xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt2800mmio.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3  *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4  *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5  *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6  *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7  *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8  *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9  *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10  *	<http://rt2x00.serialmonkey.com>
11  */
12 
13 /*	Module: rt2800mmio
14  *	Abstract: rt2800 MMIO device routines.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 
21 #include "rt2x00.h"
22 #include "rt2x00mmio.h"
23 #include "rt2800.h"
24 #include "rt2800lib.h"
25 #include "rt2800mmio.h"
26 
27 unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
28 {
29 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
30 	struct queue_entry *entry;
31 	int idx, qid;
32 
33 	switch (queue->qid) {
34 	case QID_AC_VO:
35 	case QID_AC_VI:
36 	case QID_AC_BE:
37 	case QID_AC_BK:
38 		qid = queue->qid;
39 		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
40 		break;
41 	case QID_MGMT:
42 		idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
43 		break;
44 	case QID_RX:
45 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
46 		idx = entry->entry_idx;
47 		break;
48 	default:
49 		WARN_ON_ONCE(1);
50 		idx = 0;
51 		break;
52 	}
53 
54 	return idx;
55 }
56 EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
57 
58 /*
59  * TX descriptor initialization
60  */
61 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
62 {
63 	return (__le32 *) entry->skb->data;
64 }
65 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
66 
67 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
68 			      struct txentry_desc *txdesc)
69 {
70 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
71 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
72 	__le32 *txd = entry_priv->desc;
73 	u32 word;
74 	const unsigned int txwi_size = entry->queue->winfo_size;
75 
76 	/*
77 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
78 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
79 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
80 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
81 	 * data. It means that LAST_SEC0 is always 0.
82 	 */
83 
84 	/*
85 	 * Initialize TX descriptor
86 	 */
87 	word = 0;
88 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
89 	rt2x00_desc_write(txd, 0, word);
90 
91 	word = 0;
92 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
93 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
94 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95 	rt2x00_set_field32(&word, TXD_W1_BURST,
96 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
97 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
98 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
99 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
100 	rt2x00_desc_write(txd, 1, word);
101 
102 	word = 0;
103 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
104 			   skbdesc->skb_dma + txwi_size);
105 	rt2x00_desc_write(txd, 2, word);
106 
107 	word = 0;
108 	rt2x00_set_field32(&word, TXD_W3_WIV,
109 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
110 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
111 	rt2x00_desc_write(txd, 3, word);
112 
113 	/*
114 	 * Register descriptor details in skb frame descriptor.
115 	 */
116 	skbdesc->desc = txd;
117 	skbdesc->desc_len = TXD_DESC_SIZE;
118 }
119 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
120 
121 /*
122  * RX control handlers
123  */
124 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
125 			    struct rxdone_entry_desc *rxdesc)
126 {
127 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
128 	__le32 *rxd = entry_priv->desc;
129 	u32 word;
130 
131 	word = rt2x00_desc_read(rxd, 3);
132 
133 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
134 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
135 
136 	/*
137 	 * Unfortunately we don't know the cipher type used during
138 	 * decryption. This prevents us from correct providing
139 	 * correct statistics through debugfs.
140 	 */
141 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
142 
143 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
144 		/*
145 		 * Hardware has stripped IV/EIV data from 802.11 frame during
146 		 * decryption. Unfortunately the descriptor doesn't contain
147 		 * any fields with the EIV/IV data either, so they can't
148 		 * be restored by rt2x00lib.
149 		 */
150 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
151 
152 		/*
153 		 * The hardware has already checked the Michael Mic and has
154 		 * stripped it from the frame. Signal this to mac80211.
155 		 */
156 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
157 
158 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
159 			rxdesc->flags |= RX_FLAG_DECRYPTED;
160 		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
161 			/*
162 			 * In order to check the Michael Mic, the packet must have
163 			 * been decrypted.  Mac80211 doesnt check the MMIC failure
164 			 * flag to initiate MMIC countermeasures if the decoded flag
165 			 * has not been set.
