1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500usb
21 	Abstract: rt2500usb device specific routines.
22 	Supported chipsets: RT2570.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35 
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42 
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 					   const unsigned int offset,
60 					   u16 *value)
61 {
62 	__le16 reg;
63 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 				      USB_VENDOR_REQUEST_IN, offset,
65 				      &reg, sizeof(reg));
66 	*value = le16_to_cpu(reg);
67 }
68 
69 static void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 						const unsigned int offset,
71 						u16 *value)
72 {
73 	__le16 reg;
74 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 				       USB_VENDOR_REQUEST_IN, offset,
76 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
77 	*value = le16_to_cpu(reg);
78 }
79 
80 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
81 					    const unsigned int offset,
82 					    u16 value)
83 {
84 	__le16 reg = cpu_to_le16(value);
85 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
86 				      USB_VENDOR_REQUEST_OUT, offset,
87 				      &reg, sizeof(reg));
88 }
89 
90 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
91 						 const unsigned int offset,
92 						 u16 value)
93 {
94 	__le16 reg = cpu_to_le16(value);
95 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
96 				       USB_VENDOR_REQUEST_OUT, offset,
97 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
98 }
99 
100 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
101 						 const unsigned int offset,
102 						 void *value, const u16 length)
103 {
104 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
105 				      USB_VENDOR_REQUEST_OUT, offset,
106 				      value, length);
107 }
108 
109 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
110 				  const unsigned int offset,
111 				  struct rt2x00_field16 field,
112 				  u16 *reg)
113 {
114 	unsigned int i;
115 
116 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
117 		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
118 		if (!rt2x00_get_field16(*reg, field))
119 			return 1;
120 		udelay(REGISTER_BUSY_DELAY);
121 	}
122 
123 	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
124 		   offset, *reg);
125 	*reg = ~0;
126 
127 	return 0;
128 }
129 
130 #define WAIT_FOR_BBP(__dev, __reg) \
131 	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
132 #define WAIT_FOR_RF(__dev, __reg) \
133 	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
134 
135 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
136 				const unsigned int word, const u8 value)
137 {
138 	u16 reg;
139 
140 	mutex_lock(&rt2x00dev->csr_mutex);
141 
142 	/*
143 	 * Wait until the BBP becomes available, afterwards we
144 	 * can safely write the new data into the register.
145 	 */
146 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
147 		reg = 0;
148 		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
149 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
150 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
151 
152 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
153 	}
154 
155 	mutex_unlock(&rt2x00dev->csr_mutex);
156 }
157 
158 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
159 			       const unsigned int word, u8 *value)
160 {
161 	u16 reg;
162 
163 	mutex_lock(&rt2x00dev->csr_mutex);
164 
165 	/*
166 	 * Wait until the BBP becomes available, afterwards we
167 	 * can safely write the read request into the register.
168 	 * After the data has been written, we wait until hardware
169 	 * returns the correct value, if at any time the register
170 	 * doesn't become available in time, reg will be 0xffffffff
171 	 * which means we return 0xff to the caller.
172 	 */
173 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
174 		reg = 0;
175 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
176 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
177 
178 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
179 
180 		if (WAIT_FOR_BBP(rt2x00dev, &reg))
181 			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
182 	}
183 
184 	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
185 
186 	mutex_unlock(&rt2x00dev->csr_mutex);
187 }
188 
189 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
190 			       const unsigned int word, const u32 value)
191 {
192 	u16 reg;
193 
194 	mutex_lock(&rt2x00dev->csr_mutex);
195 
196 	/*
197 	 * Wait until the RF becomes available, afterwards we
198 	 * can safely write the new data into the register.
199 	 */
200 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
201 		reg = 0;
202 		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
203 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
204 
205 		reg = 0;
206 		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
207 		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
208 		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
209 		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
210 
211 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
212 		rt2x00_rf_write(rt2x00dev, word, value);
213 	}
214 
215 	mutex_unlock(&rt2x00dev->csr_mutex);
216 }
217 
218 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
219 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
220 				     const unsigned int offset,
221 				     u32 *value)
222 {
223 	u16 tmp;
224 
225 	rt2500usb_register_read(rt2x00dev, offset, &tmp);
226 	*value = tmp;
227 }
228 
229 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
230 				      const unsigned int offset,
231 				      u32 value)
232 {
233 	rt2500usb_register_write(rt2x00dev, offset, value);
234 }
235 
236 static const struct rt2x00debug rt2500usb_rt2x00debug = {
237 	.owner	= THIS_MODULE,
238 	.csr	= {
239 		.read		= _rt2500usb_register_read,
240 		.write		= _rt2500usb_register_write,
241 		.flags		= RT2X00DEBUGFS_OFFSET,
242 		.word_base	= CSR_REG_BASE,
243 		.word_size	= sizeof(u16),
244 		.word_count	= CSR_REG_SIZE / sizeof(u16),
245 	},
246 	.eeprom	= {
247 		.read		= rt2x00_eeprom_read,
248 		.write		= rt2x00_eeprom_write,
249 		.word_base	= EEPROM_BASE,
250 		.word_size	= sizeof(u16),
251 		.word_count	= EEPROM_SIZE / sizeof(u16),
252 	},
253 	.bbp	= {
254 		.read		= rt2500usb_bbp_read,
255 		.write		= rt2500usb_bbp_write,
256 		.word_base	= BBP_BASE,
257 		.word_size	= sizeof(u8),
258 		.word_count	= BBP_SIZE / sizeof(u8),
259 	},
260 	.rf	= {
261 		.read		= rt2x00_rf_read,
262 		.write		= rt2500usb_rf_write,
263 		.word_base	= RF_BASE,
264 		.word_size	= sizeof(u32),
265 		.word_count	= RF_SIZE / sizeof(u32),
266 	},
267 };
268 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
269 
270 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
271 {
272 	u16 reg;
273 
274 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
275 	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
276 }
277 
278 #ifdef CONFIG_RT2X00_LIB_LEDS
279 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
280 				     enum led_brightness brightness)
281 {
282 	struct rt2x00_led *led =
283 	    container_of(led_cdev, struct rt2x00_led, led_dev);
284 	unsigned int enabled = brightness != LED_OFF;
285 	u16 reg;
286 
287 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
288 
289 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
290 		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
291 	else if (led->type == LED_TYPE_ACTIVITY)
292 		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
293 
294 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
295 }
296 
297 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
298 			       unsigned long *delay_on,
299 			       unsigned long *delay_off)
300 {
301 	struct rt2x00_led *led =
302 	    container_of(led_cdev, struct rt2x00_led, led_dev);
303 	u16 reg;
304 
305 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
306 	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
307 	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
308 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
309 
310 	return 0;
311 }
312 
313 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
314 			       struct rt2x00_led *led,
315 			       enum led_type type)
316 {
317 	led->rt2x00dev = rt2x00dev;
318 	led->type = type;
319 	led->led_dev.brightness_set = rt2500usb_brightness_set;
320 	led->led_dev.blink_set = rt2500usb_blink_set;
321 	led->flags = LED_INITIALIZED;
322 }
323 #endif /* CONFIG_RT2X00_LIB_LEDS */
324 
325 /*
326  * Configuration handlers.
