2872 /* WSOC */ 163 #define RT2883 0x2883 /* WSOC */ 164 #define RT3070 0x3070 165 #define RT3071 0x3071 166 #define RT3090 0x3090 /* 2.4GHz PCIe */ 167 #define RT3290 0x3290 168 #define RT3352 0x3352 /* WSOC */ 169 #define RT3390 0x3390 170 #define RT3572 0x3572 171 #define RT3593 0x3593 172 #define RT3883 0x3883 /* WSOC */ 173 #define RT5350 0x5350 /* WSOC 2.4GHz */ 174 #define RT5390 0x5390 /* 2.4GHz */ 175 #define RT5392 0x5392 /* 2.4GHz */ 176 #define RT5592 0x5592 177 #define RT6352 0x6352 /* WSOC 2.4GHz */ 178 179 u16 rf; 180 u16 rev; 181 182 enum rt2x00_chip_intf intf; 183 }; 184 185 /* 186 * RF register values that belong to a particular channel. 187 */ 188 struct rf_channel { 189 int channel; 190 u32 rf1; 191 u32 rf2; 192 u32 rf3; 193 u32 rf4; 194 }; 195 196 /* 197 * Channel information structure 198 */ 199 struct channel_info { 200 unsigned int flags; 201 #define GEOGRAPHY_ALLOWED 0x00000001 202 203 short max_power; 204 short default_power1; 205 short default_power2; 206 short default_power3; 207 }; 208 209 /* 210 * Antenna setup values. 211 */ 212 struct antenna_setup { 213 enum antenna rx; 214 enum antenna tx; 215 u8 rx_chain_num; 216 u8 tx_chain_num; 217 }; 218 219 /* 220 * Quality statistics about the currently active link. 221 */ 222 struct link_qual { 223 /* 224 * Statistics required for Link tuning by driver 225 * The rssi value is provided by rt2x00lib during the 226 * link_tuner() callback function. 227 * The false_cca field is filled during the link_stats() 228 * callback function and could be used during the 229 * link_tuner() callback function. 230 */ 231 int rssi; 232 int false_cca; 233 234 /* 235 * VGC levels 236 * Hardware driver will tune the VGC level during each call 237 * to the link_tuner() callback function. This vgc_level is 238 * is determined based on the link quality statistics like 239 * average RSSI and the false CCA count. 240 * 241 * In some cases the drivers need to differentiate between 242 * the currently "desired" VGC level and the level configured 243 * in the hardware. The latter is important to reduce the 244 * number of BBP register reads to reduce register access 245 * overhead. For this reason we store both values here. 246 */ 247 u8 vgc_level; 248 u8 vgc_level_reg; 249 250 /* 251 * Statistics required for Signal quality calculation. 252 * These fields might be changed during the link_stats() 253 * callback function. 254 */ 255 int rx_success; 256 int rx_failed; 257 int tx_success; 258 int tx_failed; 259 }; 260 261 DECLARE_EWMA(rssi, 10, 8) 262 263 /* 264 * Antenna settings about the currently active link. 265 */ 266 struct link_ant { 267 /* 268 * Antenna flags 269 */ 270 unsigned int flags; 271 #define ANTENNA_RX_DIVERSITY 0x00000001 272 #define ANTENNA_TX_DIVERSITY 0x00000002 273 #define ANTENNA_MODE_SAMPLE 0x00000004 274 275 /* 276 * Currently active TX/RX antenna setup. 277 * When software diversity is used, this will indicate 278 * which antenna is actually used at this time. 279 */ 280 struct antenna_setup active; 281 282 /* 283 * RSSI history information for the antenna. 284 * Used to determine when to switch antenna 285 * when using software diversity. 286 */ 287 int rssi_history; 288 289 /* 290 * Current RSSI average of the currently active antenna. 291 * Similar to the avg_rssi in the link_qual structure 292 * this value is updated by using the walking average. 293 */ 294 struct ewma_rssi rssi_ant; 295 }; 296 297 /* 298 * To optimize the quality of the link we need to store 299 * the quality of received frames and periodically 300 * optimize the link. 301 */ 302 struct link { 303 /* 304 * Link tuner counter 305 * The number of times the link has been tuned 306 * since the radio has been switched on. 307 */ 308 u32 count; 309 310 /* 311 * Quality measurement values. 312 */ 313 struct link_qual qual; 314 315 /* 316 * TX/RX antenna setup. 317 */ 318 struct link_ant ant; 319 320 /* 321 * Currently active average RSSI value 322 */ 323 struct ewma_rssi avg_rssi; 324 325 /* 326 * Work structure for scheduling periodic link tuning. 327 */ 328 struct delayed_work work; 329 330 /* 331 * Work structure for scheduling periodic watchdog monitoring. 332 * This work must be scheduled on the kernel workqueue, while 333 * all other work structures must be queued on the mac80211 334 * workqueue. This guarantees that the watchdog can schedule 335 * other work structures and wait for their completion in order 336 * to bring the device/driver back into the desired state. 337 */ 338 struct delayed_work watchdog_work; 339 340 /* 341 * Work structure for scheduling periodic AGC adjustments. 