xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt2500usb.c (revision c0d3b83100c896e1b0909023df58a0ebdd428d61)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6  */
7 
8 /*
9 	Module: rt2500usb
10 	Abstract: rt2500usb device specific routines.
11 	Supported chipsets: RT2570.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/usb.h>
20 
21 #include "rt2x00.h"
22 #include "rt2x00usb.h"
23 #include "rt2500usb.h"
24 
25 /*
26  * Allow hardware encryption to be disabled.
27  */
28 static bool modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 
32 /*
33  * Register access.
34  * All access to the CSR registers will go through the methods
35  * rt2500usb_register_read and rt2500usb_register_write.
36  * BBP and RF register require indirect register access,
37  * and use the CSR registers BBPCSR and RFCSR to achieve this.
38  * These indirect registers work with busy bits,
39  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
40  * the register while taking a REGISTER_BUSY_DELAY us delay
41  * between each attampt. When the busy bit is still set at that time,
42  * the access attempt is considered to have failed,
43  * and we will print an error.
44  * If the csr_mutex is already held then the _lock variants must
45  * be used instead.
46  */
47 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
48 				   const unsigned int offset)
49 {
50 	__le16 reg;
51 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
52 				      USB_VENDOR_REQUEST_IN, offset,
53 				      &reg, sizeof(reg));
54 	return le16_to_cpu(reg);
55 }
56 
57 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
58 					const unsigned int offset)
59 {
60 	__le16 reg;
61 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
62 				       USB_VENDOR_REQUEST_IN, offset,
63 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
64 	return le16_to_cpu(reg);
65 }
66 
67 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
68 					    const unsigned int offset,
69 					    u16 value)
70 {
71 	__le16 reg = cpu_to_le16(value);
72 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
73 				      USB_VENDOR_REQUEST_OUT, offset,
74 				      &reg, sizeof(reg));
75 }
76 
77 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
78 						 const unsigned int offset,
79 						 u16 value)
80 {
81 	__le16 reg = cpu_to_le16(value);
82 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
83 				       USB_VENDOR_REQUEST_OUT, offset,
84 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
85 }
86 
87 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
88 						 const unsigned int offset,
89 						 void *value, const u16 length)
90 {
91 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
92 				      USB_VENDOR_REQUEST_OUT, offset,
93 				      value, length);
94 }
95 
96 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
97 				  const unsigned int offset,
98 				  struct rt2x00_field16 field,
99 				  u16 *reg)
100 {
101 	unsigned int i;
102 
103 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
104 		*reg = rt2500usb_register_read_lock(rt2x00dev, offset);
105 		if (!rt2x00_get_field16(*reg, field))
106 			return 1;
107 		udelay(REGISTER_BUSY_DELAY);
108 	}
109 
110 	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
111 		   offset, *reg);
112 	*reg = ~0;
113 
114 	return 0;
115 }
116 
117 #define WAIT_FOR_BBP(__dev, __reg) \
118 	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
119 #define WAIT_FOR_RF(__dev, __reg) \
120 	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
121 
122 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
123 				const unsigned int word, const u8 value)
124 {
125 	u16 reg;
126 
127 	mutex_lock(&rt2x00dev->csr_mutex);
128 
129 	/*
130 	 * Wait until the BBP becomes available, afterwards we
131 	 * can safely write the new data into the register.
132 	 */
133 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
134 		reg = 0;
135 		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
136 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
137 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
138 
139 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
140 	}
141 
142 	mutex_unlock(&rt2x00dev->csr_mutex);
143 }
144 
145 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
146 			     const unsigned int word)
147 {
148 	u16 reg;
149 	u8 value;
150 
151 	mutex_lock(&rt2x00dev->csr_mutex);
152 
153 	/*
154 	 * Wait until the BBP becomes available, afterwards we
155 	 * can safely write the read request into the register.
156 	 * After the data has been written, we wait until hardware
157 	 * returns the correct value, if at any time the register
158 	 * doesn't become available in time, reg will be 0xffffffff
159 	 * which means we return 0xff to the caller.
160 	 */
161 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
162 		reg = 0;
163 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
165 
166 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167 
168 		if (WAIT_FOR_BBP(rt2x00dev, &reg))
169 			reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
170 	}
171 
172 	value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
173 
174 	mutex_unlock(&rt2x00dev->csr_mutex);
175 
176 	return value;
177 }
178 
179 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
180 			       const unsigned int word, const u32 value)
181 {
182 	u16 reg;
183 
184 	mutex_lock(&rt2x00dev->csr_mutex);
185 
186 	/*
187 	 * Wait until the RF becomes available, afterwards we
188 	 * can safely write the new data into the register.
