1 /*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2  *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3  *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4  *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5  *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6  *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7  *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8  *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9  *	<http://rt2x00.serialmonkey.com>
10  *
11  *	This program is free software; you can redistribute it and/or modify
12  *	it under the terms of the GNU General Public License as published by
13  *	the Free Software Foundation; either version 2 of the License, or
14  *	(at your option) any later version.
15  *
16  *	This program is distributed in the hope that it will be useful,
17  *	but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  *	GNU General Public License for more details.
20  *
21  *	You should have received a copy of the GNU General Public License
22  *	along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 /*	Module: rt2800mmio
26  *	Abstract: rt2800 MMIO device routines.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2800.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
38 
39 /*
40  * TX descriptor initialization
41  */
42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
43 {
44 	return (__le32 *) entry->skb->data;
45 }
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
47 
48 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
49 			      struct txentry_desc *txdesc)
50 {
51 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
52 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
53 	__le32 *txd = entry_priv->desc;
54 	u32 word;
55 	const unsigned int txwi_size = entry->queue->winfo_size;
56 
57 	/*
58 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
60 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62 	 * data. It means that LAST_SEC0 is always 0.
63 	 */
64 
65 	/*
66 	 * Initialize TX descriptor
67 	 */
68 	word = 0;
69 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
70 	rt2x00_desc_write(txd, 0, word);
71 
72 	word = 0;
73 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
74 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
75 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
76 	rt2x00_set_field32(&word, TXD_W1_BURST,
77 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
78 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
79 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
80 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
81 	rt2x00_desc_write(txd, 1, word);
82 
83 	word = 0;
84 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
85 			   skbdesc->skb_dma + txwi_size);
86 	rt2x00_desc_write(txd, 2, word);
87 
88 	word = 0;
89 	rt2x00_set_field32(&word, TXD_W3_WIV,
90 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
91 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
92 	rt2x00_desc_write(txd, 3, word);
93 
94 	/*
95 	 * Register descriptor details in skb frame descriptor.
96 	 */
97 	skbdesc->desc = txd;
98 	skbdesc->desc_len = TXD_DESC_SIZE;
99 }
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
101 
102 /*
103  * RX control handlers
104  */
105 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
106 			    struct rxdone_entry_desc *rxdesc)
107 {
108 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
109 	__le32 *rxd = entry_priv->desc;
110 	u32 word;
111 
112 	word = rt2x00_desc_read(rxd, 3);
113 
114 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
115 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
116 
117 	/*
118 	 * Unfortunately we don't know the cipher type used during
119 	 * decryption. This prevents us from correct providing
120 	 * correct statistics through debugfs.
121 	 */
122 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
123 
124 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
125 		/*
126 		 * Hardware has stripped IV/EIV data from 802.11 frame during
127 		 * decryption. Unfortunately the descriptor doesn't contain
128 		 * any fields with the EIV/IV data either, so they can't
129 		 * be restored by rt2x00lib.
130 		 */
131 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
132 
133 		/*
134 		 * The hardware has already checked the Michael Mic and has
135 		 * stripped it from the frame. Signal this to mac80211.
136 		 */
137 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
138 
139 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
140 			rxdesc->flags |= RX_FLAG_DECRYPTED;
141 		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
142 			/*
143 			 * In order to check the Michael Mic, the packet must have
144 			 * been decrypted.  Mac80211 doesnt check the MMIC failure
145 			 * flag to initiate MMIC countermeasures if the decoded flag
146 			 * has not been set.
147 			 */
148 			rxdesc->flags |= RX_FLAG_DECRYPTED;
149 
150 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
151 		}
152 	}
153 
154 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
155 		rxdesc->dev_flags |= RXDONE_MY_BSS;
156 
157 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
158 		rxdesc->dev_flags |= RXDONE_L2PAD;
159 
160 	/*
161 	 * Process the RXWI structure that is at the start of the buffer.
162 	 */
163 	rt2800_process_rxwi(entry, rxdesc);
164 }
165 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
166 
167 /*
168  * Interrupt functions.
