1 /* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 Module: rt2500usb 21 Abstract: rt2500usb device specific routines. 22 Supported chipsets: RT2570. 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/etherdevice.h> 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/slab.h> 30 #include <linux/usb.h> 31 32 #include "rt2x00.h" 33 #include "rt2x00usb.h" 34 #include "rt2500usb.h" 35 36 /* 37 * Allow hardware encryption to be disabled. 38 */ 39 static bool modparam_nohwcrypt; 40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); 41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 42 43 /* 44 * Register access. 45 * All access to the CSR registers will go through the methods 46 * rt2500usb_register_read and rt2500usb_register_write. 47 * BBP and RF register require indirect register access, 48 * and use the CSR registers BBPCSR and RFCSR to achieve this. 49 * These indirect registers work with busy bits, 50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access 51 * the register while taking a REGISTER_BUSY_DELAY us delay 52 * between each attampt. When the busy bit is still set at that time, 53 * the access attempt is considered to have failed, 54 * and we will print an error. 55 * If the csr_mutex is already held then the _lock variants must 56 * be used instead. 57 */ 58 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 59 const unsigned int offset) 60 { 61 __le16 reg; 62 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, 63 USB_VENDOR_REQUEST_IN, offset, 64 ®, sizeof(reg)); 65 return le16_to_cpu(reg); 66 } 67 68 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev, 69 const unsigned int offset) 70 { 71 __le16 reg; 72 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, 73 USB_VENDOR_REQUEST_IN, offset, 74 ®, sizeof(reg), REGISTER_TIMEOUT); 75 return le16_to_cpu(reg); 76 } 77 78 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 79 const unsigned int offset, 80 u16 value) 81 { 82 __le16 reg = cpu_to_le16(value); 83 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 84 USB_VENDOR_REQUEST_OUT, offset, 85 ®, sizeof(reg)); 86 } 87 88 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev, 89 const unsigned int offset, 90 u16 value) 91 { 92 __le16 reg = cpu_to_le16(value); 93 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, 94 USB_VENDOR_REQUEST_OUT, offset, 95 ®, sizeof(reg), REGISTER_TIMEOUT); 96 } 97 98 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, 99 const unsigned int offset, 100 void *value, const u16 length) 101 { 102 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 103 USB_VENDOR_REQUEST_OUT, offset, 104 value, length); 105 } 106 107 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev, 108 const unsigned int offset, 109 struct rt2x00_field16 field, 110 u16 *reg) 111 { 112 unsigned int i; 113 114 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 115 *reg = rt2500usb_register_read_lock(rt2x00dev, offset); 116 if (!rt2x00_get_field16(*reg, field)) 117 return 1; 118 udelay(REGISTER_BUSY_DELAY); 119 } 120 121 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n", 122 offset, *reg); 123 *reg = ~0; 124 125 return 0; 126 } 127 128 #define WAIT_FOR_BBP(__dev, __reg) \ 129 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg)) 130 #define WAIT_FOR_RF(__dev, __reg) \ 131 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg)) 132 133 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev, 134 const unsigned int word, const u8 value) 135 { 136 u16 reg; 137 138 mutex_lock(&rt2x00dev->csr_mutex); 139 140 /* 141 * Wait until the BBP becomes available, afterwards we 142 * can safely write the new data into the register. 143 */ 144 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 145 reg = 0; 146 rt2x00_set_field16(®, PHY_CSR7_DATA, value); 147 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); 148 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0); 149 150 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 151 } 152 153 mutex_unlock(&rt2x00dev->csr_mutex); 154 } 155 156 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev, 157 const unsigned int word) 158 { 159 u16 reg; 160 u8 value; 161 162 mutex_lock(&rt2x00dev->csr_mutex); 163 164 /* 165 * Wait until the BBP becomes available, afterwards we 166 * can safely write the read request into the register. 167 * After the data has been written, we wait until hardware 168 * returns the correct value, if at any time the register 169 * doesn't become available in time, reg will be 0xffffffff 170 * which means we return 0xff to the caller. 171 */ 172 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 173 reg = 0; 174 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); 175 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1); 176 177 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 178 179 if (WAIT_FOR_BBP(rt2x00dev, ®)) 180 reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7); 181 } 182 183 value = rt2x00_get_field16(reg, PHY_CSR7_DATA); 184 185 mutex_unlock(&rt2x00dev->csr_mutex); 186 187 return value; 188 } 189 190 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev, 191 const unsigned int word, const u32 value) 192 { 193 u16 reg; 194 195 mutex_lock(&rt2x00dev->csr_mutex); 196 197 /* 198 * Wait until the RF becomes available, afterwards we 199 * can safely write the new data into the register. 200 */ 201 if (WAIT_FOR_RF(rt2x00dev, ®)) { 202 reg = 0; 203 rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value); 204 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg); 205 206 reg = 0; 207 rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16); 208 rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20); 209 rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0); 210 rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1); 211 212 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg); 213 rt2x00_rf_write(rt2x00dev, word, value); 214 } 215 216 mutex_unlock(&rt2x00dev->csr_mutex); 217 } 218 219 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 220 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 221 const unsigned int offset) 222 { 223 return rt2500usb_register_read(rt2x00dev, offset); 224 } 225 226 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 227 const unsigned int offset, 228 u32 value) 229 { 230 rt2500usb_register_write(rt2x00dev, offset, value); 231 } 232 233 static const struct rt2x00debug rt2500usb_rt2x00debug = { 234 .owner = THIS_MODULE, 235 .csr = { 236 .read = _rt2500usb_register_read, 237 .write = _rt2500usb_register_write, 238 .flags = RT2X00DEBUGFS_OFFSET, 239 .word_base = CSR_REG_BASE, 240 .word_size = sizeof(u16), 241 .word_count = CSR_REG_SIZE / sizeof(u16), 242 }, 243 .eeprom = { 244 .read = rt2x00_eeprom_read, 245 .write = rt2x00_eeprom_write, 246 .word_base = EEPROM_BASE, 247 .word_size = sizeof(u16), 248 .word_count = EEPROM_SIZE / sizeof(u16), 249 }, 250 .bbp = { 251 .read = rt2500usb_bbp_read, 252 .write = rt2500usb_bbp_write, 253 .word_base = BBP_BASE, 254 .word_size = sizeof(u8), 255 .word_count = BBP_SIZE / sizeof(u8), 256 }, 257 .rf = { 258 .read = rt2x00_rf_read, 259 .write = rt2500usb_rf_write, 260 .word_base = RF_BASE, 261 .word_size = sizeof(u32), 262 .word_count = RF_SIZE / sizeof(u32), 263 }, 264 }; 265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 266 267 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) 268 { 269 u16 reg; 270 271 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19); 272 return rt2x00_get_field16(reg, MAC_CSR19_VAL7); 273 } 274 275 #ifdef CONFIG_RT2X00_LIB_LEDS 276 static void rt2500usb_brightness_set(struct led_classdev *led_cdev, 277 enum led_brightness brightness) 278 { 279 struct rt2x00_led *led = 280 container_of(led_cdev, struct rt2x00_led, led_dev); 281 unsigned int enabled = brightness != LED_OFF; 282 u16 reg; 283 284 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20); 285 286 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) 287 rt2x00_set_field16(®, MAC_CSR20_LINK, enabled); 288 else if (led->type == LED_TYPE_ACTIVITY) 289 rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled); 290 291 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg); 292 } 293 294 static int rt2500usb_blink_set(struct led_classdev *led_cdev, 295 unsigned long *delay_on, 296 unsigned long *delay_off) 297 { 298 struct rt2x00_led *led = 299 container_of(led_cdev, struct rt2x00_led, led_dev); 300 u16 reg; 301 302 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21); 303 rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on); 304 rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off); 305 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg); 306 307 return 0; 308 } 309 310 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev, 311 struct rt2x00_led *led, 312 enum led_type type) 313 { 314 led->rt2x00dev = rt2x00dev; 315 led->type = type; 316 led->led_dev.brightness_set = rt2500usb_brightness_set; 317 led->led_dev.blink_set = rt2500usb_blink_set; 318 led->flags = LED_INITIALIZED; 319 } 320 #endif /* CONFIG_RT2X00_LIB_LEDS */ 321 322 /* 323 * Configuration handlers. 