189 	 */
190 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
191 		reg = 0;
192 		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
193 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
194 
195 		reg = 0;
196 		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
197 		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
198 		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
199 		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
200 
201 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
202 		rt2x00_rf_write(rt2x00dev, word, value);
203 	}
204 
205 	mutex_unlock(&rt2x00dev->csr_mutex);
206 }
207 
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
210 				     const unsigned int offset)
211 {
212 	return rt2500usb_register_read(rt2x00dev, offset);
213 }
214 
215 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
216 				      const unsigned int offset,
217 				      u32 value)
218 {
219 	rt2500usb_register_write(rt2x00dev, offset, value);
220 }
221 
222 static const struct rt2x00debug rt2500usb_rt2x00debug = {
223 	.owner	= THIS_MODULE,
224 	.csr	= {
225 		.read		= _rt2500usb_register_read,
226 		.write		= _rt2500usb_register_write,
227 		.flags		= RT2X00DEBUGFS_OFFSET,
228 		.word_base	= CSR_REG_BASE,
229 		.word_size	= sizeof(u16),
230 		.word_count	= CSR_REG_SIZE / sizeof(u16),
231 	},
232 	.eeprom	= {
233 		.read		= rt2x00_eeprom_read,
234 		.write		= rt2x00_eeprom_write,
235 		.word_base	= EEPROM_BASE,
236 		.word_size	= sizeof(u16),
237 		.word_count	= EEPROM_SIZE / sizeof(u16),
238 	},
239 	.bbp	= {
240 		.read		= rt2500usb_bbp_read,
241 		.write		= rt2500usb_bbp_write,
242 		.word_base	= BBP_BASE,
243 		.word_size	= sizeof(u8),
244 		.word_count	= BBP_SIZE / sizeof(u8),
245 	},
246 	.rf	= {
247 		.read		= rt2x00_rf_read,
248 		.write		= rt2500usb_rf_write,
249 		.word_base	= RF_BASE,
250 		.word_size	= sizeof(u32),
251 		.word_count	= RF_SIZE / sizeof(u32),
252 	},
253 };
254 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
255 
256 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
257 {
258 	u16 reg;
259 
260 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
261 	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
262 }
263 
264 #ifdef CONFIG_RT2X00_LIB_LEDS
265 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
266 				     enum led_brightness brightness)
267 {
268 	struct rt2x00_led *led =
269 	    container_of(led_cdev, struct rt2x00_led, led_dev);
270 	unsigned int enabled = brightness != LED_OFF;
271 	u16 reg;
272 
273 	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
274 
275 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
276 		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
277 	else if (led->type == LED_TYPE_ACTIVITY)
278 		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
279 
280 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
281 }
282 
283 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
284 			       unsigned long *delay_on,
285 			       unsigned long *delay_off)
286 {
287 	struct rt2x00_led *led =
288 	    container_of(led_cdev, struct rt2x00_led, led_dev);
289 	u16 reg;
290 
291 	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
292 	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
293 	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
294 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
295 
296 	return 0;
297 }
298 
299 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
300 			       struct rt2x00_led *led,
301 			       enum led_type type)
302 {
303 	led->rt2x00dev = rt2x00dev;
304 	led->type = type;
305 	led->led_dev.brightness_set = rt2500usb_brightness_set;
306 	led->led_dev.blink_set = rt2500usb_blink_set;
307 	led->flags = LED_INITIALIZED;
308 }
309 #endif /* CONFIG_RT2X00_LIB_LEDS */
310 
311 /*
312  * Configuration handlers.
313  */
314 
315 /*
316  * rt2500usb does not differentiate between shared and pairwise
317  * keys, so we should use the same function for both key types.
318  */
319 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
320 				struct rt2x00lib_crypto *crypto,
321 				struct ieee80211_key_conf *key)
322 {
323 	u32 mask;
324 	u16 reg;
325 	enum cipher curr_cipher;
326 
327 	if (crypto->cmd == SET_KEY) {
328 		/*
329 		 * Disallow to set WEP key other than with index 0,
330 		 * it is known that not work at least on some hardware.
331 		 * SW crypto will be used in that case.
332 		 */
333 		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
334 		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
335 		    key->keyidx != 0)
336 			return -EOPNOTSUPP;
337 
338 		/*
339 		 * Pairwise key will always be entry 0, but this
340 		 * could collide with a shared key on the same
341 		 * position...
342 		 */
343 		mask = TXRX_CSR0_KEY_ID.bit_mask;
344 
345 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
346 		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
347 		reg &= mask;
348 
349 		if (reg && reg == mask)
350 			return -ENOSPC;
351 
352 		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
353 
354 		key->hw_key_idx += reg ? ffz(reg) : 0;
355 		/*
356 		 * Hardware requires that all keys use the same cipher
357 		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
358 		 * If this is not the first key, compare the cipher with the
359 		 * first one and fall back to SW crypto if not the same.
360 		 */
361 		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
362 			return -EOPNOTSUPP;
363 
364 		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
365 					      crypto->key, sizeof(crypto->key));
366 
367 		/*
368 		 * The driver does not support the IV/EIV generation
369 		 * in hardware. However it demands the data to be provided
370 		 * both separately as well as inside the frame.
371 		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
372 		 * to ensure rt2x00lib will not strip the data from the
373 		 * frame after the copy, now we must tell mac80211
374 		 * to generate the IV/EIV data.
375 		 */
376 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
377 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
378 	}
379 
380 	/*
381 	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
382 	 * a particular key is valid.
383 	 */
384 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
385 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
386 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
387 
388 	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
389 	if (crypto->cmd == SET_KEY)
390 		mask |= 1 << key->hw_key_idx;
391 	else if (crypto->cmd == DISABLE_KEY)
392 		mask &= ~(1 << key->hw_key_idx);
393 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
394 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
395 
396 	return 0;
397 }
398 
399 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
400 				    const unsigned int filter_flags)
401 {
402 	u16 reg;
403 
404 	/*
405 	 * Start configuration steps.
406 	 * Note that the version error will always be dropped
407 	 * and broadcast frames will always be accepted since
408 	 * there is no filter for it at this time.
409 	 */
410 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
411 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
412 			   !(filter_flags & FIF_FCSFAIL));
413 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
414 			   !(filter_flags & FIF_PLCPFAIL));
415 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
416 			   !(filter_flags & FIF_CONTROL));
417 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
418 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
419 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
420 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
421 			   !rt2x00dev->intf_ap_count);
422 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
423 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
424 			   !(filter_flags & FIF_ALLMULTI));
425 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
426 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
427 }
428 
429 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
430 				  struct rt2x00_intf *intf,
431 				  struct rt2x00intf_conf *conf,
432 				  const unsigned int flags)
433 {
434 	unsigned int bcn_preload;
435 	u16 reg;
436 
437 	if (flags & CONFIG_UPDATE_TYPE) {
438 		/*
439 		 * Enable beacon config
440 		 */
441 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
442 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
443 		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
444 		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
445 				   2 * (conf->type != NL80211_IFTYPE_STATION));
446 		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
447 
448 		/*
449 		 * Enable synchronisation.