169  */
170 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
171 {
172 	struct ieee80211_conf conf = { .flags = 0 };
173 	struct rt2x00lib_conf libconf = { .conf = &conf };
174 
175 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
176 }
177 
178 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
179 					       struct rt2x00_field32 irq_field)
180 {
181 	u32 reg;
182 
183 	/*
184 	 * Enable a single interrupt. The interrupt mask register
185 	 * access needs locking.
186 	 */
187 	spin_lock_irq(&rt2x00dev->irqmask_lock);
188 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
189 	rt2x00_set_field32(&reg, irq_field, 1);
190 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
191 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
192 }
193 
194 void rt2800mmio_pretbtt_tasklet(unsigned long data)
195 {
196 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
197 	rt2x00lib_pretbtt(rt2x00dev);
198 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
199 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
200 }
201 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
202 
203 void rt2800mmio_tbtt_tasklet(unsigned long data)
204 {
205 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
206 	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
207 	u32 reg;
208 
209 	rt2x00lib_beacondone(rt2x00dev);
210 
211 	if (rt2x00dev->intf_ap_count) {
212 		/*
213 		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
214 		 * causing beacon skew and as a result causing problems with
215 		 * some powersaving clients over time. Shorten the beacon
216 		 * interval every 64 beacons by 64us to mitigate this effect.
217 		 */
218 		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
219 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
220 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
221 					   (rt2x00dev->beacon_int * 16) - 1);
222 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223 		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
224 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
225 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
226 					   (rt2x00dev->beacon_int * 16));
227 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
228 		}
229 		drv_data->tbtt_tick++;
230 		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
231 	}
232 
233 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
234 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
235 }
236 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
237 
238 void rt2800mmio_rxdone_tasklet(unsigned long data)
239 {
240 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
241 	if (rt2x00mmio_rxdone(rt2x00dev))
242 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
243 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
244 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
245 }
246 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
247 
248 void rt2800mmio_autowake_tasklet(unsigned long data)
249 {
250 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
251 	rt2800mmio_wakeup(rt2x00dev);
252 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
253 		rt2800mmio_enable_interrupt(rt2x00dev,
254 					    INT_MASK_CSR_AUTO_WAKEUP);
255 }
256 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
257 
258 static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
259 {
260 	u32 status;
261 	unsigned long flags;
262 
263 	/*
264 	 * The TX_FIFO_STATUS interrupt needs special care. We should
265 	 * read TX_STA_FIFO but we should do it immediately as otherwise
266 	 * the register can overflow and we would lose status reports.
267 	 *
268 	 * Hence, read the TX_STA_FIFO register and copy all tx status
269 	 * reports into a kernel FIFO which is handled in the txstatus
270 	 * tasklet. We use a tasklet to process the tx status reports
271 	 * because we can schedule the tasklet multiple times (when the
272 	 * interrupt fires again during tx status processing).
273 	 *
274 	 * We also read statuses from tx status timeout timer, use
275 	 * lock to prevent concurent writes to fifo.
276 	 */
277 
278 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
279 
280 	while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
281 		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
282 		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
283 			break;
284 
285 		kfifo_put(&rt2x00dev->txstatus_fifo, status);
286 	}
287 
288 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
289 }
290 
291 void rt2800mmio_txstatus_tasklet(unsigned long data)
292 {
293 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
294 
295 	rt2800_txdone(rt2x00dev, 16);
296 
297 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
298 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
299 
300 }
301 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
302 
303 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
304 {
305 	struct rt2x00_dev *rt2x00dev = dev_instance;
306 	u32 reg, mask;
307 
308 	/* Read status and ACK all interrupts */
309 	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
310 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
311 
312 	if (!reg)
313 		return IRQ_NONE;
314 
315 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
316 		return IRQ_HANDLED;
317 
318 	/*
319 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
320 	 * for interrupts and interrupt masks we can just use the value of
321 	 * INT_SOURCE_CSR to create the interrupt mask.