324 */ 325 326 /* 327 * rt2500usb does not differentiate between shared and pairwise 328 * keys, so we should use the same function for both key types. 329 */ 330 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev, 331 struct rt2x00lib_crypto *crypto, 332 struct ieee80211_key_conf *key) 333 { 334 u32 mask; 335 u16 reg; 336 enum cipher curr_cipher; 337 338 if (crypto->cmd == SET_KEY) { 339 /* 340 * Disallow to set WEP key other than with index 0, 341 * it is known that not work at least on some hardware. 342 * SW crypto will be used in that case. 343 */ 344 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 || 345 key->cipher == WLAN_CIPHER_SUITE_WEP104) && 346 key->keyidx != 0) 347 return -EOPNOTSUPP; 348 349 /* 350 * Pairwise key will always be entry 0, but this 351 * could collide with a shared key on the same 352 * position... 353 */ 354 mask = TXRX_CSR0_KEY_ID.bit_mask; 355 356 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); 357 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM); 358 reg &= mask; 359 360 if (reg && reg == mask) 361 return -ENOSPC; 362 363 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 364 365 key->hw_key_idx += reg ? ffz(reg) : 0; 366 /* 367 * Hardware requires that all keys use the same cipher 368 * (e.g. TKIP-only, AES-only, but not TKIP+AES). 369 * If this is not the first key, compare the cipher with the 370 * first one and fall back to SW crypto if not the same. 371 */ 372 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher) 373 return -EOPNOTSUPP; 374 375 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx), 376 crypto->key, sizeof(crypto->key)); 377 378 /* 379 * The driver does not support the IV/EIV generation 380 * in hardware. However it demands the data to be provided 381 * both separately as well as inside the frame. 382 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib 383 * to ensure rt2x00lib will not strip the data from the 384 * frame after the copy, now we must tell mac80211 385 * to generate the IV/EIV data. 386 */ 387 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 388 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; 389 } 390 391 /* 392 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate 393 * a particular key is valid. 394 */ 395 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); 396 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher); 397 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 398 399 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 400 if (crypto->cmd == SET_KEY) 401 mask |= 1 << key->hw_key_idx; 402 else if (crypto->cmd == DISABLE_KEY) 403 mask &= ~(1 << key->hw_key_idx); 404 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask); 405 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 406 407 return 0; 408 } 409 410 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev, 411 const unsigned int filter_flags) 412 { 413 u16 reg; 414 415 /* 416 * Start configuration steps. 417 * Note that the version error will always be dropped 418 * and broadcast frames will always be accepted since 419 * there is no filter for it at this time. 420 */ 421 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 422 rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC, 423 !(filter_flags & FIF_FCSFAIL)); 424 rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL, 425 !(filter_flags & FIF_PLCPFAIL)); 426 rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL, 427 !(filter_flags & FIF_CONTROL)); 428 rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME, 429 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 430 rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS, 431 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 432 !rt2x00dev->intf_ap_count); 433 rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1); 434 rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST, 435 !(filter_flags & FIF_ALLMULTI)); 436 rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0); 437 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 438 } 439 440 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev, 441 struct rt2x00_intf *intf, 442 struct rt2x00intf_conf *conf, 443 const unsigned int flags) 444 { 445 unsigned int bcn_preload; 446 u16 reg; 447 448 if (flags & CONFIG_UPDATE_TYPE) { 449 /* 450 * Enable beacon config 451 */ 452 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); 453 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20); 454 rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6); 455 rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, 456 2 * (conf->type != NL80211_IFTYPE_STATION)); 457 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg); 458 459 /* 460 * Enable synchronisation. 461 */ 462 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18); 463 rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0); 464 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 465 466 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 467 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync); 468 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 469 } 470 471 if (flags & CONFIG_UPDATE_MAC) 472 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, 473 (3 * sizeof(__le16))); 474 475 if (flags & CONFIG_UPDATE_BSSID) 476 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid, 477 (3 * sizeof(__le16))); 478 } 479 480 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev, 481 struct rt2x00lib_erp *erp, 482 u32 changed) 483 { 484 u16 reg; 485 486 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 487 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10); 488 rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE, 489 !!erp->short_preamble); 490 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg); 491 } 492 493 if (changed & BSS_CHANGED_BASIC_RATES) 494 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, 495 erp->basic_rates); 496 497 if (changed & BSS_CHANGED_BEACON_INT) { 498 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18); 499 rt2x00_set_field16(®, TXRX_CSR18_INTERVAL, 500 erp->beacon_int * 4); 501 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 502 } 503 504 if (changed & BSS_CHANGED_ERP_SLOT) { 505 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time); 506 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs); 507 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs); 508 } 509 } 510 511 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev, 512 struct antenna_setup *ant) 513 { 514 u8 r2; 515 u8 r14; 516 u16 csr5; 517 u16 csr6; 518 519 /* 520 * We should never come here because rt2x00lib is supposed 521 * to catch this and send us the correct antenna explicitely. 522 */ 523 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 524 ant->tx == ANTENNA_SW_DIVERSITY); 525 526 r2 = rt2500usb_bbp_read(rt2x00dev, 2); 527 r14 = rt2500usb_bbp_read(rt2x00dev, 14); 528 csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5); 529 csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6); 530 531 /* 532 * Configure the TX antenna. 533 */ 534 switch (ant->tx) { 535 case ANTENNA_HW_DIVERSITY: 536 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1); 537 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1); 538 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1); 539 break; 540 case ANTENNA_A: 541 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); 542 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0); 543 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0); 544 break; 545 case ANTENNA_B: 546 default: 547 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); 548 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2); 549 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2); 550 break; 551 } 552 553 /* 554 * Configure the RX antenna. 