1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500usb
21 	Abstract: rt2500usb device specific routines.
22 	Supported chipsets: RT2570.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35 
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42 
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 					   const unsigned int offset,
60 					   u16 *value)
61 {
62 	__le16 reg;
63 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 				      USB_VENDOR_REQUEST_IN, offset,
65 				      &reg, sizeof(reg));
66 	*value = le16_to_cpu(reg);
67 }
68 
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 						const unsigned int offset,
71 						u16 *value)
72 {
73 	__le16 reg;
74 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 				       USB_VENDOR_REQUEST_IN, offset,
76 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
77 	*value = le16_to_cpu(reg);
78 }
79 
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 						const unsigned int offset,
82 						void *value, const u16 length)
83 {
84 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 				      USB_VENDOR_REQUEST_IN, offset,
86 				      value, length);
87 }
88 
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90 					    const unsigned int offset,
91 					    u16 value)
92 {
93 	__le16 reg = cpu_to_le16(value);
94 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 				      USB_VENDOR_REQUEST_OUT, offset,
96 				      &reg, sizeof(reg));
97 }
98 
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 						 const unsigned int offset,
101 						 u16 value)
102 {
103 	__le16 reg = cpu_to_le16(value);
104 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105 				       USB_VENDOR_REQUEST_OUT, offset,
106 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108 
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110 						 const unsigned int offset,
111 						 void *value, const u16 length)
112 {
113 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114 				      USB_VENDOR_REQUEST_OUT, offset,
115 				      value, length);
116 }
117 
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119 				  const unsigned int offset,
120 				  struct rt2x00_field16 field,
121 				  u16 *reg)
122 {
123 	unsigned int i;
124 
125 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126 		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127 		if (!rt2x00_get_field16(*reg, field))
128 			return 1;
129 		udelay(REGISTER_BUSY_DELAY);
130 	}
131 
132 	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133 		   offset, *reg);
134 	*reg = ~0;
135 
136 	return 0;
137 }
138 
139 #define WAIT_FOR_BBP(__dev, __reg) \
140 	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142 	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143 
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145 				const unsigned int word, const u8 value)
146 {
147 	u16 reg;
148 
149 	mutex_lock(&rt2x00dev->csr_mutex);
150 
151 	/*
152 	 * Wait until the BBP becomes available, afterwards we
153 	 * can safely write the new data into the register.
154 	 */
155 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156 		reg = 0;
157 		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160 
161 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162 	}
163 
164 	mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166 
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 			       const unsigned int word, u8 *value)
169 {
170 	u16 reg;
171 
172 	mutex_lock(&rt2x00dev->csr_mutex);
173 
174 	/*
175 	 * Wait until the BBP becomes available, afterwards we
176 	 * can safely write the read request into the register.
177 	 * After the data has been written, we wait until hardware
178 	 * returns the correct value, if at any time the register
179 	 * doesn't become available in time, reg will be 0xffffffff
180 	 * which means we return 0xff to the caller.
181 	 */
182 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183 		reg = 0;
184 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186 
187 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188 
189 		if (WAIT_FOR_BBP(rt2x00dev, &reg))
190 			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191 	}
192 
193 	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194 
195 	mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197 
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199 			       const unsigned int word, const u32 value)
200 {
201 	u16 reg;
202 
203 	mutex_lock(&rt2x00dev->csr_mutex);
204 
205 	/*
206 	 * Wait until the RF becomes available, afterwards we
207 	 * can safely write the new data into the register.
208 	 */
209 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210 		reg = 0;
211 		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213 
214 		reg = 0;
215 		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216 		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217 		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218 		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219 
220 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221 		rt2x00_rf_write(rt2x00dev, word, value);
222 	}
223 
224 	mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226 
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229 				     const unsigned int offset,
230 				     u32 *value)
231 {
232 	u16 tmp;
233 
234 	rt2500usb_register_read(rt2x00dev, offset, &tmp);
235 	*value = tmp;
236 }
237 
238 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
239 				      const unsigned int offset,
240 				      u32 value)
241 {
242 	rt2500usb_register_write(rt2x00dev, offset, value);
243 }
244 
245 static const struct rt2x00debug rt2500usb_rt2x00debug = {
246 	.owner	= THIS_MODULE,
247 	.csr	= {
248 		.read		= _rt2500usb_register_read,
249 		.write		= _rt2500usb_register_write,
250 		.flags		= RT2X00DEBUGFS_OFFSET,
251 		.word_base	= CSR_REG_BASE,
252 		.word_size	= sizeof(u16),
253 		.word_count	= CSR_REG_SIZE / sizeof(u16),
254 	},
255 	.eeprom	= {
256 		.read		= rt2x00_eeprom_read,
257 		.write		= rt2x00_eeprom_write,
258 		.word_base	= EEPROM_BASE,
259 		.word_size	= sizeof(u16),
260 		.word_count	= EEPROM_SIZE / sizeof(u16),
261 	},
262 	.bbp	= {
263 		.read		= rt2500usb_bbp_read,
264 		.write		= rt2500usb_bbp_write,
265 		.word_base	= BBP_BASE,
266 		.word_size	= sizeof(u8),
267 		.word_count	= BBP_SIZE / sizeof(u8),
268 	},
269 	.rf	= {
270 		.read		= rt2x00_rf_read,
271 		.write		= rt2500usb_rf_write,
272 		.word_base	= RF_BASE,
273 		.word_size	= sizeof(u32),
274 		.word_count	= RF_SIZE / sizeof(u32),
275 	},
276 };
277 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
278 
279 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
280 {
281 	u16 reg;
282 
283 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
284 	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
285 }
286 
287 #ifdef CONFIG_RT2X00_LIB_LEDS
288 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
289 				     enum led_brightness brightness)
290 {
291 	struct rt2x00_led *led =
292 	    container_of(led_cdev, struct rt2x00_led, led_dev);
293 	unsigned int enabled = brightness != LED_OFF;
294 	u16 reg;
295 
296 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
297 
298 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
299 		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
300 	else if (led->type == LED_TYPE_ACTIVITY)
301 		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
302 
303 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
304 }
305 
306 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
307 			       unsigned long *delay_on,
308 			       unsigned long *delay_off)
309 {
310 	struct rt2x00_led *led =
311 	    container_of(led_cdev, struct rt2x00_led, led_dev);
312 	u16 reg;
313 
314 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
315 	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
316 	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
317 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
318 
319 	return 0;
320 }
321 
322 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
323 			       struct rt2x00_led *led,
324 			       enum led_type type)
325 {
326 	led->rt2x00dev = rt2x00dev;
327 	led->type = type;
328 	led->led_dev.brightness_set = rt2500usb_brightness_set;
329 	led->led_dev.blink_set = rt2500usb_blink_set;
330 	led->flags = LED_INITIALIZED;
331 }
332 #endif /* CONFIG_RT2X00_LIB_LEDS */
333 
334 /*
335  * Configuration handlers.