327  */
328 
329 /*
330  * rt2500usb does not differentiate between shared and pairwise
331  * keys, so we should use the same function for both key types.
332  */
333 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
334 				struct rt2x00lib_crypto *crypto,
335 				struct ieee80211_key_conf *key)
336 {
337 	u32 mask;
338 	u16 reg;
339 	enum cipher curr_cipher;
340 
341 	if (crypto->cmd == SET_KEY) {
342 		/*
343 		 * Disallow to set WEP key other than with index 0,
344 		 * it is known that not work at least on some hardware.
345 		 * SW crypto will be used in that case.
346 		 */
347 		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
348 		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
349 		    key->keyidx != 0)
350 			return -EOPNOTSUPP;
351 
352 		/*
353 		 * Pairwise key will always be entry 0, but this
354 		 * could collide with a shared key on the same
355 		 * position...
356 		 */
357 		mask = TXRX_CSR0_KEY_ID.bit_mask;
358 
359 		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
360 		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
361 		reg &= mask;
362 
363 		if (reg && reg == mask)
364 			return -ENOSPC;
365 
366 		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
367 
368 		key->hw_key_idx += reg ? ffz(reg) : 0;
369 		/*
370 		 * Hardware requires that all keys use the same cipher
371 		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
372 		 * If this is not the first key, compare the cipher with the
373 		 * first one and fall back to SW crypto if not the same.
374 		 */
375 		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
376 			return -EOPNOTSUPP;
377 
378 		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
379 					      crypto->key, sizeof(crypto->key));
380 
381 		/*
382 		 * The driver does not support the IV/EIV generation
383 		 * in hardware. However it demands the data to be provided
384 		 * both separately as well as inside the frame.
385 		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
386 		 * to ensure rt2x00lib will not strip the data from the
387 		 * frame after the copy, now we must tell mac80211
388 		 * to generate the IV/EIV data.
389 		 */
390 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
391 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
392 	}
393 
394 	/*
395 	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
396 	 * a particular key is valid.
397 	 */
398 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
399 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
400 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
401 
402 	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
403 	if (crypto->cmd == SET_KEY)
404 		mask |= 1 << key->hw_key_idx;
405 	else if (crypto->cmd == DISABLE_KEY)
406 		mask &= ~(1 << key->hw_key_idx);
407 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
408 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
409 
410 	return 0;
411 }
412 
413 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
414 				    const unsigned int filter_flags)
415 {
416 	u16 reg;
417 
418 	/*
419 	 * Start configuration steps.
420 	 * Note that the version error will always be dropped
421 	 * and broadcast frames will always be accepted since
422 	 * there is no filter for it at this time.
423 	 */
424 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
425 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
426 			   !(filter_flags & FIF_FCSFAIL));
427 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
428 			   !(filter_flags & FIF_PLCPFAIL));
429 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
430 			   !(filter_flags & FIF_CONTROL));
431 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
432 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
433 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
434 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
435 			   !rt2x00dev->intf_ap_count);
436 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
437 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
438 			   !(filter_flags & FIF_ALLMULTI));
439 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
440 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
441 }
442 
443 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
444 				  struct rt2x00_intf *intf,
445 				  struct rt2x00intf_conf *conf,
446 				  const unsigned int flags)
447 {
448 	unsigned int bcn_preload;
449 	u16 reg;
450 
451 	if (flags & CONFIG_UPDATE_TYPE) {
452 		/*
453 		 * Enable beacon config
454 		 */
455 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
456 		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
457 		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
458 		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
459 				   2 * (conf->type != NL80211_IFTYPE_STATION));
460 		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
461 
462 		/*
463 		 * Enable synchronisation.
464 		 */
465 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
466 		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
467 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
468 
469 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
470 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
471 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
472 	}
473 
474 	if (flags & CONFIG_UPDATE_MAC)
475 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
476 					      (3 * sizeof(__le16)));
477 
478 	if (flags & CONFIG_UPDATE_BSSID)
479 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
480 					      (3 * sizeof(__le16)));
481 }
482 
483 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
484 				 struct rt2x00lib_erp *erp,
485 				 u32 changed)
486 {
487 	u16 reg;
488 
489 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
490 		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
491 		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
492 				   !!erp->short_preamble);
493 		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
494 	}
495 
496 	if (changed & BSS_CHANGED_BASIC_RATES)
497 		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
498 					 erp->basic_rates);
499 
500 	if (changed & BSS_CHANGED_BEACON_INT) {
501 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
502 		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
503 				   erp->beacon_int * 4);
504 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
505 	}
506 
507 	if (changed & BSS_CHANGED_ERP_SLOT) {
508 		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
509 		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
510 		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
511 	}
512 }
513 
514 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
515 				 struct antenna_setup *ant)
516 {
517 	u8 r2;
518 	u8 r14;
519 	u16 csr5;
520 	u16 csr6;
521 
522 	/*
523 	 * We should never come here because rt2x00lib is supposed
524 	 * to catch this and send us the correct antenna explicitely.