555 */ 556 switch (ant->rx) { 557 case ANTENNA_HW_DIVERSITY: 558 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1); 559 break; 560 case ANTENNA_A: 561 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); 562 break; 563 case ANTENNA_B: 564 default: 565 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); 566 break; 567 } 568 569 /* 570 * RT2525E and RT5222 need to flip TX I/Q 571 */ 572 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { 573 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); 574 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1); 575 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1); 576 577 /* 578 * RT2525E does not need RX I/Q Flip. 579 */ 580 if (rt2x00_rf(rt2x00dev, RF2525E)) 581 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); 582 } else { 583 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0); 584 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0); 585 } 586 587 rt2500usb_bbp_write(rt2x00dev, 2, r2); 588 rt2500usb_bbp_write(rt2x00dev, 14, r14); 589 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5); 590 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6); 591 } 592 593 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev, 594 struct rf_channel *rf, const int txpower) 595 { 596 /* 597 * Set TXpower. 598 */ 599 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 600 601 /* 602 * For RT2525E we should first set the channel to half band higher. 603 */ 604 if (rt2x00_rf(rt2x00dev, RF2525E)) { 605 static const u32 vals[] = { 606 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2, 607 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba, 608 0x000008ba, 0x000008be, 0x000008b7, 0x00000902, 609 0x00000902, 0x00000906 610 }; 611 612 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); 613 if (rf->rf4) 614 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 615 } 616 617 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1); 618 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2); 619 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3); 620 if (rf->rf4) 621 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 622 } 623 624 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev, 625 const int txpower) 626 { 627 u32 rf3; 628 629 rf3 = rt2x00_rf_read(rt2x00dev, 3); 630 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 631 rt2500usb_rf_write(rt2x00dev, 3, rf3); 632 } 633 634 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev, 635 struct rt2x00lib_conf *libconf) 636 { 637 enum dev_state state = 638 (libconf->conf->flags & IEEE80211_CONF_PS) ? 639 STATE_SLEEP : STATE_AWAKE; 640 u16 reg; 641 642 if (state == STATE_SLEEP) { 643 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); 644 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 645 rt2x00dev->beacon_int - 20); 646 rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP, 647 libconf->conf->listen_interval - 1); 648 649 /* We must first disable autowake before it can be enabled */ 650 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); 651 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 652 653 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1); 654 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 655 } else { 656 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); 657 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); 658 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 659 } 660 661 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); 662 } 663 664 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev, 665 struct rt2x00lib_conf *libconf, 666 const unsigned int flags) 667 { 668 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 669 rt2500usb_config_channel(rt2x00dev, &libconf->rf, 670 libconf->conf->power_level); 671 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 672 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 673 rt2500usb_config_txpower(rt2x00dev, 674 libconf->conf->power_level); 675 if (flags & IEEE80211_CONF_CHANGE_PS) 676 rt2500usb_config_ps(rt2x00dev, libconf); 677 } 678 679 /* 680 * Link tuning 681 */ 682 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev, 683 struct link_qual *qual) 684 { 685 u16 reg; 686 687 /* 688 * Update FCS error count from register. 689 */ 690 reg = rt2500usb_register_read(rt2x00dev, STA_CSR0); 691 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR); 692 693 /* 694 * Update False CCA count from register. 695 */ 696 reg = rt2500usb_register_read(rt2x00dev, STA_CSR3); 697 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR); 698 } 699 700 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev, 701 struct link_qual *qual) 702 { 703 u16 eeprom; 704 u16 value; 705 706 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24); 707 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW); 708 rt2500usb_bbp_write(rt2x00dev, 24, value); 709 710 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25); 711 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW); 712 rt2500usb_bbp_write(rt2x00dev, 25, value); 713 714 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61); 715 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW); 716 rt2500usb_bbp_write(rt2x00dev, 61, value); 717 718 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC); 719 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER); 720 rt2500usb_bbp_write(rt2x00dev, 17, value); 721 722 qual->vgc_level = value; 723 } 724 725 /* 726 * Queue handlers. 727 */ 728 static void rt2500usb_start_queue(struct data_queue *queue) 729 { 730 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 731 u16 reg; 732 733 switch (queue->qid) { 734 case QID_RX: 735 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 736 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0); 737 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 738 break; 739 case QID_BEACON: 740 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 741 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); 742 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); 743 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); 744 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 745 break; 746 default: 747 break; 748 } 749 } 750 751 static void rt2500usb_stop_queue(struct data_queue *queue) 752 { 753 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 754 u16 reg; 755 756 switch (queue->qid) { 757 case QID_RX: 758 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 759 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); 760 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 761 break; 762 case QID_BEACON: 763 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 764 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); 765 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); 766 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 767 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 768 break; 769 default: 770 break; 771 } 772 } 773 774 /* 775 * Initialization functions. 776 */ 777 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev) 778 { 779 u16 reg; 780 781 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001, 782 USB_MODE_TEST, REGISTER_TIMEOUT); 783 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308, 784 0x00f0, REGISTER_TIMEOUT); 785 786 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 787 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); 788 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 789 790 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111); 791 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11); 792 793 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); 794 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1); 795 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1); 796 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); 797 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 798 799 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); 800 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); 801 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); 802 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); 803 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 804 805 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5); 806 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13); 807 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1); 808 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12); 809 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1); 810 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg); 811 812 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6); 