1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 */ 7 8 /* 9 Module: rt2500usb 10 Abstract: rt2500usb device specific routines. 11 Supported chipsets: RT2570. 12 */ 13 14 #include <linux/delay.h> 15 #include <linux/etherdevice.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/usb.h> 20 21 #include "rt2x00.h" 22 #include "rt2x00usb.h" 23 #include "rt2500usb.h" 24 25 /* 26 * Allow hardware encryption to be disabled. 27 */ 28 static bool modparam_nohwcrypt; 29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); 30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 31 32 /* 33 * Register access. 34 * All access to the CSR registers will go through the methods 35 * rt2500usb_register_read and rt2500usb_register_write. 36 * BBP and RF register require indirect register access, 37 * and use the CSR registers BBPCSR and RFCSR to achieve this. 38 * These indirect registers work with busy bits, 39 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access 40 * the register while taking a REGISTER_BUSY_DELAY us delay 41 * between each attampt. When the busy bit is still set at that time, 42 * the access attempt is considered to have failed, 43 * and we will print an error. 44 * If the csr_mutex is already held then the _lock variants must 45 * be used instead. 46 */ 47 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 48 const unsigned int offset) 49 { 50 __le16 reg; 51 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, 52 USB_VENDOR_REQUEST_IN, offset, 53 ®, sizeof(reg)); 54 return le16_to_cpu(reg); 55 } 56 57 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev, 58 const unsigned int offset) 59 { 60 __le16 reg; 61 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, 62 USB_VENDOR_REQUEST_IN, offset, 63 ®, sizeof(reg), REGISTER_TIMEOUT); 64 return le16_to_cpu(reg); 65 } 66 67 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 68 const unsigned int offset, 69 u16 value) 70 { 71 __le16 reg = cpu_to_le16(value); 72 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 73 USB_VENDOR_REQUEST_OUT, offset, 74 ®, sizeof(reg)); 75 } 76 77 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev, 78 const unsigned int offset, 79 u16 value) 80 { 81 __le16 reg = cpu_to_le16(value); 82 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, 83 USB_VENDOR_REQUEST_OUT, offset, 84 ®, sizeof(reg), REGISTER_TIMEOUT); 85 } 86 87 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, 88 const unsigned int offset, 89 void *value, const u16 length) 90 { 91 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 92 USB_VENDOR_REQUEST_OUT, offset, 93 value, length); 94 } 95 96 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev, 97 const unsigned int offset, 98 struct rt2x00_field16 field, 99 u16 *reg) 100 { 101 unsigned int i; 102 103 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 104 *reg = rt2500usb_register_read_lock(rt2x00dev, offset); 105 if (!rt2x00_get_field16(*reg, field)) 106 return 1; 107 udelay(REGISTER_BUSY_DELAY); 108 } 109 110 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n", 111 offset, *reg); 112 *reg = ~0; 113 114 return 0; 115 } 116 117 #define WAIT_FOR_BBP(__dev, __reg) \ 118 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg)) 119 #define WAIT_FOR_RF(__dev, __reg) \ 120 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg)) 121 122 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev, 123 const unsigned int word, const u8 value) 124 { 125 u16 reg; 126 127 mutex_lock(&rt2x00dev->csr_mutex); 128 129 /* 130 * Wait until the BBP becomes available, afterwards we 131 * can safely write the new data into the register. 132 */ 133 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 134 reg = 0; 135 rt2x00_set_field16(®, PHY_CSR7_DATA, value); 136 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); 137 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0); 138 139 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 140 } 141 142 mutex_unlock(&rt2x00dev->csr_mutex); 143 } 144 145 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev, 146 const unsigned int word) 147 { 148 u16 reg; 149 u8 value; 150 151 mutex_lock(&rt2x00dev->csr_mutex); 152 153 /* 154 * Wait until the BBP becomes available, afterwards we 155 * can safely write the read request into the register. 156 * After the data has been written, we wait until hardware 157 * returns the correct value, if at any time the register 158 * doesn't become available in time, reg will be 0xffffffff 159 * which means we return 0xff to the caller. 160 */ 161 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 162 reg = 0; 163 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); 164 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1); 165 166 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 167 168 if (WAIT_FOR_BBP(rt2x00dev, ®)) 169 reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7); 170 } 171 172 value = rt2x00_get_field16(reg, PHY_CSR7_DATA); 173 174 mutex_unlock(&rt2x00dev->csr_mutex); 175 176 return value; 177 } 178 179 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev, 180 const unsigned int word, const u32 value) 181 { 182 u16 reg; 183 184 mutex_lock(&rt2x00dev->csr_mutex); 185 186 /* 187 * Wait until the RF becomes available, afterwards we 188 * can safely write the new data into the register. 189 */ 190 if (WAIT_FOR_RF(rt2x00dev, ®)) { 191 reg = 0; 192 rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value); 193 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg); 194 195 reg = 0; 196 rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16); 197 rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20); 198 rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0); 199 rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1); 200 201 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg); 202 rt2x00_rf_write(rt2x00dev, word, value); 203 } 204 205 mutex_unlock(&rt2x00dev->csr_mutex); 206 } 207 208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 209 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 210 const unsigned int offset) 211 { 212 return rt2500usb_register_read(rt2x00dev, offset); 213 } 214 215 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 216 const unsigned int offset, 217 u32 value) 218 { 219 rt2500usb_register_write(rt2x00dev, offset, value); 220 } 221 222 static const struct rt2x00debug rt2500usb_rt2x00debug = { 223 .owner = THIS_MODULE, 224 .csr = { 225 .read = _rt2500usb_register_read, 226 .write = _rt2500usb_register_write, 227 .flags = RT2X00DEBUGFS_OFFSET, 228 .word_base = CSR_REG_BASE, 229 .word_size = sizeof(u16), 230 .word_count = CSR_REG_SIZE / sizeof(u16), 231 }, 232 .eeprom = { 233 .read = rt2x00_eeprom_read, 234 .write = rt2x00_eeprom_write, 235 .word_base = EEPROM_BASE, 236 .word_size = sizeof(u16), 237 .word_count = EEPROM_SIZE / sizeof(u16), 238 }, 239 .bbp = { 240 .read = rt2500usb_bbp_read, 241 .write = rt2500usb_bbp_write, 242 .word_base = BBP_BASE, 243 .word_size = sizeof(u8), 244 .word_count = BBP_SIZE / sizeof(u8), 245 }, 246 .rf = { 247 .read = rt2x00_rf_read, 248 .write = rt2500usb_rf_write, 249 .word_base = RF_BASE, 250 .word_size = sizeof(u32), 251 .word_count = RF_SIZE / sizeof(u32), 252 }, 253 }; 254 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 255 256 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) 257 { 258 u16 reg; 259 260 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19); 261 return rt2x00_get_field16(reg, MAC_CSR19_VAL7); 262 } 263 264 #ifdef CONFIG_RT2X00_LIB_LEDS 265 static void rt2500usb_brightness_set(struct led_classdev *led_cdev, 266 enum led_brightness brightness) 267 { 268 struct rt2x00_led *led = 269 container_of(led_cdev, struct rt2x00_led, led_dev); 270 unsigned int enabled = brightness != LED_OFF; 271 u16 reg; 272 273 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20); 274 275 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) 276 rt2x00_set_field16(®, MAC_CSR20_LINK, enabled); 277 else if (led->type == LED_TYPE_ACTIVITY) 278 rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled); 279 280 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg); 281 } 282 283 static int rt2500usb_blink_set(struct led_classdev *led_cdev, 284 unsigned long *delay_on, 285 unsigned long *delay_off) 286 { 287 struct rt2x00_led *led = 288 container_of(led_cdev, struct rt2x00_led, led_dev); 289 u16 reg; 290 291 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21); 292 rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on); 293 rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off); 294 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg); 295 296 return 0; 297 } 298 299 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev, 300 struct rt2x00_led *led, 301 enum led_type type) 302 { 303 led->rt2x00dev = rt2x00dev; 304 led->type = type; 305 led->led_dev.brightness_set = rt2500usb_brightness_set; 306 led->led_dev.blink_set = rt2500usb_blink_set; 307 led->flags = LED_INITIALIZED; 308 } 309 #endif /* CONFIG_RT2X00_LIB_LEDS */ 310 311 /* 312 * Configuration handlers. 