450 		 */
451 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
452 		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
453 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
454 
455 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
456 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
457 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
458 	}
459 
460 	if (flags & CONFIG_UPDATE_MAC)
461 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
462 					      (3 * sizeof(__le16)));
463 
464 	if (flags & CONFIG_UPDATE_BSSID)
465 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
466 					      (3 * sizeof(__le16)));
467 }
468 
469 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
470 				 struct rt2x00lib_erp *erp,
471 				 u32 changed)
472 {
473 	u16 reg;
474 
475 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
476 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
477 		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
478 				   !!erp->short_preamble);
479 		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
480 	}
481 
482 	if (changed & BSS_CHANGED_BASIC_RATES)
483 		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
484 					 erp->basic_rates);
485 
486 	if (changed & BSS_CHANGED_BEACON_INT) {
487 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
488 		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
489 				   erp->beacon_int * 4);
490 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
491 	}
492 
493 	if (changed & BSS_CHANGED_ERP_SLOT) {
494 		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
495 		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
496 		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
497 	}
498 }
499 
500 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
501 				 struct antenna_setup *ant)
502 {
503 	u8 r2;
504 	u8 r14;
505 	u16 csr5;
506 	u16 csr6;
507 
508 	/*
509 	 * We should never come here because rt2x00lib is supposed
510 	 * to catch this and send us the correct antenna explicitely.
511 	 */
512 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
513 	       ant->tx == ANTENNA_SW_DIVERSITY);
514 
515 	r2 = rt2500usb_bbp_read(rt2x00dev, 2);
516 	r14 = rt2500usb_bbp_read(rt2x00dev, 14);
517 	csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
518 	csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
519 
520 	/*
521 	 * Configure the TX antenna.
522 	 */
523 	switch (ant->tx) {
524 	case ANTENNA_HW_DIVERSITY:
525 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
526 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
527 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
528 		break;
529 	case ANTENNA_A:
530 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
531 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
532 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
533 		break;
534 	case ANTENNA_B:
535 	default:
536 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
537 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
538 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
539 		break;
540 	}
541 
542 	/*
543 	 * Configure the RX antenna.
544 	 */
545 	switch (ant->rx) {
546 	case ANTENNA_HW_DIVERSITY:
547 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
548 		break;
549 	case ANTENNA_A:
550 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
551 		break;
552 	case ANTENNA_B:
553 	default:
554 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
555 		break;
556 	}
557 
558 	/*
559 	 * RT2525E and RT5222 need to flip TX I/Q
560 	 */
561 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
562 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
563 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
564 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
565 
566 		/*
567 		 * RT2525E does not need RX I/Q Flip.
568 		 */
569 		if (rt2x00_rf(rt2x00dev, RF2525E))
570 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
571 	} else {
572 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
573 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
574 	}
575 
576 	rt2500usb_bbp_write(rt2x00dev, 2, r2);
577 	rt2500usb_bbp_write(rt2x00dev, 14, r14);
578 	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
579 	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
580 }
581 
582 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
583 				     struct rf_channel *rf, const int txpower)
584 {
585 	/*
586 	 * Set TXpower.
587 	 */
588 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
589 
590 	/*
591 	 * For RT2525E we should first set the channel to half band higher.
592 	 */
593 	if (rt2x00_rf(rt2x00dev, RF2525E)) {
594 		static const u32 vals[] = {
595 			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
596 			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
597 			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
598 			0x00000902, 0x00000906
599 		};
600 
601 		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
602 		if (rf->rf4)
603 			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
604 	}
605 
606 	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
607 	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
608 	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
609 	if (rf->rf4)
610 		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
611 }
612 
613 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
614 				     const int txpower)
615 {
616 	u32 rf3;
617 
618 	rf3 = rt2x00_rf_read(rt2x00dev, 3);
619 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
620 	rt2500usb_rf_write(rt2x00dev, 3, rf3);
621 }
622 
623 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
624 				struct rt2x00lib_conf *libconf)
625 {
626 	enum dev_state state =
627 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
628 		STATE_SLEEP : STATE_AWAKE;
629 	u16 reg;
630 
631 	if (state == STATE_SLEEP) {
632 		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
633 		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
634 				   rt2x00dev->beacon_int - 20);
635 		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
636 				   libconf->conf->listen_interval - 1);
637 
638 		/* We must first disable autowake before it can be enabled */
639 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
640 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
641 
642 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
643 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
644 	} else {
645 		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
646 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
647 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
648 	}
649 
650 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
651 }
652 
653 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
654 			     struct rt2x00lib_conf *libconf,
655 			     const unsigned int flags)
656 {
657 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
658 		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
659 					 libconf->conf->power_level);
660 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
661 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
662 		rt2500usb_config_txpower(rt2x00dev,
663 					 libconf->conf->power_level);
664 	if (flags & IEEE80211_CONF_CHANGE_PS)
665 		rt2500usb_config_ps(rt2x00dev, libconf);
666 }
667 
668 /*
669  * Link tuning
670  */
671 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
672 				 struct link_qual *qual)
673 {
674 	u16 reg;
675 
676 	/*
677 	 * Update FCS error count from register.
678 	 */
679 	reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
680 	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
681 
682 	/*
683 	 * Update False CCA count from register.
684 	 */
685 	reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
686 	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
687 }
688 
689 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
690 				  struct link_qual *qual)
691 {
692 	u16 eeprom;
693 	u16 value;
694 
695 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
696 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
697 	rt2500usb_bbp_write(rt2x00dev, 24, value);
698 
699 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
700 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
701 	rt2500usb_bbp_write(rt2x00dev, 25, value);
702 
703 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
704 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
705 	rt2500usb_bbp_write(rt2x00dev, 61, value);
706 
707 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
708 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
709 	rt2500usb_bbp_write(rt2x00dev, 17, value);
710 
711 	qual->vgc_level = value;
712 }
713 
714 /*
715  * Queue handlers.