813 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10); 814 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1); 815 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11); 816 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1); 817 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg); 818 819 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7); 820 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7); 821 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1); 822 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6); 823 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1); 824 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg); 825 826 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8); 827 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5); 828 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1); 829 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0); 830 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0); 831 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg); 832 833 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 834 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); 835 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0); 836 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); 837 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 838 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 839 840 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f); 841 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d); 842 843 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 844 return -EBUSY; 845 846 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); 847 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); 848 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); 849 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1); 850 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 851 852 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) { 853 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2); 854 rt2x00_set_field16(®, PHY_CSR2_LNA, 0); 855 } else { 856 reg = 0; 857 rt2x00_set_field16(®, PHY_CSR2_LNA, 1); 858 rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3); 859 } 860 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg); 861 862 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002); 863 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053); 864 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee); 865 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000); 866 867 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8); 868 rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT, 869 rt2x00dev->rx->data_size); 870 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg); 871 872 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); 873 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE); 874 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 875 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0); 876 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 877 878 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); 879 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90); 880 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 881 882 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4); 883 rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1); 884 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg); 885 886 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1); 887 rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1); 888 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg); 889 890 return 0; 891 } 892 893 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 894 { 895 unsigned int i; 896 u8 value; 897 898 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 899 value = rt2500usb_bbp_read(rt2x00dev, 0); 900 if ((value != 0xff) && (value != 0x00)) 901 return 0; 902 udelay(REGISTER_BUSY_DELAY); 903 } 904 905 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 906 return -EACCES; 907 } 908 909 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev) 910 { 911 unsigned int i; 912 u16 eeprom; 913 u8 value; 914 u8 reg_id; 915 916 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev))) 917 return -EACCES; 918 919 rt2500usb_bbp_write(rt2x00dev, 3, 0x02); 920 rt2500usb_bbp_write(rt2x00dev, 4, 0x19); 921 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c); 922 rt2500usb_bbp_write(rt2x00dev, 15, 0x30); 923 rt2500usb_bbp_write(rt2x00dev, 16, 0xac); 924 rt2500usb_bbp_write(rt2x00dev, 18, 0x18); 925 rt2500usb_bbp_write(rt2x00dev, 19, 0xff); 926 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e); 927 rt2500usb_bbp_write(rt2x00dev, 21, 0x08); 928 rt2500usb_bbp_write(rt2x00dev, 22, 0x08); 929 rt2500usb_bbp_write(rt2x00dev, 23, 0x08); 930 rt2500usb_bbp_write(rt2x00dev, 24, 0x80); 931 rt2500usb_bbp_write(rt2x00dev, 25, 0x50); 932 rt2500usb_bbp_write(rt2x00dev, 26, 0x08); 933 rt2500usb_bbp_write(rt2x00dev, 27, 0x23); 934 rt2500usb_bbp_write(rt2x00dev, 30, 0x10); 935 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b); 936 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9); 937 rt2500usb_bbp_write(rt2x00dev, 34, 0x12); 938 rt2500usb_bbp_write(rt2x00dev, 35, 0x50); 939 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4); 940 rt2500usb_bbp_write(rt2x00dev, 40, 0x02); 941 rt2500usb_bbp_write(rt2x00dev, 41, 0x60); 942 rt2500usb_bbp_write(rt2x00dev, 53, 0x10); 943 rt2500usb_bbp_write(rt2x00dev, 54, 0x18); 944 rt2500usb_bbp_write(rt2x00dev, 56, 0x08); 945 rt2500usb_bbp_write(rt2x00dev, 57, 0x10); 946 rt2500usb_bbp_write(rt2x00dev, 58, 0x08); 947 rt2500usb_bbp_write(rt2x00dev, 61, 0x60); 948 rt2500usb_bbp_write(rt2x00dev, 62, 0x10); 949 rt2500usb_bbp_write(rt2x00dev, 75, 0xff); 950 951 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 952 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); 953 954 if (eeprom != 0xffff && eeprom != 0x0000) { 955 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 956 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 957 rt2500usb_bbp_write(rt2x00dev, reg_id, value); 958 } 959 } 960 961 return 0; 962 } 963 964 /* 965 * Device state switch handlers. 966 */ 967 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev) 968 { 969 /* 970 * Initialize all registers. 971 */ 972 if (unlikely(rt2500usb_init_registers(rt2x00dev) || 973 rt2500usb_init_bbp(rt2x00dev))) 974 return -EIO; 975 976 return 0; 977 } 978 979 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev) 980 { 981 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121); 982 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121); 983 984 /* 985 * Disable synchronisation. 986 */ 987 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0); 988 989 rt2x00usb_disable_radio(rt2x00dev); 990 } 991 992 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev, 993 enum dev_state state) 994 { 995 u16 reg; 996 u16 reg2; 997 unsigned int i; 998 char put_to_sleep; 999 char bbp_state; 1000 char rf_state; 1001 1002 put_to_sleep = (state != STATE_AWAKE); 1003 1004 reg = 0; 1005 rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state); 1006 rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state); 1007 rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep); 1008 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1009 rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1); 1010 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1011 1012 /* 1013 * Device is not guaranteed to be in the requested state yet. 1014 * We must wait until the register indicates that the 1015 * device has entered the correct state. 1016 */ 1017 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 1018 reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17); 1019 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE); 1020 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE); 1021 if (bbp_state == state && rf_state == state) 1022 return 0; 1023 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1024 msleep(30); 1025 } 1026 1027 return -EBUSY; 1028 } 1029 1030 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev, 1031 enum dev_state state) 1032 { 1033 int retval = 0; 1034 1035 switch (state) { 1036 case STATE_RADIO_ON: 1037 retval = rt2500usb_enable_radio(rt2x00dev); 1038 break; 1039 case STATE_RADIO_OFF: 1040 rt2500usb_disable_radio(rt2x00dev); 1041 break; 1042 case STATE_RADIO_IRQ_ON: 1043 case STATE_RADIO_IRQ_OFF: 1044 /* No support, but no error either */ 1045 break; 1046 case STATE_DEEP_SLEEP: 1047 case STATE_SLEEP: 1048 case STATE_STANDBY: 1049 case STATE_AWAKE: 1050 retval = rt2500usb_set_state(rt2x00dev, state); 1051 break; 1052 default: 1053 retval = -ENOTSUPP; 1054 break; 1055 } 1056 1057 if (unlikely(retval)) 1058 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1059 state, retval); 1060 1061 return retval; 1062 } 1063 1064 /* 1065 * TX descriptor initialization 1066 */ 1067 static void rt2500usb_write_tx_desc(struct queue_entry *entry, 1068 struct txentry_desc *txdesc) 1069 { 1070 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1071 __le32 *txd = (__le32 *) entry->skb->data; 1072 u32 word; 1073 1074 /* 1075 * Start writing the descriptor words. 