1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500pci
21 	Abstract: rt2500pci device specific routines.
22 	Supported chipsets: RT2560.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
37 
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2x00mmio_register_read and rt2x00mmio_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55 
56 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 				const unsigned int word, const u8 value)
58 {
59 	u32 reg;
60 
61 	mutex_lock(&rt2x00dev->csr_mutex);
62 
63 	/*
64 	 * Wait until the BBP becomes available, afterwards we
65 	 * can safely write the new data into the register.
66 	 */
67 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 		reg = 0;
69 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73 
74 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 	}
76 
77 	mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79 
80 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 			       const unsigned int word, u8 *value)
82 {
83 	u32 reg;
84 
85 	mutex_lock(&rt2x00dev->csr_mutex);
86 
87 	/*
88 	 * Wait until the BBP becomes available, afterwards we
89 	 * can safely write the read request into the register.
90 	 * After the data has been written, we wait until hardware
91 	 * returns the correct value, if at any time the register
92 	 * doesn't become available in time, reg will be 0xffffffff
93 	 * which means we return 0xff to the caller.
94 	 */
95 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96 		reg = 0;
97 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100 
101 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102 
103 		WAIT_FOR_BBP(rt2x00dev, &reg);
104 	}
105 
106 	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107 
108 	mutex_unlock(&rt2x00dev->csr_mutex);
109 }
110 
111 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
112 			       const unsigned int word, const u32 value)
113 {
114 	u32 reg;
115 
116 	mutex_lock(&rt2x00dev->csr_mutex);
117 
118 	/*
119 	 * Wait until the RF becomes available, afterwards we
120 	 * can safely write the new data into the register.
121 	 */
122 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123 		reg = 0;
124 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128 
129 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130 		rt2x00_rf_write(rt2x00dev, word, value);
131 	}
132 
133 	mutex_unlock(&rt2x00dev->csr_mutex);
134 }
135 
136 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137 {
138 	struct rt2x00_dev *rt2x00dev = eeprom->data;
139 	u32 reg;
140 
141 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142 
143 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145 	eeprom->reg_data_clock =
146 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147 	eeprom->reg_chip_select =
148 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149 }
150 
151 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152 {
153 	struct rt2x00_dev *rt2x00dev = eeprom->data;
154 	u32 reg = 0;
155 
156 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159 			   !!eeprom->reg_data_clock);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161 			   !!eeprom->reg_chip_select);
162 
163 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 }
165 
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static const struct rt2x00debug rt2500pci_rt2x00debug = {
168 	.owner	= THIS_MODULE,
169 	.csr	= {
170 		.read		= rt2x00mmio_register_read,
171 		.write		= rt2x00mmio_register_write,
172 		.flags		= RT2X00DEBUGFS_OFFSET,
173 		.word_base	= CSR_REG_BASE,
174 		.word_size	= sizeof(u32),
175 		.word_count	= CSR_REG_SIZE / sizeof(u32),
176 	},
177 	.eeprom	= {
178 		.read		= rt2x00_eeprom_read,
179 		.write		= rt2x00_eeprom_write,
180 		.word_base	= EEPROM_BASE,
181 		.word_size	= sizeof(u16),
182 		.word_count	= EEPROM_SIZE / sizeof(u16),
183 	},
184 	.bbp	= {
185 		.read		= rt2500pci_bbp_read,
186 		.write		= rt2500pci_bbp_write,
187 		.word_base	= BBP_BASE,
188 		.word_size	= sizeof(u8),
189 		.word_count	= BBP_SIZE / sizeof(u8),
190 	},
191 	.rf	= {
192 		.read		= rt2x00_rf_read,
193 		.write		= rt2500pci_rf_write,
194 		.word_base	= RF_BASE,
195 		.word_size	= sizeof(u32),
196 		.word_count	= RF_SIZE / sizeof(u32),
197 	},
198 };
199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
200 
201 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
202 {
203 	u32 reg;
204 
205 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207 }
208 
209 #ifdef CONFIG_RT2X00_LIB_LEDS
210 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
211 				     enum led_brightness brightness)
212 {
213 	struct rt2x00_led *led =
214 	    container_of(led_cdev, struct rt2x00_led, led_dev);
215 	unsigned int enabled = brightness != LED_OFF;
216 	u32 reg;
217 
218 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219 
220 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222 	else if (led->type == LED_TYPE_ACTIVITY)
223 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224 
225 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226 }
227 
228 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
229 			       unsigned long *delay_on,
230 			       unsigned long *delay_off)
231 {
232 	struct rt2x00_led *led =
233 	    container_of(led_cdev, struct rt2x00_led, led_dev);
234 	u32 reg;
235 
236 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
238 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240 
241 	return 0;
242 }
243 
244 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
245 			       struct rt2x00_led *led,
246 			       enum led_type type)
247 {
248 	led->rt2x00dev = rt2x00dev;
249 	led->type = type;
250 	led->led_dev.brightness_set = rt2500pci_brightness_set;
251 	led->led_dev.blink_set = rt2500pci_blink_set;
252 	led->flags = LED_INITIALIZED;
253 }
254 #endif /* CONFIG_RT2X00_LIB_LEDS */
255 
256 /*
257  * Configuration handlers.