313 */ 314 315 /* 316 * rt2500usb does not differentiate between shared and pairwise 317 * keys, so we should use the same function for both key types. 318 */ 319 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev, 320 struct rt2x00lib_crypto *crypto, 321 struct ieee80211_key_conf *key) 322 { 323 u32 mask; 324 u16 reg; 325 enum cipher curr_cipher; 326 327 if (crypto->cmd == SET_KEY) { 328 /* 329 * Disallow to set WEP key other than with index 0, 330 * it is known that not work at least on some hardware. 331 * SW crypto will be used in that case. 332 */ 333 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 || 334 key->cipher == WLAN_CIPHER_SUITE_WEP104) && 335 key->keyidx != 0) 336 return -EOPNOTSUPP; 337 338 /* 339 * Pairwise key will always be entry 0, but this 340 * could collide with a shared key on the same 341 * position... 342 */ 343 mask = TXRX_CSR0_KEY_ID.bit_mask; 344 345 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); 346 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM); 347 reg &= mask; 348 349 if (reg && reg == mask) 350 return -ENOSPC; 351 352 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 353 354 key->hw_key_idx += reg ? ffz(reg) : 0; 355 /* 356 * Hardware requires that all keys use the same cipher 357 * (e.g. TKIP-only, AES-only, but not TKIP+AES). 358 * If this is not the first key, compare the cipher with the 359 * first one and fall back to SW crypto if not the same. 360 */ 361 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher) 362 return -EOPNOTSUPP; 363 364 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx), 365 crypto->key, sizeof(crypto->key)); 366 367 /* 368 * The driver does not support the IV/EIV generation 369 * in hardware. However it demands the data to be provided 370 * both separately as well as inside the frame. 371 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib 372 * to ensure rt2x00lib will not strip the data from the 373 * frame after the copy, now we must tell mac80211 374 * to generate the IV/EIV data. 375 */ 376 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 377 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; 378 } 379 380 /* 381 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate 382 * a particular key is valid. 383 */ 384 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); 385 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher); 386 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 387 388 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 389 if (crypto->cmd == SET_KEY) 390 mask |= 1 << key->hw_key_idx; 391 else if (crypto->cmd == DISABLE_KEY) 392 mask &= ~(1 << key->hw_key_idx); 393 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask); 394 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 395 396 return 0; 397 } 398 399 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev, 400 const unsigned int filter_flags) 401 { 402 u16 reg; 403 404 /* 405 * Start configuration steps. 406 * Note that the version error will always be dropped 407 * and broadcast frames will always be accepted since 408 * there is no filter for it at this time. 409 */ 410 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 411 rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC, 412 !(filter_flags & FIF_FCSFAIL)); 413 rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL, 414 !(filter_flags & FIF_PLCPFAIL)); 415 rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL, 416 !(filter_flags & FIF_CONTROL)); 417 rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME, 418 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 419 rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS, 420 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 421 !rt2x00dev->intf_ap_count); 422 rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1); 423 rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST, 424 !(filter_flags & FIF_ALLMULTI)); 425 rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0); 426 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 427 } 428 429 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev, 430 struct rt2x00_intf *intf, 431 struct rt2x00intf_conf *conf, 432 const unsigned int flags) 433 { 434 unsigned int bcn_preload; 435 u16 reg; 436 437 if (flags & CONFIG_UPDATE_TYPE) { 438 /* 439 * Enable beacon config 440 */ 441 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); 442 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20); 443 rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6); 444 rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, 445 2 * (conf->type != NL80211_IFTYPE_STATION)); 446 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg); 447 448 /* 449 * Enable synchronisation. 450 */ 451 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18); 452 rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0); 453 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 454 455 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 456 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync); 457 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 458 } 459 460 if (flags & CONFIG_UPDATE_MAC) 461 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, 462 (3 * sizeof(__le16))); 463 464 if (flags & CONFIG_UPDATE_BSSID) 465 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid, 466 (3 * sizeof(__le16))); 467 } 468 469 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev, 470 struct rt2x00lib_erp *erp, 471 u32 changed) 472 { 473 u16 reg; 474 475 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 476 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10); 477 rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE, 478 !!erp->short_preamble); 479 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg); 480 } 481 482 if (changed & BSS_CHANGED_BASIC_RATES) 483 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, 484 erp->basic_rates); 485 486 if (changed & BSS_CHANGED_BEACON_INT) { 487 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18); 488 rt2x00_set_field16(®, TXRX_CSR18_INTERVAL, 489 erp->beacon_int * 4); 490 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 491 } 492 493 if (changed & BSS_CHANGED_ERP_SLOT) { 494 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time); 495 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs); 496 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs); 497 } 498 } 499 500 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev, 501 struct antenna_setup *ant) 502 { 503 u8 r2; 504 u8 r14; 505 u16 csr5; 506 u16 csr6; 507 508 /* 509 * We should never come here because rt2x00lib is supposed 510 * to catch this and send us the correct antenna explicitely. 511 */ 512 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 513 ant->tx == ANTENNA_SW_DIVERSITY); 514 515 r2 = rt2500usb_bbp_read(rt2x00dev, 2); 516 r14 = rt2500usb_bbp_read(rt2x00dev, 14); 517 csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5); 518 csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6); 519 520 /* 521 * Configure the TX antenna. 522 */ 523 switch (ant->tx) { 524 case ANTENNA_HW_DIVERSITY: 525 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1); 526 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1); 527 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1); 528 break; 529 case ANTENNA_A: 530 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); 531 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0); 532 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0); 533 break; 534 case ANTENNA_B: 535 default: 536 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); 537 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2); 538 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2); 539 break; 540 } 541 542 /* 543 * Configure the RX antenna. 