322 	 */
323 	mask = ~reg;
324 
325 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
326 		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
327 		rt2800mmio_fetch_txstatus(rt2x00dev);
328 		if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
329 			tasklet_schedule(&rt2x00dev->txstatus_tasklet);
330 	}
331 
332 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
333 		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
334 
335 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
336 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
337 
338 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
339 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
340 
341 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
342 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
343 
344 	/*
345 	 * Disable all interrupts for which a tasklet was scheduled right now,
346 	 * the tasklet will reenable the appropriate interrupts.
347 	 */
348 	spin_lock(&rt2x00dev->irqmask_lock);
349 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
350 	reg &= mask;
351 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
352 	spin_unlock(&rt2x00dev->irqmask_lock);
353 
354 	return IRQ_HANDLED;
355 }
356 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
357 
358 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
359 			   enum dev_state state)
360 {
361 	u32 reg;
362 	unsigned long flags;
363 
364 	/*
365 	 * When interrupts are being enabled, the interrupt registers
366 	 * should clear the register to assure a clean state.
367 	 */
368 	if (state == STATE_RADIO_IRQ_ON) {
369 		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
370 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
371 	}
372 
373 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
374 	reg = 0;
375 	if (state == STATE_RADIO_IRQ_ON) {
376 		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
377 		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
378 		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
379 		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
380 		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
381 	}
382 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
383 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
384 
385 	if (state == STATE_RADIO_IRQ_OFF) {
386 		/*
387 		 * Wait for possibly running tasklets to finish.
388 		 */
389 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
390 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
391 		tasklet_kill(&rt2x00dev->autowake_tasklet);
392 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
393 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
394 	}
395 }
396 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
397 
398 /*
399  * Queue handlers.
400  */
401 void rt2800mmio_start_queue(struct data_queue *queue)
402 {
403 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
404 	u32 reg;
405 
406 	switch (queue->qid) {
407 	case QID_RX:
408 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
409 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
410 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
411 		break;
412 	case QID_BEACON:
413 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
414 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
415 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
416 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
417 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
418 
419 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
420 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
421 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
422 		break;
423 	default:
424 		break;
425 	}
426 }
427 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
428 
429 /* 200 ms */
430 #define TXSTATUS_TIMEOUT 200000000
431 
432 void rt2800mmio_kick_queue(struct data_queue *queue)
433 {
434 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
435 	struct queue_entry *entry;
436 
437 	switch (queue->qid) {
438 	case QID_AC_VO:
439 	case QID_AC_VI:
440 	case QID_AC_BE:
441 	case QID_AC_BK:
442 		WARN_ON_ONCE(rt2x00queue_empty(queue));
443 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
444 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
445 					  entry->entry_idx);
446 		hrtimer_start(&rt2x00dev->txstatus_timer,
447 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
448 		break;
449 	case QID_MGMT:
450 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
451 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
452 					  entry->entry_idx);
453 		break;
454 	default:
455 		break;
456 	}
457 }
458 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
459 
460 void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
461 {
462 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
463 	bool tx_queue = false;
464 	unsigned int i;
465 
466 	switch (queue->qid) {
467 	case QID_AC_VO:
468 	case QID_AC_VI:
469 	case QID_AC_BE:
470 	case QID_AC_BK:
471 		tx_queue = true;
472 		break;
473 	case QID_RX:
474 		break;
475 	default:
476 		return;
477 	}
478 
479 	for (i = 0; i < 5; i++) {
480 		/*
481 		 * Check if the driver is already done, otherwise we
482 		 * have to sleep a little while to give the driver/hw
483 		 * the oppurtunity to complete interrupt process itself.
484 		 */
485 		if (rt2x00queue_empty(queue))
486 			break;
487 
488 		/*
489 		 * For TX queues schedule completion tasklet to catch
490 		 * tx status timeouts, othewise just wait.
491 		 */
492 		if (tx_queue)
493 			queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
494 
495 		/*
496 		 * Wait for a little while to give the driver
497 		 * the oppurtunity to recover itself.