525 	 */
526 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
527 	       ant->tx == ANTENNA_SW_DIVERSITY);
528 
529 	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
530 	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
531 	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
532 	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
533 
534 	/*
535 	 * Configure the TX antenna.
536 	 */
537 	switch (ant->tx) {
538 	case ANTENNA_HW_DIVERSITY:
539 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
540 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
541 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
542 		break;
543 	case ANTENNA_A:
544 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
545 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
546 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
547 		break;
548 	case ANTENNA_B:
549 	default:
550 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
551 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
552 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
553 		break;
554 	}
555 
556 	/*
557 	 * Configure the RX antenna.
558 	 */
559 	switch (ant->rx) {
560 	case ANTENNA_HW_DIVERSITY:
561 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
562 		break;
563 	case ANTENNA_A:
564 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
565 		break;
566 	case ANTENNA_B:
567 	default:
568 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
569 		break;
570 	}
571 
572 	/*
573 	 * RT2525E and RT5222 need to flip TX I/Q
574 	 */
575 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
576 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
577 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
578 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
579 
580 		/*
581 		 * RT2525E does not need RX I/Q Flip.
582 		 */
583 		if (rt2x00_rf(rt2x00dev, RF2525E))
584 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
585 	} else {
586 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
587 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
588 	}
589 
590 	rt2500usb_bbp_write(rt2x00dev, 2, r2);
591 	rt2500usb_bbp_write(rt2x00dev, 14, r14);
592 	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
593 	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
594 }
595 
596 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
597 				     struct rf_channel *rf, const int txpower)
598 {
599 	/*
600 	 * Set TXpower.
601 	 */
602 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
603 
604 	/*
605 	 * For RT2525E we should first set the channel to half band higher.
606 	 */
607 	if (rt2x00_rf(rt2x00dev, RF2525E)) {
608 		static const u32 vals[] = {
609 			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
610 			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
611 			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
612 			0x00000902, 0x00000906
613 		};
614 
615 		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
616 		if (rf->rf4)
617 			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
618 	}
619 
620 	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
621 	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
622 	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
623 	if (rf->rf4)
624 		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
625 }
626 
627 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
628 				     const int txpower)
629 {
630 	u32 rf3;
631 
632 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
633 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
634 	rt2500usb_rf_write(rt2x00dev, 3, rf3);
635 }
636 
637 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
638 				struct rt2x00lib_conf *libconf)
639 {
640 	enum dev_state state =
641 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
642 		STATE_SLEEP : STATE_AWAKE;
643 	u16 reg;
644 
645 	if (state == STATE_SLEEP) {
646 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
647 		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
648 				   rt2x00dev->beacon_int - 20);
649 		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
650 				   libconf->conf->listen_interval - 1);
651 
652 		/* We must first disable autowake before it can be enabled */
653 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
654 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
655 
656 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
657 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
658 	} else {
659 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
660 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
661 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662 	}
663 
664 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
665 }
666 
667 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
668 			     struct rt2x00lib_conf *libconf,
669 			     const unsigned int flags)
670 {
671 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
672 		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
673 					 libconf->conf->power_level);
674 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
675 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
676 		rt2500usb_config_txpower(rt2x00dev,
677 					 libconf->conf->power_level);
678 	if (flags & IEEE80211_CONF_CHANGE_PS)
679 		rt2500usb_config_ps(rt2x00dev, libconf);
680 }
681 
682 /*
683  * Link tuning
684  */
685 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
686 				 struct link_qual *qual)
687 {
688 	u16 reg;
689 
690 	/*
691 	 * Update FCS error count from register.
692 	 */
693 	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
694 	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
695 
696 	/*
697 	 * Update False CCA count from register.
698 	 */
699 	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
700 	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
701 }
702 
703 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
704 				  struct link_qual *qual)
705 {
706 	u16 eeprom;
707 	u16 value;
708 
709 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
710 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
711 	rt2500usb_bbp_write(rt2x00dev, 24, value);
712 
713 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
714 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
715 	rt2500usb_bbp_write(rt2x00dev, 25, value);
716 
717 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
718 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
719 	rt2500usb_bbp_write(rt2x00dev, 61, value);
720 
721 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
722 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
723 	rt2500usb_bbp_write(rt2x00dev, 17, value);
724 
725 	qual->vgc_level = value;
726 }
727 
728 /*
729  * Queue handlers.
730  */
731 static void rt2500usb_start_queue(struct data_queue *queue)
732 {
733 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
734 	u16 reg;
735 
736 	switch (queue->qid) {
737 	case QID_RX:
738 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
739 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
740 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
741 		break;
742 	case QID_BEACON:
743 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
744 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
745 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
746 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
747 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
748 		break;
749 	default:
750 		break;
751 	}
752 }
753 
754 static void rt2500usb_stop_queue(struct data_queue *queue)
755 {
756 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
757 	u16 reg;
758 
759 	switch (queue->qid) {
760 	case QID_RX:
761 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
762 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
763 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
764 		break;
765 	case QID_BEACON:
766 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
767 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
768 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
769 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
770 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
771 		break;
772 	default:
773 		break;
774 	}
775 }
776 
777 /*
778  * Initialization functions.