544 */ 545 switch (ant->rx) { 546 case ANTENNA_HW_DIVERSITY: 547 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1); 548 break; 549 case ANTENNA_A: 550 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); 551 break; 552 case ANTENNA_B: 553 default: 554 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); 555 break; 556 } 557 558 /* 559 * RT2525E and RT5222 need to flip TX I/Q 560 */ 561 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { 562 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); 563 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1); 564 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1); 565 566 /* 567 * RT2525E does not need RX I/Q Flip. 568 */ 569 if (rt2x00_rf(rt2x00dev, RF2525E)) 570 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); 571 } else { 572 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0); 573 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0); 574 } 575 576 rt2500usb_bbp_write(rt2x00dev, 2, r2); 577 rt2500usb_bbp_write(rt2x00dev, 14, r14); 578 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5); 579 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6); 580 } 581 582 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev, 583 struct rf_channel *rf, const int txpower) 584 { 585 /* 586 * Set TXpower. 587 */ 588 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 589 590 /* 591 * For RT2525E we should first set the channel to half band higher. 592 */ 593 if (rt2x00_rf(rt2x00dev, RF2525E)) { 594 static const u32 vals[] = { 595 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2, 596 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba, 597 0x000008ba, 0x000008be, 0x000008b7, 0x00000902, 598 0x00000902, 0x00000906 599 }; 600 601 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); 602 if (rf->rf4) 603 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 604 } 605 606 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1); 607 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2); 608 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3); 609 if (rf->rf4) 610 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 611 } 612 613 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev, 614 const int txpower) 615 { 616 u32 rf3; 617 618 rf3 = rt2x00_rf_read(rt2x00dev, 3); 619 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 620 rt2500usb_rf_write(rt2x00dev, 3, rf3); 621 } 622 623 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev, 624 struct rt2x00lib_conf *libconf) 625 { 626 enum dev_state state = 627 (libconf->conf->flags & IEEE80211_CONF_PS) ? 628 STATE_SLEEP : STATE_AWAKE; 629 u16 reg; 630 631 if (state == STATE_SLEEP) { 632 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); 633 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 634 rt2x00dev->beacon_int - 20); 635 rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP, 636 libconf->conf->listen_interval - 1); 637 638 /* We must first disable autowake before it can be enabled */ 639 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); 640 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 641 642 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1); 643 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 644 } else { 645 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); 646 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); 647 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 648 } 649 650 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); 651 } 652 653 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev, 654 struct rt2x00lib_conf *libconf, 655 const unsigned int flags) 656 { 657 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 658 rt2500usb_config_channel(rt2x00dev, &libconf->rf, 659 libconf->conf->power_level); 660 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 661 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 662 rt2500usb_config_txpower(rt2x00dev, 663 libconf->conf->power_level); 664 if (flags & IEEE80211_CONF_CHANGE_PS) 665 rt2500usb_config_ps(rt2x00dev, libconf); 666 } 667 668 /* 669 * Link tuning 670 */ 671 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev, 672 struct link_qual *qual) 673 { 674 u16 reg; 675 676 /* 677 * Update FCS error count from register. 678 */ 679 reg = rt2500usb_register_read(rt2x00dev, STA_CSR0); 680 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR); 681 682 /* 683 * Update False CCA count from register. 684 */ 685 reg = rt2500usb_register_read(rt2x00dev, STA_CSR3); 686 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR); 687 } 688 689 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev, 690 struct link_qual *qual) 691 { 692 u16 eeprom; 693 u16 value; 694 695 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24); 696 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW); 697 rt2500usb_bbp_write(rt2x00dev, 24, value); 698 699 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25); 700 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW); 701 rt2500usb_bbp_write(rt2x00dev, 25, value); 702 703 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61); 704 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW); 705 rt2500usb_bbp_write(rt2x00dev, 61, value); 706 707 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC); 708 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER); 709 rt2500usb_bbp_write(rt2x00dev, 17, value); 710 711 qual->vgc_level = value; 712 } 713 714 /* 715 * Queue handlers. 716 */ 717 static void rt2500usb_start_queue(struct data_queue *queue) 718 { 719 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 720 u16 reg; 721 722 switch (queue->qid) { 723 case QID_RX: 724 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 725 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0); 726 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 727 break; 728 case QID_BEACON: 729 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 730 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); 731 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); 732 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); 733 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 734 break; 735 default: 736 break; 737 } 738 } 739 740 static void rt2500usb_stop_queue(struct data_queue *queue) 741 { 742 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 743 u16 reg; 744 745 switch (queue->qid) { 746 case QID_RX: 747 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 748 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); 749 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 750 break; 751 case QID_BEACON: 752 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 753 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); 754 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); 755 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 756 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /* 764 * Initialization functions. 765 */ 766 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev) 767 { 768 u16 reg; 769 770 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001, 771 USB_MODE_TEST, REGISTER_TIMEOUT); 772 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308, 773 0x00f0, REGISTER_TIMEOUT); 774 775 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2); 776 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); 777 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 778 779 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111); 780 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11); 781 782 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); 783 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1); 784 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1); 785 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); 786 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 787 788 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); 789 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); 790 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); 791 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); 792 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 793 794 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5); 795 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13); 796 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1); 797 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12); 798 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1); 799 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg); 800 801 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6); 802 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10); 