342 */ 343 struct delayed_work agc_work; 344 345 /* 346 * Work structure for scheduling periodic VCO calibration. 347 */ 348 struct delayed_work vco_work; 349 }; 350 351 enum rt2x00_delayed_flags { 352 DELAYED_UPDATE_BEACON, 353 }; 354 355 /* 356 * Interface structure 357 * Per interface configuration details, this structure 358 * is allocated as the private data for ieee80211_vif. 359 */ 360 struct rt2x00_intf { 361 /* 362 * beacon->skb must be protected with the mutex. 363 */ 364 struct mutex beacon_skb_mutex; 365 366 /* 367 * Entry in the beacon queue which belongs to 368 * this interface. Each interface has its own 369 * dedicated beacon entry. 370 */ 371 struct queue_entry *beacon; 372 bool enable_beacon; 373 374 /* 375 * Actions that needed rescheduling. 376 */ 377 unsigned long delayed_flags; 378 379 /* 380 * Software sequence counter, this is only required 381 * for hardware which doesn't support hardware 382 * sequence counting. 383 */ 384 atomic_t seqno; 385 }; 386 387 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 388 { 389 return (struct rt2x00_intf *)vif->drv_priv; 390 } 391 392 /** 393 * struct hw_mode_spec: Hardware specifications structure 394 * 395 * Details about the supported modes, rates and channels 396 * of a particular chipset. This is used by rt2x00lib 397 * to build the ieee80211_hw_mode array for mac80211. 398 * 399 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 400 * @supported_rates: Rate types which are supported (CCK, OFDM). 401 * @num_channels: Number of supported channels. This is used as array size 402 * for @tx_power_a, @tx_power_bg and @channels. 403 * @channels: Device/chipset specific channel values (See &struct rf_channel). 404 * @channels_info: Additional information for channels (See &struct channel_info). 405 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 406 */ 407 struct hw_mode_spec { 408 unsigned int supported_bands; 409 #define SUPPORT_BAND_2GHZ 0x00000001 410 #define SUPPORT_BAND_5GHZ 0x00000002 411 412 unsigned int supported_rates; 413 #define SUPPORT_RATE_CCK 0x00000001 414 #define SUPPORT_RATE_OFDM 0x00000002 415 416 unsigned int num_channels; 417 const struct rf_channel *channels; 418 const struct channel_info *channels_info; 419 420 struct ieee80211_sta_ht_cap ht; 421 }; 422 423 /* 424 * Configuration structure wrapper around the 425 * mac80211 configuration structure. 426 * When mac80211 configures the driver, rt2x00lib 427 * can precalculate values which are equal for all 428 * rt2x00 drivers. Those values can be stored in here. 429 */ 430 struct rt2x00lib_conf { 431 struct ieee80211_conf *conf; 432 433 struct rf_channel rf; 434 struct channel_info channel; 435 }; 436 437 /* 438 * Configuration structure for erp settings. 439 */ 440 struct rt2x00lib_erp { 441 int short_preamble; 442 int cts_protection; 443 444 u32 basic_rates; 445 446 int slot_time; 447 448 short sifs; 449 short pifs; 450 short difs; 451 short eifs; 452 453 u16 beacon_int; 454 u16 ht_opmode; 455 }; 456 457 /* 458 * Configuration structure for hardware encryption. 459 */ 460 struct rt2x00lib_crypto { 461 enum cipher cipher; 462 463 enum set_key_cmd cmd; 464 const u8 *address; 465 466 u32 bssidx; 467 468 u8 key[16]; 469 u8 tx_mic[8]; 470 u8 rx_mic[8]; 471 472 int wcid; 473 }; 474 475 /* 476 * Configuration structure wrapper around the 477 * rt2x00 interface configuration handler. 478 */ 479 struct rt2x00intf_conf { 480 /* 481 * Interface type 482 */ 483 enum nl80211_iftype type; 484 485 /* 486 * TSF sync value, this is dependent on the operation type. 487 */ 488 enum tsf_sync sync; 489 490 /* 491 * The MAC and BSSID addresses are simple array of bytes, 492 * these arrays are little endian, so when sending the addresses 493 * to the drivers, copy the it into a endian-signed variable. 494 * 495 * Note that all devices (except rt2500usb) have 32 bits 496 * register word sizes. This means that whatever variable we 497 * pass _must_ be a multiple of 32 bits. Otherwise the device 498 * might not accept what we are sending to it. 499 * This will also make it easier for the driver to write 500 * the data to the device. 501 */ 502 __le32 mac[2]; 503 __le32 bssid[2]; 504 }; 505 506 /* 507 * Private structure for storing STA details 508 * wcid: Wireless Client ID 509 */ 510 struct rt2x00_sta { 511 int wcid; 512 }; 513 514 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 515 { 516 return (struct rt2x00_sta *)sta->drv_priv; 517 } 518 519 /* 520 * rt2x00lib callback functions. 