779  */
780 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
781 {
782 	u16 reg;
783 
784 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
785 				    USB_MODE_TEST, REGISTER_TIMEOUT);
786 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
787 				    0x00f0, REGISTER_TIMEOUT);
788 
789 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
790 	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
791 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
792 
793 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
794 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
795 
796 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
797 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
798 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
799 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
800 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
801 
802 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
803 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
804 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
805 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
806 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
807 
808 	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
809 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
810 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
811 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
812 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
813 	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
814 
815 	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
816 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
817 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
818 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
819 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
820 	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
821 
822 	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
823 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
824 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
825 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
826 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
827 	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
828 
829 	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
830 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
831 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
832 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
833 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
834 	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
835 
836 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
837 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
838 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
839 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
840 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
841 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
842 
843 	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
844 	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
845 
846 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
847 		return -EBUSY;
848 
849 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
850 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
851 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
852 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
853 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
854 
855 	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
856 		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
857 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
858 	} else {
859 		reg = 0;
860 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
861 		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
862 	}
863 	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
864 
865 	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
866 	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
867 	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
868 	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
869 
870 	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
871 	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
872 			   rt2x00dev->rx->data_size);
873 	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
874 
875 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
876 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
877 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
878 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
879 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
880 
881 	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
882 	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
883 	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
884 
885 	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
886 	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
887 	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
888 
889 	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
890 	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
891 	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
892 
893 	return 0;
894 }
895 
896 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
897 {
898 	unsigned int i;
899 	u8 value;
900 
901 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
902 		rt2500usb_bbp_read(rt2x00dev, 0, &value);
903 		if ((value != 0xff) && (value != 0x00))
904 			return 0;
905 		udelay(REGISTER_BUSY_DELAY);
906 	}
907 
908 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
909 	return -EACCES;
910 }
911 
912 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
913 {
914 	unsigned int i;
915 	u16 eeprom;
916 	u8 value;
917 	u8 reg_id;
918 
919 	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
920 		return -EACCES;
921 
922 	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
923 	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
924 	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
925 	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
926 	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
927 	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
928 	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
929 	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
930 	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
931 	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
932 	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
933 	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
934 	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
935 	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
936 	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
937 	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
938 	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
939 	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
940 	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
941 	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
942 	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
943 	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
944 	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
945 	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
946 	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
947 	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
948 	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
949 	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
950 	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
951 	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
952 	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
953 
954 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
955 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
956 
957 		if (eeprom != 0xffff && eeprom != 0x0000) {
958 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
959 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
960 			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
961 		}
962 	}
963 
964 	return 0;
965 }
966 
967 /*
968  * Device state switch handlers.
969  */
970 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
971 {
972 	/*
973 	 * Initialize all registers.
974 	 */
975 	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
976 		     rt2500usb_init_bbp(rt2x00dev)))
977 		return -EIO;
978 
979 	return 0;
980 }
981 
982 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
983 {
984 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
985 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
986 
987 	/*
988 	 * Disable synchronisation.
989 	 */
990 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
991 
992 	rt2x00usb_disable_radio(rt2x00dev);
993 }
994 
995 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
996 			       enum dev_state state)
997 {
998 	u16 reg;
999 	u16 reg2;
1000 	unsigned int i;
1001 	char put_to_sleep;
1002 	char bbp_state;
1003 	char rf_state;
1004 
1005 	put_to_sleep = (state != STATE_AWAKE);
1006 
1007 	reg = 0;
1008 	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1009 	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1010 	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1011 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1012 	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1013 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1014 
1015 	/*
1016 	 * Device is not guaranteed to be in the requested state yet.
1017 	 * We must wait until the register indicates that the
1018 	 * device has entered the correct state.
1019 	 */
1020 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1021 		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1022 		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1023 		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1024 		if (bbp_state == state && rf_state == state)
1025 			return 0;
1026 		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1027 		msleep(30);
1028 	}
1029 
1030 	return -EBUSY;
1031 }
1032 
1033 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1034 				      enum dev_state state)
1035 {
1036 	int retval = 0;
1037 
1038 	switch (state) {
1039 	case STATE_RADIO_ON:
1040 		retval = rt2500usb_enable_radio(rt2x00dev);
1041 		break;
1042 	case STATE_RADIO_OFF:
1043 		rt2500usb_disable_radio(rt2x00dev);
1044 		break;
1045 	case STATE_RADIO_IRQ_ON:
1046 	case STATE_RADIO_IRQ_OFF:
1047 		/* No support, but no error either */
1048 		break;
1049 	case STATE_DEEP_SLEEP:
1050 	case STATE_SLEEP:
1051 	case STATE_STANDBY:
1052 	case STATE_AWAKE:
1053 		retval = rt2500usb_set_state(rt2x00dev, state);
1054 		break;
1055 	default:
1056 		retval = -ENOTSUPP;
1057 		break;
1058 	}
1059 
1060 	if (unlikely(retval))
1061 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1062 			   state, retval);
1063 
1064 	return retval;
1065 }
1066 
1067 /*
1068  * TX descriptor initialization
1069  */
1070 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1071 				    struct txentry_desc *txdesc)
1072 {
1073 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1074 	__le32 *txd = (__le32 *) entry->skb->data;
1075 	u32 word;
1076 
1077 	/*
1078 	 * Start writing the descriptor words.
1079 	 */
1080 	rt2x00_desc_read(txd, 0, &word);
1081 	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1082 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1083 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1084 	rt2x00_set_field32(&word, TXD_W0_ACK,
1085 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1086 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1087 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1088 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1089 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1090 	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1091 			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1092 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1093 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1094 	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1095 	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1096 	rt2x00_desc_write(txd, 0, word);
1097 
1098 	rt2x00_desc_read(txd, 1, &word);
1099 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1100 	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1101 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1102 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1103 	rt2x00_desc_write(txd, 1, word);
1104 
1105 	rt2x00_desc_read(txd, 2, &word);
1106 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1107 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1108 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1109 			   txdesc->u.plcp.length_low);
1110 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1111 			   txdesc->u.plcp.length_high);
1112 	rt2x00_desc_write(txd, 2, word);
1113 
1114 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1115 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1116 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1117 	}
1118 
1119 	/*
1120 	 * Register descriptor details in skb frame descriptor.