258  */
259 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
260 				    const unsigned int filter_flags)
261 {
262 	u32 reg;
263 
264 	/*
265 	 * Start configuration steps.
266 	 * Note that the version error will always be dropped
267 	 * and broadcast frames will always be accepted since
268 	 * there is no filter for it at this time.
269 	 */
270 	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
271 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272 			   !(filter_flags & FIF_FCSFAIL));
273 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274 			   !(filter_flags & FIF_PLCPFAIL));
275 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276 			   !(filter_flags & FIF_CONTROL));
277 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
278 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
279 			   !rt2x00dev->intf_ap_count);
280 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
281 	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
282 			   !(filter_flags & FIF_ALLMULTI));
283 	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
284 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
285 }
286 
287 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
288 				  struct rt2x00_intf *intf,
289 				  struct rt2x00intf_conf *conf,
290 				  const unsigned int flags)
291 {
292 	struct data_queue *queue = rt2x00dev->bcn;
293 	unsigned int bcn_preload;
294 	u32 reg;
295 
296 	if (flags & CONFIG_UPDATE_TYPE) {
297 		/*
298 		 * Enable beacon config
299 		 */
300 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
301 		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
302 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
303 		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
304 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
305 
306 		/*
307 		 * Enable synchronisation.
308 		 */
309 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
310 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
311 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
312 	}
313 
314 	if (flags & CONFIG_UPDATE_MAC)
315 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
316 					      conf->mac, sizeof(conf->mac));
317 
318 	if (flags & CONFIG_UPDATE_BSSID)
319 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
320 					      conf->bssid, sizeof(conf->bssid));
321 }
322 
323 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 				 struct rt2x00lib_erp *erp,
325 				 u32 changed)
326 {
327 	int preamble_mask;
328 	u32 reg;
329 
330 	/*
331 	 * When short preamble is enabled, we should set bit 0x08
332 	 */
333 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334 		preamble_mask = erp->short_preamble << 3;
335 
336 		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
337 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
338 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
339 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
342 
343 		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
344 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347 				   GET_DURATION(ACK_SIZE, 10));
348 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
349 
350 		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
351 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354 				   GET_DURATION(ACK_SIZE, 20));
355 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
356 
357 		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
358 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361 				   GET_DURATION(ACK_SIZE, 55));
362 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
363 
364 		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
365 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368 				   GET_DURATION(ACK_SIZE, 110));
369 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
370 	}
371 
372 	if (changed & BSS_CHANGED_BASIC_RATES)
373 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374 
375 	if (changed & BSS_CHANGED_ERP_SLOT) {
376 		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
377 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
379 
380 		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
381 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
384 
385 		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
386 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
389 	}
390 
391 	if (changed & BSS_CHANGED_BEACON_INT) {
392 		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
393 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394 				   erp->beacon_int * 16);
395 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396 				   erp->beacon_int * 16);
397 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
398 	}
399 
400 }
401 
402 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
403 				 struct antenna_setup *ant)
404 {
405 	u32 reg;
406 	u8 r14;
407 	u8 r2;
408 
409 	/*
410 	 * We should never come here because rt2x00lib is supposed
411 	 * to catch this and send us the correct antenna explicitely.
412 	 */
413 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
414 	       ant->tx == ANTENNA_SW_DIVERSITY);
415 
416 	rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
417 	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
418 	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
419 
420 	/*
421 	 * Configure the TX antenna.
422 	 */
423 	switch (ant->tx) {
424 	case ANTENNA_A:
425 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
426 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
427 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
428 		break;
429 	case ANTENNA_B:
430 	default:
431 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
432 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
433 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
434 		break;
435 	}
436 
437 	/*
438 	 * Configure the RX antenna.