166 			 */
167 			rxdesc->flags |= RX_FLAG_DECRYPTED;
168 
169 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
170 		}
171 	}
172 
173 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
174 		rxdesc->dev_flags |= RXDONE_MY_BSS;
175 
176 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
177 		rxdesc->dev_flags |= RXDONE_L2PAD;
178 
179 	/*
180 	 * Process the RXWI structure that is at the start of the buffer.
181 	 */
182 	rt2800_process_rxwi(entry, rxdesc);
183 }
184 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
185 
186 /*
187  * Interrupt functions.
188  */
189 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
190 {
191 	struct ieee80211_conf conf = { .flags = 0 };
192 	struct rt2x00lib_conf libconf = { .conf = &conf };
193 
194 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
195 }
196 
197 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
198 					       struct rt2x00_field32 irq_field)
199 {
200 	u32 reg;
201 
202 	/*
203 	 * Enable a single interrupt. The interrupt mask register
204 	 * access needs locking.
205 	 */
206 	spin_lock_irq(&rt2x00dev->irqmask_lock);
207 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
208 	rt2x00_set_field32(&reg, irq_field, 1);
209 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
210 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
211 }
212 
213 void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t)
214 {
215 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
216 						    pretbtt_tasklet);
217 	rt2x00lib_pretbtt(rt2x00dev);
218 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
219 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
220 }
221 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
222 
223 void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t)
224 {
225 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
226 	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
227 	u32 reg;
228 
229 	rt2x00lib_beacondone(rt2x00dev);
230 
231 	if (rt2x00dev->intf_ap_count) {
232 		/*
233 		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
234 		 * causing beacon skew and as a result causing problems with
235 		 * some powersaving clients over time. Shorten the beacon
236 		 * interval every 64 beacons by 64us to mitigate this effect.
237 		 */
238 		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
239 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
240 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
241 					   (rt2x00dev->beacon_int * 16) - 1);
242 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
243 		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
244 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
245 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
246 					   (rt2x00dev->beacon_int * 16));
247 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
248 		}
249 		drv_data->tbtt_tick++;
250 		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
251 	}
252 
253 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
254 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
255 }
256 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
257 
258 void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t)
259 {
260 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
261 						    rxdone_tasklet);
262 	if (rt2x00mmio_rxdone(rt2x00dev))
263 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
264 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
265 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
266 }
267 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
268 
269 void rt2800mmio_autowake_tasklet(struct tasklet_struct *t)
270 {
271 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
272 						    autowake_tasklet);
273 	rt2800mmio_wakeup(rt2x00dev);
274 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
275 		rt2800mmio_enable_interrupt(rt2x00dev,
276 					    INT_MASK_CSR_AUTO_WAKEUP);
277 }
278 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
279 
280 static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
281 {
282 	u32 status;
283 	unsigned long flags;
284 
285 	/*
286 	 * The TX_FIFO_STATUS interrupt needs special care. We should
287 	 * read TX_STA_FIFO but we should do it immediately as otherwise
288 	 * the register can overflow and we would lose status reports.
289 	 *
290 	 * Hence, read the TX_STA_FIFO register and copy all tx status
291 	 * reports into a kernel FIFO which is handled in the txstatus
292 	 * tasklet. We use a tasklet to process the tx status reports
293 	 * because we can schedule the tasklet multiple times (when the
294 	 * interrupt fires again during tx status processing).
295 	 *
296 	 * We also read statuses from tx status timeout timer, use
297 	 * lock to prevent concurent writes to fifo.
298 	 */
299 
300 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
301 
302 	while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
303 		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
304 		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
305 			break;
306 
307 		kfifo_put(&rt2x00dev->txstatus_fifo, status);
308 	}
309 
310 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
311 }
312 
313 void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t)
314 {
315 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
316 						    txstatus_tasklet);
317 
318 	rt2800_txdone(rt2x00dev, 16);
319 
320 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
321 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
322 
323 }
324 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
325 
326 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
327 {
328 	struct rt2x00_dev *rt2x00dev = dev_instance;
329 	u32 reg, mask;
330 
331 	/* Read status and ACK all interrupts */
332 	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
333 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
334 
335 	if (!reg)
336 		return IRQ_NONE;
337 
338 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
339 		return IRQ_HANDLED;
340 
341 	/*
342 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
343 	 * for interrupts and interrupt masks we can just use the value of
344 	 * INT_SOURCE_CSR to create the interrupt mask.