1121 	 */
1122 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1123 	skbdesc->desc = txd;
1124 	skbdesc->desc_len = TXD_DESC_SIZE;
1125 }
1126 
1127 /*
1128  * TX data initialization
1129  */
1130 static void rt2500usb_beacondone(struct urb *urb);
1131 
1132 static void rt2500usb_write_beacon(struct queue_entry *entry,
1133 				   struct txentry_desc *txdesc)
1134 {
1135 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1136 	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1137 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1138 	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1139 	int length;
1140 	u16 reg, reg0;
1141 
1142 	/*
1143 	 * Disable beaconing while we are reloading the beacon data,
1144 	 * otherwise we might be sending out invalid data.
1145 	 */
1146 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1147 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1148 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1149 
1150 	/*
1151 	 * Add space for the descriptor in front of the skb.
1152 	 */
1153 	skb_push(entry->skb, TXD_DESC_SIZE);
1154 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1155 
1156 	/*
1157 	 * Write the TX descriptor for the beacon.
1158 	 */
1159 	rt2500usb_write_tx_desc(entry, txdesc);
1160 
1161 	/*
1162 	 * Dump beacon to userspace through debugfs.
1163 	 */
1164 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1165 
1166 	/*
1167 	 * USB devices cannot blindly pass the skb->len as the
1168 	 * length of the data to usb_fill_bulk_urb. Pass the skb
1169 	 * to the driver to determine what the length should be.
1170 	 */
1171 	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1172 
1173 	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1174 			  entry->skb->data, length, rt2500usb_beacondone,
1175 			  entry);
1176 
1177 	/*
1178 	 * Second we need to create the guardian byte.
1179 	 * We only need a single byte, so lets recycle
1180 	 * the 'flags' field we are not using for beacons.
1181 	 */
1182 	bcn_priv->guardian_data = 0;
1183 	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1184 			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1185 			  entry);
1186 
1187 	/*
1188 	 * Send out the guardian byte.
1189 	 */
1190 	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1191 
1192 	/*
1193 	 * Enable beaconing again.
1194 	 */
1195 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1196 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1197 	reg0 = reg;
1198 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1199 	/*
1200 	 * Beacon generation will fail initially.
1201 	 * To prevent this we need to change the TXRX_CSR19
1202 	 * register several times (reg0 is the same as reg
1203 	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1204 	 * and 1 in reg).
1205 	 */
1206 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1207 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1208 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1209 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1210 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1211 }
1212 
1213 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1214 {
1215 	int length;
1216 
1217 	/*
1218 	 * The length _must_ be a multiple of 2,
1219 	 * but it must _not_ be a multiple of the USB packet size.
1220 	 */
1221 	length = roundup(entry->skb->len, 2);
1222 	length += (2 * !(length % entry->queue->usb_maxpacket));
1223 
1224 	return length;
1225 }
1226 
1227 /*
1228  * RX control handlers
1229  */
1230 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1231 				  struct rxdone_entry_desc *rxdesc)
1232 {
1233 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1234 	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1235 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1236 	__le32 *rxd =
1237 	    (__le32 *)(entry->skb->data +
1238 		       (entry_priv->urb->actual_length -
1239 			entry->queue->desc_size));
1240 	u32 word0;
1241 	u32 word1;
1242 
1243 	/*
1244 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1245 	 * frame data in rt2x00usb.
1246 	 */
1247 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1248 	rxd = (__le32 *)skbdesc->desc;
1249 
1250 	/*
1251 	 * It is now safe to read the descriptor on all architectures.
1252 	 */
1253 	rt2x00_desc_read(rxd, 0, &word0);
1254 	rt2x00_desc_read(rxd, 1, &word1);
1255 
1256 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1257 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1258 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1259 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1260 
1261 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1262 	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1263 		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1264 
1265 	if (rxdesc->cipher != CIPHER_NONE) {
1266 		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1267 		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1268 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1269 
1270 		/* ICV is located at the end of frame */
1271 
1272 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1273 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1274 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1275 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1276 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1277 	}
1278 
1279 	/*
1280 	 * Obtain the status about this packet.
1281 	 * When frame was received with an OFDM bitrate,
1282 	 * the signal is the PLCP value. If it was received with
1283 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1284 	 */
1285 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1286 	rxdesc->rssi =
1287 	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1288 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1289 
1290 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1291 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1292 	else
1293 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1294 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1295 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1296 
1297 	/*
1298 	 * Adjust the skb memory window to the frame boundaries.
1299 	 */
1300 	skb_trim(entry->skb, rxdesc->size);
1301 }
1302 
1303 /*
1304  * Interrupt functions.
1305  */
1306 static void rt2500usb_beacondone(struct urb *urb)
1307 {
1308 	struct queue_entry *entry = (struct queue_entry *)urb->context;
1309 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1310 
1311 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1312 		return;
1313 
1314 	/*
1315 	 * Check if this was the guardian beacon,
1316 	 * if that was the case we need to send the real beacon now.
1317 	 * Otherwise we should free the sk_buffer, the device
1318 	 * should be doing the rest of the work now.
1319 	 */
1320 	if (bcn_priv->guardian_urb == urb) {
1321 		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1322 	} else if (bcn_priv->urb == urb) {
1323 		dev_kfree_skb(entry->skb);
1324 		entry->skb = NULL;
1325 	}
1326 }
1327 
1328 /*
1329  * Device probe functions.
1330  */
1331 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1332 {
1333 	u16 word;
1334 	u8 *mac;
1335 	u8 bbp;
1336 
1337 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1338 
1339 	/*
1340 	 * Start validation of the data that has been read.
