1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 */
7
8 /*
9 Module: rt2500usb
10 Abstract: rt2500usb device specific routines.
11 Supported chipsets: RT2570.
12 */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/usb.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00usb.h"
23 #include "rt2500usb.h"
24
25 /*
26 * Allow hardware encryption to be disabled.
27 */
28 static bool modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31
32 /*
33 * Register access.
34 * All access to the CSR registers will go through the methods
35 * rt2500usb_register_read and rt2500usb_register_write.
36 * BBP and RF register require indirect register access,
37 * and use the CSR registers BBPCSR and RFCSR to achieve this.
38 * These indirect registers work with busy bits,
39 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
40 * the register while taking a REGISTER_BUSY_DELAY us delay
41 * between each attampt. When the busy bit is still set at that time,
42 * the access attempt is considered to have failed,
43 * and we will print an error.
44 * If the csr_mutex is already held then the _lock variants must
45 * be used instead.
46 */
rt2500usb_register_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset)47 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
48 const unsigned int offset)
49 {
50 __le16 reg;
51 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
52 USB_VENDOR_REQUEST_IN, offset,
53 ®, sizeof(reg));
54 return le16_to_cpu(reg);
55 }
56
rt2500usb_register_read_lock(struct rt2x00_dev * rt2x00dev,const unsigned int offset)57 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
58 const unsigned int offset)
59 {
60 __le16 reg;
61 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
62 USB_VENDOR_REQUEST_IN, offset,
63 ®, sizeof(reg), REGISTER_TIMEOUT);
64 return le16_to_cpu(reg);
65 }
66
rt2500usb_register_write(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 value)67 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int offset,
69 u16 value)
70 {
71 __le16 reg = cpu_to_le16(value);
72 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
73 USB_VENDOR_REQUEST_OUT, offset,
74 ®, sizeof(reg));
75 }
76
rt2500usb_register_write_lock(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 value)77 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
78 const unsigned int offset,
79 u16 value)
80 {
81 __le16 reg = cpu_to_le16(value);
82 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
83 USB_VENDOR_REQUEST_OUT, offset,
84 ®, sizeof(reg), REGISTER_TIMEOUT);
85 }
86
rt2500usb_register_multiwrite(struct rt2x00_dev * rt2x00dev,const unsigned int offset,void * value,const u16 length)87 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
88 const unsigned int offset,
89 void *value, const u16 length)
90 {
91 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
92 USB_VENDOR_REQUEST_OUT, offset,
93 value, length);
94 }
95
rt2500usb_regbusy_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset,struct rt2x00_field16 field,u16 * reg)96 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
97 const unsigned int offset,
98 struct rt2x00_field16 field,
99 u16 *reg)
100 {
101 unsigned int i;
102
103 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
104 *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
105 if (!rt2x00_get_field16(*reg, field))
106 return 1;
107 udelay(REGISTER_BUSY_DELAY);
108 }
109
110 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
111 offset, *reg);
112 *reg = ~0;
113
114 return 0;
115 }
116
117 #define WAIT_FOR_BBP(__dev, __reg) \
118 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
119 #define WAIT_FOR_RF(__dev, __reg) \
120 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
121
rt2500usb_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)122 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
123 const unsigned int word, const u8 value)
124 {
125 u16 reg;
126
127 mutex_lock(&rt2x00dev->csr_mutex);
128
129 /*
130 * Wait until the BBP becomes available, afterwards we
131 * can safely write the new data into the register.
132 */
133 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
134 reg = 0;
135 rt2x00_set_field16(®, PHY_CSR7_DATA, value);
136 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
137 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0);
138
139 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
140 }
141
142 mutex_unlock(&rt2x00dev->csr_mutex);
143 }
144
rt2500usb_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)145 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
146 const unsigned int word)
147 {
148 u16 reg;
149 u8 value;
150
151 mutex_lock(&rt2x00dev->csr_mutex);
152
153 /*
154 * Wait until the BBP becomes available, afterwards we
155 * can safely write the read request into the register.
156 * After the data has been written, we wait until hardware
157 * returns the correct value, if at any time the register
158 * doesn't become available in time, reg will be 0xffffffff
159 * which means we return 0xff to the caller.
160 */
161 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
162 reg = 0;
163 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word);
164 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1);
165
166 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167
168 if (WAIT_FOR_BBP(rt2x00dev, ®))
169 reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
170 }
171
172 value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
173
174 mutex_unlock(&rt2x00dev->csr_mutex);
175
176 return value;
177 }
178
rt2500usb_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)179 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
180 const unsigned int word, const u32 value)
181 {
182 u16 reg;
183
184 mutex_lock(&rt2x00dev->csr_mutex);
185
186 /*
187 * Wait until the RF becomes available, afterwards we
188 * can safely write the new data into the register.