716  */
717 static void rt2500usb_start_queue(struct data_queue *queue)
718 {
719 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
720 	u16 reg;
721 
722 	switch (queue->qid) {
723 	case QID_RX:
724 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
725 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
726 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
727 		break;
728 	case QID_BEACON:
729 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
730 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
731 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
732 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
733 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
734 		break;
735 	default:
736 		break;
737 	}
738 }
739 
740 static void rt2500usb_stop_queue(struct data_queue *queue)
741 {
742 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
743 	u16 reg;
744 
745 	switch (queue->qid) {
746 	case QID_RX:
747 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
748 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
749 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
750 		break;
751 	case QID_BEACON:
752 		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
753 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
754 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
755 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
756 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
757 		break;
758 	default:
759 		break;
760 	}
761 }
762 
763 /*
764  * Initialization functions.
765  */
766 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
767 {
768 	u16 reg;
769 
770 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
771 				    USB_MODE_TEST, REGISTER_TIMEOUT);
772 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
773 				    0x00f0, REGISTER_TIMEOUT);
774 
775 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
776 	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
777 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
778 
779 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
780 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
781 
782 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
783 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
784 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
785 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
786 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
787 
788 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
789 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
790 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
791 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
792 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
793 
794 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
795 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
796 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
797 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
798 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
799 	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
800 
801 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
802 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
803 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
804 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
805 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
806 	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
807 
808 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
809 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
810 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
811 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
812 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
813 	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
814 
815 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
816 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
817 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
818 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
819 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
820 	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
821 
822 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
823 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
824 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
825 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
826 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
827 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
828 
829 	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
830 	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
831 
832 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
833 		return -EBUSY;
834 
835 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
836 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
837 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
838 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
839 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
840 
841 	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
842 		reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
843 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
844 	} else {
845 		reg = 0;
846 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
847 		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
848 	}
849 	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
850 
851 	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
852 	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
853 	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
854 	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
855 
856 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
857 	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
858 			   rt2x00dev->rx->data_size);
859 	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
860 
861 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
862 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
863 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
864 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
865 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
866 
867 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
868 	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
869 	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
870 
871 	reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
872 	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
873 	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
874 
875 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
876 	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
877 	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
878 
879 	return 0;
880 }
881 
882 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
883 {
884 	unsigned int i;
885 	u8 value;
886 
887 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
888 		value = rt2500usb_bbp_read(rt2x00dev, 0);
889 		if ((value != 0xff) && (value != 0x00))
890 			return 0;
891 		udelay(REGISTER_BUSY_DELAY);
892 	}
893 
894 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
895 	return -EACCES;
896 }
897 
898 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
899 {
900 	unsigned int i;
901 	u16 eeprom;
902 	u8 value;
903 	u8 reg_id;
904 
905 	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
906 		return -EACCES;
907 
908 	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
909 	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
910 	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
911 	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
912 	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
913 	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
914 	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
915 	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
916 	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
917 	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
918 	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
919 	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
920 	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
921 	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
922 	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
923 	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
924 	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
925 	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
926 	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
927 	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
928 	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
929 	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
930 	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
931 	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
932 	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
933 	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
934 	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
935 	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
936 	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
937 	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
938 	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
939 
940 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
941 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
942 
943 		if (eeprom != 0xffff && eeprom != 0x0000) {
944 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
945 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
946 			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
947 		}
948 	}
949 
950 	return 0;
951 }
952 
953 /*
954  * Device state switch handlers.
955  */
956 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
957 {
958 	/*
959 	 * Initialize all registers.
960 	 */
961 	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
962 		     rt2500usb_init_bbp(rt2x00dev)))
963 		return -EIO;
964 
965 	return 0;
966 }
967 
968 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
969 {
970 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
971 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
972 
973 	/*
974 	 * Disable synchronisation.
975 	 */
976 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
977 
978 	rt2x00usb_disable_radio(rt2x00dev);
979 }
980 
981 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
982 			       enum dev_state state)
983 {
984 	u16 reg;
985 	u16 reg2;
986 	unsigned int i;
987 	bool put_to_sleep;
988 	u8 bbp_state;
989 	u8 rf_state;
990 
991 	put_to_sleep = (state != STATE_AWAKE);
992 
993 	reg = 0;
994 	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
995 	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
996 	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
997 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
998 	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
999 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1000 
1001 	/*
1002 	 * Device is not guaranteed to be in the requested state yet.
1003 	 * We must wait until the register indicates that the
1004 	 * device has entered the correct state.
1005 	 */
1006 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1007 		reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1008 		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1009 		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1010 		if (bbp_state == state && rf_state == state)
1011 			return 0;
1012 		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013 		msleep(30);
1014 	}
1015 
1016 	return -EBUSY;
1017 }
1018 
1019 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1020 				      enum dev_state state)
1021 {
1022 	int retval = 0;
1023 
1024 	switch (state) {
1025 	case STATE_RADIO_ON:
1026 		retval = rt2500usb_enable_radio(rt2x00dev);
1027 		break;
1028 	case STATE_RADIO_OFF:
1029 		rt2500usb_disable_radio(rt2x00dev);
1030 		break;
1031 	case STATE_RADIO_IRQ_ON:
1032 	case STATE_RADIO_IRQ_OFF:
1033 		/* No support, but no error either */
1034 		break;
1035 	case STATE_DEEP_SLEEP:
1036 	case STATE_SLEEP:
1037 	case STATE_STANDBY:
1038 	case STATE_AWAKE:
1039 		retval = rt2500usb_set_state(rt2x00dev, state);
1040 		break;
1041 	default:
1042 		retval = -ENOTSUPP;
1043 		break;
1044 	}
1045 
1046 	if (unlikely(retval))
1047 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1048 			   state, retval);
1049 
1050 	return retval;
1051 }
1052 
1053 /*
1054  * TX descriptor initialization
1055  */
1056 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1057 				    struct txentry_desc *txdesc)
1058 {
1059 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1060 	__le32 *txd = (__le32 *) entry->skb->data;
1061 	u32 word;
1062 
1063 	/*
1064 	 * Start writing the descriptor words.