1341 	 */
1342 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1343 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1344 
1345 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1346 	if (word == 0xffff) {
1347 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1348 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1349 				   ANTENNA_SW_DIVERSITY);
1350 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1351 				   ANTENNA_SW_DIVERSITY);
1352 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1353 				   LED_MODE_DEFAULT);
1354 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1355 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1356 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1357 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1358 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1359 	}
1360 
1361 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1362 	if (word == 0xffff) {
1363 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1364 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1365 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1366 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1367 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1368 	}
1369 
1370 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1371 	if (word == 0xffff) {
1372 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1373 				   DEFAULT_RSSI_OFFSET);
1374 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1375 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1376 				  word);
1377 	}
1378 
1379 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1380 	if (word == 0xffff) {
1381 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1382 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1383 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1384 	}
1385 
1386 	/*
1387 	 * Switch lower vgc bound to current BBP R17 value,
1388 	 * lower the value a bit for better quality.
1389 	 */
1390 	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1391 	bbp -= 6;
1392 
1393 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1394 	if (word == 0xffff) {
1395 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1396 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1397 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1398 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1399 	} else {
1400 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1401 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1402 	}
1403 
1404 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1405 	if (word == 0xffff) {
1406 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1407 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1408 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1409 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1410 	}
1411 
1412 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1413 	if (word == 0xffff) {
1414 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1415 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1416 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1417 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1418 	}
1419 
1420 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1421 	if (word == 0xffff) {
1422 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1423 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1424 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1425 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1426 	}
1427 
1428 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1429 	if (word == 0xffff) {
1430 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1431 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1432 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1433 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1440 {
1441 	u16 reg;
1442 	u16 value;
1443 	u16 eeprom;
1444 
1445 	/*
1446 	 * Read EEPROM word for configuration.
1447 	 */
1448 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1449 
1450 	/*
1451 	 * Identify RF chipset.
1452 	 */
1453 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1454 	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1455 	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1456 
1457 	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1458 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1459 		return -ENODEV;
1460 	}
1461 
1462 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1463 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1464 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1465 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1466 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1467 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1468 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1469 		return -ENODEV;
1470 	}
1471 
1472 	/*
1473 	 * Identify default antenna configuration.
1474 	 */
1475 	rt2x00dev->default_ant.tx =
1476 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1477 	rt2x00dev->default_ant.rx =
1478 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1479 
1480 	/*
1481 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1482 	 * I am not 100% sure about this, but the legacy drivers do not
1483 	 * indicate antenna swapping in software is required when
1484 	 * diversity is enabled.
1485 	 */
1486 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1487 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1488 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1489 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1490 
1491 	/*
1492 	 * Store led mode, for correct led behaviour.
1493 	 */
1494 #ifdef CONFIG_RT2X00_LIB_LEDS
1495 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1496 
1497 	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1498 	if (value == LED_MODE_TXRX_ACTIVITY ||
1499 	    value == LED_MODE_DEFAULT ||
1500 	    value == LED_MODE_ASUS)
1501 		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1502 				   LED_TYPE_ACTIVITY);
1503 #endif /* CONFIG_RT2X00_LIB_LEDS */
1504 
1505 	/*
1506 	 * Detect if this device has an hardware controlled radio.
1507 	 */
1508 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1509 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1510 
1511 	/*
1512 	 * Read the RSSI <-> dBm offset information.
1513 	 */
1514 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1515 	rt2x00dev->rssi_offset =
1516 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1517 
1518 	return 0;
1519 }
1520 
1521 /*
1522  * RF value list for RF2522
1523  * Supports: 2.4 GHz
1524  */
1525 static const struct rf_channel rf_vals_bg_2522[] = {
1526 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1527 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1528 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1529 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1530 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1531 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1532 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1533 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1534 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1535 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1536 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1537 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1538 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1539 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1540 };
1541 
1542 /*
1543  * RF value list for RF2523
1544  * Supports: 2.4 GHz
1545  */
1546 static const struct rf_channel rf_vals_bg_2523[] = {
1547 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1548 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1549 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1550 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1551 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1552 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1553 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1554 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1555 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1556 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1557 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1558 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1559 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1560 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1561 };
1562 
1563 /*
1564  * RF value list for RF2524
1565  * Supports: 2.4 GHz
1566  */
1567 static const struct rf_channel rf_vals_bg_2524[] = {
1568 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1569 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1570 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1571 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1572 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1573 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1574 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1575 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1576 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1577 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1578 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1579 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1580 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1581 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1582 };
1583 
1584 /*
1585  * RF value list for RF2525
1586  * Supports: 2.4 GHz
1587  */
1588 static const struct rf_channel rf_vals_bg_2525[] = {
1589 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1590 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1591 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1592 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1593 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1594 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1595 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1596 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1597 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1598 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1599 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1600 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1601 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1602 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1603 };
1604 
1605 /*
1606  * RF value list for RF2525e
1607  * Supports: 2.4 GHz
1608  */
1609 static const struct rf_channel rf_vals_bg_2525e[] = {
1610 	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1611 	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1612 	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1613 	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1614 	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1615 	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1616 	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1617 	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1618 	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1619 	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1620 	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1621 	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1622 	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1623 	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1624 };
1625 
1626 /*
1627  * RF value list for RF5222
1628  * Supports: 2.4 GHz & 5.2 GHz
1629  */
1630 static const struct rf_channel rf_vals_5222[] = {
1631 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1632 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1633 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1634 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1635 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1636 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1637 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1638 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1639 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1640 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1641 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1642 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1643 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1644 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1645 
1646 	/* 802.11 UNI / HyperLan 2 */
1647 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1648 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1649 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1650 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1651 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1652 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1653 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1654 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1655 
1656 	/* 802.11 HyperLan 2 */
1657 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1658 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1659 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1660 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1661 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1662 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1663 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1664 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1665 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1666 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1667 
1668 	/* 802.11 UNII */
1669 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1670 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1671 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1672 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1673 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1674 };
1675 
1676 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1677 {
1678 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1679 	struct channel_info *info;
1680 	char *tx_power;
1681 	unsigned int i;
1682 
1683 	/*
1684 	 * Initialize all hw fields.