189 */
190 if (WAIT_FOR_RF(rt2x00dev, ®)) {
191 reg = 0;
192 rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value);
193 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
194
195 reg = 0;
196 rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16);
197 rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
198 rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0);
199 rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1);
200
201 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
202 rt2x00_rf_write(rt2x00dev, word, value);
203 }
204
205 mutex_unlock(&rt2x00dev->csr_mutex);
206 }
207
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
_rt2500usb_register_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset)209 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
210 const unsigned int offset)
211 {
212 return rt2500usb_register_read(rt2x00dev, offset);
213 }
214
_rt2500usb_register_write(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u32 value)215 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
216 const unsigned int offset,
217 u32 value)
218 {
219 rt2500usb_register_write(rt2x00dev, offset, value);
220 }
221
222 static const struct rt2x00debug rt2500usb_rt2x00debug = {
223 .owner = THIS_MODULE,
224 .csr = {
225 .read = _rt2500usb_register_read,
226 .write = _rt2500usb_register_write,
227 .flags = RT2X00DEBUGFS_OFFSET,
228 .word_base = CSR_REG_BASE,
229 .word_size = sizeof(u16),
230 .word_count = CSR_REG_SIZE / sizeof(u16),
231 },
232 .eeprom = {
233 .read = rt2x00_eeprom_read,
234 .write = rt2x00_eeprom_write,
235 .word_base = EEPROM_BASE,
236 .word_size = sizeof(u16),
237 .word_count = EEPROM_SIZE / sizeof(u16),
238 },
239 .bbp = {
240 .read = rt2500usb_bbp_read,
241 .write = rt2500usb_bbp_write,
242 .word_base = BBP_BASE,
243 .word_size = sizeof(u8),
244 .word_count = BBP_SIZE / sizeof(u8),
245 },
246 .rf = {
247 .read = rt2x00_rf_read,
248 .write = rt2500usb_rf_write,
249 .word_base = RF_BASE,
250 .word_size = sizeof(u32),
251 .word_count = RF_SIZE / sizeof(u32),
252 },
253 };
254 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
255
rt2500usb_rfkill_poll(struct rt2x00_dev * rt2x00dev)256 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
257 {
258 u16 reg;
259
260 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
261 return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
262 }
263
264 #ifdef CONFIG_RT2X00_LIB_LEDS
rt2500usb_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)265 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
266 enum led_brightness brightness)
267 {
268 struct rt2x00_led *led =
269 container_of(led_cdev, struct rt2x00_led, led_dev);
270 unsigned int enabled = brightness != LED_OFF;
271 u16 reg;
272
273 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
274
275 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
276 rt2x00_set_field16(®, MAC_CSR20_LINK, enabled);
277 else if (led->type == LED_TYPE_ACTIVITY)
278 rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled);
279
280 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
281 }
282
rt2500usb_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)283 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
284 unsigned long *delay_on,
285 unsigned long *delay_off)
286 {
287 struct rt2x00_led *led =
288 container_of(led_cdev, struct rt2x00_led, led_dev);
289 u16 reg;
290
291 reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
292 rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on);
293 rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off);
294 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
295
296 return 0;
297 }
298
rt2500usb_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)299 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
300 struct rt2x00_led *led,
301 enum led_type type)
302 {
303 led->rt2x00dev = rt2x00dev;
304 led->type = type;
305 led->led_dev.brightness_set = rt2500usb_brightness_set;
306 led->led_dev.blink_set = rt2500usb_blink_set;
307 led->flags = LED_INITIALIZED;
308 }
309 #endif /* CONFIG_RT2X00_LIB_LEDS */
310
311 /*
312 * Configuration handlers.
313 */
314
315 /*
316 * rt2500usb does not differentiate between shared and pairwise
317 * keys, so we should use the same function for both key types.
318 */
rt2500usb_config_key(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_crypto * crypto,struct ieee80211_key_conf * key)319 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00lib_crypto *crypto,
321 struct ieee80211_key_conf *key)
322 {
323 u32 mask;
324 u16 reg;
325 enum cipher curr_cipher;
326
327 if (crypto->cmd == SET_KEY) {
328 /*
329 * Disallow to set WEP key other than with index 0,
330 * it is known that not work at least on some hardware.
331 * SW crypto will be used in that case.
332 */
333 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
334 key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
335 key->keyidx != 0)
336 return -EOPNOTSUPP;
337
338 /*
339 * Pairwise key will always be entry 0, but this
340 * could collide with a shared key on the same
341 * position...
342 */
343 mask = TXRX_CSR0_KEY_ID.bit_mask;
344
345 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
346 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
347 reg &= mask;
348
349 if (reg && reg == mask)
350 return -ENOSPC;
351
352 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
353
354 key->hw_key_idx += reg ? ffz(reg) : 0;
355 /*
356 * Hardware requires that all keys use the same cipher
357 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
358 * If this is not the first key, compare the cipher with the
359 * first one and fall back to SW crypto if not the same.
360 */
361 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
362 return -EOPNOTSUPP;
363
364 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
365 crypto->key, sizeof(crypto->key));
366
367 /*
368 * The driver does not support the IV/EIV generation
369 * in hardware. However it demands the data to be provided
370 * both separately as well as inside the frame.
371 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
372 * to ensure rt2x00lib will not strip the data from the
373 * frame after the copy, now we must tell mac80211
374 * to generate the IV/EIV data.
375 */
376 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
377 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
378 }
379
380 /*
381 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
382 * a particular key is valid.
383 */
384 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
385 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher);
386 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
387
388 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
389 if (crypto->cmd == SET_KEY)
390 mask |= 1 << key->hw_key_idx;
391 else if (crypto->cmd == DISABLE_KEY)
392 mask &= ~(1 << key->hw_key_idx);
393 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask);
394 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
395
396 return 0;
397 }
398
rt2500usb_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)399 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
400 const unsigned int filter_flags)
401 {
402 u16 reg;
403
404 /*
405 * Start configuration steps.
406 * Note that the version error will always be dropped
407 * and broadcast frames will always be accepted since
408 * there is no filter for it at this time.
409 */
410 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
411 rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC,
412 !(filter_flags & FIF_FCSFAIL));
413 rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL,
414 !(filter_flags & FIF_PLCPFAIL));
415 rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL,
416 !(filter_flags & FIF_CONTROL));
417 rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME,
418 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
419 rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS,
420 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
421 !rt2x00dev->intf_ap_count);
422 rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1);
423 rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST,
424 !(filter_flags & FIF_ALLMULTI));
425 rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0);
426 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
427 }
428
rt2500usb_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)429 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
430 struct rt2x00_intf *intf,
431 struct rt2x00intf_conf *conf,
432 const unsigned int flags)
433 {
434 unsigned int bcn_preload;
435 u16 reg;
436
437 if (flags & CONFIG_UPDATE_TYPE) {
438 /*
439 * Enable beacon config
440 */
441 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
442 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
443 rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6);
444 rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW,
445 2 * (conf->type != NL80211_IFTYPE_STATION));
446 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
447
448 /*
449 * Enable synchronisation.