1065 	 */
1066 	word = rt2x00_desc_read(txd, 0);
1067 	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1068 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070 	rt2x00_set_field32(&word, TXD_W0_ACK,
1071 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1075 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1076 	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077 			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1078 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1079 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1080 	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1081 	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1082 	rt2x00_desc_write(txd, 0, word);
1083 
1084 	word = rt2x00_desc_read(txd, 1);
1085 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1086 	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1087 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1088 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1089 	rt2x00_desc_write(txd, 1, word);
1090 
1091 	word = rt2x00_desc_read(txd, 2);
1092 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1093 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1094 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1095 			   txdesc->u.plcp.length_low);
1096 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1097 			   txdesc->u.plcp.length_high);
1098 	rt2x00_desc_write(txd, 2, word);
1099 
1100 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1101 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1102 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1103 	}
1104 
1105 	/*
1106 	 * Register descriptor details in skb frame descriptor.
1107 	 */
1108 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1109 	skbdesc->desc = txd;
1110 	skbdesc->desc_len = TXD_DESC_SIZE;
1111 }
1112 
1113 /*
1114  * TX data initialization
1115  */
1116 static void rt2500usb_beacondone(struct urb *urb);
1117 
1118 static void rt2500usb_write_beacon(struct queue_entry *entry,
1119 				   struct txentry_desc *txdesc)
1120 {
1121 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1122 	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1123 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1124 	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1125 	int length;
1126 	u16 reg, reg0;
1127 
1128 	/*
1129 	 * Disable beaconing while we are reloading the beacon data,
1130 	 * otherwise we might be sending out invalid data.
1131 	 */
1132 	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1133 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1134 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1135 
1136 	/*
1137 	 * Add space for the descriptor in front of the skb.
1138 	 */
1139 	skb_push(entry->skb, TXD_DESC_SIZE);
1140 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1141 
1142 	/*
1143 	 * Write the TX descriptor for the beacon.
1144 	 */
1145 	rt2500usb_write_tx_desc(entry, txdesc);
1146 
1147 	/*
1148 	 * Dump beacon to userspace through debugfs.
1149 	 */
1150 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1151 
1152 	/*
1153 	 * USB devices cannot blindly pass the skb->len as the
1154 	 * length of the data to usb_fill_bulk_urb. Pass the skb
1155 	 * to the driver to determine what the length should be.
1156 	 */
1157 	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1158 
1159 	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1160 			  entry->skb->data, length, rt2500usb_beacondone,
1161 			  entry);
1162 
1163 	/*
1164 	 * Second we need to create the guardian byte.
1165 	 * We only need a single byte, so lets recycle
1166 	 * the 'flags' field we are not using for beacons.
1167 	 */
1168 	bcn_priv->guardian_data = 0;
1169 	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1170 			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1171 			  entry);
1172 
1173 	/*
1174 	 * Send out the guardian byte.
1175 	 */
1176 	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1177 
1178 	/*
1179 	 * Enable beaconing again.
1180 	 */
1181 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1182 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1183 	reg0 = reg;
1184 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1185 	/*
1186 	 * Beacon generation will fail initially.
1187 	 * To prevent this we need to change the TXRX_CSR19
1188 	 * register several times (reg0 is the same as reg
1189 	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1190 	 * and 1 in reg).
1191 	 */
1192 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1193 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1194 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1195 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1196 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1197 }
1198 
1199 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1200 {
1201 	int length;
1202 
1203 	/*
1204 	 * The length _must_ be a multiple of 2,
1205 	 * but it must _not_ be a multiple of the USB packet size.
1206 	 */
1207 	length = roundup(entry->skb->len, 2);
1208 	length += (2 * !(length % entry->queue->usb_maxpacket));
1209 
1210 	return length;
1211 }
1212 
1213 /*
1214  * RX control handlers
1215  */
1216 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1217 				  struct rxdone_entry_desc *rxdesc)
1218 {
1219 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1220 	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1221 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1222 	__le32 *rxd =
1223 	    (__le32 *)(entry->skb->data +
1224 		       (entry_priv->urb->actual_length -
1225 			entry->queue->desc_size));
1226 	u32 word0;
1227 	u32 word1;
1228 
1229 	/*
1230 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1231 	 * frame data in rt2x00usb.
1232 	 */
1233 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1234 	rxd = (__le32 *)skbdesc->desc;
1235 
1236 	/*
1237 	 * It is now safe to read the descriptor on all architectures.
1238 	 */
1239 	word0 = rt2x00_desc_read(rxd, 0);
1240 	word1 = rt2x00_desc_read(rxd, 1);
1241 
1242 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1243 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1244 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1245 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1246 
1247 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1248 	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1249 		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1250 
1251 	if (rxdesc->cipher != CIPHER_NONE) {
1252 		rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1253 		rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1254 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1255 
1256 		/* ICV is located at the end of frame */
1257 
1258 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1259 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1260 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1261 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1262 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1263 	}
1264 
1265 	/*
1266 	 * Obtain the status about this packet.
1267 	 * When frame was received with an OFDM bitrate,
1268 	 * the signal is the PLCP value. If it was received with
1269 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1270 	 */
1271 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1272 	rxdesc->rssi =
1273 	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1274 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1275 
1276 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1277 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1278 	else
1279 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1280 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1281 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1282 
1283 	/*
1284 	 * Adjust the skb memory window to the frame boundaries.
1285 	 */
1286 	skb_trim(entry->skb, rxdesc->size);
1287 }
1288 
1289 /*
1290  * Interrupt functions.
1291  */
1292 static void rt2500usb_beacondone(struct urb *urb)
1293 {
1294 	struct queue_entry *entry = (struct queue_entry *)urb->context;
1295 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1296 
1297 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1298 		return;
1299 
1300 	/*
1301 	 * Check if this was the guardian beacon,
1302 	 * if that was the case we need to send the real beacon now.