336  */
337 
338 /*
339  * rt2500usb does not differentiate between shared and pairwise
340  * keys, so we should use the same function for both key types.
341  */
342 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
343 				struct rt2x00lib_crypto *crypto,
344 				struct ieee80211_key_conf *key)
345 {
346 	u32 mask;
347 	u16 reg;
348 	enum cipher curr_cipher;
349 
350 	if (crypto->cmd == SET_KEY) {
351 		/*
352 		 * Disallow to set WEP key other than with index 0,
353 		 * it is known that not work at least on some hardware.
354 		 * SW crypto will be used in that case.
355 		 */
356 		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
357 		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
358 		    key->keyidx != 0)
359 			return -EOPNOTSUPP;
360 
361 		/*
362 		 * Pairwise key will always be entry 0, but this
363 		 * could collide with a shared key on the same
364 		 * position...
365 		 */
366 		mask = TXRX_CSR0_KEY_ID.bit_mask;
367 
368 		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369 		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370 		reg &= mask;
371 
372 		if (reg && reg == mask)
373 			return -ENOSPC;
374 
375 		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376 
377 		key->hw_key_idx += reg ? ffz(reg) : 0;
378 		/*
379 		 * Hardware requires that all keys use the same cipher
380 		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381 		 * If this is not the first key, compare the cipher with the
382 		 * first one and fall back to SW crypto if not the same.
383 		 */
384 		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385 			return -EOPNOTSUPP;
386 
387 		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388 					      crypto->key, sizeof(crypto->key));
389 
390 		/*
391 		 * The driver does not support the IV/EIV generation
392 		 * in hardware. However it demands the data to be provided
393 		 * both separately as well as inside the frame.
394 		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395 		 * to ensure rt2x00lib will not strip the data from the
396 		 * frame after the copy, now we must tell mac80211
397 		 * to generate the IV/EIV data.
398 		 */
399 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401 	}
402 
403 	/*
404 	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405 	 * a particular key is valid.
406 	 */
407 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410 
411 	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412 	if (crypto->cmd == SET_KEY)
413 		mask |= 1 << key->hw_key_idx;
414 	else if (crypto->cmd == DISABLE_KEY)
415 		mask &= ~(1 << key->hw_key_idx);
416 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418 
419 	return 0;
420 }
421 
422 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423 				    const unsigned int filter_flags)
424 {
425 	u16 reg;
426 
427 	/*
428 	 * Start configuration steps.
429 	 * Note that the version error will always be dropped
430 	 * and broadcast frames will always be accepted since
431 	 * there is no filter for it at this time.
432 	 */
433 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435 			   !(filter_flags & FIF_FCSFAIL));
436 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437 			   !(filter_flags & FIF_PLCPFAIL));
438 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439 			   !(filter_flags & FIF_CONTROL));
440 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 1);
441 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
442 			   !rt2x00dev->intf_ap_count);
443 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
444 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
445 			   !(filter_flags & FIF_ALLMULTI));
446 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
447 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
448 }
449 
450 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
451 				  struct rt2x00_intf *intf,
452 				  struct rt2x00intf_conf *conf,
453 				  const unsigned int flags)
454 {
455 	unsigned int bcn_preload;
456 	u16 reg;
457 
458 	if (flags & CONFIG_UPDATE_TYPE) {
459 		/*
460 		 * Enable beacon config
461 		 */
462 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
463 		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
464 		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
465 		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
466 				   2 * (conf->type != NL80211_IFTYPE_STATION));
467 		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
468 
469 		/*
470 		 * Enable synchronisation.
471 		 */
472 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
473 		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
474 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
475 
476 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
477 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
478 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
479 	}
480 
481 	if (flags & CONFIG_UPDATE_MAC)
482 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
483 					      (3 * sizeof(__le16)));
484 
485 	if (flags & CONFIG_UPDATE_BSSID)
486 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
487 					      (3 * sizeof(__le16)));
488 }
489 
490 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
491 				 struct rt2x00lib_erp *erp,
492 				 u32 changed)
493 {
494 	u16 reg;
495 
496 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
497 		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
498 		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
499 				   !!erp->short_preamble);
500 		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
501 	}
502 
503 	if (changed & BSS_CHANGED_BASIC_RATES)
504 		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
505 					 erp->basic_rates);
506 
507 	if (changed & BSS_CHANGED_BEACON_INT) {
508 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
509 		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
510 				   erp->beacon_int * 4);
511 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
512 	}
513 
514 	if (changed & BSS_CHANGED_ERP_SLOT) {
515 		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
516 		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
517 		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
518 	}
519 }
520 
521 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
522 				 struct antenna_setup *ant)
523 {
524 	u8 r2;
525 	u8 r14;
526 	u16 csr5;
527 	u16 csr6;
528 
529 	/*
530 	 * We should never come here because rt2x00lib is supposed
531 	 * to catch this and send us the correct antenna explicitely.