498 		 */
499 		msleep(50);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
503 
504 void rt2800mmio_stop_queue(struct data_queue *queue)
505 {
506 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
507 	u32 reg;
508 
509 	switch (queue->qid) {
510 	case QID_RX:
511 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
512 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
513 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
514 		break;
515 	case QID_BEACON:
516 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
517 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
518 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
519 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
520 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
521 
522 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
523 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
524 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
525 
526 		/*
527 		 * Wait for current invocation to finish. The tasklet
528 		 * won't be scheduled anymore afterwards since we disabled
529 		 * the TBTT and PRE TBTT timer.
530 		 */
531 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
532 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
533 
534 		break;
535 	default:
536 		break;
537 	}
538 }
539 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
540 
541 void rt2800mmio_queue_init(struct data_queue *queue)
542 {
543 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
544 	unsigned short txwi_size, rxwi_size;
545 
546 	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
547 
548 	switch (queue->qid) {
549 	case QID_RX:
550 		queue->limit = 128;
551 		queue->data_size = AGGREGATION_SIZE;
552 		queue->desc_size = RXD_DESC_SIZE;
553 		queue->winfo_size = rxwi_size;
554 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
555 		break;
556 
557 	case QID_AC_VO:
558 	case QID_AC_VI:
559 	case QID_AC_BE:
560 	case QID_AC_BK:
561 		queue->limit = 64;
562 		queue->data_size = AGGREGATION_SIZE;
563 		queue->desc_size = TXD_DESC_SIZE;
564 		queue->winfo_size = txwi_size;
565 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
566 		break;
567 
568 	case QID_BEACON:
569 		queue->limit = 8;
570 		queue->data_size = 0; /* No DMA required for beacons */
571 		queue->desc_size = TXD_DESC_SIZE;
572 		queue->winfo_size = txwi_size;
573 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
574 		break;
575 
576 	case QID_ATIM:
577 		/* fallthrough */
578 	default:
579 		BUG();
580 		break;
581 	}
582 }
583 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
584 
585 /*
586  * Initialization functions.
587  */
588 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
589 {
590 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
591 	u32 word;
592 
593 	if (entry->queue->qid == QID_RX) {
594 		word = rt2x00_desc_read(entry_priv->desc, 1);
595 
596 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
597 	} else {
598 		word = rt2x00_desc_read(entry_priv->desc, 1);
599 
600 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
601 	}
602 }
603 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
604 
605 void rt2800mmio_clear_entry(struct queue_entry *entry)
606 {
607 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
608 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
609 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
610 	u32 word;
611 
612 	if (entry->queue->qid == QID_RX) {
613 		word = rt2x00_desc_read(entry_priv->desc, 0);
614 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
615 		rt2x00_desc_write(entry_priv->desc, 0, word);
616 
617 		word = rt2x00_desc_read(entry_priv->desc, 1);
618 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
619 		rt2x00_desc_write(entry_priv->desc, 1, word);
620 
621 		/*
622 		 * Set RX IDX in register to inform hardware that we have
623 		 * handled this entry and it is available for reuse again.
624 		 */
625 		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
626 					  entry->entry_idx);
627 	} else {
628 		word = rt2x00_desc_read(entry_priv->desc, 1);
629 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
630 		rt2x00_desc_write(entry_priv->desc, 1, word);
631 
632 		/* If last entry stop txstatus timer */
633 		if (entry->queue->length == 1)
634 			hrtimer_cancel(&rt2x00dev->txstatus_timer);
635 	}
636 }
637 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
638 
639 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
640 {
641 	struct queue_entry_priv_mmio *entry_priv;
642 
643 	/*
644 	 * Initialize registers.
