1 /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 2 * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> 3 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> 4 * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> 5 * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> 6 * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> 7 * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> 8 * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com> 9 * <http://rt2x00.serialmonkey.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 /* Module: rt2800mmio 26 * Abstract: rt2800 MMIO device routines. 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/export.h> 32 33 #include "rt2x00.h" 34 #include "rt2x00mmio.h" 35 #include "rt2800.h" 36 #include "rt2800lib.h" 37 #include "rt2800mmio.h" 38 39 /* 40 * TX descriptor initialization 41 */ 42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry) 43 { 44 return (__le32 *) entry->skb->data; 45 } 46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi); 47 48 void rt2800mmio_write_tx_desc(struct queue_entry *entry, 49 struct txentry_desc *txdesc) 50 { 51 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 52 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 53 __le32 *txd = entry_priv->desc; 54 u32 word; 55 const unsigned int txwi_size = entry->queue->winfo_size; 56 57 /* 58 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 59 * must contains a TXWI structure + 802.11 header + padding + 802.11 60 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and 61 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 62 * data. It means that LAST_SEC0 is always 0. 63 */ 64 65 /* 66 * Initialize TX descriptor 67 */ 68 word = 0; 69 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); 70 rt2x00_desc_write(txd, 0, word); 71 72 word = 0; 73 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); 74 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, 75 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 76 rt2x00_set_field32(&word, TXD_W1_BURST, 77 test_bit(ENTRY_TXD_BURST, &txdesc->flags)); 78 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size); 79 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); 80 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); 81 rt2x00_desc_write(txd, 1, word); 82 83 word = 0; 84 rt2x00_set_field32(&word, TXD_W2_SD_PTR1, 85 skbdesc->skb_dma + txwi_size); 86 rt2x00_desc_write(txd, 2, word); 87 88 word = 0; 89 rt2x00_set_field32(&word, TXD_W3_WIV, 90 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); 91 rt2x00_set_field32(&word, TXD_W3_QSEL, 2); 92 rt2x00_desc_write(txd, 3, word); 93 94 /* 95 * Register descriptor details in skb frame descriptor. 96 */ 97 skbdesc->desc = txd; 98 skbdesc->desc_len = TXD_DESC_SIZE; 99 } 100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc); 101 102 /* 103 * RX control handlers 104 */ 105 void rt2800mmio_fill_rxdone(struct queue_entry *entry, 106 struct rxdone_entry_desc *rxdesc) 107 { 108 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 109 __le32 *rxd = entry_priv->desc; 110 u32 word; 111 112 rt2x00_desc_read(rxd, 3, &word); 113 114 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) 115 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 116 117 /* 118 * Unfortunately we don't know the cipher type used during 119 * decryption. This prevents us from correct providing 120 * correct statistics through debugfs. 121 */ 122 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); 123 124 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { 125 /* 126 * Hardware has stripped IV/EIV data from 802.11 frame during 127 * decryption. Unfortunately the descriptor doesn't contain 128 * any fields with the EIV/IV data either, so they can't 129 * be restored by rt2x00lib. 130 */ 131 rxdesc->flags |= RX_FLAG_IV_STRIPPED; 132 133 /* 134 * The hardware has already checked the Michael Mic and has 135 * stripped it from the frame. Signal this to mac80211. 136 */ 137 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 138 139 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 140 rxdesc->flags |= RX_FLAG_DECRYPTED; 141 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 142 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 143 } 144 145 if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) 146 rxdesc->dev_flags |= RXDONE_MY_BSS; 147 148 if (rt2x00_get_field32(word, RXD_W3_L2PAD)) 149 rxdesc->dev_flags |= RXDONE_L2PAD; 150 151 /* 152 * Process the RXWI structure that is at the start of the buffer. 153 */ 154 rt2800_process_rxwi(entry, rxdesc); 155 } 156 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone); 157 158 /* 159 * Interrupt functions. 160 */ 161 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev) 162 { 163 struct ieee80211_conf conf = { .flags = 0 }; 164 struct rt2x00lib_conf libconf = { .conf = &conf }; 165 166 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); 167 } 168 169 static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status) 170 { 171 __le32 *txwi; 172 u32 word; 173 int wcid, tx_wcid; 174 175 wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID); 176 177 txwi = rt2800_drv_get_txwi(entry); 178 rt2x00_desc_read(txwi, 1, &word); 179 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID); 180 181 return (tx_wcid == wcid); 182 } 183 184 static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data) 185 { 186 u32 status = *(u32 *)data; 187 188 /* 189 * rt2800pci hardware might reorder frames when exchanging traffic 190 * with multiple BA enabled STAs. 191 * 192 * For example, a tx queue 193 * [ STA1 | STA2 | STA1 | STA2 ] 194 * can result in tx status reports 195 * [ STA1 | STA1 | STA2 | STA2 ] 196 * when the hw decides to aggregate the frames for STA1 into one AMPDU. 