803 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1); 804 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11); 805 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1); 806 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg); 807 808 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7); 809 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7); 810 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1); 811 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6); 812 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1); 813 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg); 814 815 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8); 816 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5); 817 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1); 818 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0); 819 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0); 820 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg); 821 822 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 823 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); 824 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0); 825 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); 826 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 827 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 828 829 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f); 830 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d); 831 832 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 833 return -EBUSY; 834 835 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1); 836 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); 837 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); 838 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1); 839 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 840 841 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) { 842 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2); 843 rt2x00_set_field16(®, PHY_CSR2_LNA, 0); 844 } else { 845 reg = 0; 846 rt2x00_set_field16(®, PHY_CSR2_LNA, 1); 847 rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3); 848 } 849 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg); 850 851 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002); 852 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053); 853 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee); 854 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000); 855 856 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8); 857 rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT, 858 rt2x00dev->rx->data_size); 859 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg); 860 861 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0); 862 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE); 863 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 864 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0); 865 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 866 867 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18); 868 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90); 869 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 870 871 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4); 872 rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1); 873 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg); 874 875 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1); 876 rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1); 877 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg); 878 879 return 0; 880 } 881 882 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 883 { 884 unsigned int i; 885 u8 value; 886 887 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 888 value = rt2500usb_bbp_read(rt2x00dev, 0); 889 if ((value != 0xff) && (value != 0x00)) 890 return 0; 891 udelay(REGISTER_BUSY_DELAY); 892 } 893 894 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 895 return -EACCES; 896 } 897 898 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev) 899 { 900 unsigned int i; 901 u16 eeprom; 902 u8 value; 903 u8 reg_id; 904 905 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev))) 906 return -EACCES; 907 908 rt2500usb_bbp_write(rt2x00dev, 3, 0x02); 909 rt2500usb_bbp_write(rt2x00dev, 4, 0x19); 910 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c); 911 rt2500usb_bbp_write(rt2x00dev, 15, 0x30); 912 rt2500usb_bbp_write(rt2x00dev, 16, 0xac); 913 rt2500usb_bbp_write(rt2x00dev, 18, 0x18); 914 rt2500usb_bbp_write(rt2x00dev, 19, 0xff); 915 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e); 916 rt2500usb_bbp_write(rt2x00dev, 21, 0x08); 917 rt2500usb_bbp_write(rt2x00dev, 22, 0x08); 918 rt2500usb_bbp_write(rt2x00dev, 23, 0x08); 919 rt2500usb_bbp_write(rt2x00dev, 24, 0x80); 920 rt2500usb_bbp_write(rt2x00dev, 25, 0x50); 921 rt2500usb_bbp_write(rt2x00dev, 26, 0x08); 922 rt2500usb_bbp_write(rt2x00dev, 27, 0x23); 923 rt2500usb_bbp_write(rt2x00dev, 30, 0x10); 924 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b); 925 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9); 926 rt2500usb_bbp_write(rt2x00dev, 34, 0x12); 927 rt2500usb_bbp_write(rt2x00dev, 35, 0x50); 928 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4); 929 rt2500usb_bbp_write(rt2x00dev, 40, 0x02); 930 rt2500usb_bbp_write(rt2x00dev, 41, 0x60); 931 rt2500usb_bbp_write(rt2x00dev, 53, 0x10); 932 rt2500usb_bbp_write(rt2x00dev, 54, 0x18); 933 rt2500usb_bbp_write(rt2x00dev, 56, 0x08); 934 rt2500usb_bbp_write(rt2x00dev, 57, 0x10); 935 rt2500usb_bbp_write(rt2x00dev, 58, 0x08); 936 rt2500usb_bbp_write(rt2x00dev, 61, 0x60); 937 rt2500usb_bbp_write(rt2x00dev, 62, 0x10); 938 rt2500usb_bbp_write(rt2x00dev, 75, 0xff); 939 940 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 941 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); 942 943 if (eeprom != 0xffff && eeprom != 0x0000) { 944 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 945 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 946 rt2500usb_bbp_write(rt2x00dev, reg_id, value); 947 } 948 } 949 950 return 0; 951 } 952 953 /* 954 * Device state switch handlers. 955 */ 956 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev) 957 { 958 /* 959 * Initialize all registers. 960 */ 961 if (unlikely(rt2500usb_init_registers(rt2x00dev) || 962 rt2500usb_init_bbp(rt2x00dev))) 963 return -EIO; 964 965 return 0; 966 } 967 968 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev) 969 { 970 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121); 971 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121); 972 973 /* 974 * Disable synchronisation. 975 */ 976 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0); 977 978 rt2x00usb_disable_radio(rt2x00dev); 979 } 980 981 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev, 982 enum dev_state state) 983 { 984 u16 reg; 985 u16 reg2; 986 unsigned int i; 987 bool put_to_sleep; 988 u8 bbp_state; 989 u8 rf_state; 990 991 put_to_sleep = (state != STATE_AWAKE); 992 993 reg = 0; 994 rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state); 995 rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state); 996 rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep); 997 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 998 rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1); 999 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1000 1001 /* 1002 * Device is not guaranteed to be in the requested state yet. 1003 * We must wait until the register indicates that the 1004 * device has entered the correct state. 1005 */ 1006 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 1007 reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17); 1008 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE); 1009 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE); 1010 if (bbp_state == state && rf_state == state) 1011 return 0; 1012 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1013 msleep(30); 1014 } 1015 1016 return -EBUSY; 1017 } 1018 1019 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev, 1020 enum dev_state state) 1021 { 1022 int retval = 0; 1023 1024 switch (state) { 1025 case STATE_RADIO_ON: 1026 retval = rt2500usb_enable_radio(rt2x00dev); 1027 break; 1028 case STATE_RADIO_OFF: 1029 rt2500usb_disable_radio(rt2x00dev); 1030 break; 1031 case STATE_RADIO_IRQ_ON: 1032 case STATE_RADIO_IRQ_OFF: 1033 /* No support, but no error either */ 1034 break; 1035 case STATE_DEEP_SLEEP: 1036 case STATE_SLEEP: 1037 case STATE_STANDBY: 1038 case STATE_AWAKE: 1039 retval = rt2500usb_set_state(rt2x00dev, state); 1040 break; 1041 default: 1042 retval = -ENOTSUPP; 1043 break; 1044 } 1045 1046 if (unlikely(retval)) 1047 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1048 state, retval); 1049 1050 return retval; 1051 } 1052 1053 /* 1054 * TX descriptor initialization 1055 */ 1056 static void rt2500usb_write_tx_desc(struct queue_entry *entry, 1057 struct txentry_desc *txdesc) 1058 { 1059 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1060 __le32 *txd = (__le32 *) entry->skb->data; 1061 u32 word; 1062 1063 /* 1064 * Start writing the descriptor words. 