450 */
451 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
452 rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0);
453 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
454
455 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
456 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync);
457 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
458 }
459
460 if (flags & CONFIG_UPDATE_MAC)
461 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
462 (3 * sizeof(__le16)));
463
464 if (flags & CONFIG_UPDATE_BSSID)
465 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
466 (3 * sizeof(__le16)));
467 }
468
rt2500usb_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp,u32 changed)469 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
470 struct rt2x00lib_erp *erp,
471 u32 changed)
472 {
473 u16 reg;
474
475 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
476 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
477 rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE,
478 !!erp->short_preamble);
479 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
480 }
481
482 if (changed & BSS_CHANGED_BASIC_RATES)
483 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
484 erp->basic_rates);
485
486 if (changed & BSS_CHANGED_BEACON_INT) {
487 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
488 rt2x00_set_field16(®, TXRX_CSR18_INTERVAL,
489 erp->beacon_int * 4);
490 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
491 }
492
493 if (changed & BSS_CHANGED_ERP_SLOT) {
494 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
495 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
496 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
497 }
498 }
499
rt2500usb_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)500 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
501 struct antenna_setup *ant)
502 {
503 u8 r2;
504 u8 r14;
505 u16 csr5;
506 u16 csr6;
507
508 /*
509 * We should never come here because rt2x00lib is supposed
510 * to catch this and send us the correct antenna explicitely.
511 */
512 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
513 ant->tx == ANTENNA_SW_DIVERSITY);
514
515 r2 = rt2500usb_bbp_read(rt2x00dev, 2);
516 r14 = rt2500usb_bbp_read(rt2x00dev, 14);
517 csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
518 csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
519
520 /*
521 * Configure the TX antenna.
522 */
523 switch (ant->tx) {
524 case ANTENNA_HW_DIVERSITY:
525 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
526 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
527 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
528 break;
529 case ANTENNA_A:
530 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
531 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
532 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
533 break;
534 case ANTENNA_B:
535 default:
536 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
537 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
538 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
539 break;
540 }
541
542 /*
543 * Configure the RX antenna.
544 */
545 switch (ant->rx) {
546 case ANTENNA_HW_DIVERSITY:
547 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
548 break;
549 case ANTENNA_A:
550 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
551 break;
552 case ANTENNA_B:
553 default:
554 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
555 break;
556 }
557
558 /*
559 * RT2525E and RT5222 need to flip TX I/Q
560 */
561 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
562 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
563 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
564 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
565
566 /*
567 * RT2525E does not need RX I/Q Flip.
568 */
569 if (rt2x00_rf(rt2x00dev, RF2525E))
570 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
571 } else {
572 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
573 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
574 }
575
576 rt2500usb_bbp_write(rt2x00dev, 2, r2);
577 rt2500usb_bbp_write(rt2x00dev, 14, r14);
578 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
579 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
580 }
581
rt2500usb_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)582 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
583 struct rf_channel *rf, const int txpower)
584 {
585 /*
586 * Set TXpower.
587 */
588 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
589
590 /*
591 * For RT2525E we should first set the channel to half band higher.
592 */
593 if (rt2x00_rf(rt2x00dev, RF2525E)) {
594 static const u32 vals[] = {
595 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
596 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
597 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
598 0x00000902, 0x00000906
599 };
600
601 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
602 if (rf->rf4)
603 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
604 }
605
606 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
607 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
608 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
609 if (rf->rf4)
610 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
611 }
612
rt2500usb_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)613 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
614 const int txpower)
615 {
616 u32 rf3;
617
618 rf3 = rt2x00_rf_read(rt2x00dev, 3);
619 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
620 rt2500usb_rf_write(rt2x00dev, 3, rf3);
621 }
622
rt2500usb_config_ps(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)623 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
624 struct rt2x00lib_conf *libconf)
625 {
626 enum dev_state state =
627 (libconf->conf->flags & IEEE80211_CONF_PS) ?
628 STATE_SLEEP : STATE_AWAKE;
629 u16 reg;
630
631 if (state == STATE_SLEEP) {
632 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
633 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON,
634 rt2x00dev->beacon_int - 20);
635 rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
636 libconf->conf->listen_interval - 1);
637
638 /* We must first disable autowake before it can be enabled */
639 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0);
640 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
641
642 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1);
643 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
644 } else {
645 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
646 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0);
647 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
648 }
649
650 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
651 }
652
rt2500usb_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)653 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
654 struct rt2x00lib_conf *libconf,
655 const unsigned int flags)
656 {
657 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
658 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
659 libconf->conf->power_level);
660 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
661 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
662 rt2500usb_config_txpower(rt2x00dev,
663 libconf->conf->power_level);
664 if (flags & IEEE80211_CONF_CHANGE_PS)
665 rt2500usb_config_ps(rt2x00dev, libconf);
666 }
667
668 /*
669 * Link tuning
670 */
rt2500usb_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)671 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
672 struct link_qual *qual)
673 {
674 u16 reg;
675
676 /*
677 * Update FCS error count from register.
678 */
679 reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
680 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
681
682 /*
683 * Update False CCA count from register.
684 */
685 reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
686 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
687 }
688
rt2500usb_reset_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)689 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
690 struct link_qual *qual)
691 {
692 u16 eeprom;
693 u16 value;
694
695 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
696 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
697 rt2500usb_bbp_write(rt2x00dev, 24, value);
698
699 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
700 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
701 rt2500usb_bbp_write(rt2x00dev, 25, value);
702
703 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
704 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
705 rt2500usb_bbp_write(rt2x00dev, 61, value);
706
707 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
708 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
709 rt2500usb_bbp_write(rt2x00dev, 17, value);
710
711 qual->vgc_level = value;
712 }
713
714 /*
715 * Queue handlers.
716 */
rt2500usb_start_queue(struct data_queue * queue)717 static void rt2500usb_start_queue(struct data_queue *queue)
718 {
719 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
720 u16 reg;
721
722 switch (queue->qid) {
723 case QID_RX:
724 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
725 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0);
726 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
727 break;
728 case QID_BEACON:
729 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
730 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1);
731 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1);
732 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1);
733 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
734 break;
735 default:
736 break;
737 }
738 }
739
rt2500usb_stop_queue(struct data_queue * queue)740 static void rt2500usb_stop_queue(struct data_queue *queue)
741 {
742 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
743 u16 reg;
744
745 switch (queue->qid) {
746 case QID_RX:
747 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
748 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1);
749 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
750 break;
751 case QID_BEACON:
752 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
753 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0);
754 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0);
755 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
756 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
757 break;
758 default:
759 break;
760 }
761 }
762
763 /*
764 * Initialization functions.