1076 */ 1077 word = rt2x00_desc_read(txd, 0); 1078 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit); 1079 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1080 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1081 rt2x00_set_field32(&word, TXD_W0_ACK, 1082 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1083 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1084 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1085 rt2x00_set_field32(&word, TXD_W0_OFDM, 1086 (txdesc->rate_mode == RATE_MODE_OFDM)); 1087 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ, 1088 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)); 1089 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1090 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1091 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher); 1092 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx); 1093 rt2x00_desc_write(txd, 0, word); 1094 1095 word = rt2x00_desc_read(txd, 1); 1096 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1097 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs); 1098 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1099 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1100 rt2x00_desc_write(txd, 1, word); 1101 1102 word = rt2x00_desc_read(txd, 2); 1103 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1104 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1105 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1106 txdesc->u.plcp.length_low); 1107 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1108 txdesc->u.plcp.length_high); 1109 rt2x00_desc_write(txd, 2, word); 1110 1111 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1112 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1113 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1114 } 1115 1116 /* 1117 * Register descriptor details in skb frame descriptor. 1118 */ 1119 skbdesc->flags |= SKBDESC_DESC_IN_SKB; 1120 skbdesc->desc = txd; 1121 skbdesc->desc_len = TXD_DESC_SIZE; 1122 } 1123 1124 /* 1125 * TX data initialization 1126 */ 1127 static void rt2500usb_beacondone(struct urb *urb); 1128 1129 static void rt2500usb_write_beacon(struct queue_entry *entry, 1130 struct txentry_desc *txdesc) 1131 { 1132 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1133 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); 1134 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1135 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint); 1136 int length; 1137 u16 reg, reg0; 1138 1139 /* 1140 * Disable beaconing while we are reloading the beacon data, 1141 * otherwise we might be sending out invalid data. 1142 */ 1143 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 1144 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 1145 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1146 1147 /* 1148 * Add space for the descriptor in front of the skb. 1149 */ 1150 skb_push(entry->skb, TXD_DESC_SIZE); 1151 memset(entry->skb->data, 0, TXD_DESC_SIZE); 1152 1153 /* 1154 * Write the TX descriptor for the beacon. 1155 */ 1156 rt2500usb_write_tx_desc(entry, txdesc); 1157 1158 /* 1159 * Dump beacon to userspace through debugfs. 1160 */ 1161 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); 1162 1163 /* 1164 * USB devices cannot blindly pass the skb->len as the 1165 * length of the data to usb_fill_bulk_urb. Pass the skb 1166 * to the driver to determine what the length should be. 1167 */ 1168 length = rt2x00dev->ops->lib->get_tx_data_len(entry); 1169 1170 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe, 1171 entry->skb->data, length, rt2500usb_beacondone, 1172 entry); 1173 1174 /* 1175 * Second we need to create the guardian byte. 1176 * We only need a single byte, so lets recycle 1177 * the 'flags' field we are not using for beacons. 1178 */ 1179 bcn_priv->guardian_data = 0; 1180 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe, 1181 &bcn_priv->guardian_data, 1, rt2500usb_beacondone, 1182 entry); 1183 1184 /* 1185 * Send out the guardian byte. 1186 */ 1187 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC); 1188 1189 /* 1190 * Enable beaconing again. 1191 */ 1192 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); 1193 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); 1194 reg0 = reg; 1195 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); 1196 /* 1197 * Beacon generation will fail initially. 1198 * To prevent this we need to change the TXRX_CSR19 1199 * register several times (reg0 is the same as reg 1200 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0 1201 * and 1 in reg). 1202 */ 1203 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1204 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1205 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1206 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1207 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1208 } 1209 1210 static int rt2500usb_get_tx_data_len(struct queue_entry *entry) 1211 { 1212 int length; 1213 1214 /* 1215 * The length _must_ be a multiple of 2, 1216 * but it must _not_ be a multiple of the USB packet size. 1217 */ 1218 length = roundup(entry->skb->len, 2); 1219 length += (2 * !(length % entry->queue->usb_maxpacket)); 1220 1221 return length; 1222 } 1223 1224 /* 1225 * RX control handlers 1226 */ 1227 static void rt2500usb_fill_rxdone(struct queue_entry *entry, 1228 struct rxdone_entry_desc *rxdesc) 1229 { 1230 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1231 struct queue_entry_priv_usb *entry_priv = entry->priv_data; 1232 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1233 __le32 *rxd = 1234 (__le32 *)(entry->skb->data + 1235 (entry_priv->urb->actual_length - 1236 entry->queue->desc_size)); 1237 u32 word0; 1238 u32 word1; 1239 1240 /* 1241 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of 1242 * frame data in rt2x00usb. 1243 */ 1244 memcpy(skbdesc->desc, rxd, skbdesc->desc_len); 1245 rxd = (__le32 *)skbdesc->desc; 1246 1247 /* 1248 * It is now safe to read the descriptor on all architectures. 1249 */ 1250 word0 = rt2x00_desc_read(rxd, 0); 1251 word1 = rt2x00_desc_read(rxd, 1); 1252 1253 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1254 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1255 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) 1256 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; 1257 1258 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER); 1259 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) 1260 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY; 1261 1262 if (rxdesc->cipher != CIPHER_NONE) { 1263 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2); 1264 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3); 1265 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 1266 1267 /* ICV is located at the end of frame */ 1268 1269 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 1270 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 1271 rxdesc->flags |= RX_FLAG_DECRYPTED; 1272 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 1273 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 1274 } 1275 1276 /* 1277 * Obtain the status about this packet. 1278 * When frame was received with an OFDM bitrate, 1279 * the signal is the PLCP value. If it was received with 1280 * a CCK bitrate the signal is the rate in 100kbit/s. 1281 */ 1282 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 1283 rxdesc->rssi = 1284 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset; 1285 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1286 1287 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1288 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1289 else 1290 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1291 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1292 rxdesc->dev_flags |= RXDONE_MY_BSS; 1293 1294 /* 1295 * Adjust the skb memory window to the frame boundaries. 