xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt2800mmio.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3  *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4  *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5  *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6  *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7  *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8  *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9  *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10  *	<http://rt2x00.serialmonkey.com>
11  */
12 
13 /*	Module: rt2800mmio
14  *	Abstract: rt2800 MMIO device routines.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 
21 #include "rt2x00.h"
22 #include "rt2x00mmio.h"
23 #include "rt2800.h"
24 #include "rt2800lib.h"
25 #include "rt2800mmio.h"
26 
27 /*
28  * TX descriptor initialization
29  */
30 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
31 {
32 	return (__le32 *) entry->skb->data;
33 }
34 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
35 
36 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
37 			      struct txentry_desc *txdesc)
38 {
39 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
40 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
41 	__le32 *txd = entry_priv->desc;
42 	u32 word;
43 	const unsigned int txwi_size = entry->queue->winfo_size;
44 
45 	/*
46 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
47 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
48 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
49 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
50 	 * data. It means that LAST_SEC0 is always 0.
51 	 */
52 
53 	/*
54 	 * Initialize TX descriptor
55 	 */
56 	word = 0;
57 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
58 	rt2x00_desc_write(txd, 0, word);
59 
60 	word = 0;
61 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
62 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
63 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
64 	rt2x00_set_field32(&word, TXD_W1_BURST,
65 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
66 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
67 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
68 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
69 	rt2x00_desc_write(txd, 1, word);
70 
71 	word = 0;
72 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
73 			   skbdesc->skb_dma + txwi_size);
74 	rt2x00_desc_write(txd, 2, word);
75 
76 	word = 0;
77 	rt2x00_set_field32(&word, TXD_W3_WIV,
78 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
79 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
80 	rt2x00_desc_write(txd, 3, word);
81 
82 	/*
83 	 * Register descriptor details in skb frame descriptor.
84 	 */
85 	skbdesc->desc = txd;
86 	skbdesc->desc_len = TXD_DESC_SIZE;
87 }
88 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
89 
90 /*
91  * RX control handlers
92  */
93 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
94 			    struct rxdone_entry_desc *rxdesc)
95 {
96 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
97 	__le32 *rxd = entry_priv->desc;
98 	u32 word;
99 
100 	word = rt2x00_desc_read(rxd, 3);
101 
102 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
103 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
104 
105 	/*
106 	 * Unfortunately we don't know the cipher type used during
107 	 * decryption. This prevents us from correct providing
108 	 * correct statistics through debugfs.
109 	 */
110 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
111 
112 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
113 		/*
114 		 * Hardware has stripped IV/EIV data from 802.11 frame during
115 		 * decryption. Unfortunately the descriptor doesn't contain
116 		 * any fields with the EIV/IV data either, so they can't
117 		 * be restored by rt2x00lib.
118 		 */
119 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
120 
121 		/*
122 		 * The hardware has already checked the Michael Mic and has
123 		 * stripped it from the frame. Signal this to mac80211.
124 		 */
125 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
126 
127 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
128 			rxdesc->flags |= RX_FLAG_DECRYPTED;
129 		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
130 			/*
131 			 * In order to check the Michael Mic, the packet must have
132 			 * been decrypted.  Mac80211 doesnt check the MMIC failure
133 			 * flag to initiate MMIC countermeasures if the decoded flag
134 			 * has not been set.
135 			 */
136 			rxdesc->flags |= RX_FLAG_DECRYPTED;
137 
138 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
139 		}
140 	}
141 
142 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
143 		rxdesc->dev_flags |= RXDONE_MY_BSS;
144 
145 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
146 		rxdesc->dev_flags |= RXDONE_L2PAD;
147 
148 	/*
149 	 * Process the RXWI structure that is at the start of the buffer.
150 	 */
151 	rt2800_process_rxwi(entry, rxdesc);
152 }
153 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
154 
155 /*
156  * Interrupt functions.