521 */ 522 struct rt2x00lib_ops { 523 /* 524 * Interrupt handlers. 525 */ 526 irq_handler_t irq_handler; 527 528 /* 529 * TX status tasklet handler. 530 */ 531 void (*txstatus_tasklet) (unsigned long data); 532 void (*pretbtt_tasklet) (unsigned long data); 533 void (*tbtt_tasklet) (unsigned long data); 534 void (*rxdone_tasklet) (unsigned long data); 535 void (*autowake_tasklet) (unsigned long data); 536 537 /* 538 * Device init handlers. 539 */ 540 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 541 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 542 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 543 const u8 *data, const size_t len); 544 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 545 const u8 *data, const size_t len); 546 547 /* 548 * Device initialization/deinitialization handlers. 549 */ 550 int (*initialize) (struct rt2x00_dev *rt2x00dev); 551 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 552 553 /* 554 * queue initialization handlers 555 */ 556 bool (*get_entry_state) (struct queue_entry *entry); 557 void (*clear_entry) (struct queue_entry *entry); 558 559 /* 560 * Radio control handlers. 561 */ 562 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 563 enum dev_state state); 564 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 565 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 566 struct link_qual *qual); 567 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 568 struct link_qual *qual); 569 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 570 struct link_qual *qual, const u32 count); 571 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 572 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 573 574 /* 575 * Data queue handlers. 576 */ 577 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 578 void (*start_queue) (struct data_queue *queue); 579 void (*kick_queue) (struct data_queue *queue); 580 void (*stop_queue) (struct data_queue *queue); 581 void (*flush_queue) (struct data_queue *queue, bool drop); 582 void (*tx_dma_done) (struct queue_entry *entry); 583 584 /* 585 * TX control handlers 586 */ 587 void (*write_tx_desc) (struct queue_entry *entry, 588 struct txentry_desc *txdesc); 589 void (*write_tx_data) (struct queue_entry *entry, 590 struct txentry_desc *txdesc); 591 void (*write_beacon) (struct queue_entry *entry, 592 struct txentry_desc *txdesc); 593 void (*clear_beacon) (struct queue_entry *entry); 594 int (*get_tx_data_len) (struct queue_entry *entry); 595 596 /* 597 * RX control handlers 598 */ 599 void (*fill_rxdone) (struct queue_entry *entry, 600 struct rxdone_entry_desc *rxdesc); 601 602 /* 603 * Configuration handlers. 604 */ 605 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 606 struct rt2x00lib_crypto *crypto, 607 struct ieee80211_key_conf *key); 608 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 609 struct rt2x00lib_crypto *crypto, 610 struct ieee80211_key_conf *key); 611 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 612 const unsigned int filter_flags); 613 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 614 struct rt2x00_intf *intf, 615 struct rt2x00intf_conf *conf, 616 const unsigned int flags); 617 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 618 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 619 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 620 621 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 622 struct rt2x00lib_erp *erp, 623 u32 changed); 624 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 625 struct antenna_setup *ant); 626 void (*config) (struct rt2x00_dev *rt2x00dev, 627 struct rt2x00lib_conf *libconf, 628 const unsigned int changed_flags); 629 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 630 struct ieee80211_vif *vif, 631 struct ieee80211_sta *sta); 632 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 633 struct ieee80211_sta *sta); 634 }; 635 636 /* 637 * rt2x00 driver callback operation structure. 