532 	 */
533 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
534 	       ant->tx == ANTENNA_SW_DIVERSITY);
535 
536 	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
537 	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
538 	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
539 	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
540 
541 	/*
542 	 * Configure the TX antenna.
543 	 */
544 	switch (ant->tx) {
545 	case ANTENNA_HW_DIVERSITY:
546 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
547 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
548 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
549 		break;
550 	case ANTENNA_A:
551 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
552 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
553 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
554 		break;
555 	case ANTENNA_B:
556 	default:
557 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
558 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
559 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
560 		break;
561 	}
562 
563 	/*
564 	 * Configure the RX antenna.
565 	 */
566 	switch (ant->rx) {
567 	case ANTENNA_HW_DIVERSITY:
568 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
569 		break;
570 	case ANTENNA_A:
571 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
572 		break;
573 	case ANTENNA_B:
574 	default:
575 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
576 		break;
577 	}
578 
579 	/*
580 	 * RT2525E and RT5222 need to flip TX I/Q
581 	 */
582 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
583 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
584 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
585 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
586 
587 		/*
588 		 * RT2525E does not need RX I/Q Flip.
589 		 */
590 		if (rt2x00_rf(rt2x00dev, RF2525E))
591 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
592 	} else {
593 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
594 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
595 	}
596 
597 	rt2500usb_bbp_write(rt2x00dev, 2, r2);
598 	rt2500usb_bbp_write(rt2x00dev, 14, r14);
599 	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
600 	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
601 }
602 
603 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
604 				     struct rf_channel *rf, const int txpower)
605 {
606 	/*
607 	 * Set TXpower.
608 	 */
609 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
610 
611 	/*
612 	 * For RT2525E we should first set the channel to half band higher.
613 	 */
614 	if (rt2x00_rf(rt2x00dev, RF2525E)) {
615 		static const u32 vals[] = {
616 			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
617 			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
618 			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
619 			0x00000902, 0x00000906
620 		};
621 
622 		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
623 		if (rf->rf4)
624 			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
625 	}
626 
627 	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
628 	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
629 	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
630 	if (rf->rf4)
631 		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
632 }
633 
634 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
635 				     const int txpower)
636 {
637 	u32 rf3;
638 
639 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
640 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
641 	rt2500usb_rf_write(rt2x00dev, 3, rf3);
642 }
643 
644 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
645 				struct rt2x00lib_conf *libconf)
646 {
647 	enum dev_state state =
648 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
649 		STATE_SLEEP : STATE_AWAKE;
650 	u16 reg;
651 
652 	if (state == STATE_SLEEP) {
653 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
654 		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
655 				   rt2x00dev->beacon_int - 20);
656 		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
657 				   libconf->conf->listen_interval - 1);
658 
659 		/* We must first disable autowake before it can be enabled */
660 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
661 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662 
663 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
664 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
665 	} else {
666 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
667 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
668 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669 	}
670 
671 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
672 }
673 
674 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
675 			     struct rt2x00lib_conf *libconf,
676 			     const unsigned int flags)
677 {
678 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
679 		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
680 					 libconf->conf->power_level);
681 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
682 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
683 		rt2500usb_config_txpower(rt2x00dev,
684 					 libconf->conf->power_level);
685 	if (flags & IEEE80211_CONF_CHANGE_PS)
686 		rt2500usb_config_ps(rt2x00dev, libconf);
687 }
688 
689 /*
690  * Link tuning
691  */
692 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
693 				 struct link_qual *qual)
694 {
695 	u16 reg;
696 
697 	/*
698 	 * Update FCS error count from register.
699 	 */
700 	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
701 	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
702 
703 	/*
704 	 * Update False CCA count from register.
705 	 */
706 	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
707 	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
708 }
709 
710 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
711 				  struct link_qual *qual)
712 {
713 	u16 eeprom;
714 	u16 value;
715 
716 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
717 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
718 	rt2500usb_bbp_write(rt2x00dev, 24, value);
719 
720 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
721 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
722 	rt2500usb_bbp_write(rt2x00dev, 25, value);
723 
724 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
725 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
726 	rt2500usb_bbp_write(rt2x00dev, 61, value);
727 
728 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
729 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
730 	rt2500usb_bbp_write(rt2x00dev, 17, value);
731 
732 	qual->vgc_level = value;
733 }
734 
735 /*
736  * Queue handlers.
737  */
738 static void rt2500usb_start_queue(struct data_queue *queue)
739 {
740 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
741 	u16 reg;
742 
743 	switch (queue->qid) {
744 	case QID_RX:
745 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
746 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
747 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
748 		break;
749 	case QID_BEACON:
750 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
751 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
752 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
753 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
754 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
755 		break;
756 	default:
757 		break;
758 	}
759 }
760 
761 static void rt2500usb_stop_queue(struct data_queue *queue)
762 {
763 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
764 	u16 reg;
765 
766 	switch (queue->qid) {
767 	case QID_RX:
768 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
769 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
770 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
771 		break;
772 	case QID_BEACON:
773 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
774 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
775 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
776 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
777 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
778 		break;
779 	default:
780 		break;
781 	}
782 }
783 
784 /*
785  * Initialization functions.