439 	 */
440 	switch (ant->rx) {
441 	case ANTENNA_A:
442 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
443 		break;
444 	case ANTENNA_B:
445 	default:
446 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
447 		break;
448 	}
449 
450 	/*
451 	 * RT2525E and RT5222 need to flip TX I/Q
452 	 */
453 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
454 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
455 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
456 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
457 
458 		/*
459 		 * RT2525E does not need RX I/Q Flip.
460 		 */
461 		if (rt2x00_rf(rt2x00dev, RF2525E))
462 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
463 	} else {
464 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
465 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
466 	}
467 
468 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
469 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
470 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
471 }
472 
473 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
474 				     struct rf_channel *rf, const int txpower)
475 {
476 	u8 r70;
477 
478 	/*
479 	 * Set TXpower.
480 	 */
481 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
482 
483 	/*
484 	 * Switch on tuning bits.
485 	 * For RT2523 devices we do not need to update the R1 register.
486 	 */
487 	if (!rt2x00_rf(rt2x00dev, RF2523))
488 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
489 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
490 
491 	/*
492 	 * For RT2525 we should first set the channel to half band higher.
493 	 */
494 	if (rt2x00_rf(rt2x00dev, RF2525)) {
495 		static const u32 vals[] = {
496 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
497 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
498 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
499 			0x00080d2e, 0x00080d3a
500 		};
501 
502 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
503 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
504 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
505 		if (rf->rf4)
506 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
507 	}
508 
509 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
510 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
511 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
512 	if (rf->rf4)
513 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
514 
515 	/*
516 	 * Channel 14 requires the Japan filter bit to be set.
517 	 */
518 	r70 = 0x46;
519 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
520 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
521 
522 	msleep(1);
523 
524 	/*
525 	 * Switch off tuning bits.
526 	 * For RT2523 devices we do not need to update the R1 register.
527 	 */
528 	if (!rt2x00_rf(rt2x00dev, RF2523)) {
529 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
530 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
531 	}
532 
533 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
534 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
535 
536 	/*
537 	 * Clear false CRC during channel switch.
538 	 */
539 	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
540 }
541 
542 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
543 				     const int txpower)
544 {
545 	u32 rf3;
546 
547 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
548 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
549 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
550 }
551 
552 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
553 					 struct rt2x00lib_conf *libconf)
554 {
555 	u32 reg;
556 
557 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
558 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
559 			   libconf->conf->long_frame_max_tx_count);
560 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
561 			   libconf->conf->short_frame_max_tx_count);
562 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
563 }
564 
565 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
566 				struct rt2x00lib_conf *libconf)
567 {
568 	enum dev_state state =
569 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
570 		STATE_SLEEP : STATE_AWAKE;
571 	u32 reg;
572 
573 	if (state == STATE_SLEEP) {
574 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
575 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
576 				   (rt2x00dev->beacon_int - 20) * 16);
577 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
578 				   libconf->conf->listen_interval - 1);
579 
580 		/* We must first disable autowake before it can be enabled */
581 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
582 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
583 
584 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
585 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
586 	} else {
587 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
588 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
589 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
590 	}
591 
592 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
593 }
594 
595 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
596 			     struct rt2x00lib_conf *libconf,
597 			     const unsigned int flags)
598 {
599 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
600 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
601 					 libconf->conf->power_level);
602 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
603 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
604 		rt2500pci_config_txpower(rt2x00dev,
605 					 libconf->conf->power_level);
606 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
607 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
608 	if (flags & IEEE80211_CONF_CHANGE_PS)
609 		rt2500pci_config_ps(rt2x00dev, libconf);
610 }
611 
612 /*
613  * Link tuning
614  */
615 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
616 				 struct link_qual *qual)
617 {
618 	u32 reg;
619 
620 	/*
621 	 * Update FCS error count from register.
622 	 */
623 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
624 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
625 
626 	/*
627 	 * Update False CCA count from register.
628 	 */
629 	rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
630 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
631 }
632 
633 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
634 				     struct link_qual *qual, u8 vgc_level)
635 {
636 	if (qual->vgc_level_reg != vgc_level) {
637 		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
638 		qual->vgc_level = vgc_level;
639 		qual->vgc_level_reg = vgc_level;
640 	}
641 }
642 
643 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
644 				  struct link_qual *qual)
645 {
646 	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
647 }
648 
649 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
650 				 struct link_qual *qual, const u32 count)
651 {
652 	/*
653 	 * To prevent collisions with MAC ASIC on chipsets
654 	 * up to version C the link tuning should halt after 20
655 	 * seconds while being associated.