1685 	 *
1686 	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1687 	 * capable of sending the buffered frames out after the DTIM
1688 	 * transmission using rt2x00lib_beacondone. This will send out
1689 	 * multicast and broadcast traffic immediately instead of buffering it
1690 	 * infinitly and thus dropping it after some time.
1691 	 */
1692 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1693 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1694 	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1695 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1696 
1697 	/*
1698 	 * Disable powersaving as default.
1699 	 */
1700 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1701 
1702 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1703 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1704 				rt2x00_eeprom_addr(rt2x00dev,
1705 						   EEPROM_MAC_ADDR_0));
1706 
1707 	/*
1708 	 * Initialize hw_mode information.
1709 	 */
1710 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1711 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1712 
1713 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1714 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1715 		spec->channels = rf_vals_bg_2522;
1716 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1717 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1718 		spec->channels = rf_vals_bg_2523;
1719 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1720 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1721 		spec->channels = rf_vals_bg_2524;
1722 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1723 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1724 		spec->channels = rf_vals_bg_2525;
1725 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1726 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1727 		spec->channels = rf_vals_bg_2525e;
1728 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1729 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1730 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1731 		spec->channels = rf_vals_5222;
1732 	}
1733 
1734 	/*
1735 	 * Create channel information array
1736 	 */
1737 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1738 	if (!info)
1739 		return -ENOMEM;
1740 
1741 	spec->channels_info = info;
1742 
1743 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1744 	for (i = 0; i < 14; i++) {
1745 		info[i].max_power = MAX_TXPOWER;
1746 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1747 	}
1748 
1749 	if (spec->num_channels > 14) {
1750 		for (i = 14; i < spec->num_channels; i++) {
1751 			info[i].max_power = MAX_TXPOWER;
1752 			info[i].default_power1 = DEFAULT_TXPOWER;
1753 		}
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1760 {
1761 	int retval;
1762 	u16 reg;
1763 
1764 	/*
1765 	 * Allocate eeprom data.
1766 	 */
1767 	retval = rt2500usb_validate_eeprom(rt2x00dev);
1768 	if (retval)
1769 		return retval;
1770 
1771 	retval = rt2500usb_init_eeprom(rt2x00dev);
1772 	if (retval)
1773 		return retval;
1774 
1775 	/*
1776 	 * Enable rfkill polling by setting GPIO direction of the
1777 	 * rfkill switch GPIO pin correctly.
1778 	 */
1779 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1780 	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1781 	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1782 
1783 	/*
1784 	 * Initialize hw specifications.
1785 	 */
1786 	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1787 	if (retval)
1788 		return retval;
1789 
1790 	/*
1791 	 * This device requires the atim queue
1792 	 */
1793 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1794 	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1795 	if (!modparam_nohwcrypt) {
1796 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1797 		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1798 	}
1799 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1800 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1801 
1802 	/*
1803 	 * Set the rssi offset.
1804 	 */
1805 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1806 
1807 	return 0;
1808 }
1809 
1810 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1811 	.tx			= rt2x00mac_tx,
1812 	.start			= rt2x00mac_start,
1813 	.stop			= rt2x00mac_stop,
1814 	.add_interface		= rt2x00mac_add_interface,
1815 	.remove_interface	= rt2x00mac_remove_interface,
1816 	.config			= rt2x00mac_config,
1817 	.configure_filter	= rt2x00mac_configure_filter,
1818 	.set_tim		= rt2x00mac_set_tim,
1819 	.set_key		= rt2x00mac_set_key,
1820 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1821 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1822 	.get_stats		= rt2x00mac_get_stats,
1823 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1824 	.conf_tx		= rt2x00mac_conf_tx,
1825 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1826 	.flush			= rt2x00mac_flush,
1827 	.set_antenna		= rt2x00mac_set_antenna,
1828 	.get_antenna		= rt2x00mac_get_antenna,
1829 	.get_ringparam		= rt2x00mac_get_ringparam,
1830 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1831 };
1832 
1833 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1834 	.probe_hw		= rt2500usb_probe_hw,