786  */
787 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
788 {
789 	u16 reg;
790 
791 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
792 				    USB_MODE_TEST, REGISTER_TIMEOUT);
793 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
794 				    0x00f0, REGISTER_TIMEOUT);
795 
796 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
797 	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
798 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
799 
800 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
801 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
802 
803 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
804 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
805 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
806 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
807 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
808 
809 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
810 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
811 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
812 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
813 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
814 
815 	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
816 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
817 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
818 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
819 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
820 	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
821 
822 	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
823 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
824 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
825 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
826 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
827 	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
828 
829 	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
830 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
831 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
832 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
833 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
834 	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
835 
836 	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
837 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
838 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
839 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
840 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
841 	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
842 
843 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
844 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
845 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
846 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
847 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
848 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
849 
850 	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
851 	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
852 
853 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
854 		return -EBUSY;
855 
856 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
857 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
858 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
859 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
860 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
861 
862 	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
863 		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
864 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
865 	} else {
866 		reg = 0;
867 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
868 		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
869 	}
870 	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
871 
872 	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
873 	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
874 	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
875 	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
876 
877 	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
878 	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
879 			   rt2x00dev->rx->data_size);
880 	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
881 
882 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
883 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
884 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
885 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
886 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
887 
888 	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
889 	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
890 	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
891 
892 	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
893 	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
894 	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
895 
896 	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
897 	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
898 	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
899 
900 	return 0;
901 }
902 
903 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
904 {
905 	unsigned int i;
906 	u8 value;
907 
908 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
909 		rt2500usb_bbp_read(rt2x00dev, 0, &value);
910 		if ((value != 0xff) && (value != 0x00))
911 			return 0;
912 		udelay(REGISTER_BUSY_DELAY);
913 	}
914 
915 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
916 	return -EACCES;
917 }
918 
919 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
920 {
921 	unsigned int i;
922 	u16 eeprom;
923 	u8 value;
924 	u8 reg_id;
925 
926 	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
927 		return -EACCES;
928 
929 	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
930 	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
931 	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
932 	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
933 	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
934 	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
935 	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
936 	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
937 	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
938 	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
939 	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
940 	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
941 	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
942 	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
943 	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
944 	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
945 	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
946 	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
947 	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
948 	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
949 	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
950 	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
951 	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
952 	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
953 	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
954 	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
955 	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
956 	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
957 	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
958 	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
959 	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
960 
961 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
962 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
963 
964 		if (eeprom != 0xffff && eeprom != 0x0000) {
965 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
966 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
967 			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
968 		}
969 	}
970 
971 	return 0;
972 }
973 
974 /*
975  * Device state switch handlers.
976  */
977 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
978 {
979 	/*
980 	 * Initialize all registers.
981 	 */
982 	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
983 		     rt2500usb_init_bbp(rt2x00dev)))
984 		return -EIO;
985 
986 	return 0;
987 }
988 
989 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
990 {
991 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
992 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
993 
994 	/*
995 	 * Disable synchronisation.
996 	 */
997 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
998 
999 	rt2x00usb_disable_radio(rt2x00dev);
1000 }
1001 
1002 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1003 			       enum dev_state state)
1004 {
1005 	u16 reg;
1006 	u16 reg2;
1007 	unsigned int i;
1008 	char put_to_sleep;
1009 	char bbp_state;
1010 	char rf_state;
1011 
1012 	put_to_sleep = (state != STATE_AWAKE);
1013 
1014 	reg = 0;
1015 	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1016 	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1017 	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1018 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1019 	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1020 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1021 
1022 	/*
1023 	 * Device is not guaranteed to be in the requested state yet.
1024 	 * We must wait until the register indicates that the
1025 	 * device has entered the correct state.
1026 	 */
1027 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1028 		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1029 		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1030 		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1031 		if (bbp_state == state && rf_state == state)
1032 			return 0;
1033 		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1034 		msleep(30);
1035 	}
1036 
1037 	return -EBUSY;
1038 }
1039 
1040 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1041 				      enum dev_state state)
1042 {
1043 	int retval = 0;
1044 
1045 	switch (state) {
1046 	case STATE_RADIO_ON:
1047 		retval = rt2500usb_enable_radio(rt2x00dev);
1048 		break;
1049 	case STATE_RADIO_OFF:
1050 		rt2500usb_disable_radio(rt2x00dev);
1051 		break;
1052 	case STATE_RADIO_IRQ_ON:
1053 	case STATE_RADIO_IRQ_OFF:
1054 		/* No support, but no error either */
1055 		break;
1056 	case STATE_DEEP_SLEEP:
1057 	case STATE_SLEEP:
1058 	case STATE_STANDBY:
1059 	case STATE_AWAKE:
1060 		retval = rt2500usb_set_state(rt2x00dev, state);
1061 		break;
1062 	default:
1063 		retval = -ENOTSUPP;
1064 		break;
1065 	}
1066 
1067 	if (unlikely(retval))
1068 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1069 			   state, retval);
1070 
1071 	return retval;
1072 }
1073 
1074 /*
1075  * TX descriptor initialization
1076  */
1077 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1078 				    struct txentry_desc *txdesc)
1079 {
1080 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1081 	__le32 *txd = (__le32 *) entry->skb->data;
1082 	u32 word;
1083 
1084 	/*
1085 	 * Start writing the descriptor words.
1086 	 */
1087 	rt2x00_desc_read(txd, 0, &word);
1088 	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1089 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1090 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1091 	rt2x00_set_field32(&word, TXD_W0_ACK,
1092 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1093 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1094 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1095 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1096 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1097 	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1098 			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1099 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1100 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1101 	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1102 	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1103 	rt2x00_desc_write(txd, 0, word);
1104 
1105 	rt2x00_desc_read(txd, 1, &word);
1106 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1107 	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1108 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1109 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1110 	rt2x00_desc_write(txd, 1, word);
1111 
1112 	rt2x00_desc_read(txd, 2, &word);
1113 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1114 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1115 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1116 			   txdesc->u.plcp.length_low);
1117 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1118 			   txdesc->u.plcp.length_high);
1119 	rt2x00_desc_write(txd, 2, word);
1120 
1121 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1122 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1123 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1124 	}
1125 
1126 	/*
1127 	 * Register descriptor details in skb frame descriptor.