345 	 */
346 	mask = ~reg;
347 
348 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
349 		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
350 		rt2800mmio_fetch_txstatus(rt2x00dev);
351 		if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
352 			tasklet_schedule(&rt2x00dev->txstatus_tasklet);
353 	}
354 
355 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
356 		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
357 
358 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
359 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
360 
361 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
362 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
363 
364 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
365 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
366 
367 	/*
368 	 * Disable all interrupts for which a tasklet was scheduled right now,
369 	 * the tasklet will reenable the appropriate interrupts.
370 	 */
371 	spin_lock(&rt2x00dev->irqmask_lock);
372 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
373 	reg &= mask;
374 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
375 	spin_unlock(&rt2x00dev->irqmask_lock);
376 
377 	return IRQ_HANDLED;
378 }
379 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
380 
381 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
382 			   enum dev_state state)
383 {
384 	u32 reg;
385 	unsigned long flags;
386 
387 	/*
388 	 * When interrupts are being enabled, the interrupt registers
389 	 * should clear the register to assure a clean state.
390 	 */
391 	if (state == STATE_RADIO_IRQ_ON) {
392 		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
393 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
394 	}
395 
396 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
397 	reg = 0;
398 	if (state == STATE_RADIO_IRQ_ON) {
399 		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
400 		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
401 		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
402 		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
403 		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
404 	}
405 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
406 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
407 
408 	if (state == STATE_RADIO_IRQ_OFF) {
409 		/*
410 		 * Wait for possibly running tasklets to finish.
411 		 */
412 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
413 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
414 		tasklet_kill(&rt2x00dev->autowake_tasklet);
415 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
416 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
417 	}
418 }
419 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
420 
421 /*
422  * Queue handlers.
423  */
424 void rt2800mmio_start_queue(struct data_queue *queue)
425 {
426 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
427 	u32 reg;
428 
429 	switch (queue->qid) {
430 	case QID_RX:
431 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
432 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
433 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
434 		break;
435 	case QID_BEACON:
436 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
437 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
438 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
439 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
440 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
441 
442 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
443 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
444 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
445 		break;
446 	default:
447 		break;
448 	}
449 }
450 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
451 
452 /* 200 ms */
453 #define TXSTATUS_TIMEOUT 200000000
454 
455 void rt2800mmio_kick_queue(struct data_queue *queue)
456 {
457 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
458 	struct queue_entry *entry;
459 
460 	switch (queue->qid) {
461 	case QID_AC_VO:
462 	case QID_AC_VI:
463 	case QID_AC_BE:
464 	case QID_AC_BK:
465 		WARN_ON_ONCE(rt2x00queue_empty(queue));
466 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
467 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
468 					  entry->entry_idx);
469 		hrtimer_start(&rt2x00dev->txstatus_timer,
470 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
471 		break;
472 	case QID_MGMT:
473 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
474 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
475 					  entry->entry_idx);
476 		break;
477 	default:
478 		break;
479 	}
480 }
481 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
482 
483 void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
484 {
485 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
486 	bool tx_queue = false;
487 	unsigned int i;
488 
489 	switch (queue->qid) {
490 	case QID_AC_VO:
491 	case QID_AC_VI:
492 	case QID_AC_BE:
493 	case QID_AC_BK:
494 		tx_queue = true;
495 		break;
496 	case QID_RX:
497 		break;
498 	default:
499 		return;
500 	}
501 
502 	for (i = 0; i < 5; i++) {
503 		/*
504 		 * Check if the driver is already done, otherwise we
505 		 * have to sleep a little while to give the driver/hw
506 		 * the oppurtunity to complete interrupt process itself.
507 		 */
508 		if (rt2x00queue_empty(queue))
509 			break;
510 
511 		/*
512 		 * For TX queues schedule completion tasklet to catch
513 		 * tx status timeouts, othewise just wait.