197 * 198 * To mitigate this effect, associate the tx status to the first frame 199 * in the tx queue with a matching wcid. 200 */ 201 if (rt2800mmio_txdone_entry_check(entry, status) && 202 !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { 203 /* 204 * Got a matching frame, associate the tx status with 205 * the frame 206 */ 207 entry->status = status; 208 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags); 209 return true; 210 } 211 212 /* Check the next frame */ 213 return false; 214 } 215 216 static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data) 217 { 218 u32 status = *(u32 *)data; 219 220 /* 221 * Find the first frame without tx status and assign this status to it 222 * regardless if it matches or not. 223 */ 224 if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { 225 /* 226 * Got a matching frame, associate the tx status with 227 * the frame 228 */ 229 entry->status = status; 230 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags); 231 return true; 232 } 233 234 /* Check the next frame */ 235 return false; 236 } 237 static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry, 238 void *data) 239 { 240 if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { 241 rt2800_txdone_entry(entry, entry->status, 242 rt2800mmio_get_txwi(entry)); 243 return false; 244 } 245 246 /* No more frames to release */ 247 return true; 248 } 249 250 static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev) 251 { 252 struct data_queue *queue; 253 u32 status; 254 u8 qid; 255 int max_tx_done = 16; 256 257 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) { 258 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE); 259 if (unlikely(qid >= QID_RX)) { 260 /* 261 * Unknown queue, this shouldn't happen. Just drop 262 * this tx status. 263 */ 264 rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n", 265 qid); 266 break; 267 } 268 269 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); 270 if (unlikely(queue == NULL)) { 271 /* 272 * The queue is NULL, this shouldn't happen. Stop 273 * processing here and drop the tx status 274 */ 275 rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n", 276 qid); 277 break; 278 } 279 280 if (unlikely(rt2x00queue_empty(queue))) { 281 /* 282 * The queue is empty. Stop processing here 283 * and drop the tx status. 284 */ 285 rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n", 286 qid); 287 break; 288 } 289 290 /* 291 * Let's associate this tx status with the first 292 * matching frame. 293 */ 294 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, 295 Q_INDEX, &status, 296 rt2800mmio_txdone_find_entry)) { 297 /* 298 * We cannot match the tx status to any frame, so just 299 * use the first one. 300 */ 301 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, 302 Q_INDEX, &status, 303 rt2800mmio_txdone_match_first)) { 304 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n", 305 qid); 306 break; 307 } 308 } 309 310 /* 311 * Release all frames with a valid tx status. 312 */ 313 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, 314 Q_INDEX, NULL, 315 rt2800mmio_txdone_release_entries); 316 317 if (--max_tx_done == 0) 318 break; 319 } 320 321 return !max_tx_done; 322 } 323 324 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev, 325 struct rt2x00_field32 irq_field) 326 { 327 u32 reg; 328 329 /* 330 * Enable a single interrupt. The interrupt mask register 331 * access needs locking. 332 */ 333 spin_lock_irq(&rt2x00dev->irqmask_lock); 334 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); 335 rt2x00_set_field32(®, irq_field, 1); 336 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 337 spin_unlock_irq(&rt2x00dev->irqmask_lock); 338 } 339 340 void rt2800mmio_txstatus_tasklet(unsigned long data) 341 { 342 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 343 if (rt2800mmio_txdone(rt2x00dev)) 344 tasklet_schedule(&rt2x00dev->txstatus_tasklet); 345 346 /* 347 * No need to enable the tx status interrupt here as we always 348 * leave it enabled to minimize the possibility of a tx status 349 * register overflow. See comment in interrupt handler. 350 */ 351 } 352 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet); 353 354 void rt2800mmio_pretbtt_tasklet(unsigned long data) 355 { 356 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 357 rt2x00lib_pretbtt(rt2x00dev); 358 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 359 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT); 360 } 361 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet); 362 363 void rt2800mmio_tbtt_tasklet(unsigned long data) 364 { 365 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 366 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data; 367 u32 reg; 368 369 rt2x00lib_beacondone(rt2x00dev); 370 371 if (rt2x00dev->intf_ap_count) { 372 /* 373 * The rt2800pci hardware tbtt timer is off by 1us per tbtt 374 * causing beacon skew and as a result causing problems with 375 * some powersaving clients over time. Shorten the beacon 376 * interval every 64 beacons by 64us to mitigate this effect. 