656 	 */
657 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
658 	    rt2x00dev->intf_associated && count > 20)
659 		return;
660 
661 	/*
662 	 * Chipset versions C and lower should directly continue
663 	 * to the dynamic CCA tuning. Chipset version D and higher
664 	 * should go straight to dynamic CCA tuning when they
665 	 * are not associated.
666 	 */
667 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
668 	    !rt2x00dev->intf_associated)
669 		goto dynamic_cca_tune;
670 
671 	/*
672 	 * A too low RSSI will cause too much false CCA which will
673 	 * then corrupt the R17 tuning. To remidy this the tuning should
674 	 * be stopped (While making sure the R17 value will not exceed limits)
675 	 */
676 	if (qual->rssi < -80 && count > 20) {
677 		if (qual->vgc_level_reg >= 0x41)
678 			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
679 		return;
680 	}
681 
682 	/*
683 	 * Special big-R17 for short distance
684 	 */
685 	if (qual->rssi >= -58) {
686 		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
687 		return;
688 	}
689 
690 	/*
691 	 * Special mid-R17 for middle distance
692 	 */
693 	if (qual->rssi >= -74) {
694 		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
695 		return;
696 	}
697 
698 	/*
699 	 * Leave short or middle distance condition, restore r17
700 	 * to the dynamic tuning range.
701 	 */
702 	if (qual->vgc_level_reg >= 0x41) {
703 		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
704 		return;
705 	}
706 
707 dynamic_cca_tune:
708 
709 	/*
710 	 * R17 is inside the dynamic tuning range,
711 	 * start tuning the link based on the false cca counter.
712 	 */
713 	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
714 		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
715 	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
716 		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
717 }
718 
719 /*
720  * Queue handlers.
721  */
722 static void rt2500pci_start_queue(struct data_queue *queue)
723 {
724 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
725 	u32 reg;
726 
727 	switch (queue->qid) {
728 	case QID_RX:
729 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
730 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
731 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
732 		break;
733 	case QID_BEACON:
734 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
735 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
736 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
737 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
738 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
739 		break;
740 	default:
741 		break;
742 	}
743 }
744 
745 static void rt2500pci_kick_queue(struct data_queue *queue)
746 {
747 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
748 	u32 reg;
749 
750 	switch (queue->qid) {
751 	case QID_AC_VO:
752 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
753 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
754 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
755 		break;
756 	case QID_AC_VI:
757 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
758 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
759 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
760 		break;
761 	case QID_ATIM:
762 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
763 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
764 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
765 		break;
766 	default:
767 		break;
768 	}
769 }
770 
771 static void rt2500pci_stop_queue(struct data_queue *queue)
772 {
773 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
774 	u32 reg;
775 
776 	switch (queue->qid) {
777 	case QID_AC_VO:
778 	case QID_AC_VI:
779 	case QID_ATIM:
780 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
781 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
782 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
783 		break;
784 	case QID_RX:
785 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
786 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
787 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
788 		break;
789 	case QID_BEACON:
790 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
791 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
792 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
793 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
794 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
795 
796 		/*
797 		 * Wait for possibly running tbtt tasklets.
798 		 */
799 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
800 		break;
801 	default:
802 		break;
803 	}
804 }
805 
806 /*
807  * Initialization functions.
808  */
809 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
810 {
811 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
812 	u32 word;
813 
814 	if (entry->queue->qid == QID_RX) {
815 		rt2x00_desc_read(entry_priv->desc, 0, &word);
816 
817 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
818 	} else {
819 		rt2x00_desc_read(entry_priv->desc, 0, &word);
820 
821 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
822 		        rt2x00_get_field32(word, TXD_W0_VALID));
823 	}
824 }
825 
826 static void rt2500pci_clear_entry(struct queue_entry *entry)
827 {
828 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
829 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
830 	u32 word;
831 
832 	if (entry->queue->qid == QID_RX) {
833 		rt2x00_desc_read(entry_priv->desc, 1, &word);
834 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
835 		rt2x00_desc_write(entry_priv->desc, 1, word);
836 
837 		rt2x00_desc_read(entry_priv->desc, 0, &word);
838 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
839 		rt2x00_desc_write(entry_priv->desc, 0, word);
840 	} else {
841 		rt2x00_desc_read(entry_priv->desc, 0, &word);
842 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
843 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
844 		rt2x00_desc_write(entry_priv->desc, 0, word);
845 	}
846 }
847 
848 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
849 {
850 	struct queue_entry_priv_mmio *entry_priv;
851 	u32 reg;
852 
853 	/*
854 	 * Initialize registers.