638 */ 639 struct rt2x00_ops { 640 const char *name; 641 const unsigned int drv_data_size; 642 const unsigned int max_ap_intf; 643 const unsigned int eeprom_size; 644 const unsigned int rf_size; 645 const unsigned int tx_queues; 646 void (*queue_init)(struct data_queue *queue); 647 const struct rt2x00lib_ops *lib; 648 const void *drv; 649 const struct ieee80211_ops *hw; 650 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 651 const struct rt2x00debug *debugfs; 652 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 653 }; 654 655 /* 656 * rt2x00 state flags 657 */ 658 enum rt2x00_state_flags { 659 /* 660 * Device flags 661 */ 662 DEVICE_STATE_PRESENT, 663 DEVICE_STATE_REGISTERED_HW, 664 DEVICE_STATE_INITIALIZED, 665 DEVICE_STATE_STARTED, 666 DEVICE_STATE_ENABLED_RADIO, 667 DEVICE_STATE_SCANNING, 668 DEVICE_STATE_FLUSHING, 669 670 /* 671 * Driver configuration 672 */ 673 CONFIG_CHANNEL_HT40, 674 CONFIG_POWERSAVING, 675 CONFIG_HT_DISABLED, 676 CONFIG_MONITORING, 677 678 /* 679 * Mark we currently are sequentially reading TX_STA_FIFO register 680 * FIXME: this is for only rt2800usb, should go to private data 681 */ 682 TX_STATUS_READING, 683 }; 684 685 /* 686 * rt2x00 capability flags 687 */ 688 enum rt2x00_capability_flags { 689 /* 690 * Requirements 691 */ 692 REQUIRE_FIRMWARE, 693 REQUIRE_BEACON_GUARD, 694 REQUIRE_ATIM_QUEUE, 695 REQUIRE_DMA, 696 REQUIRE_COPY_IV, 697 REQUIRE_L2PAD, 698 REQUIRE_TXSTATUS_FIFO, 699 REQUIRE_TASKLET_CONTEXT, 700 REQUIRE_SW_SEQNO, 701 REQUIRE_HT_TX_DESC, 702 REQUIRE_PS_AUTOWAKE, 703 REQUIRE_DELAYED_RFKILL, 704 705 /* 706 * Capabilities 707 */ 708 CAPABILITY_HW_BUTTON, 709 CAPABILITY_HW_CRYPTO, 710 CAPABILITY_POWER_LIMIT, 711 CAPABILITY_CONTROL_FILTERS, 712 CAPABILITY_CONTROL_FILTER_PSPOLL, 713 CAPABILITY_PRE_TBTT_INTERRUPT, 714 CAPABILITY_LINK_TUNING, 715 CAPABILITY_FRAME_TYPE, 716 CAPABILITY_RF_SEQUENCE, 717 CAPABILITY_EXTERNAL_LNA_A, 718 CAPABILITY_EXTERNAL_LNA_BG, 719 CAPABILITY_DOUBLE_ANTENNA, 720 CAPABILITY_BT_COEXIST, 721 CAPABILITY_VCO_RECALIBRATION, 722 CAPABILITY_EXTERNAL_PA_TX0, 723 CAPABILITY_EXTERNAL_PA_TX1, 724 }; 725 726 /* 727 * Interface combinations 728 */ 729 enum { 730 IF_COMB_AP = 0, 731 NUM_IF_COMB, 732 }; 733 734 /* 735 * rt2x00 device structure. 736 */ 737 struct rt2x00_dev { 738 /* 739 * Device structure. 740 * The structure stored in here depends on the 741 * system bus (PCI or USB). 742 * When accessing this variable, the rt2x00dev_{pci,usb} 743 * macros should be used for correct typecasting. 744 */ 745 struct device *dev; 746 747 /* 748 * Callback functions. 749 */ 750 const struct rt2x00_ops *ops; 751 752 /* 753 * Driver data. 754 */ 755 void *drv_data; 756 757 /* 758 * IEEE80211 control structure. 759 */ 760 struct ieee80211_hw *hw; 761 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 762 enum nl80211_band curr_band; 763 int curr_freq; 764 765 /* 766 * If enabled, the debugfs interface structures 767 * required for deregistration of debugfs. 768 */ 769 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 770 struct rt2x00debug_intf *debugfs_intf; 771 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 772 773 /* 774 * LED structure for changing the LED status 775 * by mac8011 or the kernel. 776 */ 777 #ifdef CONFIG_RT2X00_LIB_LEDS 778 struct rt2x00_led led_radio; 779 struct rt2x00_led led_assoc; 780 struct rt2x00_led led_qual; 781 u16 led_mcu_reg; 782 #endif /* CONFIG_RT2X00_LIB_LEDS */ 783 784 /* 785 * Device state flags. 786 * In these flags the current status is stored. 787 * Access to these flags should occur atomically. 788 */ 789 unsigned long flags; 790 791 /* 792 * Device capabiltiy flags. 793 * In these flags the device/driver capabilities are stored. 794 * Access to these flags should occur non-atomically. 795 */ 796 unsigned long cap_flags; 797 798 /* 799 * Device information, Bus IRQ and name (PCI, SoC) 800 */ 801 int irq; 802 const char *name; 803 804 /* 805 * Chipset identification. 806 */ 807 struct rt2x00_chip chip; 808 809 /* 810 * hw capability specifications. 811 */ 812 struct hw_mode_spec spec; 813 814 /* 815 * This is the default TX/RX antenna setup as indicated 816 * by the device's EEPROM. 817 */ 818 struct antenna_setup default_ant; 819 820 /* 821 * Register pointers 822 * csr.base: CSR base register address. (PCI) 823 * csr.cache: CSR cache for usb_control_msg. (USB) 824 */ 825 union csr { 826 void __iomem *base; 827 void *cache; 828 } csr; 829 830 /* 831 * Mutex to protect register accesses. 832 * For PCI and USB devices it protects against concurrent indirect 833 * register access (BBP, RF, MCU) since accessing those 834 * registers require multiple calls to the CSR registers. 835 * For USB devices it also protects the csr_cache since that 836 * field is used for normal CSR access and it cannot support 837 * multiple callers simultaneously. 838 */ 839 struct mutex csr_mutex; 840 841 /* 842 * Mutex to synchronize config and link tuner. 843 */ 844 struct mutex conf_mutex; 845 /* 846 * Current packet filter configuration for the device. 847 * This contains all currently active FIF_* flags send 848 * to us by mac80211 during configure_filter(). 849 */ 850 unsigned int packet_filter; 851 852 /* 853 * Interface details: 854 * - Open ap interface count. 