645 	 */
646 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
647 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
648 				  entry_priv->desc_dma);
649 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
650 				  rt2x00dev->tx[0].limit);
651 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
652 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
653 
654 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
655 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
656 				  entry_priv->desc_dma);
657 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
658 				  rt2x00dev->tx[1].limit);
659 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
660 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
661 
662 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
663 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
664 				  entry_priv->desc_dma);
665 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
666 				  rt2x00dev->tx[2].limit);
667 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
668 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
669 
670 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
671 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
672 				  entry_priv->desc_dma);
673 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
674 				  rt2x00dev->tx[3].limit);
675 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
676 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
677 
678 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
679 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
680 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
681 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
682 
683 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
684 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
685 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
686 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
687 
688 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
689 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
690 				  entry_priv->desc_dma);
691 	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
692 				  rt2x00dev->rx[0].limit);
693 	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
694 				  rt2x00dev->rx[0].limit - 1);
695 	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
696 
697 	rt2800_disable_wpdma(rt2x00dev);
698 
699 	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
700 
701 	return 0;
702 }
703 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
704 
705 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
706 {
707 	u32 reg;
708 
709 	/*
710 	 * Reset DMA indexes
711 	 */
712 	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
713 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
714 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
715 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
716 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
717 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
718 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
719 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
720 	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
721 
722 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
723 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
724 
725 	if (rt2x00_is_pcie(rt2x00dev) &&
726 	    (rt2x00_rt(rt2x00dev, RT3090) ||
727 	     rt2x00_rt(rt2x00dev, RT3390) ||
728 	     rt2x00_rt(rt2x00dev, RT3572) ||
729 	     rt2x00_rt(rt2x00dev, RT3593) ||
730 	     rt2x00_rt(rt2x00dev, RT5390) ||
731 	     rt2x00_rt(rt2x00dev, RT5392) ||
732 	     rt2x00_rt(rt2x00dev, RT5592))) {
733 		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
734 		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
735 		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
736 		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
737 	}
738 
739 	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
740 
741 	reg = 0;
742 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
743 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
744 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
745 
746 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
747 
748 	return 0;
749 }
750 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
751 
752 /*
753  * Device state switch handlers.
754  */
755 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
756 {
757 	/* Wait for DMA, ignore error until we initialize queues. */
758 	rt2800_wait_wpdma_ready(rt2x00dev);
759 
760 	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
761 		return -EIO;
762 
763 	return rt2800_enable_radio(rt2x00dev);
764 }
765 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
766 
767 static void rt2800mmio_work_txdone(struct work_struct *work)
768 {
769 	struct rt2x00_dev *rt2x00dev =
770 	    container_of(work, struct rt2x00_dev, txdone_work);
771 
772 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
773 		return;
774 
775 	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
776 	       rt2800_txstatus_timeout(rt2x00dev)) {
777 
778 		tasklet_disable(&rt2x00dev->txstatus_tasklet);
779 		rt2800_txdone(rt2x00dev, UINT_MAX);
780 		rt2800_txdone_nostatus(rt2x00dev);
781 		tasklet_enable(&rt2x00dev->txstatus_tasklet);
782 	}
783 
784 	if (rt2800_txstatus_pending(rt2x00dev))
785 		hrtimer_start(&rt2x00dev->txstatus_timer,
786 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
787 }
788 
789 static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
790 {
791 	struct rt2x00_dev *rt2x00dev =
792 	    container_of(timer, struct rt2x00_dev, txstatus_timer);
793 
794 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
795 		goto out;
796 
797 	if (!rt2800_txstatus_pending(rt2x00dev))
798 		goto out;
799 
800 	rt2800mmio_fetch_txstatus(rt2x00dev);
801 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
802 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
803 	else
804 		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
805 out:
806 	return HRTIMER_NORESTART;
807 }
808 
809 int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
810 {
811 	int retval;
812 
813 	retval = rt2800_probe_hw(rt2x00dev);
814 	if (retval)
815 		return retval;
816 
817 	/*
818 	 * Set txstatus timer function.
819 	 */
820 	rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
821 
822 	/*
823 	 * Overwrite TX done handler
824 	 */
825 	INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
826 
827 	return 0;
828 }
829 EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
830 
831 MODULE_AUTHOR(DRV_PROJECT);
832 MODULE_VERSION(DRV_VERSION);
833 MODULE_DESCRIPTION("rt2800 MMIO library");
834 MODULE_LICENSE("GPL");
835