855 	 */
856 	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
857 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
858 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
859 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
860 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
861 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
862 
863 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
864 	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
865 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
866 			   entry_priv->desc_dma);
867 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
868 
869 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
870 	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
871 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
872 			   entry_priv->desc_dma);
873 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
874 
875 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
876 	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
877 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
878 			   entry_priv->desc_dma);
879 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
880 
881 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
882 	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
883 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
884 			   entry_priv->desc_dma);
885 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
886 
887 	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
888 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
889 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
890 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
891 
892 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
893 	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
894 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
895 			   entry_priv->desc_dma);
896 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
897 
898 	return 0;
899 }
900 
901 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
902 {
903 	u32 reg;
904 
905 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
906 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
907 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
908 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
909 
910 	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
911 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
912 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
913 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
914 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
915 
916 	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
917 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
918 			   rt2x00dev->rx->data_size / 128);
919 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
920 
921 	/*
922 	 * Always use CWmin and CWmax set in descriptor.
923 	 */
924 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
925 	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
926 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
927 
928 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
929 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
930 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
931 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
932 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
933 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
934 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
935 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
936 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
937 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
938 
939 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
940 
941 	rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
942 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
943 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
944 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
945 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
946 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
947 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
948 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
949 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
950 	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
951 
952 	rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
953 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
954 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
955 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
956 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
957 	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
958 
959 	rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
960 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
961 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
962 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
963 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
964 	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
965 
966 	rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
967 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
968 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
969 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
970 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
971 	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
972 
973 	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
974 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
975 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
976 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
977 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
978 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
979 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
980 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
981 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
982 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
983 
984 	rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
985 	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
986 	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
987 	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
988 	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
989 	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
990 	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
991 	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
992 	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
993 
994 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
995 
996 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
997 	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
998 
999 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1000 		return -EBUSY;
1001 
1002 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1003 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1004 
1005 	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1006 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1007 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1008 
1009 	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1010 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1011 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1012 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1013 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1014 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1015 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1016 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1017 
1018 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1019 
1020 	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1021 
1022 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1023 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1024 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1025 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1026 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1027 
1028 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1029 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1030 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1031 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1032 
1033 	/*
1034 	 * We must clear the FCS and FIFO error count.
1035 	 * These registers are cleared on read,
1036 	 * so we may pass a useless variable to store the value.
1037 	 */
1038 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
1039 	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1040 
1041 	return 0;
1042 }
1043 
1044 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1045 {
1046 	unsigned int i;
1047 	u8 value;
1048 
1049 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1050 		rt2500pci_bbp_read(rt2x00dev, 0, &value);
1051 		if ((value != 0xff) && (value != 0x00))
1052 			return 0;
1053 		udelay(REGISTER_BUSY_DELAY);
1054 	}
1055 
1056 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1057 	return -EACCES;
1058 }
1059 
1060 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1061 {
1062 	unsigned int i;
1063 	u16 eeprom;
1064 	u8 reg_id;
1065 	u8 value;
1066 
1067 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1068 		return -EACCES;
1069 
1070 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1071 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1072 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1073 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1074 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1075 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1076 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1077 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1078 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1079 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1080 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1081 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1082 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1083 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1084 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1085 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1086 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1087 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1088 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1089 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1090 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1091 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1092 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1093 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1094 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1095 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1096 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1097 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1098 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1099 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1100 
1101 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1102 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1103 
1104 		if (eeprom != 0xffff && eeprom != 0x0000) {
1105 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1106 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1107 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1108 		}
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Device state switch handlers.
1116  */
1117 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1118 				 enum dev_state state)
1119 {
1120 	int mask = (state == STATE_RADIO_IRQ_OFF);
1121 	u32 reg;
1122 	unsigned long flags;
1123 
1124 	/*
1125 	 * When interrupts are being enabled, the interrupt registers
1126 	 * should clear the register to assure a clean state.
1127 	 */
1128 	if (state == STATE_RADIO_IRQ_ON) {
1129 		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1130 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1131 	}
1132 
1133 	/*
1134 	 * Only toggle the interrupts bits we are going to use.
1135 	 * Non-checked interrupt bits are disabled by default.
1136 	 */
1137 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1138 
1139 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1140 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1141 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1142 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1143 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1144 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1145 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1146 
1147 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1148 
1149 	if (state == STATE_RADIO_IRQ_OFF) {
1150 		/*
1151 		 * Ensure that all tasklets are finished.