1303 	 * Otherwise we should free the sk_buffer, the device
1304 	 * should be doing the rest of the work now.
1305 	 */
1306 	if (bcn_priv->guardian_urb == urb) {
1307 		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1308 	} else if (bcn_priv->urb == urb) {
1309 		dev_kfree_skb(entry->skb);
1310 		entry->skb = NULL;
1311 	}
1312 }
1313 
1314 /*
1315  * Device probe functions.
1316  */
1317 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1318 {
1319 	u16 word;
1320 	u8 *mac;
1321 	u8 bbp;
1322 
1323 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1324 
1325 	/*
1326 	 * Start validation of the data that has been read.
1327 	 */
1328 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1329 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1330 
1331 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1332 	if (word == 0xffff) {
1333 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1334 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1335 				   ANTENNA_SW_DIVERSITY);
1336 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1337 				   ANTENNA_SW_DIVERSITY);
1338 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1339 				   LED_MODE_DEFAULT);
1340 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1341 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1342 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1343 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1344 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1345 	}
1346 
1347 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1348 	if (word == 0xffff) {
1349 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1350 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1351 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1352 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1353 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1354 	}
1355 
1356 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1357 	if (word == 0xffff) {
1358 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1359 				   DEFAULT_RSSI_OFFSET);
1360 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1361 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1362 				  word);
1363 	}
1364 
1365 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1366 	if (word == 0xffff) {
1367 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1368 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1369 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1370 	}
1371 
1372 	/*
1373 	 * Switch lower vgc bound to current BBP R17 value,
1374 	 * lower the value a bit for better quality.
1375 	 */
1376 	bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1377 	bbp -= 6;
1378 
1379 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1380 	if (word == 0xffff) {
1381 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1382 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1383 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1384 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1385 	} else {
1386 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1387 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1388 	}
1389 
1390 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1391 	if (word == 0xffff) {
1392 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1393 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1394 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1395 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1396 	}
1397 
1398 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1399 	if (word == 0xffff) {
1400 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1401 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1402 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1403 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1404 	}
1405 
1406 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1407 	if (word == 0xffff) {
1408 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1409 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1410 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1411 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1412 	}
1413 
1414 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1415 	if (word == 0xffff) {
1416 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1417 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1418 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1419 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1426 {
1427 	u16 reg;
1428 	u16 value;
1429 	u16 eeprom;
1430 
1431 	/*
1432 	 * Read EEPROM word for configuration.
1433 	 */
1434 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1435 
1436 	/*
1437 	 * Identify RF chipset.
1438 	 */
1439 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1440 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1441 	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1442 
1443 	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1444 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1445 		return -ENODEV;
1446 	}
1447 
1448 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1449 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1450 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1451 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1452 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1453 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1454 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1455 		return -ENODEV;
1456 	}
1457 
1458 	/*
1459 	 * Identify default antenna configuration.
1460 	 */
1461 	rt2x00dev->default_ant.tx =
1462 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1463 	rt2x00dev->default_ant.rx =
1464 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1465 
1466 	/*
1467 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1468 	 * I am not 100% sure about this, but the legacy drivers do not
1469 	 * indicate antenna swapping in software is required when
1470 	 * diversity is enabled.
1471 	 */
1472 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1473 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1474 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1475 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1476 
1477 	/*
1478 	 * Store led mode, for correct led behaviour.
1479 	 */
1480 #ifdef CONFIG_RT2X00_LIB_LEDS
1481 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1482 
1483 	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1484 	if (value == LED_MODE_TXRX_ACTIVITY ||
1485 	    value == LED_MODE_DEFAULT ||
1486 	    value == LED_MODE_ASUS)
1487 		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1488 				   LED_TYPE_ACTIVITY);
1489 #endif /* CONFIG_RT2X00_LIB_LEDS */
1490 
1491 	/*
1492 	 * Detect if this device has an hardware controlled radio.
1493 	 */
1494 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1495 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1496 
1497 	/*
1498 	 * Read the RSSI <-> dBm offset information.
1499 	 */
1500 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1501 	rt2x00dev->rssi_offset =
1502 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1503 
1504 	return 0;
1505 }
1506 
1507 /*
1508  * RF value list for RF2522
1509  * Supports: 2.4 GHz
1510  */
1511 static const struct rf_channel rf_vals_bg_2522[] = {
1512 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1513 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1514 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1515 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1516 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1517 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1518 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1519 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1520 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1521 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1522 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1523 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1524 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1525 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1526 };
1527 
1528 /*
1529  * RF value list for RF2523
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2523[] = {
1533 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1534 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1535 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1536 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1537 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1538 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1539 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1540 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1541 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1542 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1543 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1544 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1545 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1546 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1547 };
1548 
1549 /*
1550  * RF value list for RF2524
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2524[] = {
1554 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1555 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1556 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1557 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1558 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1559 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1560 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1561 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1562 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1563 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1564 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1565 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1566 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1567 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1568 };
1569 
1570 /*
1571  * RF value list for RF2525
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2525[] = {
1575 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1576 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1577 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1578 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1579 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1580 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1581 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1582 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1583 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1584 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1585 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1586 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1587 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1588 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1589 };
1590 
1591 /*
1592  * RF value list for RF2525e
1593  * Supports: 2.4 GHz
1594  */
1595 static const struct rf_channel rf_vals_bg_2525e[] = {
1596 	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1597 	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1598 	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1599 	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1600 	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1601 	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1602 	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1603 	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1604 	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1605 	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1606 	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1607 	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1608 	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1609 	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1610 };
1611 
1612 /*
1613  * RF value list for RF5222
1614  * Supports: 2.4 GHz & 5.2 GHz
1615  */
1616 static const struct rf_channel rf_vals_5222[] = {
1617 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1618 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1619 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1620 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1621 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1622 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1623 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1624 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1625 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1626 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1627 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1628 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1629 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1630 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1631 
1632 	/* 802.11 UNI / HyperLan 2 */
1633 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1634 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1635 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1636 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1637 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1638 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1639 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1640 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1641 
1642 	/* 802.11 HyperLan 2 */
1643 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1644 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1645 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1646 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1647 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1648 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1649 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1650 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1651 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1652 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1653 
1654 	/* 802.11 UNII */
1655 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1656 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1657 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1658 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1659 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1660 };
1661 
1662 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1663 {
1664 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1665 	struct channel_info *info;
1666 	u8 *tx_power;
1667 	unsigned int i;
1668 
1669 	/*
1670 	 * Initialize all hw fields.