514 		 */
515 		if (tx_queue)
516 			queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
517 
518 		/*
519 		 * Wait for a little while to give the driver
520 		 * the oppurtunity to recover itself.
521 		 */
522 		msleep(50);
523 	}
524 }
525 EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
526 
527 void rt2800mmio_stop_queue(struct data_queue *queue)
528 {
529 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
530 	u32 reg;
531 
532 	switch (queue->qid) {
533 	case QID_RX:
534 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
535 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
536 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
537 		break;
538 	case QID_BEACON:
539 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
540 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
541 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
542 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
543 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
544 
545 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
546 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
547 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
548 
549 		/*
550 		 * Wait for current invocation to finish. The tasklet
551 		 * won't be scheduled anymore afterwards since we disabled
552 		 * the TBTT and PRE TBTT timer.
553 		 */
554 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
555 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
556 
557 		break;
558 	default:
559 		break;
560 	}
561 }
562 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
563 
564 void rt2800mmio_queue_init(struct data_queue *queue)
565 {
566 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
567 	unsigned short txwi_size, rxwi_size;
568 
569 	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
570 
571 	switch (queue->qid) {
572 	case QID_RX:
573 		queue->limit = 128;
574 		queue->data_size = AGGREGATION_SIZE;
575 		queue->desc_size = RXD_DESC_SIZE;
576 		queue->winfo_size = rxwi_size;
577 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
578 		break;
579 
580 	case QID_AC_VO:
581 	case QID_AC_VI:
582 	case QID_AC_BE:
583 	case QID_AC_BK:
584 		queue->limit = 64;
585 		queue->data_size = AGGREGATION_SIZE;
586 		queue->desc_size = TXD_DESC_SIZE;
587 		queue->winfo_size = txwi_size;
588 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
589 		break;
590 
591 	case QID_BEACON:
592 		queue->limit = 8;
593 		queue->data_size = 0; /* No DMA required for beacons */
594 		queue->desc_size = TXD_DESC_SIZE;
595 		queue->winfo_size = txwi_size;
596 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
597 		break;
598 
599 	case QID_ATIM:
600 	default:
601 		BUG();
602 		break;
603 	}
604 }
605 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
606 
607 /*
608  * Initialization functions.
609  */
610 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
611 {
612 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
613 	u32 word;
614 
615 	if (entry->queue->qid == QID_RX) {
616 		word = rt2x00_desc_read(entry_priv->desc, 1);
617 
618 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
619 	} else {
620 		word = rt2x00_desc_read(entry_priv->desc, 1);
621 
622 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
623 	}
624 }
625 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
626 
627 void rt2800mmio_clear_entry(struct queue_entry *entry)
628 {
629 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
630 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
631 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
632 	u32 word;
633 
634 	if (entry->queue->qid == QID_RX) {
635 		word = rt2x00_desc_read(entry_priv->desc, 0);
636 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
637 		rt2x00_desc_write(entry_priv->desc, 0, word);
638 
639 		word = rt2x00_desc_read(entry_priv->desc, 1);
640 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
641 		rt2x00_desc_write(entry_priv->desc, 1, word);
642 
643 		/*
644 		 * Set RX IDX in register to inform hardware that we have
645 		 * handled this entry and it is available for reuse again.
646 		 */
647 		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
648 					  entry->entry_idx);
649 	} else {
650 		word = rt2x00_desc_read(entry_priv->desc, 1);
651 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
652 		rt2x00_desc_write(entry_priv->desc, 1, word);
653 
654 		/* If last entry stop txstatus timer */
655 		if (entry->queue->length == 1)
656 			hrtimer_cancel(&rt2x00dev->txstatus_timer);
657 	}
658 }
659 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
660 
661 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
662 {
663 	struct queue_entry_priv_mmio *entry_priv;
664 
665 	/*
666 	 * Initialize registers.