1296 */ 1297 skb_trim(entry->skb, rxdesc->size); 1298 } 1299 1300 /* 1301 * Interrupt functions. 1302 */ 1303 static void rt2500usb_beacondone(struct urb *urb) 1304 { 1305 struct queue_entry *entry = (struct queue_entry *)urb->context; 1306 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1307 1308 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) 1309 return; 1310 1311 /* 1312 * Check if this was the guardian beacon, 1313 * if that was the case we need to send the real beacon now. 1314 * Otherwise we should free the sk_buffer, the device 1315 * should be doing the rest of the work now. 1316 */ 1317 if (bcn_priv->guardian_urb == urb) { 1318 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC); 1319 } else if (bcn_priv->urb == urb) { 1320 dev_kfree_skb(entry->skb); 1321 entry->skb = NULL; 1322 } 1323 } 1324 1325 /* 1326 * Device probe functions. 1327 */ 1328 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1329 { 1330 u16 word; 1331 u8 *mac; 1332 u8 bbp; 1333 1334 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); 1335 1336 /* 1337 * Start validation of the data that has been read. 1338 */ 1339 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1340 rt2x00lib_set_mac_address(rt2x00dev, mac); 1341 1342 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1343 if (word == 0xffff) { 1344 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1345 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1346 ANTENNA_SW_DIVERSITY); 1347 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1348 ANTENNA_SW_DIVERSITY); 1349 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 1350 LED_MODE_DEFAULT); 1351 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1352 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1353 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); 1354 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1355 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 1356 } 1357 1358 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 1359 if (word == 0xffff) { 1360 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); 1361 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); 1362 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); 1363 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1364 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 1365 } 1366 1367 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); 1368 if (word == 0xffff) { 1369 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, 1370 DEFAULT_RSSI_OFFSET); 1371 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); 1372 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", 1373 word); 1374 } 1375 1376 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE); 1377 if (word == 0xffff) { 1378 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45); 1379 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word); 1380 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word); 1381 } 1382 1383 /* 1384 * Switch lower vgc bound to current BBP R17 value, 1385 * lower the value a bit for better quality. 1386 */ 1387 bbp = rt2500usb_bbp_read(rt2x00dev, 17); 1388 bbp -= 6; 1389 1390 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC); 1391 if (word == 0xffff) { 1392 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40); 1393 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1394 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1395 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word); 1396 } else { 1397 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1398 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1399 } 1400 1401 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17); 1402 if (word == 0xffff) { 1403 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48); 1404 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41); 1405 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word); 1406 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word); 1407 } 1408 1409 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24); 1410 if (word == 0xffff) { 1411 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40); 1412 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80); 1413 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word); 1414 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word); 1415 } 1416 1417 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25); 1418 if (word == 0xffff) { 1419 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40); 1420 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50); 1421 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word); 1422 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word); 1423 } 1424 1425 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61); 1426 if (word == 0xffff) { 1427 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60); 1428 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d); 1429 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word); 1430 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word); 1431 } 1432 1433 return 0; 1434 } 1435 1436 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev) 1437 { 1438 u16 reg; 1439 u16 value; 1440 u16 eeprom; 1441 1442 /* 1443 * Read EEPROM word for configuration. 1444 */ 1445 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1446 1447 /* 1448 * Identify RF chipset. 1449 */ 1450 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1451 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0); 1452 rt2x00_set_chip(rt2x00dev, RT2570, value, reg); 1453 1454 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) { 1455 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); 1456 return -ENODEV; 1457 } 1458 1459 if (!rt2x00_rf(rt2x00dev, RF2522) && 1460 !rt2x00_rf(rt2x00dev, RF2523) && 1461 !rt2x00_rf(rt2x00dev, RF2524) && 1462 !rt2x00_rf(rt2x00dev, RF2525) && 1463 !rt2x00_rf(rt2x00dev, RF2525E) && 1464 !rt2x00_rf(rt2x00dev, RF5222)) { 1465 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1466 return -ENODEV; 1467 } 1468 1469 /* 1470 * Identify default antenna configuration. 1471 */ 1472 rt2x00dev->default_ant.tx = 1473 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1474 rt2x00dev->default_ant.rx = 1475 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1476 1477 /* 1478 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. 1479 * I am not 100% sure about this, but the legacy drivers do not 1480 * indicate antenna swapping in software is required when 1481 * diversity is enabled. 1482 */ 1483 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) 1484 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; 1485 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) 1486 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; 1487 1488 /* 1489 * Store led mode, for correct led behaviour. 1490 */ 1491 #ifdef CONFIG_RT2X00_LIB_LEDS 1492 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); 1493 1494 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1495 if (value == LED_MODE_TXRX_ACTIVITY || 1496 value == LED_MODE_DEFAULT || 1497 value == LED_MODE_ASUS) 1498 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual, 1499 LED_TYPE_ACTIVITY); 1500 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1501 1502 /* 1503 * Detect if this device has an hardware controlled radio. 1504 */ 1505 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1506 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1507 1508 /* 1509 * Read the RSSI <-> dBm offset information. 