157  */
158 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
159 {
160 	struct ieee80211_conf conf = { .flags = 0 };
161 	struct rt2x00lib_conf libconf = { .conf = &conf };
162 
163 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
164 }
165 
166 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
167 					       struct rt2x00_field32 irq_field)
168 {
169 	u32 reg;
170 
171 	/*
172 	 * Enable a single interrupt. The interrupt mask register
173 	 * access needs locking.
174 	 */
175 	spin_lock_irq(&rt2x00dev->irqmask_lock);
176 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
177 	rt2x00_set_field32(&reg, irq_field, 1);
178 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
179 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
180 }
181 
182 void rt2800mmio_pretbtt_tasklet(unsigned long data)
183 {
184 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
185 	rt2x00lib_pretbtt(rt2x00dev);
186 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
187 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
188 }
189 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
190 
191 void rt2800mmio_tbtt_tasklet(unsigned long data)
192 {
193 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
194 	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
195 	u32 reg;
196 
197 	rt2x00lib_beacondone(rt2x00dev);
198 
199 	if (rt2x00dev->intf_ap_count) {
200 		/*
201 		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
202 		 * causing beacon skew and as a result causing problems with
203 		 * some powersaving clients over time. Shorten the beacon
204 		 * interval every 64 beacons by 64us to mitigate this effect.
205 		 */
206 		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
207 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
208 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
209 					   (rt2x00dev->beacon_int * 16) - 1);
210 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
211 		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
212 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
213 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
214 					   (rt2x00dev->beacon_int * 16));
215 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
216 		}
217 		drv_data->tbtt_tick++;
218 		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
219 	}
220 
221 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
222 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
223 }
224 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
225 
226 void rt2800mmio_rxdone_tasklet(unsigned long data)
227 {
228 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
229 	if (rt2x00mmio_rxdone(rt2x00dev))
230 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
231 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
232 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
233 }
234 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
235 
236 void rt2800mmio_autowake_tasklet(unsigned long data)
237 {
238 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
239 	rt2800mmio_wakeup(rt2x00dev);
240 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
241 		rt2800mmio_enable_interrupt(rt2x00dev,
242 					    INT_MASK_CSR_AUTO_WAKEUP);
243 }
244 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
245 
246 static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
247 {
248 	u32 status;
249 	unsigned long flags;
250 
251 	/*
252 	 * The TX_FIFO_STATUS interrupt needs special care. We should
253 	 * read TX_STA_FIFO but we should do it immediately as otherwise
254 	 * the register can overflow and we would lose status reports.
255 	 *
256 	 * Hence, read the TX_STA_FIFO register and copy all tx status
257 	 * reports into a kernel FIFO which is handled in the txstatus
258 	 * tasklet. We use a tasklet to process the tx status reports
259 	 * because we can schedule the tasklet multiple times (when the
260 	 * interrupt fires again during tx status processing).
261 	 *
262 	 * We also read statuses from tx status timeout timer, use
263 	 * lock to prevent concurent writes to fifo.
264 	 */
265 
266 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
267 
268 	while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
269 		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
270 		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
271 			break;
272 
273 		kfifo_put(&rt2x00dev->txstatus_fifo, status);
274 	}
275 
276 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
277 }
278 
279 void rt2800mmio_txstatus_tasklet(unsigned long data)
280 {
281 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
282 
283 	rt2800_txdone(rt2x00dev, 16);
284 
285 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
286 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
287 
288 }
289 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
290 
291 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
292 {
293 	struct rt2x00_dev *rt2x00dev = dev_instance;
294 	u32 reg, mask;
295 
296 	/* Read status and ACK all interrupts */
297 	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
298 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
299 
300 	if (!reg)
301 		return IRQ_NONE;
302 
303 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
304 		return IRQ_HANDLED;
305 
306 	/*
307 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
308 	 * for interrupts and interrupt masks we can just use the value of
309 	 * INT_SOURCE_CSR to create the interrupt mask.