377 */ 378 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) { 379 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); 380 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 381 (rt2x00dev->beacon_int * 16) - 1); 382 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); 383 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) { 384 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); 385 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 386 (rt2x00dev->beacon_int * 16)); 387 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); 388 } 389 drv_data->tbtt_tick++; 390 drv_data->tbtt_tick %= BCN_TBTT_OFFSET; 391 } 392 393 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 394 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT); 395 } 396 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet); 397 398 void rt2800mmio_rxdone_tasklet(unsigned long data) 399 { 400 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 401 if (rt2x00mmio_rxdone(rt2x00dev)) 402 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 403 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 404 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE); 405 } 406 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet); 407 408 void rt2800mmio_autowake_tasklet(unsigned long data) 409 { 410 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 411 rt2800mmio_wakeup(rt2x00dev); 412 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 413 rt2800mmio_enable_interrupt(rt2x00dev, 414 INT_MASK_CSR_AUTO_WAKEUP); 415 } 416 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet); 417 418 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev) 419 { 420 u32 status; 421 int i; 422 423 /* 424 * The TX_FIFO_STATUS interrupt needs special care. We should 425 * read TX_STA_FIFO but we should do it immediately as otherwise 426 * the register can overflow and we would lose status reports. 427 * 428 * Hence, read the TX_STA_FIFO register and copy all tx status 429 * reports into a kernel FIFO which is handled in the txstatus 430 * tasklet. We use a tasklet to process the tx status reports 431 * because we can schedule the tasklet multiple times (when the 432 * interrupt fires again during tx status processing). 433 * 434 * Furthermore we don't disable the TX_FIFO_STATUS 435 * interrupt here but leave it enabled so that the TX_STA_FIFO 436 * can also be read while the tx status tasklet gets executed. 437 * 438 * Since we have only one producer and one consumer we don't 439 * need to lock the kfifo. 440 */ 441 for (i = 0; i < rt2x00dev->tx->limit; i++) { 442 rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status); 443 444 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) 445 break; 446 447 if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) { 448 rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n"); 449 break; 450 } 451 } 452 453 /* Schedule the tasklet for processing the tx status. */ 454 tasklet_schedule(&rt2x00dev->txstatus_tasklet); 455 } 456 457 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance) 458 { 459 struct rt2x00_dev *rt2x00dev = dev_instance; 460 u32 reg, mask; 461 462 /* Read status and ACK all interrupts */ 463 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); 464 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); 465 466 if (!reg) 467 return IRQ_NONE; 468 469 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 470 return IRQ_HANDLED; 471 472 /* 473 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits 474 * for interrupts and interrupt masks we can just use the value of 475 * INT_SOURCE_CSR to create the interrupt mask. 476 */ 477 mask = ~reg; 478 479 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) { 480 rt2800mmio_txstatus_interrupt(rt2x00dev); 481 /* 482 * Never disable the TX_FIFO_STATUS interrupt. 483 */ 484 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1); 485 } 486 487 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) 488 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet); 489 490 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) 491 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); 492 493 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) 494 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 495 496 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) 497 tasklet_schedule(&rt2x00dev->autowake_tasklet); 498 499 /* 500 * Disable all interrupts for which a tasklet was scheduled right now, 501 * the tasklet will reenable the appropriate interrupts. 502 */ 503 spin_lock(&rt2x00dev->irqmask_lock); 504 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); 505 reg &= mask; 506 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 507 spin_unlock(&rt2x00dev->irqmask_lock); 508 509 return IRQ_HANDLED; 510 } 511 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt); 512 513 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev, 514 enum dev_state state) 515 { 516 u32 reg; 517 unsigned long flags; 518 519 /* 520 * When interrupts are being enabled, the interrupt registers 521 * should clear the register to assure a clean state. 522 */ 523 if (state == STATE_RADIO_IRQ_ON) { 524 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); 525 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); 526 } 527 528 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); 529 reg = 0; 530 if (state == STATE_RADIO_IRQ_ON) { 531 rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1); 532 rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1); 533 rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1); 534 rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1); 535 rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1); 536 } 537 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); 538 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); 539 540 if (state == STATE_RADIO_IRQ_OFF) { 541 /* 542 * Wait for possibly running tasklets to finish. 