1152 		 */
1153 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1154 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1155 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1156 	}
1157 }
1158 
1159 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1160 {
1161 	/*
1162 	 * Initialize all registers.
1163 	 */
1164 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1165 		     rt2500pci_init_registers(rt2x00dev) ||
1166 		     rt2500pci_init_bbp(rt2x00dev)))
1167 		return -EIO;
1168 
1169 	return 0;
1170 }
1171 
1172 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1173 {
1174 	/*
1175 	 * Disable power
1176 	 */
1177 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1178 }
1179 
1180 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1181 			       enum dev_state state)
1182 {
1183 	u32 reg, reg2;
1184 	unsigned int i;
1185 	char put_to_sleep;
1186 	char bbp_state;
1187 	char rf_state;
1188 
1189 	put_to_sleep = (state != STATE_AWAKE);
1190 
1191 	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1192 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1193 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1194 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1195 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1196 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1197 
1198 	/*
1199 	 * Device is not guaranteed to be in the requested state yet.
1200 	 * We must wait until the register indicates that the
1201 	 * device has entered the correct state.
1202 	 */
1203 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1204 		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1205 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1206 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1207 		if (bbp_state == state && rf_state == state)
1208 			return 0;
1209 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1210 		msleep(10);
1211 	}
1212 
1213 	return -EBUSY;
1214 }
1215 
1216 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1217 				      enum dev_state state)
1218 {
1219 	int retval = 0;
1220 
1221 	switch (state) {
1222 	case STATE_RADIO_ON:
1223 		retval = rt2500pci_enable_radio(rt2x00dev);
1224 		break;
1225 	case STATE_RADIO_OFF:
1226 		rt2500pci_disable_radio(rt2x00dev);
1227 		break;
1228 	case STATE_RADIO_IRQ_ON:
1229 	case STATE_RADIO_IRQ_OFF:
1230 		rt2500pci_toggle_irq(rt2x00dev, state);
1231 		break;
1232 	case STATE_DEEP_SLEEP:
1233 	case STATE_SLEEP:
1234 	case STATE_STANDBY:
1235 	case STATE_AWAKE:
1236 		retval = rt2500pci_set_state(rt2x00dev, state);
1237 		break;
1238 	default:
1239 		retval = -ENOTSUPP;
1240 		break;
1241 	}
1242 
1243 	if (unlikely(retval))
1244 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1245 			   state, retval);
1246 
1247 	return retval;
1248 }
1249 
1250 /*
1251  * TX descriptor initialization
1252  */
1253 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1254 				    struct txentry_desc *txdesc)
1255 {
1256 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1257 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1258 	__le32 *txd = entry_priv->desc;
1259 	u32 word;
1260 
1261 	/*
1262 	 * Start writing the descriptor words.
1263 	 */
1264 	rt2x00_desc_read(txd, 1, &word);
1265 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1266 	rt2x00_desc_write(txd, 1, word);
1267 
1268 	rt2x00_desc_read(txd, 2, &word);
1269 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1270 	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1271 	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1272 	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1273 	rt2x00_desc_write(txd, 2, word);
1274 
1275 	rt2x00_desc_read(txd, 3, &word);
1276 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1277 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1278 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1279 			   txdesc->u.plcp.length_low);
1280 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1281 			   txdesc->u.plcp.length_high);
1282 	rt2x00_desc_write(txd, 3, word);
1283 
1284 	rt2x00_desc_read(txd, 10, &word);
1285 	rt2x00_set_field32(&word, TXD_W10_RTS,
1286 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1287 	rt2x00_desc_write(txd, 10, word);
1288 
1289 	/*
1290 	 * Writing TXD word 0 must the last to prevent a race condition with
1291 	 * the device, whereby the device may take hold of the TXD before we
1292 	 * finished updating it.
1293 	 */
1294 	rt2x00_desc_read(txd, 0, &word);
1295 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1296 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1297 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1298 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1299 	rt2x00_set_field32(&word, TXD_W0_ACK,
1300 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1301 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1302 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1303 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1304 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1305 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1306 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1307 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1308 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1309 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1310 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1311 	rt2x00_desc_write(txd, 0, word);
1312 
1313 	/*
1314 	 * Register descriptor details in skb frame descriptor.