1671 	 *
1672 	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1673 	 * capable of sending the buffered frames out after the DTIM
1674 	 * transmission using rt2x00lib_beacondone. This will send out
1675 	 * multicast and broadcast traffic immediately instead of buffering it
1676 	 * infinitly and thus dropping it after some time.
1677 	 */
1678 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1679 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1680 	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1681 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1682 
1683 	/*
1684 	 * Disable powersaving as default.
1685 	 */
1686 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1687 
1688 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1689 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1690 				rt2x00_eeprom_addr(rt2x00dev,
1691 						   EEPROM_MAC_ADDR_0));
1692 
1693 	/*
1694 	 * Initialize hw_mode information.
1695 	 */
1696 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1697 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1698 
1699 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1700 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1701 		spec->channels = rf_vals_bg_2522;
1702 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1703 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1704 		spec->channels = rf_vals_bg_2523;
1705 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1706 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1707 		spec->channels = rf_vals_bg_2524;
1708 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1709 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1710 		spec->channels = rf_vals_bg_2525;
1711 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1712 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1713 		spec->channels = rf_vals_bg_2525e;
1714 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1715 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1716 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1717 		spec->channels = rf_vals_5222;
1718 	}
1719 
1720 	/*
1721 	 * Create channel information array
1722 	 */
1723 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1724 	if (!info)
1725 		return -ENOMEM;
1726 
1727 	spec->channels_info = info;
1728 
1729 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1730 	for (i = 0; i < 14; i++) {
1731 		info[i].max_power = MAX_TXPOWER;
1732 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1733 	}
1734 
1735 	if (spec->num_channels > 14) {
1736 		for (i = 14; i < spec->num_channels; i++) {
1737 			info[i].max_power = MAX_TXPOWER;
1738 			info[i].default_power1 = DEFAULT_TXPOWER;
1739 		}
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1746 {
1747 	int retval;
1748 	u16 reg;
1749 
1750 	/*
1751 	 * Allocate eeprom data.
1752 	 */
1753 	retval = rt2500usb_validate_eeprom(rt2x00dev);
1754 	if (retval)
1755 		return retval;
1756 
1757 	retval = rt2500usb_init_eeprom(rt2x00dev);
1758 	if (retval)
1759 		return retval;
1760 
1761 	/*
1762 	 * Enable rfkill polling by setting GPIO direction of the
1763 	 * rfkill switch GPIO pin correctly.
1764 	 */
1765 	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1766 	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1767 	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1768 
1769 	/*
1770 	 * Initialize hw specifications.
1771 	 */
1772 	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1773 	if (retval)
1774 		return retval;
1775 
1776 	/*
1777 	 * This device requires the atim queue
1778 	 */
1779 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1780 	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1781 	if (!modparam_nohwcrypt) {
1782 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1783 		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1784 	}
1785 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1786 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1787 
1788 	/*
1789 	 * Set the rssi offset.
1790 	 */
1791 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1792 
1793 	return 0;
1794 }
1795 
1796 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1797 	.tx			= rt2x00mac_tx,
1798 	.wake_tx_queue		= ieee80211_handle_wake_tx_queue,
1799 	.start			= rt2x00mac_start,
1800 	.stop			= rt2x00mac_stop,
1801 	.add_interface		= rt2x00mac_add_interface,
1802 	.remove_interface	= rt2x00mac_remove_interface,
1803 	.config			= rt2x00mac_config,
1804 	.configure_filter	= rt2x00mac_configure_filter,
1805 	.set_tim		= rt2x00mac_set_tim,
1806 	.set_key		= rt2x00mac_set_key,
1807 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1808 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1809 	.get_stats		= rt2x00mac_get_stats,
1810 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1811 	.conf_tx		= rt2x00mac_conf_tx,
1812 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1813 	.flush			= rt2x00mac_flush,
1814 	.set_antenna		= rt2x00mac_set_antenna,
1815 	.get_antenna		= rt2x00mac_get_antenna,
1816 	.get_ringparam		= rt2x00mac_get_ringparam,
1817 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1818 };
1819 