543 */ 544 tasklet_kill(&rt2x00dev->txstatus_tasklet); 545 tasklet_kill(&rt2x00dev->rxdone_tasklet); 546 tasklet_kill(&rt2x00dev->autowake_tasklet); 547 tasklet_kill(&rt2x00dev->tbtt_tasklet); 548 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 549 } 550 } 551 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq); 552 553 /* 554 * Queue handlers. 555 */ 556 void rt2800mmio_start_queue(struct data_queue *queue) 557 { 558 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 559 u32 reg; 560 561 switch (queue->qid) { 562 case QID_RX: 563 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, ®); 564 rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); 565 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); 566 break; 567 case QID_BEACON: 568 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); 569 rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); 570 rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); 571 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); 572 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); 573 574 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, ®); 575 rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1); 576 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); 577 break; 578 default: 579 break; 580 } 581 } 582 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue); 583 584 void rt2800mmio_kick_queue(struct data_queue *queue) 585 { 586 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 587 struct queue_entry *entry; 588 589 switch (queue->qid) { 590 case QID_AC_VO: 591 case QID_AC_VI: 592 case QID_AC_BE: 593 case QID_AC_BK: 594 entry = rt2x00queue_get_entry(queue, Q_INDEX); 595 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), 596 entry->entry_idx); 597 break; 598 case QID_MGMT: 599 entry = rt2x00queue_get_entry(queue, Q_INDEX); 600 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5), 601 entry->entry_idx); 602 break; 603 default: 604 break; 605 } 606 } 607 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue); 608 609 void rt2800mmio_stop_queue(struct data_queue *queue) 610 { 611 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 612 u32 reg; 613 614 switch (queue->qid) { 615 case QID_RX: 616 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, ®); 617 rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); 618 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); 619 break; 620 case QID_BEACON: 621 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); 622 rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); 623 rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); 624 rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); 625 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); 626 627 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, ®); 628 rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0); 629 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); 630 631 /* 632 * Wait for current invocation to finish. The tasklet 633 * won't be scheduled anymore afterwards since we disabled 634 * the TBTT and PRE TBTT timer. 635 */ 636 tasklet_kill(&rt2x00dev->tbtt_tasklet); 637 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 638 639 break; 640 default: 641 break; 642 } 643 } 644 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue); 645 646 void rt2800mmio_queue_init(struct data_queue *queue) 647 { 648 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 649 unsigned short txwi_size, rxwi_size; 650 651 rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size); 652 653 switch (queue->qid) { 654 case QID_RX: 655 queue->limit = 128; 656 queue->data_size = AGGREGATION_SIZE; 657 queue->desc_size = RXD_DESC_SIZE; 658 queue->winfo_size = rxwi_size; 659 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 660 break; 661 662 case QID_AC_VO: 663 case QID_AC_VI: 664 case QID_AC_BE: 665 case QID_AC_BK: 666 queue->limit = 64; 667 queue->data_size = AGGREGATION_SIZE; 668 queue->desc_size = TXD_DESC_SIZE; 669 queue->winfo_size = txwi_size; 670 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 671 break; 672 673 case QID_BEACON: 674 queue->limit = 8; 675 queue->data_size = 0; /* No DMA required for beacons */ 676 queue->desc_size = TXD_DESC_SIZE; 677 queue->winfo_size = txwi_size; 678 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 679 break; 680 681 case QID_ATIM: 682 /* fallthrough */ 683 default: 684 BUG(); 685 break; 686 } 687 } 688 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init); 689 690 /* 691 * Initialization functions. 692 */ 693 bool rt2800mmio_get_entry_state(struct queue_entry *entry) 694 { 695 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 696 u32 word; 697 698 if (entry->queue->qid == QID_RX) { 699 rt2x00_desc_read(entry_priv->desc, 1, &word); 700 701 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); 702 } else { 703 rt2x00_desc_read(entry_priv->desc, 1, &word); 704 705 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); 706 } 707 } 708 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state); 709 710 void rt2800mmio_clear_entry(struct queue_entry *entry) 711 { 712 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 713 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 714 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 715 u32 word; 716 717 if (entry->queue->qid == QID_RX) { 718 rt2x00_desc_read(entry_priv->desc, 0, &word); 719 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); 720 rt2x00_desc_write(entry_priv->desc, 0, word); 721 722 rt2x00_desc_read(entry_priv->desc, 1, &word); 723 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); 724 rt2x00_desc_write(entry_priv->desc, 1, word); 725 726 /* 727 * Set RX IDX in register to inform hardware that we have 728 * handled this entry and it is available for reuse again. 