1510 */ 1511 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); 1512 rt2x00dev->rssi_offset = 1513 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); 1514 1515 return 0; 1516 } 1517 1518 /* 1519 * RF value list for RF2522 1520 * Supports: 2.4 GHz 1521 */ 1522 static const struct rf_channel rf_vals_bg_2522[] = { 1523 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, 1524 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, 1525 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, 1526 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, 1527 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, 1528 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, 1529 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, 1530 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, 1531 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, 1532 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, 1533 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, 1534 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, 1535 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, 1536 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, 1537 }; 1538 1539 /* 1540 * RF value list for RF2523 1541 * Supports: 2.4 GHz 1542 */ 1543 static const struct rf_channel rf_vals_bg_2523[] = { 1544 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, 1545 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, 1546 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, 1547 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, 1548 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, 1549 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, 1550 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, 1551 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, 1552 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, 1553 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, 1554 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, 1555 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, 1556 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, 1557 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, 1558 }; 1559 1560 /* 1561 * RF value list for RF2524 1562 * Supports: 2.4 GHz 1563 */ 1564 static const struct rf_channel rf_vals_bg_2524[] = { 1565 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, 1566 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, 1567 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, 1568 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, 1569 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, 1570 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, 1571 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, 1572 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, 1573 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, 1574 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, 1575 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, 1576 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, 1577 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, 1578 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, 1579 }; 1580 1581 /* 1582 * RF value list for RF2525 1583 * Supports: 2.4 GHz 1584 */ 1585 static const struct rf_channel rf_vals_bg_2525[] = { 1586 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, 1587 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, 1588 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, 1589 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, 1590 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, 1591 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, 1592 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, 1593 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, 1594 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, 1595 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, 1596 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, 1597 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, 1598 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, 1599 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, 1600 }; 1601 1602 /* 1603 * RF value list for RF2525e 1604 * Supports: 2.4 GHz 1605 */ 1606 static const struct rf_channel rf_vals_bg_2525e[] = { 1607 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b }, 1608 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 }, 1609 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b }, 1610 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 }, 1611 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b }, 1612 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 }, 1613 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b }, 1614 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 }, 1615 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b }, 1616 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 }, 1617 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b }, 1618 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 }, 1619 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b }, 1620 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 }, 1621 }; 1622 1623 /* 1624 * RF value list for RF5222 1625 * Supports: 2.4 GHz & 5.2 GHz 1626 */ 1627 static const struct rf_channel rf_vals_5222[] = { 1628 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, 1629 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, 1630 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, 1631 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, 1632 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, 1633 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, 1634 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, 1635 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, 1636 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, 1637 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, 1638 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, 1639 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, 1640 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, 1641 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, 1642 1643 /* 802.11 UNI / HyperLan 2 */ 1644 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, 1645 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, 1646 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, 1647 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, 1648 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, 1649 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, 1650 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, 1651 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, 1652 1653 /* 802.11 HyperLan 2 */ 1654 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, 1655 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, 1656 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, 1657 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, 1658 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, 1659 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, 1660 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, 1661 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, 1662 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, 1663 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, 1664 1665 /* 802.11 UNII */ 1666 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, 1667 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, 1668 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, 1669 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, 1670 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, 1671 }; 1672 1673 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 1674 { 1675 struct hw_mode_spec *spec = &rt2x00dev->spec; 1676 struct channel_info *info; 1677 char *tx_power; 1678 unsigned int i; 1679 1680 /* 1681 * Initialize all hw fields. 1682 * 1683 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are 1684 * capable of sending the buffered frames out after the DTIM 1685 * transmission using rt2x00lib_beacondone. This will send out 1686 * multicast and broadcast traffic immediately instead of buffering it 1687 * infinitly and thus dropping it after some time. 1688 */ 1689 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 1690 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 1691 ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS); 1692 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 1693 1694 /* 1695 * Disable powersaving as default. 1696 */ 1697 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; 1698 1699 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 1700 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 1701 rt2x00_eeprom_addr(rt2x00dev, 1702 EEPROM_MAC_ADDR_0)); 1703 1704 /* 1705 * Initialize hw_mode information. 