1128 	 */
1129 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1130 	skbdesc->desc = txd;
1131 	skbdesc->desc_len = TXD_DESC_SIZE;
1132 }
1133 
1134 /*
1135  * TX data initialization
1136  */
1137 static void rt2500usb_beacondone(struct urb *urb);
1138 
1139 static void rt2500usb_write_beacon(struct queue_entry *entry,
1140 				   struct txentry_desc *txdesc)
1141 {
1142 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1143 	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1144 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1145 	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1146 	int length;
1147 	u16 reg, reg0;
1148 
1149 	/*
1150 	 * Disable beaconing while we are reloading the beacon data,
1151 	 * otherwise we might be sending out invalid data.
1152 	 */
1153 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1154 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1155 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1156 
1157 	/*
1158 	 * Add space for the descriptor in front of the skb.
1159 	 */
1160 	skb_push(entry->skb, TXD_DESC_SIZE);
1161 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1162 
1163 	/*
1164 	 * Write the TX descriptor for the beacon.
1165 	 */
1166 	rt2500usb_write_tx_desc(entry, txdesc);
1167 
1168 	/*
1169 	 * Dump beacon to userspace through debugfs.
1170 	 */
1171 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1172 
1173 	/*
1174 	 * USB devices cannot blindly pass the skb->len as the
1175 	 * length of the data to usb_fill_bulk_urb. Pass the skb
1176 	 * to the driver to determine what the length should be.
1177 	 */
1178 	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1179 
1180 	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1181 			  entry->skb->data, length, rt2500usb_beacondone,
1182 			  entry);
1183 
1184 	/*
1185 	 * Second we need to create the guardian byte.
1186 	 * We only need a single byte, so lets recycle
1187 	 * the 'flags' field we are not using for beacons.
1188 	 */
1189 	bcn_priv->guardian_data = 0;
1190 	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1191 			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1192 			  entry);
1193 
1194 	/*
1195 	 * Send out the guardian byte.
1196 	 */
1197 	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1198 
1199 	/*
1200 	 * Enable beaconing again.
1201 	 */
1202 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1203 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1204 	reg0 = reg;
1205 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1206 	/*
1207 	 * Beacon generation will fail initially.
1208 	 * To prevent this we need to change the TXRX_CSR19
1209 	 * register several times (reg0 is the same as reg
1210 	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1211 	 * and 1 in reg).
1212 	 */
1213 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1214 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1215 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1216 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1217 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218 }
1219 
1220 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1221 {
1222 	int length;
1223 
1224 	/*
1225 	 * The length _must_ be a multiple of 2,
1226 	 * but it must _not_ be a multiple of the USB packet size.
1227 	 */
1228 	length = roundup(entry->skb->len, 2);
1229 	length += (2 * !(length % entry->queue->usb_maxpacket));
1230 
1231 	return length;
1232 }
1233 
1234 /*
1235  * RX control handlers
1236  */
1237 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1238 				  struct rxdone_entry_desc *rxdesc)
1239 {
1240 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1241 	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1242 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1243 	__le32 *rxd =
1244 	    (__le32 *)(entry->skb->data +
1245 		       (entry_priv->urb->actual_length -
1246 			entry->queue->desc_size));
1247 	u32 word0;
1248 	u32 word1;
1249 
1250 	/*
1251 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1252 	 * frame data in rt2x00usb.
1253 	 */
1254 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1255 	rxd = (__le32 *)skbdesc->desc;
1256 
1257 	/*
1258 	 * It is now safe to read the descriptor on all architectures.
1259 	 */
1260 	rt2x00_desc_read(rxd, 0, &word0);
1261 	rt2x00_desc_read(rxd, 1, &word1);
1262 
1263 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1264 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1265 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1266 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1267 
1268 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1269 	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1270 		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1271 
1272 	if (rxdesc->cipher != CIPHER_NONE) {
1273 		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1274 		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1275 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1276 
1277 		/* ICV is located at the end of frame */
1278 
1279 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1280 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1281 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1282 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1283 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1284 	}
1285 
1286 	/*
1287 	 * Obtain the status about this packet.
1288 	 * When frame was received with an OFDM bitrate,
1289 	 * the signal is the PLCP value. If it was received with
1290 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1291 	 */
1292 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1293 	rxdesc->rssi =
1294 	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1295 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1296 
1297 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1298 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1299 	else
1300 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1301 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1302 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1303 
1304 	/*
1305 	 * Adjust the skb memory window to the frame boundaries.
1306 	 */
1307 	skb_trim(entry->skb, rxdesc->size);
1308 }
1309 
1310 /*
1311  * Interrupt functions.
1312  */
1313 static void rt2500usb_beacondone(struct urb *urb)
1314 {
1315 	struct queue_entry *entry = (struct queue_entry *)urb->context;
1316 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1317 
1318 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1319 		return;
1320 
1321 	/*
1322 	 * Check if this was the guardian beacon,
1323 	 * if that was the case we need to send the real beacon now.
1324 	 * Otherwise we should free the sk_buffer, the device
1325 	 * should be doing the rest of the work now.
1326 	 */
1327 	if (bcn_priv->guardian_urb == urb) {
1328 		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1329 	} else if (bcn_priv->urb == urb) {
1330 		dev_kfree_skb(entry->skb);
1331 		entry->skb = NULL;
1332 	}
1333 }
1334 
1335 /*
1336  * Device probe functions.
1337  */
1338 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1339 {
1340 	u16 word;
1341 	u8 *mac;
1342 	u8 bbp;
1343 
1344 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1345 
1346 	/*
1347 	 * Start validation of the data that has been read.