855 * - Open sta interface count. 856 * - Association count. 857 * - Beaconing enabled count. 858 */ 859 unsigned int intf_ap_count; 860 unsigned int intf_sta_count; 861 unsigned int intf_associated; 862 unsigned int intf_beaconing; 863 864 /* 865 * Interface combinations 866 */ 867 struct ieee80211_iface_limit if_limits_ap; 868 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 869 870 /* 871 * Link quality 872 */ 873 struct link link; 874 875 /* 876 * EEPROM data. 877 */ 878 __le16 *eeprom; 879 880 /* 881 * Active RF register values. 882 * These are stored here so we don't need 883 * to read the rf registers and can directly 884 * use this value instead. 885 * This field should be accessed by using 886 * rt2x00_rf_read() and rt2x00_rf_write(). 887 */ 888 u32 *rf; 889 890 /* 891 * LNA gain 892 */ 893 short lna_gain; 894 895 /* 896 * Current TX power value. 897 */ 898 u16 tx_power; 899 900 /* 901 * Current retry values. 902 */ 903 u8 short_retry; 904 u8 long_retry; 905 906 /* 907 * Rssi <-> Dbm offset 908 */ 909 u8 rssi_offset; 910 911 /* 912 * Frequency offset. 913 */ 914 u8 freq_offset; 915 916 /* 917 * Association id. 918 */ 919 u16 aid; 920 921 /* 922 * Beacon interval. 923 */ 924 u16 beacon_int; 925 926 /** 927 * Timestamp of last received beacon 928 */ 929 unsigned long last_beacon; 930 931 /* 932 * Low level statistics which will have 933 * to be kept up to date while device is running. 934 */ 935 struct ieee80211_low_level_stats low_level_stats; 936 937 /** 938 * Work queue for all work which should not be placed 939 * on the mac80211 workqueue (because of dependencies 940 * between various work structures). 941 */ 942 struct workqueue_struct *workqueue; 943 944 /* 945 * Scheduled work. 946 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 947 * which means it cannot be placed on the hw->workqueue 948 * due to RTNL locking requirements. 949 */ 950 struct work_struct intf_work; 951 952 /** 953 * Scheduled work for TX/RX done handling (USB devices) 954 */ 955 struct work_struct rxdone_work; 956 struct work_struct txdone_work; 957 958 /* 959 * Powersaving work 960 */ 961 struct delayed_work autowakeup_work; 962 struct work_struct sleep_work; 963 964 /* 965 * Data queue arrays for RX, TX, Beacon and ATIM. 966 */ 967 unsigned int data_queues; 968 struct data_queue *rx; 969 struct data_queue *tx; 970 struct data_queue *bcn; 971 struct data_queue *atim; 972 973 /* 974 * Firmware image. 975 */ 976 const struct firmware *fw; 977 978 /* 979 * FIFO for storing tx status reports between isr and tasklet. 980 */ 981 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 982 983 unsigned long last_nostatus_check; 984 985 /* 986 * Timer to ensure tx status reports are read (rt2800usb). 987 */ 988 struct hrtimer txstatus_timer; 989 990 /* 991 * Tasklet for processing tx status reports (rt2800pci). 992 */ 993 struct tasklet_struct txstatus_tasklet; 994 struct tasklet_struct pretbtt_tasklet; 995 struct tasklet_struct tbtt_tasklet; 996 struct tasklet_struct rxdone_tasklet; 997 struct tasklet_struct autowake_tasklet; 998 999 /* 1000 * Used for VCO periodic calibration. 1001 */ 1002 int rf_channel; 1003 1004 /* 1005 * Protect the interrupt mask register. 1006 */ 1007 spinlock_t irqmask_lock; 1008 1009 /* 1010 * List of BlockAckReq TX entries that need driver BlockAck processing. 1011 */ 1012 struct list_head bar_list; 1013 spinlock_t bar_list_lock; 1014 1015 /* Extra TX headroom required for alignment purposes. */ 1016 unsigned int extra_tx_headroom; 1017 1018 struct usb_anchor *anchor; 1019 1020 /* Clock for System On Chip devices. */ 1021 struct clk *clk; 1022 }; 1023 1024 struct rt2x00_bar_list_entry { 1025 struct list_head list; 1026 struct rcu_head head; 1027 1028 struct queue_entry *entry; 1029 int block_acked; 1030 1031 /* Relevant parts of the IEEE80211 BAR header */ 1032 __u8 ra[6]; 1033 __u8 ta[6]; 1034 __le16 control; 1035 __le16 start_seq_num; 1036 }; 1037 1038 /* 1039 * Register defines. 1040 * Some registers require multiple attempts before success, 1041 * in those cases REGISTER_BUSY_COUNT attempts should be 1042 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1043 * bus delays, we do not have to loop so many times to wait 1044 * for valid register value on that bus. 1045 */ 1046 #define REGISTER_BUSY_COUNT 100 1047 #define REGISTER_USB_BUSY_COUNT 20 1048 #define REGISTER_BUSY_DELAY 100 1049 1050 /* 1051 * Generic RF access. 1052 * The RF is being accessed by word index. 