765 */
rt2500usb_init_registers(struct rt2x00_dev * rt2x00dev)766 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
767 {
768 u16 reg;
769
770 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
771 USB_MODE_TEST, REGISTER_TIMEOUT);
772 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
773 0x00f0, REGISTER_TIMEOUT);
774
775 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
776 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1);
777 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
778
779 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
780 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
781
782 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
783 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1);
784 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1);
785 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
786 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
787
788 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
789 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
790 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
791 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0);
792 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
793
794 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
795 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13);
796 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1);
797 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12);
798 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1);
799 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
800
801 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
802 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10);
803 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1);
804 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11);
805 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1);
806 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
807
808 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
809 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7);
810 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1);
811 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6);
812 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1);
813 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
814
815 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
816 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5);
817 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1);
818 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0);
819 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0);
820 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
821
822 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
823 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0);
824 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0);
825 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0);
826 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
827 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
828
829 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
830 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
831
832 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
833 return -EBUSY;
834
835 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
836 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0);
837 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0);
838 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1);
839 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
840
841 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
842 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
843 rt2x00_set_field16(®, PHY_CSR2_LNA, 0);
844 } else {
845 reg = 0;
846 rt2x00_set_field16(®, PHY_CSR2_LNA, 1);
847 rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3);
848 }
849 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
850
851 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
852 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
853 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
854 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
855
856 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
857 rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT,
858 rt2x00dev->rx->data_size);
859 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
860
861 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
862 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
863 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
864 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0);
865 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
866
867 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
868 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90);
869 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
870
871 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
872 rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1);
873 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
874
875 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
876 rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1);
877 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
878
879 return 0;
880 }
881
rt2500usb_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)882 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
883 {
884 unsigned int i;
885 u8 value;
886
887 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
888 value = rt2500usb_bbp_read(rt2x00dev, 0);
889 if ((value != 0xff) && (value != 0x00))
890 return 0;
891 udelay(REGISTER_BUSY_DELAY);
892 }
893
894 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
895 return -EACCES;
896 }
897
rt2500usb_init_bbp(struct rt2x00_dev * rt2x00dev)898 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
899 {
900 unsigned int i;
901 u16 eeprom;
902 u8 value;
903 u8 reg_id;
904
905 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
906 return -EACCES;
907
908 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
909 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
910 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
911 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
912 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
913 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
914 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
915 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
916 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
917 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
918 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
919 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
920 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
921 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
922 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
923 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
924 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
925 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
926 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
927 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
928 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
929 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
930 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
931 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
932 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
933 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
934 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
935 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
936 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
937 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
938 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
939
940 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
941 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
942
943 if (eeprom != 0xffff && eeprom != 0x0000) {
944 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
945 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
946 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
947 }
948 }
949
950 return 0;
951 }
952
953 /*
954 * Device state switch handlers.
955 */
rt2500usb_enable_radio(struct rt2x00_dev * rt2x00dev)956 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
957 {
958 /*
959 * Initialize all registers.
960 */
961 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
962 rt2500usb_init_bbp(rt2x00dev)))
963 return -EIO;
964
965 return 0;
966 }
967
rt2500usb_disable_radio(struct rt2x00_dev * rt2x00dev)968 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
969 {
970 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
971 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
972
973 /*
974 * Disable synchronisation.
975 */
976 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
977
978 rt2x00usb_disable_radio(rt2x00dev);
979 }
980
rt2500usb_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)981 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
982 enum dev_state state)
983 {
984 u16 reg;
985 u16 reg2;
986 unsigned int i;
987 bool put_to_sleep;
988 u8 bbp_state;
989 u8 rf_state;
990
991 put_to_sleep = (state != STATE_AWAKE);
992
993 reg = 0;
994 rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state);
995 rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state);
996 rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
997 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
998 rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1);
999 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1000
1001 /*
1002 * Device is not guaranteed to be in the requested state yet.
1003 * We must wait until the register indicates that the
1004 * device has entered the correct state.
1005 */
1006 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1007 reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1008 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1009 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1010 if (bbp_state == state && rf_state == state)
1011 return 0;
1012 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013 msleep(30);
1014 }
1015
1016 return -EBUSY;
1017 }
1018
rt2500usb_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1019 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1020 enum dev_state state)
1021 {
1022 int retval = 0;
1023
1024 switch (state) {
1025 case STATE_RADIO_ON:
1026 retval = rt2500usb_enable_radio(rt2x00dev);
1027 break;
1028 case STATE_RADIO_OFF:
1029 rt2500usb_disable_radio(rt2x00dev);
1030 break;
1031 case STATE_RADIO_IRQ_ON:
1032 case STATE_RADIO_IRQ_OFF:
1033 /* No support, but no error either */
1034 break;
1035 case STATE_DEEP_SLEEP:
1036 case STATE_SLEEP:
1037 case STATE_STANDBY:
1038 case STATE_AWAKE:
1039 retval = rt2500usb_set_state(rt2x00dev, state);
1040 break;
1041 default:
1042 retval = -ENOTSUPP;
1043 break;
1044 }
1045
1046 if (unlikely(retval))
1047 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1048 state, retval);
1049
1050 return retval;
1051 }
1052
1053 /*
1054 * TX descriptor initialization
1055 */
rt2500usb_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)1056 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1057 struct txentry_desc *txdesc)
1058 {
1059 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1060 __le32 *txd = (__le32 *) entry->skb->data;
1061 u32 word;
1062
1063 /*
1064 * Start writing the descriptor words.