1706 */ 1707 spec->supported_bands = SUPPORT_BAND_2GHZ; 1708 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 1709 1710 if (rt2x00_rf(rt2x00dev, RF2522)) { 1711 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); 1712 spec->channels = rf_vals_bg_2522; 1713 } else if (rt2x00_rf(rt2x00dev, RF2523)) { 1714 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); 1715 spec->channels = rf_vals_bg_2523; 1716 } else if (rt2x00_rf(rt2x00dev, RF2524)) { 1717 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); 1718 spec->channels = rf_vals_bg_2524; 1719 } else if (rt2x00_rf(rt2x00dev, RF2525)) { 1720 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); 1721 spec->channels = rf_vals_bg_2525; 1722 } else if (rt2x00_rf(rt2x00dev, RF2525E)) { 1723 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); 1724 spec->channels = rf_vals_bg_2525e; 1725 } else if (rt2x00_rf(rt2x00dev, RF5222)) { 1726 spec->supported_bands |= SUPPORT_BAND_5GHZ; 1727 spec->num_channels = ARRAY_SIZE(rf_vals_5222); 1728 spec->channels = rf_vals_5222; 1729 } 1730 1731 /* 1732 * Create channel information array 1733 */ 1734 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 1735 if (!info) 1736 return -ENOMEM; 1737 1738 spec->channels_info = info; 1739 1740 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); 1741 for (i = 0; i < 14; i++) { 1742 info[i].max_power = MAX_TXPOWER; 1743 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 1744 } 1745 1746 if (spec->num_channels > 14) { 1747 for (i = 14; i < spec->num_channels; i++) { 1748 info[i].max_power = MAX_TXPOWER; 1749 info[i].default_power1 = DEFAULT_TXPOWER; 1750 } 1751 } 1752 1753 return 0; 1754 } 1755 1756 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev) 1757 { 1758 int retval; 1759 u16 reg; 1760 1761 /* 1762 * Allocate eeprom data. 1763 */ 1764 retval = rt2500usb_validate_eeprom(rt2x00dev); 1765 if (retval) 1766 return retval; 1767 1768 retval = rt2500usb_init_eeprom(rt2x00dev); 1769 if (retval) 1770 return retval; 1771 1772 /* 1773 * Enable rfkill polling by setting GPIO direction of the 1774 * rfkill switch GPIO pin correctly. 1775 */ 1776 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19); 1777 rt2x00_set_field16(®, MAC_CSR19_DIR0, 0); 1778 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg); 1779 1780 /* 1781 * Initialize hw specifications. 1782 */ 1783 retval = rt2500usb_probe_hw_mode(rt2x00dev); 1784 if (retval) 1785 return retval; 1786 1787 /* 1788 * This device requires the atim queue 1789 */ 1790 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1791 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags); 1792 if (!modparam_nohwcrypt) { 1793 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 1794 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags); 1795 } 1796 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); 1797 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); 1798 1799 /* 1800 * Set the rssi offset. 1801 */ 1802 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 1803 1804 return 0; 1805 } 1806 1807 static const struct ieee80211_ops rt2500usb_mac80211_ops = { 1808 .tx = rt2x00mac_tx, 1809 .start = rt2x00mac_start, 1810 .stop = rt2x00mac_stop, 1811 .add_interface = rt2x00mac_add_interface, 1812 .remove_interface = rt2x00mac_remove_interface, 1813 .config = rt2x00mac_config, 1814 .configure_filter = rt2x00mac_configure_filter, 1815 .set_tim = rt2x00mac_set_tim, 1816 .set_key = rt2x00mac_set_key, 1817 .sw_scan_start = rt2x00mac_sw_scan_start, 1818 .sw_scan_complete = rt2x00mac_sw_scan_complete, 1819 .get_stats = rt2x00mac_get_stats, 1820 .bss_info_changed = rt2x00mac_bss_info_changed, 1821 .conf_tx = rt2x00mac_conf_tx, 1822 .rfkill_poll = rt2x00mac_rfkill_poll, 1823 .flush = rt2x00mac_flush, 1824 .set_antenna = rt2x00mac_set_antenna, 1825 .get_antenna = rt2x00mac_get_antenna, 1826 .get_ringparam = rt2x00mac_get_ringparam, 1827 .tx_frames_pending = rt2x00mac_tx_frames_pending, 1828 }; 1829 1830 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = { 1831 .probe_hw = rt2500usb_probe_hw, 1832 .initialize = rt2x00usb_initialize, 1833 .uninitialize = rt2x00usb_uninitialize, 1834 .clear_entry = rt2x00usb_clear_entry, 1835 .set_device_state = rt2500usb_set_device_state, 1836 .rfkill_poll = rt2500usb_rfkill_poll, 1837 .link_stats = rt2500usb_link_stats, 1838 .reset_tuner = rt2500usb_reset_tuner, 1839 .watchdog = rt2x00usb_watchdog, 1840 .start_queue = rt2500usb_start_queue, 1841 .kick_queue = rt2x00usb_kick_queue, 1842 .stop_queue = rt2500usb_stop_queue, 1843 .flush_queue = rt2x00usb_flush_queue, 1844 .write_tx_desc = rt2500usb_write_tx_desc, 1845 .write_beacon = rt2500usb_write_beacon, 1846 .get_tx_data_len = rt2500usb_get_tx_data_len, 1847 .fill_rxdone = rt2500usb_fill_rxdone, 1848 .config_shared_key = rt2500usb_config_key, 1849 .config_pairwise_key = rt2500usb_config_key, 1850 .config_filter = rt2500usb_config_filter, 1851 .config_intf = rt2500usb_config_intf, 1852 .config_erp = rt2500usb_config_erp, 1853 .config_ant = rt2500usb_config_ant, 1854 .config = rt2500usb_config, 1855 }; 1856 1857 static void rt2500usb_queue_init(struct data_queue *queue) 1858 { 1859 switch (queue->qid) { 1860 case QID_RX: 1861 queue->limit = 32; 1862 queue->data_size = DATA_FRAME_SIZE; 1863 queue->desc_size = RXD_DESC_SIZE; 1864 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1865 break; 1866 1867 case QID_AC_VO: 1868 case QID_AC_VI: 1869 case QID_AC_BE: 1870 case QID_AC_BK: 1871 queue->limit = 32; 1872 queue->data_size = DATA_FRAME_SIZE; 1873 queue->desc_size = TXD_DESC_SIZE; 1874 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1875 break; 1876 1877 case QID_BEACON: 1878 queue->limit = 1; 1879 queue->data_size = MGMT_FRAME_SIZE; 1880 queue->desc_size = TXD_DESC_SIZE; 1881 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn); 1882 break; 1883 1884 case QID_ATIM: 1885 queue->limit = 8; 1886 queue->data_size = DATA_FRAME_SIZE; 1887 queue->desc_size = TXD_DESC_SIZE; 1888 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1889 break; 1890 1891 default: 1892 BUG(); 1893 break; 1894 } 1895 } 1896 1897 static const struct rt2x00_ops rt2500usb_ops = { 1898 .name = KBUILD_MODNAME, 1899 .max_ap_intf = 1, 1900 .eeprom_size = EEPROM_SIZE, 1901 .rf_size = RF_SIZE, 1902 .tx_queues = NUM_TX_QUEUES, 1903 .queue_init = rt2500usb_queue_init, 1904 .lib = &rt2500usb_rt2x00_ops, 1905 .hw = &rt2500usb_mac80211_ops, 1906 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1907 .debugfs = &rt2500usb_rt2x00debug, 1908 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1909 }; 1910 1911 /* 1912 * rt2500usb module information. 1913 */ 1914 static struct usb_device_id rt2500usb_device_table[] = { 1915 /* ASUS */ 1916 { USB_DEVICE(0x0b05, 0x1706) }, 1917 { USB_DEVICE(0x0b05, 0x1707) }, 1918 /* Belkin */ 1919 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */ 1920 { USB_DEVICE(0x050d, 0x7051) }, 1921 /* Cisco Systems */ 1922 { USB_DEVICE(0x13b1, 0x000d) }, 1923 { USB_DEVICE(0x13b1, 0x0011) }, 1924 { USB_DEVICE(0x13b1, 0x001a) }, 1925 /* Conceptronic */ 1926 { USB_DEVICE(0x14b2, 0x3c02) }, 1927 /* D-LINK */ 1928 { USB_DEVICE(0x2001, 0x3c00) }, 1929 /* Gigabyte */ 1930 { USB_DEVICE(0x1044, 0x8001) }, 1931 { USB_DEVICE(0x1044, 0x8007) }, 1932 /* Hercules */ 1933 { USB_DEVICE(0x06f8, 0xe000) }, 1934 /* Melco */ 1935 { USB_DEVICE(0x0411, 0x005e) }, 1936 { USB_DEVICE(0x0411, 0x0066) }, 1937 { USB_DEVICE(0x0411, 0x0067) }, 1938 { USB_DEVICE(0x0411, 0x008b) }, 1939 { USB_DEVICE(0x0411, 0x0097) }, 1940 /* MSI */ 1941 { USB_DEVICE(0x0db0, 0x6861) }, 1942 { USB_DEVICE(0x0db0, 0x6865) }, 1943 { USB_DEVICE(0x0db0, 0x6869) }, 1944 /* Ralink */ 1945 { USB_DEVICE(0x148f, 0x1706) }, 1946 { USB_DEVICE(0x148f, 0x2570) }, 1947 { USB_DEVICE(0x148f, 0x9020) }, 1948 /* Sagem */ 1949 { USB_DEVICE(0x079b, 0x004b) }, 1950 /* Siemens */ 1951 { USB_DEVICE(0x0681, 0x3c06) }, 1952 /* SMC */ 1953 { USB_DEVICE(0x0707, 0xee13) }, 1954 /* Spairon */ 1955 { USB_DEVICE(0x114b, 0x0110) }, 1956 /* SURECOM */ 1957 { USB_DEVICE(0x0769, 0x11f3) }, 1958 /* Trust */ 1959 { USB_DEVICE(0x0eb0, 0x9020) }, 1960 /* VTech */ 1961 { USB_DEVICE(0x0f88, 0x3012) }, 1962 /* Zinwell */ 1963 { USB_DEVICE(0x5a57, 0x0260) }, 1964 { 0, } 1965 }; 1966 1967 MODULE_AUTHOR(DRV_PROJECT); 1968 MODULE_VERSION(DRV_VERSION); 1969 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver."); 1970 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards"); 1971 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table); 1972 MODULE_LICENSE("GPL"); 1973 1974 static int rt2500usb_probe(struct usb_interface *usb_intf, 1975 const struct usb_device_id *id) 1976 { 1977 return rt2x00usb_probe(usb_intf, &rt2500usb_ops); 1978 } 1979 1980 static struct usb_driver rt2500usb_driver = { 1981 .name = KBUILD_MODNAME, 1982 .id_table = rt2500usb_device_table, 1983 .probe = rt2500usb_probe, 1984 .disconnect = rt2x00usb_disconnect, 1985 .suspend = rt2x00usb_suspend, 1986 .resume = rt2x00usb_resume, 1987 .reset_resume = rt2x00usb_resume, 1988 .disable_hub_initiated_lpm = 1, 1989 }; 1990 1991 module_usb_driver(rt2500usb_driver); 1992