310 	 */
311 	mask = ~reg;
312 
313 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
314 		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
315 		rt2800mmio_fetch_txstatus(rt2x00dev);
316 		if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
317 			tasklet_schedule(&rt2x00dev->txstatus_tasklet);
318 	}
319 
320 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
321 		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
322 
323 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
324 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
325 
326 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
327 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
328 
329 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
330 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
331 
332 	/*
333 	 * Disable all interrupts for which a tasklet was scheduled right now,
334 	 * the tasklet will reenable the appropriate interrupts.
335 	 */
336 	spin_lock(&rt2x00dev->irqmask_lock);
337 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
338 	reg &= mask;
339 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
340 	spin_unlock(&rt2x00dev->irqmask_lock);
341 
342 	return IRQ_HANDLED;
343 }
344 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
345 
346 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
347 			   enum dev_state state)
348 {
349 	u32 reg;
350 	unsigned long flags;
351 
352 	/*
353 	 * When interrupts are being enabled, the interrupt registers
354 	 * should clear the register to assure a clean state.
355 	 */
356 	if (state == STATE_RADIO_IRQ_ON) {
357 		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
358 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
359 	}
360 
361 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
362 	reg = 0;
363 	if (state == STATE_RADIO_IRQ_ON) {
364 		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
365 		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
366 		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
367 		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
368 		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
369 	}
370 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
371 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
372 
373 	if (state == STATE_RADIO_IRQ_OFF) {
374 		/*
375 		 * Wait for possibly running tasklets to finish.
376 		 */
377 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
378 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
379 		tasklet_kill(&rt2x00dev->autowake_tasklet);
380 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
381 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
382 	}
383 }
384 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
385 
386 /*
387  * Queue handlers.
388  */
389 void rt2800mmio_start_queue(struct data_queue *queue)
390 {
391 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
392 	u32 reg;
393 
394 	switch (queue->qid) {
395 	case QID_RX:
396 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
397 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
398 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
399 		break;
400 	case QID_BEACON:
401 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
402 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
403 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
404 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
405 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
406 
407 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
408 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
409 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
410 		break;
411 	default:
412 		break;
413 	}
414 }
415 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
416 
417 /* 200 ms */
418 #define TXSTATUS_TIMEOUT 200000000
419 
420 void rt2800mmio_kick_queue(struct data_queue *queue)
421 {
422 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
423 	struct queue_entry *entry;
424 
425 	switch (queue->qid) {
426 	case QID_AC_VO:
427 	case QID_AC_VI:
428 	case QID_AC_BE:
429 	case QID_AC_BK:
430 		WARN_ON_ONCE(rt2x00queue_empty(queue));
431 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
432 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
433 					  entry->entry_idx);
434 		hrtimer_start(&rt2x00dev->txstatus_timer,
435 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
436 		break;
437 	case QID_MGMT:
438 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
439 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
440 					  entry->entry_idx);
441 		break;
442 	default:
443 		break;
444 	}
445 }
446 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
447 
448 void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
449 {
450 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
451 	bool tx_queue = false;
452 	unsigned int i;
453 
454 	switch (queue->qid) {
455 	case QID_AC_VO:
456 	case QID_AC_VI:
457 	case QID_AC_BE:
458 	case QID_AC_BK:
459 		tx_queue = true;
460 		break;
461 	case QID_RX:
462 		break;
463 	default:
464 		return;
465 	}
466 
467 	for (i = 0; i < 5; i++) {
468 		/*
469 		 * Check if the driver is already done, otherwise we
470 		 * have to sleep a little while to give the driver/hw
471 		 * the oppurtunity to complete interrupt process itself.
472 		 */
473 		if (rt2x00queue_empty(queue))
474 			break;
475 
476 		/*
477 		 * For TX queues schedule completion tasklet to catch
478 		 * tx status timeouts, othewise just wait.
479 		 */
480 		if (tx_queue)
481 			queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
482 
483 		/*
484 		 * Wait for a little while to give the driver
485 		 * the oppurtunity to recover itself.