1065 */ 1066 word = rt2x00_desc_read(txd, 0); 1067 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit); 1068 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1069 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1070 rt2x00_set_field32(&word, TXD_W0_ACK, 1071 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1072 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1073 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1074 rt2x00_set_field32(&word, TXD_W0_OFDM, 1075 (txdesc->rate_mode == RATE_MODE_OFDM)); 1076 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ, 1077 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)); 1078 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1079 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1080 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher); 1081 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx); 1082 rt2x00_desc_write(txd, 0, word); 1083 1084 word = rt2x00_desc_read(txd, 1); 1085 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1086 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs); 1087 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1088 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1089 rt2x00_desc_write(txd, 1, word); 1090 1091 word = rt2x00_desc_read(txd, 2); 1092 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1093 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1094 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1095 txdesc->u.plcp.length_low); 1096 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1097 txdesc->u.plcp.length_high); 1098 rt2x00_desc_write(txd, 2, word); 1099 1100 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1101 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1102 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1103 } 1104 1105 /* 1106 * Register descriptor details in skb frame descriptor. 1107 */ 1108 skbdesc->flags |= SKBDESC_DESC_IN_SKB; 1109 skbdesc->desc = txd; 1110 skbdesc->desc_len = TXD_DESC_SIZE; 1111 } 1112 1113 /* 1114 * TX data initialization 1115 */ 1116 static void rt2500usb_beacondone(struct urb *urb); 1117 1118 static void rt2500usb_write_beacon(struct queue_entry *entry, 1119 struct txentry_desc *txdesc) 1120 { 1121 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1122 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); 1123 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1124 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint); 1125 int length; 1126 u16 reg, reg0; 1127 1128 /* 1129 * Disable beaconing while we are reloading the beacon data, 1130 * otherwise we might be sending out invalid data. 1131 */ 1132 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19); 1133 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 1134 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1135 1136 /* 1137 * Add space for the descriptor in front of the skb. 1138 */ 1139 skb_push(entry->skb, TXD_DESC_SIZE); 1140 memset(entry->skb->data, 0, TXD_DESC_SIZE); 1141 1142 /* 1143 * Write the TX descriptor for the beacon. 1144 */ 1145 rt2500usb_write_tx_desc(entry, txdesc); 1146 1147 /* 1148 * Dump beacon to userspace through debugfs. 1149 */ 1150 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); 1151 1152 /* 1153 * USB devices cannot blindly pass the skb->len as the 1154 * length of the data to usb_fill_bulk_urb. Pass the skb 1155 * to the driver to determine what the length should be. 1156 */ 1157 length = rt2x00dev->ops->lib->get_tx_data_len(entry); 1158 1159 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe, 1160 entry->skb->data, length, rt2500usb_beacondone, 1161 entry); 1162 1163 /* 1164 * Second we need to create the guardian byte. 1165 * We only need a single byte, so lets recycle 1166 * the 'flags' field we are not using for beacons. 1167 */ 1168 bcn_priv->guardian_data = 0; 1169 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe, 1170 &bcn_priv->guardian_data, 1, rt2500usb_beacondone, 1171 entry); 1172 1173 /* 1174 * Send out the guardian byte. 1175 */ 1176 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC); 1177 1178 /* 1179 * Enable beaconing again. 1180 */ 1181 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); 1182 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); 1183 reg0 = reg; 1184 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); 1185 /* 1186 * Beacon generation will fail initially. 1187 * To prevent this we need to change the TXRX_CSR19 1188 * register several times (reg0 is the same as reg 1189 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0 1190 * and 1 in reg). 1191 */ 1192 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1193 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1194 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1195 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1196 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1197 } 1198 1199 static int rt2500usb_get_tx_data_len(struct queue_entry *entry) 1200 { 1201 int length; 1202 1203 /* 1204 * The length _must_ be a multiple of 2, 1205 * but it must _not_ be a multiple of the USB packet size. 1206 */ 1207 length = roundup(entry->skb->len, 2); 1208 length += (2 * !(length % entry->queue->usb_maxpacket)); 1209 1210 return length; 1211 } 1212 1213 /* 1214 * RX control handlers 1215 */ 1216 static void rt2500usb_fill_rxdone(struct queue_entry *entry, 1217 struct rxdone_entry_desc *rxdesc) 1218 { 1219 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1220 struct queue_entry_priv_usb *entry_priv = entry->priv_data; 1221 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1222 __le32 *rxd = 1223 (__le32 *)(entry->skb->data + 1224 (entry_priv->urb->actual_length - 1225 entry->queue->desc_size)); 1226 u32 word0; 1227 u32 word1; 1228 1229 /* 1230 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of 1231 * frame data in rt2x00usb. 1232 */ 1233 memcpy(skbdesc->desc, rxd, skbdesc->desc_len); 1234 rxd = (__le32 *)skbdesc->desc; 1235 1236 /* 1237 * It is now safe to read the descriptor on all architectures. 1238 */ 1239 word0 = rt2x00_desc_read(rxd, 0); 1240 word1 = rt2x00_desc_read(rxd, 1); 1241 1242 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1243 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1244 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) 1245 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; 1246 1247 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER); 1248 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) 1249 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY; 1250 1251 if (rxdesc->cipher != CIPHER_NONE) { 1252 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2); 1253 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3); 1254 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 1255 1256 /* ICV is located at the end of frame */ 1257 1258 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 1259 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 1260 rxdesc->flags |= RX_FLAG_DECRYPTED; 1261 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 1262 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 1263 } 1264 1265 /* 1266 * Obtain the status about this packet. 1267 * When frame was received with an OFDM bitrate, 1268 * the signal is the PLCP value. If it was received with 1269 * a CCK bitrate the signal is the rate in 100kbit/s. 1270 */ 1271 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 1272 rxdesc->rssi = 1273 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset; 1274 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1275 1276 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1277 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1278 else 1279 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1280 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1281 rxdesc->dev_flags |= RXDONE_MY_BSS; 1282 1283 /* 1284 * Adjust the skb memory window to the frame boundaries. 