1065 */
1066 word = rt2x00_desc_read(txd, 0);
1067 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1068 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070 rt2x00_set_field32(&word, TXD_W0_ACK,
1071 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074 rt2x00_set_field32(&word, TXD_W0_OFDM,
1075 (txdesc->rate_mode == RATE_MODE_OFDM));
1076 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1078 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1079 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1080 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1081 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1082 rt2x00_desc_write(txd, 0, word);
1083
1084 word = rt2x00_desc_read(txd, 1);
1085 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1086 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1087 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1088 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1089 rt2x00_desc_write(txd, 1, word);
1090
1091 word = rt2x00_desc_read(txd, 2);
1092 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1093 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1094 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1095 txdesc->u.plcp.length_low);
1096 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1097 txdesc->u.plcp.length_high);
1098 rt2x00_desc_write(txd, 2, word);
1099
1100 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1101 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1102 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1103 }
1104
1105 /*
1106 * Register descriptor details in skb frame descriptor.
1107 */
1108 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1109 skbdesc->desc = txd;
1110 skbdesc->desc_len = TXD_DESC_SIZE;
1111 }
1112
1113 /*
1114 * TX data initialization
1115 */
1116 static void rt2500usb_beacondone(struct urb *urb);
1117
rt2500usb_write_beacon(struct queue_entry * entry,struct txentry_desc * txdesc)1118 static void rt2500usb_write_beacon(struct queue_entry *entry,
1119 struct txentry_desc *txdesc)
1120 {
1121 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1122 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1123 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1124 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1125 int length;
1126 u16 reg, reg0;
1127
1128 /*
1129 * Disable beaconing while we are reloading the beacon data,
1130 * otherwise we might be sending out invalid data.
1131 */
1132 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1133 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0);
1134 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1135
1136 /*
1137 * Add space for the descriptor in front of the skb.
1138 */
1139 skb_push(entry->skb, TXD_DESC_SIZE);
1140 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1141
1142 /*
1143 * Write the TX descriptor for the beacon.
1144 */
1145 rt2500usb_write_tx_desc(entry, txdesc);
1146
1147 /*
1148 * Dump beacon to userspace through debugfs.
1149 */
1150 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1151
1152 /*
1153 * USB devices cannot blindly pass the skb->len as the
1154 * length of the data to usb_fill_bulk_urb. Pass the skb
1155 * to the driver to determine what the length should be.
1156 */
1157 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1158
1159 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1160 entry->skb->data, length, rt2500usb_beacondone,
1161 entry);
1162
1163 /*
1164 * Second we need to create the guardian byte.
1165 * We only need a single byte, so lets recycle
1166 * the 'flags' field we are not using for beacons.
1167 */
1168 bcn_priv->guardian_data = 0;
1169 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1170 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1171 entry);
1172
1173 /*
1174 * Send out the guardian byte.
1175 */
1176 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1177
1178 /*
1179 * Enable beaconing again.
1180 */
1181 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1);
1182 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1);
1183 reg0 = reg;
1184 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1);
1185 /*
1186 * Beacon generation will fail initially.
1187 * To prevent this we need to change the TXRX_CSR19
1188 * register several times (reg0 is the same as reg
1189 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1190 * and 1 in reg).
1191 */
1192 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1193 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1194 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1195 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1196 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1197 }
1198
rt2500usb_get_tx_data_len(struct queue_entry * entry)1199 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1200 {
1201 int length;
1202
1203 /*
1204 * The length _must_ be a multiple of 2,
1205 * but it must _not_ be a multiple of the USB packet size.
1206 */
1207 length = roundup(entry->skb->len, 2);
1208 length += (2 * !(length % entry->queue->usb_maxpacket));
1209
1210 return length;
1211 }
1212
1213 /*
1214 * RX control handlers
1215 */
rt2500usb_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1216 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1217 struct rxdone_entry_desc *rxdesc)
1218 {
1219 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1220 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1221 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1222 __le32 *rxd =
1223 (__le32 *)(entry->skb->data +
1224 (entry_priv->urb->actual_length -
1225 entry->queue->desc_size));
1226 u32 word0;
1227 u32 word1;
1228
1229 /*
1230 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1231 * frame data in rt2x00usb.
1232 */
1233 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1234 rxd = (__le32 *)skbdesc->desc;
1235
1236 /*
1237 * It is now safe to read the descriptor on all architectures.
1238 */
1239 word0 = rt2x00_desc_read(rxd, 0);
1240 word1 = rt2x00_desc_read(rxd, 1);
1241
1242 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1243 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1244 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1245 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1246
1247 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1248 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1249 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1250
1251 if (rxdesc->cipher != CIPHER_NONE) {
1252 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1253 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1254 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1255
1256 /* ICV is located at the end of frame */
1257
1258 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1259 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1260 rxdesc->flags |= RX_FLAG_DECRYPTED;
1261 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1262 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1263 }
1264
1265 /*
1266 * Obtain the status about this packet.
1267 * When frame was received with an OFDM bitrate,
1268 * the signal is the PLCP value. If it was received with
1269 * a CCK bitrate the signal is the rate in 100kbit/s.
1270 */
1271 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1272 rxdesc->rssi =
1273 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1274 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1275
1276 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1277 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1278 else
1279 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1280 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1281 rxdesc->dev_flags |= RXDONE_MY_BSS;
1282
1283 /*
1284 * Adjust the skb memory window to the frame boundaries.
1285 */
1286 skb_trim(entry->skb, rxdesc->size);
1287 }
1288
1289 /*
1290 * Interrupt functions.
1291 */
rt2500usb_beacondone(struct urb * urb)1292 static void rt2500usb_beacondone(struct urb *urb)
1293 {
1294 struct queue_entry *entry = (struct queue_entry *)urb->context;
1295 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1296
1297 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1298 return;
1299
1300 /*
1301 * Check if this was the guardian beacon,
1302 * if that was the case we need to send the real beacon now.
1303 * Otherwise we should free the sk_buffer, the device
1304 * should be doing the rest of the work now.