1053 */ 1054 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1055 const unsigned int word) 1056 { 1057 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1058 return rt2x00dev->rf[word - 1]; 1059 } 1060 1061 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1062 const unsigned int word, u32 data) 1063 { 1064 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1065 rt2x00dev->rf[word - 1] = data; 1066 } 1067 1068 /* 1069 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1070 */ 1071 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1072 const unsigned int word) 1073 { 1074 return (void *)&rt2x00dev->eeprom[word]; 1075 } 1076 1077 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1078 const unsigned int word) 1079 { 1080 return le16_to_cpu(rt2x00dev->eeprom[word]); 1081 } 1082 1083 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1084 const unsigned int word, u16 data) 1085 { 1086 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1087 } 1088 1089 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1090 const unsigned int byte) 1091 { 1092 return *(((u8 *)rt2x00dev->eeprom) + byte); 1093 } 1094 1095 /* 1096 * Chipset handlers 1097 */ 1098 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1099 const u16 rt, const u16 rf, const u16 rev) 1100 { 1101 rt2x00dev->chip.rt = rt; 1102 rt2x00dev->chip.rf = rf; 1103 rt2x00dev->chip.rev = rev; 1104 1105 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1106 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1107 rt2x00dev->chip.rev); 1108 } 1109 1110 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1111 const u16 rt, const u16 rev) 1112 { 1113 rt2x00dev->chip.rt = rt; 1114 rt2x00dev->chip.rev = rev; 1115 1116 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1117 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1118 } 1119 1120 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1121 { 1122 rt2x00dev->chip.rf = rf; 1123 1124 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1125 rt2x00dev->chip.rf); 1126 } 1127 1128 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1129 { 1130 return (rt2x00dev->chip.rt == rt); 1131 } 1132 1133 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1134 { 1135 return (rt2x00dev->chip.rf == rf); 1136 } 1137 1138 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1139 { 1140 return rt2x00dev->chip.rev; 1141 } 1142 1143 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1144 const u16 rt, const u16 rev) 1145 { 1146 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1147 } 1148 1149 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1150 const u16 rt, const u16 rev) 1151 { 1152 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1153 } 1154 1155 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1156 const u16 rt, const u16 rev) 1157 { 1158 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1159 } 1160 1161 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1162 enum rt2x00_chip_intf intf) 1163 { 1164 rt2x00dev->chip.intf = intf; 1165 } 1166 1167 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1168 enum rt2x00_chip_intf intf) 1169 { 1170 return (rt2x00dev->chip.intf == intf); 1171 } 1172 1173 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1174 { 1175 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1176 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1177 } 1178 1179 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1180 { 1181 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1182 } 1183 1184 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1185 { 1186 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1187 } 1188 1189 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1190 { 1191 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1192 } 1193 1194 /* Helpers for capability flags */ 1195 1196 static inline bool 1197 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1198 enum rt2x00_capability_flags cap_flag) 1199 { 1200 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1201 } 1202 1203 static inline bool 1204 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1205 { 1206 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1207 } 1208 1209 static inline bool 1210 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1211 { 1212 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1213 } 1214 1215 static inline bool 1216 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1217 { 1218 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1219 } 1220 1221 static inline bool 1222 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1223 { 1224 