1348 	 */
1349 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1350 	if (!is_valid_ether_addr(mac)) {
1351 		eth_random_addr(mac);
1352 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1353 	}
1354 
1355 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1356 	if (word == 0xffff) {
1357 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1358 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1359 				   ANTENNA_SW_DIVERSITY);
1360 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1361 				   ANTENNA_SW_DIVERSITY);
1362 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1363 				   LED_MODE_DEFAULT);
1364 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1365 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1366 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1367 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1368 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1369 	}
1370 
1371 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1372 	if (word == 0xffff) {
1373 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1374 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1375 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1376 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1377 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1378 	}
1379 
1380 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1381 	if (word == 0xffff) {
1382 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1383 				   DEFAULT_RSSI_OFFSET);
1384 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1385 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1386 				  word);
1387 	}
1388 
1389 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1390 	if (word == 0xffff) {
1391 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1392 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1393 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1394 	}
1395 
1396 	/*
1397 	 * Switch lower vgc bound to current BBP R17 value,
1398 	 * lower the value a bit for better quality.
1399 	 */
1400 	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1401 	bbp -= 6;
1402 
1403 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1404 	if (word == 0xffff) {
1405 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1406 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1407 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1408 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1409 	} else {
1410 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1411 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1412 	}
1413 
1414 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1415 	if (word == 0xffff) {
1416 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1417 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1418 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1419 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1420 	}
1421 
1422 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1423 	if (word == 0xffff) {
1424 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1425 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1426 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1427 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1428 	}
1429 
1430 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1431 	if (word == 0xffff) {
1432 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1433 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1434 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1435 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1436 	}
1437 
1438 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1439 	if (word == 0xffff) {
1440 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1441 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1442 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1443 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1450 {
1451 	u16 reg;
1452 	u16 value;
1453 	u16 eeprom;
1454 
1455 	/*
1456 	 * Read EEPROM word for configuration.
1457 	 */
1458 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1459 
1460 	/*
1461 	 * Identify RF chipset.
1462 	 */
1463 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1464 	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1465 	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1466 
1467 	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1468 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1469 		return -ENODEV;
1470 	}
1471 
1472 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1473 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1474 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1475 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1476 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1477 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1478 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1479 		return -ENODEV;
1480 	}
1481 
1482 	/*
1483 	 * Identify default antenna configuration.
1484 	 */
1485 	rt2x00dev->default_ant.tx =
1486 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1487 	rt2x00dev->default_ant.rx =
1488 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1489 
1490 	/*
1491 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1492 	 * I am not 100% sure about this, but the legacy drivers do not
1493 	 * indicate antenna swapping in software is required when
1494 	 * diversity is enabled.
1495 	 */
1496 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1497 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1498 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1499 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1500 
1501 	/*
1502 	 * Store led mode, for correct led behaviour.
1503 	 */
1504 #ifdef CONFIG_RT2X00_LIB_LEDS
1505 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1506 
1507 	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1508 	if (value == LED_MODE_TXRX_ACTIVITY ||
1509 	    value == LED_MODE_DEFAULT ||
1510 	    value == LED_MODE_ASUS)
1511 		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1512 				   LED_TYPE_ACTIVITY);
1513 #endif /* CONFIG_RT2X00_LIB_LEDS */
1514 
1515 	/*
1516 	 * Detect if this device has an hardware controlled radio.
1517 	 */
1518 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1519 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1520 
1521 	/*
1522 	 * Read the RSSI <-> dBm offset information.
1523 	 */
1524 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1525 	rt2x00dev->rssi_offset =
1526 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1527 
1528 	return 0;
1529 }
1530 
1531 /*
1532  * RF value list for RF2522
1533  * Supports: 2.4 GHz
1534  */
1535 static const struct rf_channel rf_vals_bg_2522[] = {
1536 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1537 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1538 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1539 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1540 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1541 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1542 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1543 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1544 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1545 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1546 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1547 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1548 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1549 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1550 };
1551 
1552 /*
1553  * RF value list for RF2523
1554  * Supports: 2.4 GHz
1555  */
1556 static const struct rf_channel rf_vals_bg_2523[] = {
1557 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1558 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1559 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1560 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1561 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1562 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1563 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1564 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1565 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1566 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1567 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1568 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1569 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1570 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1571 };
1572 
1573 /*
1574  * RF value list for RF2524
1575  * Supports: 2.4 GHz
1576  */
1577 static const struct rf_channel rf_vals_bg_2524[] = {
1578 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1579 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1580 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1581 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1582 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1583 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1584 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1585 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1586 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1587 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1588 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1589 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1590 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1591 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1592 };
1593 
1594 /*
1595  * RF value list for RF2525
1596  * Supports: 2.4 GHz
1597  */
1598 static const struct rf_channel rf_vals_bg_2525[] = {
1599 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1600 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1601 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1602 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1603 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1604 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1605 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1606 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1607 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1608 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1609 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1610 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1611 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1612 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1613 };
1614 
1615 /*
1616  * RF value list for RF2525e
1617  * Supports: 2.4 GHz
1618  */
1619 static const struct rf_channel rf_vals_bg_2525e[] = {
1620 	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1621 	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1622 	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1623 	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1624 	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1625 	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1626 	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1627 	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1628 	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1629 	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1630 	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1631 	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1632 	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1633 	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1634 };
1635 
1636 /*
1637  * RF value list for RF5222
1638  * Supports: 2.4 GHz & 5.2 GHz
1639  */
1640 static const struct rf_channel rf_vals_5222[] = {
1641 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1642 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1643 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1644 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1645 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1646 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1647 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1648 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1649 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1650 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1651 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1652 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1653 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1654 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1655 
1656 	/* 802.11 UNI / HyperLan 2 */
1657 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1658 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1659 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1660 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1661 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1662 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1663 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1664 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1665 
1666 	/* 802.11 HyperLan 2 */
1667 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1668 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1669 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1670 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1671 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1672 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1673 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1674 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1675 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1676 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1677 
1678 	/* 802.11 UNII */
1679 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1680 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1681 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1682 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1683 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1684 };
1685 
1686 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1687 {
1688 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1689 	struct channel_info *info;
1690 	char *tx_power;
1691 	unsigned int i;
1692 
1693 	/*
1694 	 * Initialize all hw fields.