1315 	 */
1316 	skbdesc->desc = txd;
1317 	skbdesc->desc_len = TXD_DESC_SIZE;
1318 }
1319 
1320 /*
1321  * TX data initialization
1322  */
1323 static void rt2500pci_write_beacon(struct queue_entry *entry,
1324 				   struct txentry_desc *txdesc)
1325 {
1326 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1327 	u32 reg;
1328 
1329 	/*
1330 	 * Disable beaconing while we are reloading the beacon data,
1331 	 * otherwise we might be sending out invalid data.
1332 	 */
1333 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1334 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1335 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1336 
1337 	if (rt2x00queue_map_txskb(entry)) {
1338 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1339 		goto out;
1340 	}
1341 
1342 	/*
1343 	 * Write the TX descriptor for the beacon.
1344 	 */
1345 	rt2500pci_write_tx_desc(entry, txdesc);
1346 
1347 	/*
1348 	 * Dump beacon to userspace through debugfs.
1349 	 */
1350 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1351 out:
1352 	/*
1353 	 * Enable beaconing again.
1354 	 */
1355 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1356 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1357 }
1358 
1359 /*
1360  * RX control handlers
1361  */
1362 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1363 				  struct rxdone_entry_desc *rxdesc)
1364 {
1365 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1366 	u32 word0;
1367 	u32 word2;
1368 
1369 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1370 	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1371 
1372 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1373 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1374 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1375 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1376 
1377 	/*
1378 	 * Obtain the status about this packet.
1379 	 * When frame was received with an OFDM bitrate,
1380 	 * the signal is the PLCP value. If it was received with
1381 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1382 	 */
1383 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1384 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1385 	    entry->queue->rt2x00dev->rssi_offset;
1386 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1387 
1388 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1389 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1390 	else
1391 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1392 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1393 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1394 }
1395 
1396 /*
1397  * Interrupt functions.
1398  */
1399 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1400 			     const enum data_queue_qid queue_idx)
1401 {
1402 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1403 	struct queue_entry_priv_mmio *entry_priv;
1404 	struct queue_entry *entry;
1405 	struct txdone_entry_desc txdesc;
1406 	u32 word;
1407 
1408 	while (!rt2x00queue_empty(queue)) {
1409 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1410 		entry_priv = entry->priv_data;
1411 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1412 
1413 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1414 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1415 			break;
1416 
1417 		/*
1418 		 * Obtain the status about this packet.
1419 		 */
1420 		txdesc.flags = 0;
1421 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1422 		case 0: /* Success */
1423 		case 1: /* Success with retry */
1424 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1425 			break;
1426 		case 2: /* Failure, excessive retries */
1427 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1428 			/* Don't break, this is a failed frame! */
1429 		default: /* Failure */
1430 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1431 		}
1432 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1433 
1434 		rt2x00lib_txdone(entry, &txdesc);
1435 	}
1436 }
1437 
1438 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1439 					      struct rt2x00_field32 irq_field)
1440 {
1441 	u32 reg;
1442 
1443 	/*
1444 	 * Enable a single interrupt. The interrupt mask register
1445 	 * access needs locking.
1446 	 */
1447 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1448 
1449 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1450 	rt2x00_set_field32(&reg, irq_field, 0);
1451 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1452 
1453 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1454 }
1455 
1456 static void rt2500pci_txstatus_tasklet(unsigned long data)
1457 {
1458 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1459 	u32 reg;
1460 
1461 	/*
1462 	 * Handle all tx queues.
1463 	 */
1464 	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1465 	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1466 	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1467 
1468 	/*
1469 	 * Enable all TXDONE interrupts again.
1470 	 */
1471 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1472 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1473 
1474 		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1475 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1476 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1477 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1478 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1479 
1480 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1481 	}
1482 }
1483 
1484 static void rt2500pci_tbtt_tasklet(unsigned long data)
1485 {
1486 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1487 	rt2x00lib_beacondone(rt2x00dev);
1488 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1489 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1490 }
1491 
1492 static void rt2500pci_rxdone_tasklet(unsigned long data)
1493 {
1494 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1495 	if (rt2x00mmio_rxdone(rt2x00dev))
1496 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1497 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1498 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1499 }
1500 
1501 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1502 {
1503 	struct rt2x00_dev *rt2x00dev = dev_instance;
1504 	u32 reg, mask;
1505 
1506 	/*
1507 	 * Get the interrupt sources & saved to local variable.
1508 	 * Write register value back to clear pending interrupts.
1509 	 */
1510 	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1511 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1512 
1513 	if (!reg)
1514 		return IRQ_NONE;
1515 
1516 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1517 		return IRQ_HANDLED;
1518 
1519 	mask = reg;
1520 
1521 	/*
1522 	 * Schedule tasklets for interrupt handling.