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1225 } 1226 1227 static inline bool 1228 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1229 { 1230 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1231 } 1232 1233 static inline bool 1234 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1235 { 1236 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1237 } 1238 1239 static inline bool 1240 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1241 { 1242 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1243 } 1244 1245 static inline bool 1246 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1247 { 1248 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1249 } 1250 1251 static inline bool 1252 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1253 { 1254 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1255 } 1256 1257 static inline bool 1258 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1259 { 1260 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1261 } 1262 1263 static inline bool 1264 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1265 { 1266 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1267 } 1268 1269 static inline bool 1270 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1271 { 1272 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1273 } 1274 1275 static inline bool 1276 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1277 { 1278 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1279 } 1280 1281 /** 1282 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1283 * @entry: Pointer to &struct queue_entry 1284 * 1285 * Returns -ENOMEM if mapping fail, 0 otherwise. 1286 */ 1287 int rt2x00queue_map_txskb(struct queue_entry *entry); 1288 1289 /** 1290 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1291 * @entry: Pointer to &struct queue_entry 1292 */ 1293 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1294 1295 /** 1296 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1297 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1298 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1299 * 1300 * Returns NULL for non tx queues. 1301 */ 1302 static inline struct data_queue * 1303 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1304 const enum data_queue_qid queue) 1305 { 1306 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1307 return &rt2x00dev->tx[queue]; 1308 1309 if (queue == QID_ATIM) 1310 return rt2x00dev->atim; 1311 1312 return NULL; 1313 } 1314 1315 /** 1316 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1317 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1318 * @index: Index identifier for obtaining the correct index. 1319 */ 1320 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1321 enum queue_index index); 1322 1323 /** 1324 * rt2x00queue_pause_queue - Pause a data queue 1325 * @queue: Pointer to &struct data_queue. 1326 * 1327 * This function will pause the data queue locally, preventing 1328 * new frames to be added to the queue (while the hardware is 1329 * still allowed to run). 1330 */ 1331 void rt2x00queue_pause_queue(struct data_queue *queue); 1332 1333 /** 1334 * rt2x00queue_unpause_queue - unpause a data queue 1335 * @queue: Pointer to &struct data_queue. 1336 * 1337 * This function will unpause the data queue locally, allowing 1338 * new frames to be added to the queue again. 1339 */ 1340 void rt2x00queue_unpause_queue(struct data_queue *queue); 1341 1342 /** 1343 * rt2x00queue_start_queue - Start a data queue 1344 * @queue: Pointer to &struct data_queue. 1345 * 1346 * This function will start handling all pending frames in the queue. 1347 */ 1348 void rt2x00queue_start_queue(struct data_queue *queue); 1349 1350 /** 1351 * rt2x00queue_stop_queue - Halt a data queue 1352 * @queue: Pointer to &struct data_queue. 1353 * 1354 * This function will stop all pending frames in the queue. 1355 */ 1356 void rt2x00queue_stop_queue(struct data_queue *queue); 1357 1358 /** 1359 * rt2x00queue_flush_queue - Flush a data queue 1360 * @queue: Pointer to &struct data_queue. 1361 * @drop: True to drop all pending frames. 1362 * 1363 * This function will flush the queue. After this call 1364 * the queue is guaranteed to be empty. 1365 */ 1366 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1367 1368 /** 1369 * rt2x00queue_start_queues - Start all data queues 1370 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1371 * 1372 * This function will loop through all available queues to start them 1373 */ 1374 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1375 1376 /** 1377 * rt2x00queue_stop_queues - Halt all data queues 1378 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1379 * 1380 * This function will loop through all available queues to stop 1381 * any pending frames. 