1695 	 *
1696 	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1697 	 * capable of sending the buffered frames out after the DTIM
1698 	 * transmission using rt2x00lib_beacondone. This will send out
1699 	 * multicast and broadcast traffic immediately instead of buffering it
1700 	 * infinitly and thus dropping it after some time.
1701 	 */
1702 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1703 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1704 	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1705 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1706 
1707 	/*
1708 	 * Disable powersaving as default.
1709 	 */
1710 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1711 
1712 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1713 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1714 				rt2x00_eeprom_addr(rt2x00dev,
1715 						   EEPROM_MAC_ADDR_0));
1716 
1717 	/*
1718 	 * Initialize hw_mode information.
1719 	 */
1720 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1721 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1722 
1723 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1724 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1725 		spec->channels = rf_vals_bg_2522;
1726 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1727 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1728 		spec->channels = rf_vals_bg_2523;
1729 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1730 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1731 		spec->channels = rf_vals_bg_2524;
1732 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1733 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1734 		spec->channels = rf_vals_bg_2525;
1735 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1736 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1737 		spec->channels = rf_vals_bg_2525e;
1738 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1739 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1740 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1741 		spec->channels = rf_vals_5222;
1742 	}
1743 
1744 	/*
1745 	 * Create channel information array
1746 	 */
1747 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1748 	if (!info)
1749 		return -ENOMEM;
1750 
1751 	spec->channels_info = info;
1752 
1753 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1754 	for (i = 0; i < 14; i++) {
1755 		info[i].max_power = MAX_TXPOWER;
1756 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1757 	}
1758 
1759 	if (spec->num_channels > 14) {
1760 		for (i = 14; i < spec->num_channels; i++) {
1761 			info[i].max_power = MAX_TXPOWER;
1762 			info[i].default_power1 = DEFAULT_TXPOWER;
1763 		}
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1770 {
1771 	int retval;
1772 	u16 reg;
1773 
1774 	/*
1775 	 * Allocate eeprom data.
1776 	 */
1777 	retval = rt2500usb_validate_eeprom(rt2x00dev);
1778 	if (retval)
1779 		return retval;
1780 
1781 	retval = rt2500usb_init_eeprom(rt2x00dev);
1782 	if (retval)
1783 		return retval;
1784 
1785 	/*
1786 	 * Enable rfkill polling by setting GPIO direction of the
1787 	 * rfkill switch GPIO pin correctly.
1788 	 */
1789 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1790 	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1791 	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1792 
1793 	/*
1794 	 * Initialize hw specifications.
1795 	 */
1796 	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1797 	if (retval)
1798 		return retval;
1799 
1800 	/*
1801 	 * This device requires the atim queue
1802 	 */
1803 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1804 	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1805 	if (!modparam_nohwcrypt) {
1806 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1807 		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1808 	}
1809 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1810 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1811 
1812 	/*
1813 	 * Set the rssi offset.
1814 	 */
1815 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1816 
1817 	return 0;
1818 }
1819 
1820 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1821 	.tx			= rt2x00mac_tx,
1822 	.start			= rt2x00mac_start,
1823 	.stop			= rt2x00mac_stop,
1824 	.add_interface		= rt2x00mac_add_interface,
1825 	.remove_interface	= rt2x00mac_remove_interface,
1826 	.config			= rt2x00mac_config,
1827 	.configure_filter	= rt2x00mac_configure_filter,
1828 	.set_tim		= rt2x00mac_set_tim,
1829 	.set_key		= rt2x00mac_set_key,
1830 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1831 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1832 	.get_stats		= rt2x00mac_get_stats,
1833 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1834 	.conf_tx		= rt2x00mac_conf_tx,
1835 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1836 	.flush			= rt2x00mac_flush,
1837 	.set_antenna		= rt2x00mac_set_antenna,
1838 	.get_antenna		= rt2x00mac_get_antenna,
1839 	.get_ringparam		= rt2x00mac_get_ringparam,
1840 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1841 };
1842 
1843 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1844 	.probe_hw		= rt2500usb_probe_hw,