1820 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1821 	.probe_hw		= rt2500usb_probe_hw,
1822 	.initialize		= rt2x00usb_initialize,
1823 	.uninitialize		= rt2x00usb_uninitialize,
1824 	.clear_entry		= rt2x00usb_clear_entry,
1825 	.set_device_state	= rt2500usb_set_device_state,
1826 	.rfkill_poll		= rt2500usb_rfkill_poll,
1827 	.link_stats		= rt2500usb_link_stats,
1828 	.reset_tuner		= rt2500usb_reset_tuner,
1829 	.watchdog		= rt2x00usb_watchdog,
1830 	.start_queue		= rt2500usb_start_queue,
1831 	.kick_queue		= rt2x00usb_kick_queue,
1832 	.stop_queue		= rt2500usb_stop_queue,
1833 	.flush_queue		= rt2x00usb_flush_queue,
1834 	.write_tx_desc		= rt2500usb_write_tx_desc,
1835 	.write_beacon		= rt2500usb_write_beacon,
1836 	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1837 	.fill_rxdone		= rt2500usb_fill_rxdone,
1838 	.config_shared_key	= rt2500usb_config_key,
1839 	.config_pairwise_key	= rt2500usb_config_key,
1840 	.config_filter		= rt2500usb_config_filter,
1841 	.config_intf		= rt2500usb_config_intf,
1842 	.config_erp		= rt2500usb_config_erp,
1843 	.config_ant		= rt2500usb_config_ant,
1844 	.config			= rt2500usb_config,
1845 };
1846 
1847 static void rt2500usb_queue_init(struct data_queue *queue)
1848 {
1849 	switch (queue->qid) {
1850 	case QID_RX:
1851 		queue->limit = 32;
1852 		queue->data_size = DATA_FRAME_SIZE;
1853 		queue->desc_size = RXD_DESC_SIZE;
1854 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1855 		break;
1856 
1857 	case QID_AC_VO:
1858 	case QID_AC_VI:
1859 	case QID_AC_BE:
1860 	case QID_AC_BK:
1861 		queue->limit = 32;
1862 		queue->data_size = DATA_FRAME_SIZE;
1863 		queue->desc_size = TXD_DESC_SIZE;
1864 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1865 		break;
1866 
1867 	case QID_BEACON:
1868 		queue->limit = 1;
1869 		queue->data_size = MGMT_FRAME_SIZE;
1870 		queue->desc_size = TXD_DESC_SIZE;
1871 		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1872 		break;
1873 
1874 	case QID_ATIM:
1875 		queue->limit = 8;
1876 		queue->data_size = DATA_FRAME_SIZE;
1877 		queue->desc_size = TXD_DESC_SIZE;
1878 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1879 		break;
1880 
1881 	default:
1882 		BUG();
1883 		break;
1884 	}
1885 }
1886 
1887 static const struct rt2x00_ops rt2500usb_ops = {
1888 	.name			= KBUILD_MODNAME,
1889 	.max_ap_intf		= 1,
1890 	.eeprom_size		= EEPROM_SIZE,
1891 	.rf_size		= RF_SIZE,
1892 	.tx_queues		= NUM_TX_QUEUES,
1893 	.queue_init		= rt2500usb_queue_init,
1894 	.lib			= &rt2500usb_rt2x00_ops,
1895 	.hw			= &rt2500usb_mac80211_ops,
1896 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1897 	.debugfs		= &rt2500usb_rt2x00debug,
1898 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1899 };
1900 
1901 /*
1902  * rt2500usb module information.
1903  */
1904 static const struct usb_device_id rt2500usb_device_table[] = {
1905 	/* ASUS */
1906 	{ USB_DEVICE(0x0b05, 0x1706) },
1907 	{ USB_DEVICE(0x0b05, 0x1707) },
1908 	/* Belkin */
1909 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1910 	{ USB_DEVICE(0x050d, 0x7051) },
1911 	/* Cisco Systems */
1912 	{ USB_DEVICE(0x13b1, 0x000d) },
1913 	{ USB_DEVICE(0x13b1, 0x0011) },
1914 	{ USB_DEVICE(0x13b1, 0x001a) },
1915 	/* Conceptronic */
1916 	{ USB_DEVICE(0x14b2, 0x3c02) },
1917 	/* D-LINK */
1918 	{ USB_DEVICE(0x2001, 0x3c00) },
1919 	/* Gigabyte */
1920 	{ USB_DEVICE(0x1044, 0x8001) },
1921 	{ USB_DEVICE(0x1044, 0x8007) },
1922 	/* Hercules */
1923 	{ USB_DEVICE(0x06f8, 0xe000) },
1924 	/* Melco */
1925 	{ USB_DEVICE(0x0411, 0x005e) },
1926 	{ USB_DEVICE(0x0411, 0x0066) },
1927 	{ USB_DEVICE(0x0411, 0x0067) },
1928 	{ USB_DEVICE(0x0411, 0x008b) },
1929 	{ USB_DEVICE(0x0411, 0x0097) },
1930 	/* MSI */
1931 	{ USB_DEVICE(0x0db0, 0x6861) },
1932 	{ USB_DEVICE(0x0db0, 0x6865) },
1933 	{ USB_DEVICE(0x0db0, 0x6869) },
1934 	/* Ralink */
1935 	{ USB_DEVICE(0x148f, 0x1706) },
1936 	{ USB_DEVICE(0x148f, 0x2570) },
1937 	{ USB_DEVICE(0x148f, 0x9020) },
1938 	/* Sagem */
1939 	{ USB_DEVICE(0x079b, 0x004b) },
1940 	/* Siemens */
1941 	{ USB_DEVICE(0x0681, 0x3c06) },
1942 	/* SMC */
1943 	{ USB_DEVICE(0x0707, 0xee13) },
1944 	/* Spairon */
1945 	{ USB_DEVICE(0x114b, 0x0110) },
1946 	/* SURECOM */
1947 	{ USB_DEVICE(0x0769, 0x11f3) },
1948 	/* Trust */
1949 	{ USB_DEVICE(0x0eb0, 0x9020) },
1950 	/* VTech */
1951 	{ USB_DEVICE(0x0f88, 0x3012) },
1952 	/* Zinwell */
1953 	{ USB_DEVICE(0x5a57, 0x0260) },
1954 	{ 0, }
1955 };
1956 
1957 MODULE_AUTHOR(DRV_PROJECT);
1958 MODULE_VERSION(DRV_VERSION);
1959 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1960 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1961 MODULE_LICENSE("GPL");
1962 
1963 static int rt2500usb_probe(struct usb_interface *usb_intf,
1964 			   const struct usb_device_id *id)
1965 {
1966 	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1967 }
1968 
1969 static struct usb_driver rt2500usb_driver = {
1970 	.name		= KBUILD_MODNAME,
1971 	.id_table	= rt2500usb_device_table,
1972 	.probe		= rt2500usb_probe,
1973 	.disconnect	= rt2x00usb_disconnect,
1974 	.suspend	= rt2x00usb_suspend,
1975 	.resume		= rt2x00usb_resume,
1976 	.reset_resume	= rt2x00usb_resume,
1977 	.disable_hub_initiated_lpm = 1,
1978 };
1979 
1980 module_usb_driver(rt2500usb_driver);
1981