1285 */ 1286 skb_trim(entry->skb, rxdesc->size); 1287 } 1288 1289 /* 1290 * Interrupt functions. 1291 */ 1292 static void rt2500usb_beacondone(struct urb *urb) 1293 { 1294 struct queue_entry *entry = (struct queue_entry *)urb->context; 1295 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1296 1297 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) 1298 return; 1299 1300 /* 1301 * Check if this was the guardian beacon, 1302 * if that was the case we need to send the real beacon now. 1303 * Otherwise we should free the sk_buffer, the device 1304 * should be doing the rest of the work now. 1305 */ 1306 if (bcn_priv->guardian_urb == urb) { 1307 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC); 1308 } else if (bcn_priv->urb == urb) { 1309 dev_kfree_skb(entry->skb); 1310 entry->skb = NULL; 1311 } 1312 } 1313 1314 /* 1315 * Device probe functions. 1316 */ 1317 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1318 { 1319 u16 word; 1320 u8 *mac; 1321 u8 bbp; 1322 1323 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); 1324 1325 /* 1326 * Start validation of the data that has been read. 1327 */ 1328 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1329 rt2x00lib_set_mac_address(rt2x00dev, mac); 1330 1331 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1332 if (word == 0xffff) { 1333 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1334 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1335 ANTENNA_SW_DIVERSITY); 1336 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1337 ANTENNA_SW_DIVERSITY); 1338 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 1339 LED_MODE_DEFAULT); 1340 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1341 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1342 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); 1343 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1344 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 1345 } 1346 1347 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); 1348 if (word == 0xffff) { 1349 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); 1350 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); 1351 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); 1352 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1353 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 1354 } 1355 1356 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); 1357 if (word == 0xffff) { 1358 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, 1359 DEFAULT_RSSI_OFFSET); 1360 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); 1361 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", 1362 word); 1363 } 1364 1365 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE); 1366 if (word == 0xffff) { 1367 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45); 1368 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word); 1369 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word); 1370 } 1371 1372 /* 1373 * Switch lower vgc bound to current BBP R17 value, 1374 * lower the value a bit for better quality. 1375 */ 1376 bbp = rt2500usb_bbp_read(rt2x00dev, 17); 1377 bbp -= 6; 1378 1379 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC); 1380 if (word == 0xffff) { 1381 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40); 1382 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1383 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1384 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word); 1385 } else { 1386 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1387 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1388 } 1389 1390 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17); 1391 if (word == 0xffff) { 1392 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48); 1393 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41); 1394 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word); 1395 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word); 1396 } 1397 1398 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24); 1399 if (word == 0xffff) { 1400 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40); 1401 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80); 1402 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word); 1403 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word); 1404 } 1405 1406 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25); 1407 if (word == 0xffff) { 1408 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40); 1409 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50); 1410 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word); 1411 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word); 1412 } 1413 1414 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61); 1415 if (word == 0xffff) { 1416 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60); 1417 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d); 1418 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word); 1419 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word); 1420 } 1421 1422 return 0; 1423 } 1424 1425 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev) 1426 { 1427 u16 reg; 1428 u16 value; 1429 u16 eeprom; 1430 1431 /* 1432 * Read EEPROM word for configuration. 1433 */ 1434 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); 1435 1436 /* 1437 * Identify RF chipset. 1438 */ 1439 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1440 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0); 1441 rt2x00_set_chip(rt2x00dev, RT2570, value, reg); 1442 1443 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) { 1444 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); 1445 return -ENODEV; 1446 } 1447 1448 if (!rt2x00_rf(rt2x00dev, RF2522) && 1449 !rt2x00_rf(rt2x00dev, RF2523) && 1450 !rt2x00_rf(rt2x00dev, RF2524) && 1451 !rt2x00_rf(rt2x00dev, RF2525) && 1452 !rt2x00_rf(rt2x00dev, RF2525E) && 1453 !rt2x00_rf(rt2x00dev, RF5222)) { 1454 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1455 return -ENODEV; 1456 } 1457 1458 /* 1459 * Identify default antenna configuration. 1460 */ 1461 rt2x00dev->default_ant.tx = 1462 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1463 rt2x00dev->default_ant.rx = 1464 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1465 1466 /* 1467 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. 1468 * I am not 100% sure about this, but the legacy drivers do not 1469 * indicate antenna swapping in software is required when 1470 * diversity is enabled. 1471 */ 1472 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) 1473 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; 1474 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) 1475 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; 1476 1477 /* 1478 * Store led mode, for correct led behaviour. 1479 */ 1480 #ifdef CONFIG_RT2X00_LIB_LEDS 1481 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); 1482 1483 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1484 if (value == LED_MODE_TXRX_ACTIVITY || 1485 value == LED_MODE_DEFAULT || 1486 value == LED_MODE_ASUS) 1487 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual, 1488 LED_TYPE_ACTIVITY); 1489 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1490 1491 /* 1492 * Detect if this device has an hardware controlled radio. 1493 */ 1494 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1495 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1496 1497 /* 1498 * Read the RSSI <-> dBm offset information. 