667 	 */
668 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
669 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
670 				  entry_priv->desc_dma);
671 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
672 				  rt2x00dev->tx[0].limit);
673 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
674 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
675 
676 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
677 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
678 				  entry_priv->desc_dma);
679 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
680 				  rt2x00dev->tx[1].limit);
681 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
682 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
683 
684 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
685 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
686 				  entry_priv->desc_dma);
687 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
688 				  rt2x00dev->tx[2].limit);
689 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
690 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
691 
692 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
693 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
694 				  entry_priv->desc_dma);
695 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
696 				  rt2x00dev->tx[3].limit);
697 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
698 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
699 
700 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
701 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
702 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
703 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
704 
705 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
706 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
707 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
708 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
709 
710 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
711 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
712 				  entry_priv->desc_dma);
713 	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
714 				  rt2x00dev->rx[0].limit);
715 	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
716 				  rt2x00dev->rx[0].limit - 1);
717 	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
718 
719 	rt2800_disable_wpdma(rt2x00dev);
720 
721 	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
722 
723 	return 0;
724 }
725 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
726 
727 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
728 {
729 	u32 reg;
730 
731 	/*
732 	 * Reset DMA indexes
733 	 */
734 	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
735 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
736 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
737 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
738 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
739 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
740 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
741 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
742 	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
743 
744 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
745 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
746 
747 	if (rt2x00_is_pcie(rt2x00dev) &&
748 	    (rt2x00_rt(rt2x00dev, RT3090) ||
749 	     rt2x00_rt(rt2x00dev, RT3390) ||
750 	     rt2x00_rt(rt2x00dev, RT3572) ||
751 	     rt2x00_rt(rt2x00dev, RT3593) ||
752 	     rt2x00_rt(rt2x00dev, RT5390) ||
753 	     rt2x00_rt(rt2x00dev, RT5392) ||
754 	     rt2x00_rt(rt2x00dev, RT5592))) {
755 		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
756 		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
757 		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
758 		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
759 	}
760 
761 	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
762 
763 	reg = 0;
764 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
765 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
766 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
767 
768 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
769 
770 	return 0;
771 }
772 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
773 
774 /*
775  * Device state switch handlers.
776  */
777 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
778 {
779 	/* Wait for DMA, ignore error until we initialize queues. */
780 	rt2800_wait_wpdma_ready(rt2x00dev);
781 
782 	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
783 		return -EIO;
784 
785 	return rt2800_enable_radio(rt2x00dev);
786 }
787 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
788 
789 static void rt2800mmio_work_txdone(struct work_struct *work)
790 {
791 	struct rt2x00_dev *rt2x00dev =
792 	    container_of(work, struct rt2x00_dev, txdone_work);
793 
794 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
795 		return;
796 
797 	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
798 	       rt2800_txstatus_timeout(rt2x00dev)) {
799 
800 		tasklet_disable(&rt2x00dev->txstatus_tasklet);
801 		rt2800_txdone(rt2x00dev, UINT_MAX);
802 		rt2800_txdone_nostatus(rt2x00dev);
803 		tasklet_enable(&rt2x00dev->txstatus_tasklet);
804 	}
805 
806 	if (rt2800_txstatus_pending(rt2x00dev))
807 		hrtimer_start(&rt2x00dev->txstatus_timer,
808 			      TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
809 }
810 
811 static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
812 {
813 	struct rt2x00_dev *rt2x00dev =
814 	    container_of(timer, struct rt2x00_dev, txstatus_timer);
815 
816 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
817 		goto out;
818 
819 	if (!rt2800_txstatus_pending(rt2x00dev))
820 		goto out;
821 
822 	rt2800mmio_fetch_txstatus(rt2x00dev);
823 	if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
824 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
825 	else
826 		queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
827 out:
828 	return HRTIMER_NORESTART;
829 }
830 
831 int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
832 {
833 	int retval;
834 
835 	retval = rt2800_probe_hw(rt2x00dev);
836 	if (retval)
837 		return retval;
838 
839 	/*
840 	 * Set txstatus timer function.
841 	 */
842 	rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
843 
844 	/*
845 	 * Overwrite TX done handler
846 	 */
847 	INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
848 
849 	return 0;
850 }
851 EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
852 
853 MODULE_AUTHOR(DRV_PROJECT);
854 MODULE_VERSION(DRV_VERSION);
855 MODULE_DESCRIPTION("rt2800 MMIO library");
856 MODULE_LICENSE("GPL");
857