1305 */
1306 if (bcn_priv->guardian_urb == urb) {
1307 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1308 } else if (bcn_priv->urb == urb) {
1309 dev_kfree_skb(entry->skb);
1310 entry->skb = NULL;
1311 }
1312 }
1313
1314 /*
1315 * Device probe functions.
1316 */
rt2500usb_validate_eeprom(struct rt2x00_dev * rt2x00dev)1317 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1318 {
1319 u16 word;
1320 u8 *mac;
1321 u8 bbp;
1322
1323 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1324
1325 /*
1326 * Start validation of the data that has been read.
1327 */
1328 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1329 rt2x00lib_set_mac_address(rt2x00dev, mac);
1330
1331 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1332 if (word == 0xffff) {
1333 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1334 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1335 ANTENNA_SW_DIVERSITY);
1336 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1337 ANTENNA_SW_DIVERSITY);
1338 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1339 LED_MODE_DEFAULT);
1340 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1341 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1342 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1343 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1344 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1345 }
1346
1347 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1348 if (word == 0xffff) {
1349 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1350 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1351 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1352 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1353 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1354 }
1355
1356 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1357 if (word == 0xffff) {
1358 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1359 DEFAULT_RSSI_OFFSET);
1360 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1361 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1362 word);
1363 }
1364
1365 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1366 if (word == 0xffff) {
1367 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1368 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1369 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1370 }
1371
1372 /*
1373 * Switch lower vgc bound to current BBP R17 value,
1374 * lower the value a bit for better quality.
1375 */
1376 bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1377 bbp -= 6;
1378
1379 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1380 if (word == 0xffff) {
1381 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1382 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1383 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1384 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1385 } else {
1386 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1387 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1388 }
1389
1390 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1391 if (word == 0xffff) {
1392 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1393 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1394 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1395 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1396 }
1397
1398 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1399 if (word == 0xffff) {
1400 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1401 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1402 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1403 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1404 }
1405
1406 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1407 if (word == 0xffff) {
1408 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1409 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1410 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1411 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1412 }
1413
1414 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1415 if (word == 0xffff) {
1416 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1417 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1418 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1419 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1420 }
1421
1422 return 0;
1423 }
1424
rt2500usb_init_eeprom(struct rt2x00_dev * rt2x00dev)1425 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1426 {
1427 u16 reg;
1428 u16 value;
1429 u16 eeprom;
1430
1431 /*
1432 * Read EEPROM word for configuration.
1433 */
1434 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1435
1436 /*
1437 * Identify RF chipset.
1438 */
1439 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1440 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1441 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1442
1443 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1444 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1445 return -ENODEV;
1446 }
1447
1448 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1449 !rt2x00_rf(rt2x00dev, RF2523) &&
1450 !rt2x00_rf(rt2x00dev, RF2524) &&
1451 !rt2x00_rf(rt2x00dev, RF2525) &&
1452 !rt2x00_rf(rt2x00dev, RF2525E) &&
1453 !rt2x00_rf(rt2x00dev, RF5222)) {
1454 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1455 return -ENODEV;
1456 }
1457
1458 /*
1459 * Identify default antenna configuration.
1460 */
1461 rt2x00dev->default_ant.tx =
1462 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1463 rt2x00dev->default_ant.rx =
1464 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1465
1466 /*
1467 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1468 * I am not 100% sure about this, but the legacy drivers do not
1469 * indicate antenna swapping in software is required when
1470 * diversity is enabled.
1471 */
1472 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1473 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1474 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1475 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1476
1477 /*
1478 * Store led mode, for correct led behaviour.
1479 */
1480 #ifdef CONFIG_RT2X00_LIB_LEDS
1481 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1482
1483 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1484 if (value == LED_MODE_TXRX_ACTIVITY ||
1485 value == LED_MODE_DEFAULT ||
1486 value == LED_MODE_ASUS)
1487 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1488 LED_TYPE_ACTIVITY);
1489 #endif /* CONFIG_RT2X00_LIB_LEDS */
1490
1491 /*
1492 * Detect if this device has an hardware controlled radio.
1493 */
1494 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1495 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1496
1497 /*
1498 * Read the RSSI <-> dBm offset information.
1499 */
1500 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1501 rt2x00dev->rssi_offset =
1502 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1503
1504 return 0;
1505 }
1506
1507 /*
1508 * RF value list for RF2522
1509 * Supports: 2.4 GHz
1510 */
1511 static const struct rf_channel rf_vals_bg_2522[] = {
1512 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1513 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1514 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1515 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1516 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1517 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1518 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1519 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1520 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1521 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1522 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1523 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1524 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1525 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1526 };
1527
1528 /*
1529 * RF value list for RF2523
1530 * Supports: 2.4 GHz
1531 */
1532 static const struct rf_channel rf_vals_bg_2523[] = {
1533 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1534 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1535 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1536 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1537 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1538 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1539 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1540 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1541 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1542 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1543 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1544 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1545 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1546 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1547 };
1548
1549 /*
1550 * RF value list for RF2524
1551 * Supports: 2.4 GHz
1552 */
1553 static const struct rf_channel rf_vals_bg_2524[] = {
1554 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1555 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1556 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1557 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1558 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1559 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1560 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1561 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1562 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1563 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1564 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1565 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1566 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1567 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1568 };
1569
1570 /*
1571 * RF value list for RF2525
1572 * Supports: 2.4 GHz
1573 */
1574 static const struct rf_channel rf_vals_bg_2525[] = {
1575 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1576 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1577 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1578 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1579 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1580 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1581 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1582 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1583 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1584 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1585 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1586 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1587 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1588 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1589 };
1590
1591 /*
1592 * RF value list for RF2525e
1593 * Supports: 2.4 GHz
1594 */
1595 static const struct rf_channel rf_vals_bg_2525e[] = {
1596 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1597 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1598 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1599 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1600 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1601 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1602 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1603 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1604 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1605 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1606 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1607 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1608 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1609 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1610 };
1611
1612 /*
1613 * RF value list for RF5222
1614 * Supports: 2.4 GHz & 5.2 GHz
1615 */
1616 static const struct rf_channel rf_vals_5222[] = {
1617 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1618 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1619 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1620 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1621 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1622 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1623 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1624 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1625 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1626 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1627 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1628 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1629 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1630 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1631
1632 /* 802.11 UNI / HyperLan 2 */
1633 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1634 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1635 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1636 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1637 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1638 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1639 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1640 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1641
1642 /* 802.11 HyperLan 2 */
1643 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1644 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1645 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1646 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1647 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1648 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1649 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1650 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1651 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1652 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1653
1654 /* 802.11 UNII */
1655 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1656 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1657 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1658 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1659 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1660 };
1661
rt2500usb_probe_hw_mode(struct rt2x00_dev * rt2x00dev)1662 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1663 {
1664 struct hw_mode_spec *spec = &rt2x00dev->spec;
1665 struct channel_info *info;
1666 u8 *tx_power;
1667 unsigned int i;
1668
1669 /*
1670 * Initialize all hw fields.