1499 */ 1500 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); 1501 rt2x00dev->rssi_offset = 1502 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); 1503 1504 return 0; 1505 } 1506 1507 /* 1508 * RF value list for RF2522 1509 * Supports: 2.4 GHz 1510 */ 1511 static const struct rf_channel rf_vals_bg_2522[] = { 1512 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, 1513 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, 1514 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, 1515 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, 1516 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, 1517 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, 1518 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, 1519 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, 1520 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, 1521 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, 1522 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, 1523 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, 1524 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, 1525 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, 1526 }; 1527 1528 /* 1529 * RF value list for RF2523 1530 * Supports: 2.4 GHz 1531 */ 1532 static const struct rf_channel rf_vals_bg_2523[] = { 1533 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, 1534 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, 1535 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, 1536 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, 1537 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, 1538 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, 1539 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, 1540 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, 1541 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, 1542 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, 1543 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, 1544 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, 1545 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, 1546 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, 1547 }; 1548 1549 /* 1550 * RF value list for RF2524 1551 * Supports: 2.4 GHz 1552 */ 1553 static const struct rf_channel rf_vals_bg_2524[] = { 1554 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, 1555 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, 1556 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, 1557 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, 1558 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, 1559 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, 1560 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, 1561 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, 1562 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, 1563 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, 1564 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, 1565 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, 1566 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, 1567 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, 1568 }; 1569 1570 /* 1571 * RF value list for RF2525 1572 * Supports: 2.4 GHz 1573 */ 1574 static const struct rf_channel rf_vals_bg_2525[] = { 1575 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, 1576 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, 1577 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, 1578 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, 1579 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, 1580 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, 1581 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, 1582 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, 1583 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, 1584 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, 1585 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, 1586 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, 1587 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, 1588 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, 1589 }; 1590 1591 /* 1592 * RF value list for RF2525e 1593 * Supports: 2.4 GHz 1594 */ 1595 static const struct rf_channel rf_vals_bg_2525e[] = { 1596 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b }, 1597 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 }, 1598 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b }, 1599 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 }, 1600 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b }, 1601 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 }, 1602 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b }, 1603 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 }, 1604 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b }, 1605 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 }, 1606 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b }, 1607 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 }, 1608 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b }, 1609 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 }, 1610 }; 1611 1612 /* 1613 * RF value list for RF5222 1614 * Supports: 2.4 GHz & 5.2 GHz 1615 */ 1616 static const struct rf_channel rf_vals_5222[] = { 1617 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, 1618 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, 1619 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, 1620 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, 1621 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, 1622 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, 1623 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, 1624 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, 1625 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, 1626 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, 1627 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, 1628 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, 1629 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, 1630 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, 1631 1632 /* 802.11 UNI / HyperLan 2 */ 1633 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, 1634 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, 1635 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, 1636 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, 1637 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, 1638 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, 1639 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, 1640 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, 1641 1642 /* 802.11 HyperLan 2 */ 1643 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, 1644 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, 1645 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, 1646 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, 1647 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, 1648 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, 1649 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, 1650 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, 1651 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, 1652 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, 1653 1654 /* 802.11 UNII */ 1655 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, 1656 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, 1657 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, 1658 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, 1659 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, 1660 }; 1661 1662 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 1663 { 1664 struct hw_mode_spec *spec = &rt2x00dev->spec; 1665 struct channel_info *info; 1666 u8 *tx_power; 1667 unsigned int i; 1668 1669 /* 1670 * Initialize all hw fields. 1671 * 1672 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are 1673 * capable of sending the buffered frames out after the DTIM 1674 * transmission using rt2x00lib_beacondone. This will send out 1675 * multicast and broadcast traffic immediately instead of buffering it 1676 * infinitly and thus dropping it after some time. 1677 */ 1678 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 1679 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 1680 ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS); 1681 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 1682 1683 /* 1684 * Disable powersaving as default. 1685 */ 1686 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; 1687 1688 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 1689 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 1690 rt2x00_eeprom_addr(rt2x00dev, 1691 EEPROM_MAC_ADDR_0)); 1692 1693 /* 1694 * Initialize hw_mode information. 