1845 	.initialize		= rt2x00usb_initialize,
1846 	.uninitialize		= rt2x00usb_uninitialize,
1847 	.clear_entry		= rt2x00usb_clear_entry,
1848 	.set_device_state	= rt2500usb_set_device_state,
1849 	.rfkill_poll		= rt2500usb_rfkill_poll,
1850 	.link_stats		= rt2500usb_link_stats,
1851 	.reset_tuner		= rt2500usb_reset_tuner,
1852 	.watchdog		= rt2x00usb_watchdog,
1853 	.start_queue		= rt2500usb_start_queue,
1854 	.kick_queue		= rt2x00usb_kick_queue,
1855 	.stop_queue		= rt2500usb_stop_queue,
1856 	.flush_queue		= rt2x00usb_flush_queue,
1857 	.write_tx_desc		= rt2500usb_write_tx_desc,
1858 	.write_beacon		= rt2500usb_write_beacon,
1859 	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1860 	.fill_rxdone		= rt2500usb_fill_rxdone,
1861 	.config_shared_key	= rt2500usb_config_key,
1862 	.config_pairwise_key	= rt2500usb_config_key,
1863 	.config_filter		= rt2500usb_config_filter,
1864 	.config_intf		= rt2500usb_config_intf,
1865 	.config_erp		= rt2500usb_config_erp,
1866 	.config_ant		= rt2500usb_config_ant,
1867 	.config			= rt2500usb_config,
1868 };
1869 
1870 static void rt2500usb_queue_init(struct data_queue *queue)
1871 {
1872 	switch (queue->qid) {
1873 	case QID_RX:
1874 		queue->limit = 32;
1875 		queue->data_size = DATA_FRAME_SIZE;
1876 		queue->desc_size = RXD_DESC_SIZE;
1877 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878 		break;
1879 
1880 	case QID_AC_VO:
1881 	case QID_AC_VI:
1882 	case QID_AC_BE:
1883 	case QID_AC_BK:
1884 		queue->limit = 32;
1885 		queue->data_size = DATA_FRAME_SIZE;
1886 		queue->desc_size = TXD_DESC_SIZE;
1887 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1888 		break;
1889 
1890 	case QID_BEACON:
1891 		queue->limit = 1;
1892 		queue->data_size = MGMT_FRAME_SIZE;
1893 		queue->desc_size = TXD_DESC_SIZE;
1894 		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1895 		break;
1896 
1897 	case QID_ATIM:
1898 		queue->limit = 8;
1899 		queue->data_size = DATA_FRAME_SIZE;
1900 		queue->desc_size = TXD_DESC_SIZE;
1901 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1902 		break;
1903 
1904 	default:
1905 		BUG();
1906 		break;
1907 	}
1908 }
1909 
1910 static const struct rt2x00_ops rt2500usb_ops = {
1911 	.name			= KBUILD_MODNAME,
1912 	.max_ap_intf		= 1,
1913 	.eeprom_size		= EEPROM_SIZE,
1914 	.rf_size		= RF_SIZE,
1915 	.tx_queues		= NUM_TX_QUEUES,
1916 	.queue_init		= rt2500usb_queue_init,
1917 	.lib			= &rt2500usb_rt2x00_ops,
1918 	.hw			= &rt2500usb_mac80211_ops,
1919 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1920 	.debugfs		= &rt2500usb_rt2x00debug,
1921 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1922 };
1923 
1924 /*
1925  * rt2500usb module information.
1926  */
1927 static struct usb_device_id rt2500usb_device_table[] = {
1928 	/* ASUS */
1929 	{ USB_DEVICE(0x0b05, 0x1706) },
1930 	{ USB_DEVICE(0x0b05, 0x1707) },
1931 	/* Belkin */
1932 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1933 	{ USB_DEVICE(0x050d, 0x7051) },
1934 	/* Cisco Systems */
1935 	{ USB_DEVICE(0x13b1, 0x000d) },
1936 	{ USB_DEVICE(0x13b1, 0x0011) },
1937 	{ USB_DEVICE(0x13b1, 0x001a) },
1938 	/* Conceptronic */
1939 	{ USB_DEVICE(0x14b2, 0x3c02) },
1940 	/* D-LINK */
1941 	{ USB_DEVICE(0x2001, 0x3c00) },
1942 	/* Gigabyte */
1943 	{ USB_DEVICE(0x1044, 0x8001) },
1944 	{ USB_DEVICE(0x1044, 0x8007) },
1945 	/* Hercules */
1946 	{ USB_DEVICE(0x06f8, 0xe000) },
1947 	/* Melco */
1948 	{ USB_DEVICE(0x0411, 0x005e) },
1949 	{ USB_DEVICE(0x0411, 0x0066) },
1950 	{ USB_DEVICE(0x0411, 0x0067) },
1951 	{ USB_DEVICE(0x0411, 0x008b) },
1952 	{ USB_DEVICE(0x0411, 0x0097) },
1953 	/* MSI */
1954 	{ USB_DEVICE(0x0db0, 0x6861) },
1955 	{ USB_DEVICE(0x0db0, 0x6865) },
1956 	{ USB_DEVICE(0x0db0, 0x6869) },
1957 	/* Ralink */
1958 	{ USB_DEVICE(0x148f, 0x1706) },
1959 	{ USB_DEVICE(0x148f, 0x2570) },
1960 	{ USB_DEVICE(0x148f, 0x9020) },
1961 	/* Sagem */
1962 	{ USB_DEVICE(0x079b, 0x004b) },
1963 	/* Siemens */
1964 	{ USB_DEVICE(0x0681, 0x3c06) },
1965 	/* SMC */
1966 	{ USB_DEVICE(0x0707, 0xee13) },
1967 	/* Spairon */
1968 	{ USB_DEVICE(0x114b, 0x0110) },
1969 	/* SURECOM */
1970 	{ USB_DEVICE(0x0769, 0x11f3) },
1971 	/* Trust */
1972 	{ USB_DEVICE(0x0eb0, 0x9020) },
1973 	/* VTech */
1974 	{ USB_DEVICE(0x0f88, 0x3012) },
1975 	/* Zinwell */
1976 	{ USB_DEVICE(0x5a57, 0x0260) },
1977 	{ 0, }
1978 };
1979 
1980 MODULE_AUTHOR(DRV_PROJECT);
1981 MODULE_VERSION(DRV_VERSION);
1982 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1983 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1984 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1985 MODULE_LICENSE("GPL");
1986 
1987 static int rt2500usb_probe(struct usb_interface *usb_intf,
1988 			   const struct usb_device_id *id)
1989 {
1990 	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1991 }
1992 
1993 static struct usb_driver rt2500usb_driver = {
1994 	.name		= KBUILD_MODNAME,
1995 	.id_table	= rt2500usb_device_table,
1996 	.probe		= rt2500usb_probe,
1997 	.disconnect	= rt2x00usb_disconnect,
1998 	.suspend	= rt2x00usb_suspend,
1999 	.resume		= rt2x00usb_resume,
2000 	.reset_resume	= rt2x00usb_resume,
2001 	.disable_hub_initiated_lpm = 1,
2002 };
2003 
2004 module_usb_driver(rt2500usb_driver);
2005