729 */ 730 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, 731 entry->entry_idx); 732 } else { 733 rt2x00_desc_read(entry_priv->desc, 1, &word); 734 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); 735 rt2x00_desc_write(entry_priv->desc, 1, word); 736 } 737 } 738 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry); 739 740 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev) 741 { 742 struct queue_entry_priv_mmio *entry_priv; 743 744 /* 745 * Initialize registers. 746 */ 747 entry_priv = rt2x00dev->tx[0].entries[0].priv_data; 748 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0, 749 entry_priv->desc_dma); 750 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0, 751 rt2x00dev->tx[0].limit); 752 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0); 753 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0); 754 755 entry_priv = rt2x00dev->tx[1].entries[0].priv_data; 756 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1, 757 entry_priv->desc_dma); 758 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1, 759 rt2x00dev->tx[1].limit); 760 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0); 761 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0); 762 763 entry_priv = rt2x00dev->tx[2].entries[0].priv_data; 764 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2, 765 entry_priv->desc_dma); 766 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2, 767 rt2x00dev->tx[2].limit); 768 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0); 769 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0); 770 771 entry_priv = rt2x00dev->tx[3].entries[0].priv_data; 772 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3, 773 entry_priv->desc_dma); 774 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3, 775 rt2x00dev->tx[3].limit); 776 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0); 777 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0); 778 779 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0); 780 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0); 781 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0); 782 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0); 783 784 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0); 785 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0); 786 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0); 787 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0); 788 789 entry_priv = rt2x00dev->rx->entries[0].priv_data; 790 rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR, 791 entry_priv->desc_dma); 792 rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT, 793 rt2x00dev->rx[0].limit); 794 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, 795 rt2x00dev->rx[0].limit - 1); 796 rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0); 797 798 rt2800_disable_wpdma(rt2x00dev); 799 800 rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0); 801 802 return 0; 803 } 804 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues); 805 806 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev) 807 { 808 u32 reg; 809 810 /* 811 * Reset DMA indexes 812 */ 813 rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, ®); 814 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); 815 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); 816 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); 817 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); 818 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); 819 rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); 820 rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); 821 rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg); 822 823 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); 824 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); 825 826 if (rt2x00_is_pcie(rt2x00dev) && 827 (rt2x00_rt(rt2x00dev, RT3090) || 828 rt2x00_rt(rt2x00dev, RT3390) || 829 rt2x00_rt(rt2x00dev, RT3572) || 830 rt2x00_rt(rt2x00dev, RT3593) || 831 rt2x00_rt(rt2x00dev, RT5390) || 832 rt2x00_rt(rt2x00dev, RT5392) || 833 rt2x00_rt(rt2x00dev, RT5592))) { 834 rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, ®); 835 rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); 836 rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); 837 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg); 838 } 839 840 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); 841 842 reg = 0; 843 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); 844 rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); 845 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); 846 847 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); 848 849 return 0; 850 } 851 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers); 852 853 /* 854 * Device state switch handlers. 855 */ 856 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev) 857 { 858 /* Wait for DMA, ignore error until we initialize queues. */ 859 rt2800_wait_wpdma_ready(rt2x00dev); 860 861 if (unlikely(rt2800mmio_init_queues(rt2x00dev))) 862 return -EIO; 863 864 return rt2800_enable_radio(rt2x00dev); 865 } 866 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio); 867 868 MODULE_AUTHOR(DRV_PROJECT); 869 MODULE_VERSION(DRV_VERSION); 870 MODULE_DESCRIPTION("rt2800 MMIO library"); 871 MODULE_LICENSE("GPL"); 872