1671 *
1672 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1673 * capable of sending the buffered frames out after the DTIM
1674 * transmission using rt2x00lib_beacondone. This will send out
1675 * multicast and broadcast traffic immediately instead of buffering it
1676 * infinitly and thus dropping it after some time.
1677 */
1678 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1679 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1680 ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1681 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1682
1683 /*
1684 * Disable powersaving as default.
1685 */
1686 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1687
1688 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1689 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1690 rt2x00_eeprom_addr(rt2x00dev,
1691 EEPROM_MAC_ADDR_0));
1692
1693 /*
1694 * Initialize hw_mode information.
1695 */
1696 spec->supported_bands = SUPPORT_BAND_2GHZ;
1697 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1698
1699 if (rt2x00_rf(rt2x00dev, RF2522)) {
1700 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1701 spec->channels = rf_vals_bg_2522;
1702 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1703 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1704 spec->channels = rf_vals_bg_2523;
1705 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1706 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1707 spec->channels = rf_vals_bg_2524;
1708 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1709 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1710 spec->channels = rf_vals_bg_2525;
1711 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1712 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1713 spec->channels = rf_vals_bg_2525e;
1714 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1715 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1716 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1717 spec->channels = rf_vals_5222;
1718 }
1719
1720 /*
1721 * Create channel information array
1722 */
1723 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1724 if (!info)
1725 return -ENOMEM;
1726
1727 spec->channels_info = info;
1728
1729 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1730 for (i = 0; i < 14; i++) {
1731 info[i].max_power = MAX_TXPOWER;
1732 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1733 }
1734
1735 if (spec->num_channels > 14) {
1736 for (i = 14; i < spec->num_channels; i++) {
1737 info[i].max_power = MAX_TXPOWER;
1738 info[i].default_power1 = DEFAULT_TXPOWER;
1739 }
1740 }
1741
1742 return 0;
1743 }
1744
rt2500usb_probe_hw(struct rt2x00_dev * rt2x00dev)1745 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1746 {
1747 int retval;
1748 u16 reg;
1749
1750 /*
1751 * Allocate eeprom data.
1752 */
1753 retval = rt2500usb_validate_eeprom(rt2x00dev);
1754 if (retval)
1755 return retval;
1756
1757 retval = rt2500usb_init_eeprom(rt2x00dev);
1758 if (retval)
1759 return retval;
1760
1761 /*
1762 * Enable rfkill polling by setting GPIO direction of the
1763 * rfkill switch GPIO pin correctly.
1764 */
1765 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1766 rt2x00_set_field16(®, MAC_CSR19_DIR0, 0);
1767 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1768
1769 /*
1770 * Initialize hw specifications.
1771 */
1772 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1773 if (retval)
1774 return retval;
1775
1776 /*
1777 * This device requires the atim queue
1778 */
1779 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1780 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1781 if (!modparam_nohwcrypt) {
1782 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1783 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1784 }
1785 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1786 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1787
1788 /*
1789 * Set the rssi offset.
1790 */
1791 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1792
1793 return 0;
1794 }
1795
1796 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1797 .tx = rt2x00mac_tx,
1798 .wake_tx_queue = ieee80211_handle_wake_tx_queue,
1799 .start = rt2x00mac_start,
1800 .stop = rt2x00mac_stop,
1801 .add_interface = rt2x00mac_add_interface,
1802 .remove_interface = rt2x00mac_remove_interface,
1803 .config = rt2x00mac_config,
1804 .configure_filter = rt2x00mac_configure_filter,
1805 .set_tim = rt2x00mac_set_tim,
1806 .set_key = rt2x00mac_set_key,
1807 .sw_scan_start = rt2x00mac_sw_scan_start,
1808 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1809 .get_stats = rt2x00mac_get_stats,
1810 .bss_info_changed = rt2x00mac_bss_info_changed,
1811 .conf_tx = rt2x00mac_conf_tx,
1812 .rfkill_poll = rt2x00mac_rfkill_poll,
1813 .flush = rt2x00mac_flush,
1814 .set_antenna = rt2x00mac_set_antenna,
1815 .get_antenna = rt2x00mac_get_antenna,
1816 .get_ringparam = rt2x00mac_get_ringparam,
1817 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1818 };
1819
1820 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1821 .probe_hw = rt2500usb_probe_hw,