486 		 */
487 		msleep(50);
488 	}
489 }
490 EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
491 
492 void rt2800mmio_stop_queue(struct data_queue *queue)
493 {
494 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
495 	u32 reg;
496 
497 	switch (queue->qid) {
498 	case QID_RX:
499 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
500 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
501 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
502 		break;
503 	case QID_BEACON:
504 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
505 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
506 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
507 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
508 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
509 
510 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
511 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
512 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
513 
514 		/*
515 		 * Wait for current invocation to finish. The tasklet
516 		 * won't be scheduled anymore afterwards since we disabled
517 		 * the TBTT and PRE TBTT timer.
518 		 */
519 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
520 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
521 
522 		break;
523 	default:
524 		break;
525 	}
526 }
527 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
528 
529 void rt2800mmio_queue_init(struct data_queue *queue)
530 {
531 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
532 	unsigned short txwi_size, rxwi_size;
533 
534 	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
535 
536 	switch (queue->qid) {
537 	case QID_RX:
538 		queue->limit = 128;
539 		queue->data_size = AGGREGATION_SIZE;
540 		queue->desc_size = RXD_DESC_SIZE;
541 		queue->winfo_size = rxwi_size;
542 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
543 		break;
544 
545 	case QID_AC_VO:
546 	case QID_AC_VI:
547 	case QID_AC_BE:
548 	case QID_AC_BK:
549 		queue->limit = 64;
550 		queue->data_size = AGGREGATION_SIZE;
551 		queue->desc_size = TXD_DESC_SIZE;
552 		queue->winfo_size = txwi_size;
553 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
554 		break;
555 
556 	case QID_BEACON:
557 		queue->limit = 8;
558 		queue->data_size = 0; /* No DMA required for beacons */
559 		queue->desc_size = TXD_DESC_SIZE;
560 		queue->winfo_size = txwi_size;
561 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
562 		break;
563 
564 	case QID_ATIM:
565 		/* fallthrough */
566 	default:
567 		BUG();
568 		break;
569 	}
570 }
571 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
572 
573 /*
574  * Initialization functions.
575  */
576 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
577 {
578 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
579 	u32 word;
580 
581 	if (entry->queue->qid == QID_RX) {
582 		word = rt2x00_desc_read(entry_priv->desc, 1);
583 
584 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
585 	} else {
586 		word = rt2x00_desc_read(entry_priv->desc, 1);
587 
588 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
589 	}
590 }
591 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
592 
593 void rt2800mmio_clear_entry(struct queue_entry *entry)
594 {
595 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
596 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
597 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
598 	u32 word;
599 
600 	if (entry->queue->qid == QID_RX) {
601 		word = rt2x00_desc_read(entry_priv->desc, 0);
602 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
603 		rt2x00_desc_write(entry_priv->desc, 0, word);
604 
605 		word = rt2x00_desc_read(entry_priv->desc, 1);
606 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
607 		rt2x00_desc_write(entry_priv->desc, 1, word);
608 
609 		/*
610 		 * Set RX IDX in register to inform hardware that we have
611 		 * handled this entry and it is available for reuse again.
612 		 */
613 		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
614 					  entry->entry_idx);
615 	} else {
616 		word = rt2x00_desc_read(entry_priv->desc, 1);
617 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
618 		rt2x00_desc_write(entry_priv->desc, 1, word);
619 
620 		/* If last entry stop txstatus timer */
621 		if (entry->queue->length == 1)
622 			hrtimer_cancel(&rt2x00dev->txstatus_timer);
623 	}
624 }
625 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
626 
627 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
628 {
629 	struct queue_entry_priv_mmio *entry_priv;
630 
631 	/*
632 	 * Initialize registers.