1382 */ 1383 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1384 1385 /** 1386 * rt2x00queue_flush_queues - Flush all data queues 1387 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1388 * @drop: True to drop all pending frames. 1389 * 1390 * This function will loop through all available queues to flush 1391 * any pending frames. 1392 */ 1393 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1394 1395 /* 1396 * Debugfs handlers. 1397 */ 1398 /** 1399 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1400 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1401 * @type: The type of frame that is being dumped. 1402 * @entry: The queue entry containing the frame to be dumped. 1403 */ 1404 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1405 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1406 enum rt2x00_dump_type type, struct queue_entry *entry); 1407 #else 1408 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1409 enum rt2x00_dump_type type, 1410 struct queue_entry *entry) 1411 { 1412 } 1413 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1414 1415 /* 1416 * Utility functions. 1417 */ 1418 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1419 struct ieee80211_vif *vif); 1420 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1421 1422 /* 1423 * Interrupt context handlers. 1424 */ 1425 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1426 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1427 void rt2x00lib_dmastart(struct queue_entry *entry); 1428 void rt2x00lib_dmadone(struct queue_entry *entry); 1429 void rt2x00lib_txdone(struct queue_entry *entry, 1430 struct txdone_entry_desc *txdesc); 1431 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 1432 struct txdone_entry_desc *txdesc); 1433 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1434 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1435 1436 /* 1437 * mac80211 handlers. 1438 */ 1439 void rt2x00mac_tx(struct ieee80211_hw *hw, 1440 struct ieee80211_tx_control *control, 1441 struct sk_buff *skb); 1442 int rt2x00mac_start(struct ieee80211_hw *hw); 1443 void rt2x00mac_stop(struct ieee80211_hw *hw); 1444 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1445 struct ieee80211_vif *vif); 1446 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1447 struct ieee80211_vif *vif); 1448 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1449 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1450 unsigned int changed_flags, 1451 unsigned int *total_flags, 1452 u64 multicast); 1453 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1454 bool set); 1455 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1456 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1457 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1458 struct ieee80211_key_conf *key); 1459 #else 1460 #define rt2x00mac_set_key NULL 1461 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1462 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1463 struct ieee80211_vif *vif, 1464 const u8 *mac_addr); 1465 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1466 struct ieee80211_vif *vif); 1467 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1468 struct ieee80211_low_level_stats *stats); 1469 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1470 struct ieee80211_vif *vif, 1471 struct ieee80211_bss_conf *bss_conf, 1472 u32 changes); 1473 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1474 struct ieee80211_vif *vif, u16 queue, 1475 const struct ieee80211_tx_queue_params *params); 1476 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1477 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1478 u32 queues, bool drop); 1479 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1480 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1481 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1482 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1483 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1484 1485 /* 1486 * Driver allocation handlers. 1487 */ 1488 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1489 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1490 #ifdef CONFIG_PM 1491 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1492 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1493 #endif /* CONFIG_PM */ 1494 1495 #endif /* RT2X00_H */ 1496