1822 .initialize = rt2x00usb_initialize,
1823 .uninitialize = rt2x00usb_uninitialize,
1824 .clear_entry = rt2x00usb_clear_entry,
1825 .set_device_state = rt2500usb_set_device_state,
1826 .rfkill_poll = rt2500usb_rfkill_poll,
1827 .link_stats = rt2500usb_link_stats,
1828 .reset_tuner = rt2500usb_reset_tuner,
1829 .watchdog = rt2x00usb_watchdog,
1830 .start_queue = rt2500usb_start_queue,
1831 .kick_queue = rt2x00usb_kick_queue,
1832 .stop_queue = rt2500usb_stop_queue,
1833 .flush_queue = rt2x00usb_flush_queue,
1834 .write_tx_desc = rt2500usb_write_tx_desc,
1835 .write_beacon = rt2500usb_write_beacon,
1836 .get_tx_data_len = rt2500usb_get_tx_data_len,
1837 .fill_rxdone = rt2500usb_fill_rxdone,
1838 .config_shared_key = rt2500usb_config_key,
1839 .config_pairwise_key = rt2500usb_config_key,
1840 .config_filter = rt2500usb_config_filter,
1841 .config_intf = rt2500usb_config_intf,
1842 .config_erp = rt2500usb_config_erp,
1843 .config_ant = rt2500usb_config_ant,
1844 .config = rt2500usb_config,
1845 };
1846
rt2500usb_queue_init(struct data_queue * queue)1847 static void rt2500usb_queue_init(struct data_queue *queue)
1848 {
1849 switch (queue->qid) {
1850 case QID_RX:
1851 queue->limit = 32;
1852 queue->data_size = DATA_FRAME_SIZE;
1853 queue->desc_size = RXD_DESC_SIZE;
1854 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1855 break;
1856
1857 case QID_AC_VO:
1858 case QID_AC_VI:
1859 case QID_AC_BE:
1860 case QID_AC_BK:
1861 queue->limit = 32;
1862 queue->data_size = DATA_FRAME_SIZE;
1863 queue->desc_size = TXD_DESC_SIZE;
1864 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1865 break;
1866
1867 case QID_BEACON:
1868 queue->limit = 1;
1869 queue->data_size = MGMT_FRAME_SIZE;
1870 queue->desc_size = TXD_DESC_SIZE;
1871 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1872 break;
1873
1874 case QID_ATIM:
1875 queue->limit = 8;
1876 queue->data_size = DATA_FRAME_SIZE;
1877 queue->desc_size = TXD_DESC_SIZE;
1878 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1879 break;
1880
1881 default:
1882 BUG();
1883 break;
1884 }
1885 }
1886
1887 static const struct rt2x00_ops rt2500usb_ops = {
1888 .name = KBUILD_MODNAME,
1889 .max_ap_intf = 1,
1890 .eeprom_size = EEPROM_SIZE,
1891 .rf_size = RF_SIZE,
1892 .tx_queues = NUM_TX_QUEUES,
1893 .queue_init = rt2500usb_queue_init,
1894 .lib = &rt2500usb_rt2x00_ops,
1895 .hw = &rt2500usb_mac80211_ops,
1896 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1897 .debugfs = &rt2500usb_rt2x00debug,
1898 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1899 };
1900
1901 /*
1902 * rt2500usb module information.
1903 */
1904 static const struct usb_device_id rt2500usb_device_table[] = {
1905 /* ASUS */
1906 { USB_DEVICE(0x0b05, 0x1706) },
1907 { USB_DEVICE(0x0b05, 0x1707) },
1908 /* Belkin */
1909 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1910 { USB_DEVICE(0x050d, 0x7051) },
1911 /* Cisco Systems */
1912 { USB_DEVICE(0x13b1, 0x000d) },
1913 { USB_DEVICE(0x13b1, 0x0011) },
1914 { USB_DEVICE(0x13b1, 0x001a) },
1915 /* Conceptronic */
1916 { USB_DEVICE(0x14b2, 0x3c02) },
1917 /* D-LINK */
1918 { USB_DEVICE(0x2001, 0x3c00) },
1919 /* Gigabyte */
1920 { USB_DEVICE(0x1044, 0x8001) },
1921 { USB_DEVICE(0x1044, 0x8007) },
1922 /* Hercules */
1923 { USB_DEVICE(0x06f8, 0xe000) },
1924 /* Melco */
1925 { USB_DEVICE(0x0411, 0x005e) },
1926 { USB_DEVICE(0x0411, 0x0066) },
1927 { USB_DEVICE(0x0411, 0x0067) },
1928 { USB_DEVICE(0x0411, 0x008b) },
1929 { USB_DEVICE(0x0411, 0x0097) },
1930 /* MSI */
1931 { USB_DEVICE(0x0db0, 0x6861) },
1932 { USB_DEVICE(0x0db0, 0x6865) },
1933 { USB_DEVICE(0x0db0, 0x6869) },
1934 /* Ralink */
1935 { USB_DEVICE(0x148f, 0x1706) },
1936 { USB_DEVICE(0x148f, 0x2570) },
1937 { USB_DEVICE(0x148f, 0x9020) },
1938 /* Sagem */
1939 { USB_DEVICE(0x079b, 0x004b) },
1940 /* Siemens */
1941 { USB_DEVICE(0x0681, 0x3c06) },
1942 /* SMC */
1943 { USB_DEVICE(0x0707, 0xee13) },
1944 /* Spairon */
1945 { USB_DEVICE(0x114b, 0x0110) },
1946 /* SURECOM */
1947 { USB_DEVICE(0x0769, 0x11f3) },
1948 /* Trust */
1949 { USB_DEVICE(0x0eb0, 0x9020) },
1950 /* VTech */
1951 { USB_DEVICE(0x0f88, 0x3012) },
1952 /* Zinwell */
1953 { USB_DEVICE(0x5a57, 0x0260) },
1954 { 0, }
1955 };
1956
1957 MODULE_AUTHOR(DRV_PROJECT);
1958 MODULE_VERSION(DRV_VERSION);
1959 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1960 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1961 MODULE_LICENSE("GPL");
1962
rt2500usb_probe(struct usb_interface * usb_intf,const struct usb_device_id * id)1963 static int rt2500usb_probe(struct usb_interface *usb_intf,
1964 const struct usb_device_id *id)
1965 {
1966 return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1967 }
1968
1969 static struct usb_driver rt2500usb_driver = {
1970 .name = KBUILD_MODNAME,
1971 .id_table = rt2500usb_device_table,
1972 .probe = rt2500usb_probe,
1973 .disconnect = rt2x00usb_disconnect,
1974 .suspend = rt2x00usb_suspend,
1975 .resume = rt2x00usb_resume,
1976 .reset_resume = rt2x00usb_resume,
1977 .disable_hub_initiated_lpm = 1,
1978 };
1979
1980 module_usb_driver(rt2500usb_driver);
1981