1695 */ 1696 spec->supported_bands = SUPPORT_BAND_2GHZ; 1697 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 1698 1699 if (rt2x00_rf(rt2x00dev, RF2522)) { 1700 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); 1701 spec->channels = rf_vals_bg_2522; 1702 } else if (rt2x00_rf(rt2x00dev, RF2523)) { 1703 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); 1704 spec->channels = rf_vals_bg_2523; 1705 } else if (rt2x00_rf(rt2x00dev, RF2524)) { 1706 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); 1707 spec->channels = rf_vals_bg_2524; 1708 } else if (rt2x00_rf(rt2x00dev, RF2525)) { 1709 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); 1710 spec->channels = rf_vals_bg_2525; 1711 } else if (rt2x00_rf(rt2x00dev, RF2525E)) { 1712 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); 1713 spec->channels = rf_vals_bg_2525e; 1714 } else if (rt2x00_rf(rt2x00dev, RF5222)) { 1715 spec->supported_bands |= SUPPORT_BAND_5GHZ; 1716 spec->num_channels = ARRAY_SIZE(rf_vals_5222); 1717 spec->channels = rf_vals_5222; 1718 } 1719 1720 /* 1721 * Create channel information array 1722 */ 1723 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 1724 if (!info) 1725 return -ENOMEM; 1726 1727 spec->channels_info = info; 1728 1729 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); 1730 for (i = 0; i < 14; i++) { 1731 info[i].max_power = MAX_TXPOWER; 1732 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 1733 } 1734 1735 if (spec->num_channels > 14) { 1736 for (i = 14; i < spec->num_channels; i++) { 1737 info[i].max_power = MAX_TXPOWER; 1738 info[i].default_power1 = DEFAULT_TXPOWER; 1739 } 1740 } 1741 1742 return 0; 1743 } 1744 1745 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev) 1746 { 1747 int retval; 1748 u16 reg; 1749 1750 /* 1751 * Allocate eeprom data. 1752 */ 1753 retval = rt2500usb_validate_eeprom(rt2x00dev); 1754 if (retval) 1755 return retval; 1756 1757 retval = rt2500usb_init_eeprom(rt2x00dev); 1758 if (retval) 1759 return retval; 1760 1761 /* 1762 * Enable rfkill polling by setting GPIO direction of the 1763 * rfkill switch GPIO pin correctly. 1764 */ 1765 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19); 1766 rt2x00_set_field16(®, MAC_CSR19_DIR0, 0); 1767 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg); 1768 1769 /* 1770 * Initialize hw specifications. 1771 */ 1772 retval = rt2500usb_probe_hw_mode(rt2x00dev); 1773 if (retval) 1774 return retval; 1775 1776 /* 1777 * This device requires the atim queue 1778 */ 1779 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1780 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags); 1781 if (!modparam_nohwcrypt) { 1782 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 1783 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags); 1784 } 1785 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); 1786 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); 1787 1788 /* 1789 * Set the rssi offset. 1790 */ 1791 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 1792 1793 return 0; 1794 } 1795 1796 static const struct ieee80211_ops rt2500usb_mac80211_ops = { 1797 .tx = rt2x00mac_tx, 1798 .wake_tx_queue = ieee80211_handle_wake_tx_queue, 1799 .start = rt2x00mac_start, 1800 .stop = rt2x00mac_stop, 1801 .add_interface = rt2x00mac_add_interface, 1802 .remove_interface = rt2x00mac_remove_interface, 1803 .config = rt2x00mac_config, 1804 .configure_filter = rt2x00mac_configure_filter, 1805 .set_tim = rt2x00mac_set_tim, 1806 .set_key = rt2x00mac_set_key, 1807 .sw_scan_start = rt2x00mac_sw_scan_start, 1808 .sw_scan_complete = rt2x00mac_sw_scan_complete, 1809 .get_stats = rt2x00mac_get_stats, 1810 .bss_info_changed = rt2x00mac_bss_info_changed, 1811 .conf_tx = rt2x00mac_conf_tx, 1812 .rfkill_poll = rt2x00mac_rfkill_poll, 1813 .flush = rt2x00mac_flush, 1814 .set_antenna = rt2x00mac_set_antenna, 1815 .get_antenna = rt2x00mac_get_antenna, 1816 .get_ringparam = rt2x00mac_get_ringparam, 1817 .tx_frames_pending = rt2x00mac_tx_frames_pending, 1818 }; 1819 1820 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = { 1821 .probe_hw = rt2500usb_probe_hw, 1822 .initialize = rt2x00usb_initialize, 1823 .uninitialize = rt2x00usb_uninitialize, 1824 .clear_entry = rt2x00usb_clear_entry, 1825 .set_device_state = rt2500usb_set_device_state, 1826 .rfkill_poll = rt2500usb_rfkill_poll, 1827 .link_stats = rt2500usb_link_stats, 1828 .reset_tuner = rt2500usb_reset_tuner, 1829 .watchdog = rt2x00usb_watchdog, 1830 .start_queue = rt2500usb_start_queue, 1831 .kick_queue = rt2x00usb_kick_queue, 1832 .stop_queue = rt2500usb_stop_queue, 1833 .flush_queue = rt2x00usb_flush_queue, 1834 .write_tx_desc = rt2500usb_write_tx_desc, 1835 .write_beacon = rt2500usb_write_beacon, 1836 .get_tx_data_len = rt2500usb_get_tx_data_len, 1837 .fill_rxdone = rt2500usb_fill_rxdone, 1838 .config_shared_key = rt2500usb_config_key, 1839 .config_pairwise_key = rt2500usb_config_key, 1840 .config_filter = rt2500usb_config_filter, 1841 .config_intf = rt2500usb_config_intf, 1842 .config_erp = rt2500usb_config_erp, 1843 .config_ant = rt2500usb_config_ant, 1844 .config = rt2500usb_config, 1845 }; 1846 1847 static void rt2500usb_queue_init(struct data_queue *queue) 1848 { 1849 switch (queue->qid) { 1850 case QID_RX: 1851 queue->limit = 32; 1852 queue->data_size = DATA_FRAME_SIZE; 1853 queue->desc_size = RXD_DESC_SIZE; 1854 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1855 break; 1856 1857 case QID_AC_VO: 1858 case QID_AC_VI: 1859 case QID_AC_BE: 1860 case QID_AC_BK: 1861 queue->limit = 32; 1862 queue->data_size = DATA_FRAME_SIZE; 1863 queue->desc_size = TXD_DESC_SIZE; 1864 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1865 break; 1866 1867 case QID_BEACON: 1868 queue->limit = 1; 1869 queue->data_size = MGMT_FRAME_SIZE; 1870 queue->desc_size = TXD_DESC_SIZE; 1871 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn); 1872 break; 1873 1874 case QID_ATIM: 1875 queue->limit = 8; 1876 queue->data_size = DATA_FRAME_SIZE; 1877 queue->desc_size = TXD_DESC_SIZE; 1878 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1879 break; 1880 1881 default: 1882 BUG(); 1883 break; 1884 } 1885 } 1886 1887 static const struct rt2x00_ops rt2500usb_ops = { 1888 .name = KBUILD_MODNAME, 1889 .max_ap_intf = 1, 1890 .eeprom_size = EEPROM_SIZE, 1891 .rf_size = RF_SIZE, 1892 .tx_queues = NUM_TX_QUEUES, 1893 .queue_init = rt2500usb_queue_init, 1894 .lib = &rt2500usb_rt2x00_ops, 1895 .hw = &rt2500usb_mac80211_ops, 1896 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1897 .debugfs = &rt2500usb_rt2x00debug, 1898 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1899 }; 1900 1901 /* 1902 * rt2500usb module information. 1903 */ 1904 static const struct usb_device_id rt2500usb_device_table[] = { 1905 /* ASUS */ 1906 { USB_DEVICE(0x0b05, 0x1706) }, 1907 { USB_DEVICE(0x0b05, 0x1707) }, 1908 /* Belkin */ 1909 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */ 1910 { USB_DEVICE(0x050d, 0x7051) }, 1911 /* Cisco Systems */ 1912 { USB_DEVICE(0x13b1, 0x000d) }, 1913 { USB_DEVICE(0x13b1, 0x0011) }, 1914 { USB_DEVICE(0x13b1, 0x001a) }, 1915 /* Conceptronic */ 1916 { USB_DEVICE(0x14b2, 0x3c02) }, 1917 /* D-LINK */ 1918 { USB_DEVICE(0x2001, 0x3c00) }, 1919 /* Gigabyte */ 1920 { USB_DEVICE(0x1044, 0x8001) }, 1921 { USB_DEVICE(0x1044, 0x8007) }, 1922 /* Hercules */ 1923 { USB_DEVICE(0x06f8, 0xe000) }, 1924 /* Melco */ 1925 { USB_DEVICE(0x0411, 0x005e) }, 1926 { USB_DEVICE(0x0411, 0x0066) }, 1927 { USB_DEVICE(0x0411, 0x0067) }, 1928 { USB_DEVICE(0x0411, 0x008b) }, 1929 { USB_DEVICE(0x0411, 0x0097) }, 1930 /* MSI */ 1931 { USB_DEVICE(0x0db0, 0x6861) }, 1932 { USB_DEVICE(0x0db0, 0x6865) }, 1933 { USB_DEVICE(0x0db0, 0x6869) }, 1934 /* Ralink */ 1935 { USB_DEVICE(0x148f, 0x1706) }, 1936 { USB_DEVICE(0x148f, 0x2570) }, 1937 { USB_DEVICE(0x148f, 0x9020) }, 1938 /* Sagem */ 1939 { USB_DEVICE(0x079b, 0x004b) }, 1940 /* Siemens */ 1941 { USB_DEVICE(0x0681, 0x3c06) }, 1942 /* SMC */ 1943 { USB_DEVICE(0x0707, 0xee13) }, 1944 /* Spairon */ 1945 { USB_DEVICE(0x114b, 0x0110) }, 1946 /* SURECOM */ 1947 { USB_DEVICE(0x0769, 0x11f3) }, 1948 /* Trust */ 1949 { USB_DEVICE(0x0eb0, 0x9020) }, 1950 /* VTech */ 1951 { USB_DEVICE(0x0f88, 0x3012) }, 1952 /* Zinwell */ 1953 { USB_DEVICE(0x5a57, 0x0260) }, 1954 { 0, } 1955 }; 1956 1957 MODULE_AUTHOR(DRV_PROJECT); 1958 MODULE_VERSION(DRV_VERSION); 1959 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver."); 1960 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table); 1961 MODULE_LICENSE("GPL"); 1962 1963 static int rt2500usb_probe(struct usb_interface *usb_intf, 1964 const struct usb_device_id *id) 1965 { 1966 return rt2x00usb_probe(usb_intf, &rt2500usb_ops); 1967 } 1968 1969 static struct usb_driver rt2500usb_driver = { 1970 .name = KBUILD_MODNAME, 1971 .id_table = rt2500usb_device_table, 1972 .probe = rt2500usb_probe, 1973 .disconnect = rt2x00usb_disconnect, 1974 .suspend = rt2x00usb_suspend, 1975 .resume = rt2x00usb_resume, 1976 .reset_resume = rt2x00usb_resume, 1977 .disable_hub_initiated_lpm = 1, 1978 }; 1979 1980 module_usb_driver(rt2500usb_driver); 1981