633 	 */
634 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
635 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
636 				  entry_priv->desc_dma);
637 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
638 				  rt2x00dev->tx[0].limit);
639 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
640 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
641 
642 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
643 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
644 				  entry_priv->desc_dma);
645 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
646 				  rt2x00dev->tx[1].limit);
647 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
648 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
649 
650 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
651 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
652 				  entry_priv->desc_dma);
653 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
654 				  rt2x00dev->tx[2].limit);
655 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
656 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
657 
658 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
659 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
660 				  entry_priv->desc_dma);
661 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
662 				  rt2x00dev->tx[3].limit);
663 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
664 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
665 
666 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
667 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
668 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
669 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
670 
671 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
672 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
673 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
674 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
675 
676 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
677 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
678 				  entry_priv->desc_dma);
679 	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
680 				  rt2x00dev->rx[0].limit);
681 	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
682 				  rt2x00dev->rx[0].limit - 1);
683 	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
684 
685 	rt2800_disable_wpdma(rt2x00dev);
686 
687 	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
688 
689 	return 0;
690 }
691 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
692 
693 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
694 {
695 	u32 reg;
696 
697 	/*
698 	 * Reset DMA indexes
699 	 */
700 	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
701 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
702 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
703 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
704 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
705 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
706 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
707 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
708 	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
709 
710 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
711 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
712 
713 	if (rt2x00_is_pcie(rt2x00dev) &&
714 	    (rt2x00_rt(rt2x00dev, RT3090) ||
715 	     rt2x00_rt(rt2x00dev, RT3390) ||
716 	     rt2x00_rt(rt2x00dev, RT3572) ||
717 	     rt2x00_rt(rt2x00dev, RT3593) ||
718 	     rt2x00_rt(rt2x00dev, RT5390) ||
719 	     rt2x00_rt(rt2x00dev, RT5392) ||
720 	     rt2x00_rt(rt2x00dev, RT5592))) {
721 		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
722 		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
723 		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
724 		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
725 	}
726 
727 	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
728 
729 	reg = 0;
730 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
731 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
732 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
733 
734 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
735 
736 	return 0;
737 }
738 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
739 
740 /*
741  * Device state switch handlers.
742  */
743 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
744 {
745 	/* Wait for DMA, ignore error until we initialize queues. */
746 	rt2800_wait_wpdma_ready(rt2x00dev);
747 
748 	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
749 		return -EIO;
750 
751 	return rt2800_enable_radio(rt2x00dev);
752 }
753 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
754 
755 static void rt2800mmio_work_txdone(struct work_struct *work)
756 {
757 	struct rt2x00_dev *rt2x00dev =
758 	    container_of(work, struct rt2x00_dev, txdone_work);
759 
760 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
761 		return;
762 
763 	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
764 	       rt2800_txstatus_timeout(rt2x00dev)) {
765 
766 		tasklet_disable(&rt2x00dev->txstatus_tasklet);
767 		rt2800_txdone(rt2x00dev, UINT_MAX);
768 		rt2800_txdone_nostatus(rt2x00dev);
769 		tasklet_enable(&rt2x00dev->txstatus_tasklet);
770 	}
771 
772 	if (rt2800_txstatus_pending(rt2x00dev))
773 		hrtimer_start(&rt2x00dev->txstatus_timer,
774 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
775 }
776 
777 static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
778 {
779 	struct rt2x00_dev *rt2x00dev =
780 	    container_of(timer, struct rt2x00_dev, txstatus_timer);
781 
782 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
783 		goto out;
784 
785 	if (!rt2800_txstatus_pending(rt2x00dev))
786 		goto out;
787 
788 	rt2800mmio_fetch_txstatus(rt2x00dev);
789 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
790 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
791 	else
792 		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
793 out:
794 	return HRTIMER_NORESTART;
795 }
796 
797 int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
798 {
799 	int retval;
800 
801 	retval = rt2800_probe_hw(rt2x00dev);
802 	if (retval)
803 		return retval;
804 
805 	/*
806 	 * Set txstatus timer function.
807 	 */
808 	rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
809 
810 	/*
811 	 * Overwrite TX done handler
812 	 */
813 	INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
814 
815 	return 0;
816 }
817 EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
818 
819 MODULE_AUTHOR(DRV_PROJECT);
820 MODULE_VERSION(DRV_VERSION);
821 MODULE_DESCRIPTION("rt2800 MMIO library");
822 MODULE_LICENSE("GPL");
823