1835 	.initialize		= rt2x00usb_initialize,
1836 	.uninitialize		= rt2x00usb_uninitialize,
1837 	.clear_entry		= rt2x00usb_clear_entry,
1838 	.set_device_state	= rt2500usb_set_device_state,
1839 	.rfkill_poll		= rt2500usb_rfkill_poll,
1840 	.link_stats		= rt2500usb_link_stats,
1841 	.reset_tuner		= rt2500usb_reset_tuner,
1842 	.watchdog		= rt2x00usb_watchdog,
1843 	.start_queue		= rt2500usb_start_queue,
1844 	.kick_queue		= rt2x00usb_kick_queue,
1845 	.stop_queue		= rt2500usb_stop_queue,
1846 	.flush_queue		= rt2x00usb_flush_queue,
1847 	.write_tx_desc		= rt2500usb_write_tx_desc,
1848 	.write_beacon		= rt2500usb_write_beacon,
1849 	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1850 	.fill_rxdone		= rt2500usb_fill_rxdone,
1851 	.config_shared_key	= rt2500usb_config_key,
1852 	.config_pairwise_key	= rt2500usb_config_key,
1853 	.config_filter		= rt2500usb_config_filter,
1854 	.config_intf		= rt2500usb_config_intf,
1855 	.config_erp		= rt2500usb_config_erp,
1856 	.config_ant		= rt2500usb_config_ant,
1857 	.config			= rt2500usb_config,
1858 };
1859 
1860 static void rt2500usb_queue_init(struct data_queue *queue)
1861 {
1862 	switch (queue->qid) {
1863 	case QID_RX:
1864 		queue->limit = 32;
1865 		queue->data_size = DATA_FRAME_SIZE;
1866 		queue->desc_size = RXD_DESC_SIZE;
1867 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1868 		break;
1869 
1870 	case QID_AC_VO:
1871 	case QID_AC_VI:
1872 	case QID_AC_BE:
1873 	case QID_AC_BK:
1874 		queue->limit = 32;
1875 		queue->data_size = DATA_FRAME_SIZE;
1876 		queue->desc_size = TXD_DESC_SIZE;
1877 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878 		break;
1879 
1880 	case QID_BEACON:
1881 		queue->limit = 1;
1882 		queue->data_size = MGMT_FRAME_SIZE;
1883 		queue->desc_size = TXD_DESC_SIZE;
1884 		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1885 		break;
1886 
1887 	case QID_ATIM:
1888 		queue->limit = 8;
1889 		queue->data_size = DATA_FRAME_SIZE;
1890 		queue->desc_size = TXD_DESC_SIZE;
1891 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1892 		break;
1893 
1894 	default:
1895 		BUG();
1896 		break;
1897 	}
1898 }
1899 
1900 static const struct rt2x00_ops rt2500usb_ops = {
1901 	.name			= KBUILD_MODNAME,
1902 	.max_ap_intf		= 1,
1903 	.eeprom_size		= EEPROM_SIZE,
1904 	.rf_size		= RF_SIZE,
1905 	.tx_queues		= NUM_TX_QUEUES,
1906 	.queue_init		= rt2500usb_queue_init,
1907 	.lib			= &rt2500usb_rt2x00_ops,
1908 	.hw			= &rt2500usb_mac80211_ops,
1909 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1910 	.debugfs		= &rt2500usb_rt2x00debug,
1911 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1912 };
1913 
1914 /*
1915  * rt2500usb module information.
1916  */
1917 static struct usb_device_id rt2500usb_device_table[] = {
1918 	/* ASUS */
1919 	{ USB_DEVICE(0x0b05, 0x1706) },
1920 	{ USB_DEVICE(0x0b05, 0x1707) },
1921 	/* Belkin */
1922 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1923 	{ USB_DEVICE(0x050d, 0x7051) },
1924 	/* Cisco Systems */
1925 	{ USB_DEVICE(0x13b1, 0x000d) },
1926 	{ USB_DEVICE(0x13b1, 0x0011) },
1927 	{ USB_DEVICE(0x13b1, 0x001a) },
1928 	/* Conceptronic */
1929 	{ USB_DEVICE(0x14b2, 0x3c02) },
1930 	/* D-LINK */
1931 	{ USB_DEVICE(0x2001, 0x3c00) },
1932 	/* Gigabyte */
1933 	{ USB_DEVICE(0x1044, 0x8001) },
1934 	{ USB_DEVICE(0x1044, 0x8007) },
1935 	/* Hercules */
1936 	{ USB_DEVICE(0x06f8, 0xe000) },
1937 	/* Melco */
1938 	{ USB_DEVICE(0x0411, 0x005e) },
1939 	{ USB_DEVICE(0x0411, 0x0066) },
1940 	{ USB_DEVICE(0x0411, 0x0067) },
1941 	{ USB_DEVICE(0x0411, 0x008b) },
1942 	{ USB_DEVICE(0x0411, 0x0097) },
1943 	/* MSI */
1944 	{ USB_DEVICE(0x0db0, 0x6861) },
1945 	{ USB_DEVICE(0x0db0, 0x6865) },
1946 	{ USB_DEVICE(0x0db0, 0x6869) },
1947 	/* Ralink */
1948 	{ USB_DEVICE(0x148f, 0x1706) },
1949 	{ USB_DEVICE(0x148f, 0x2570) },
1950 	{ USB_DEVICE(0x148f, 0x9020) },
1951 	/* Sagem */
1952 	{ USB_DEVICE(0x079b, 0x004b) },
1953 	/* Siemens */
1954 	{ USB_DEVICE(0x0681, 0x3c06) },
1955 	/* SMC */
1956 	{ USB_DEVICE(0x0707, 0xee13) },
1957 	/* Spairon */
1958 	{ USB_DEVICE(0x114b, 0x0110) },
1959 	/* SURECOM */
1960 	{ USB_DEVICE(0x0769, 0x11f3) },
1961 	/* Trust */
1962 	{ USB_DEVICE(0x0eb0, 0x9020) },
1963 	/* VTech */
1964 	{ USB_DEVICE(0x0f88, 0x3012) },
1965 	/* Zinwell */
1966 	{ USB_DEVICE(0x5a57, 0x0260) },
1967 	{ 0, }
1968 };
1969 
1970 MODULE_AUTHOR(DRV_PROJECT);
1971 MODULE_VERSION(DRV_VERSION);
1972 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1973 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1974 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1975 MODULE_LICENSE("GPL");
1976 
1977 static int rt2500usb_probe(struct usb_interface *usb_intf,
1978 			   const struct usb_device_id *id)
1979 {
1980 	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1981 }
1982 
1983 static struct usb_driver rt2500usb_driver = {
1984 	.name		= KBUILD_MODNAME,
1985 	.id_table	= rt2500usb_device_table,
1986 	.probe		= rt2500usb_probe,
1987 	.disconnect	= rt2x00usb_disconnect,
1988 	.suspend	= rt2x00usb_suspend,
1989 	.resume		= rt2x00usb_resume,
1990 	.reset_resume	= rt2x00usb_resume,
1991 	.disable_hub_initiated_lpm = 1,
1992 };
1993 
1994 module_usb_driver(rt2500usb_driver);
1995