1523 	 */
1524 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1525 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1526 
1527 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1528 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1529 
1530 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1531 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1532 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1533 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1534 		/*
1535 		 * Mask out all txdone interrupts.
1536 		 */
1537 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1538 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1539 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1540 	}
1541 
1542 	/*
1543 	 * Disable all interrupts for which a tasklet was scheduled right now,
1544 	 * the tasklet will reenable the appropriate interrupts.
1545 	 */
1546 	spin_lock(&rt2x00dev->irqmask_lock);
1547 
1548 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1549 	reg |= mask;
1550 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1551 
1552 	spin_unlock(&rt2x00dev->irqmask_lock);
1553 
1554 	return IRQ_HANDLED;
1555 }
1556 
1557 /*
1558  * Device probe functions.
1559  */
1560 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1561 {
1562 	struct eeprom_93cx6 eeprom;
1563 	u32 reg;
1564 	u16 word;
1565 	u8 *mac;
1566 
1567 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1568 
1569 	eeprom.data = rt2x00dev;
1570 	eeprom.register_read = rt2500pci_eepromregister_read;
1571 	eeprom.register_write = rt2500pci_eepromregister_write;
1572 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1573 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1574 	eeprom.reg_data_in = 0;
1575 	eeprom.reg_data_out = 0;
1576 	eeprom.reg_data_clock = 0;
1577 	eeprom.reg_chip_select = 0;
1578 
1579 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1580 			       EEPROM_SIZE / sizeof(u16));
1581 
1582 	/*
1583 	 * Start validation of the data that has been read.
1584 	 */
1585 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1586 	if (!is_valid_ether_addr(mac)) {
1587 		eth_random_addr(mac);
1588 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1589 	}
1590 
1591 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1592 	if (word == 0xffff) {
1593 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1594 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1595 				   ANTENNA_SW_DIVERSITY);
1596 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1597 				   ANTENNA_SW_DIVERSITY);
1598 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1599 				   LED_MODE_DEFAULT);
1600 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1601 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1602 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1603 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1604 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1605 	}
1606 
1607 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1608 	if (word == 0xffff) {
1609 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1610 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1611 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1612 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1613 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1614 	}
1615 
1616 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1617 	if (word == 0xffff) {
1618 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1619 				   DEFAULT_RSSI_OFFSET);
1620 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1621 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1622 				  word);
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1629 {
1630 	u32 reg;
1631 	u16 value;
1632 	u16 eeprom;
1633 
1634 	/*
1635 	 * Read EEPROM word for configuration.
1636 	 */
1637 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1638 
1639 	/*
1640 	 * Identify RF chipset.
1641 	 */
1642 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1643 	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1644 	rt2x00_set_chip(rt2x00dev, RT2560, value,
1645 			rt2x00_get_field32(reg, CSR0_REVISION));
1646 
1647 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1648 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1649 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1650 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1651 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1652 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1653 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1654 		return -ENODEV;
1655 	}
1656 
1657 	/*
1658 	 * Identify default antenna configuration.
1659 	 */
1660 	rt2x00dev->default_ant.tx =
1661 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1662 	rt2x00dev->default_ant.rx =
1663 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1664 
1665 	/*
1666 	 * Store led mode, for correct led behaviour.
1667 	 */
1668 #ifdef CONFIG_RT2X00_LIB_LEDS
1669 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1670 
1671 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1672 	if (value == LED_MODE_TXRX_ACTIVITY ||
1673 	    value == LED_MODE_DEFAULT ||
1674 	    value == LED_MODE_ASUS)
1675 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1676 				   LED_TYPE_ACTIVITY);
1677 #endif /* CONFIG_RT2X00_LIB_LEDS */
1678 
1679 	/*
1680 	 * Detect if this device has an hardware controlled radio.
1681 	 */
1682 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1683 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1684 		/*
1685 		 * On this device RFKILL initialized during probe does not work.
1686 		 */
1687 		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1688 	}
1689 
1690 	/*
1691 	 * Check if the BBP tuning should be enabled.
1692 	 */
1693 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1694 	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1695 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1696 
1697 	/*
1698 	 * Read the RSSI <-> dBm offset information.
1699 	 */
1700 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1701 	rt2x00dev->rssi_offset =
1702 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1703 
1704 	return 0;
1705 }
1706 
1707 /*
1708  * RF value list for RF2522
1709  * Supports: 2.4 GHz
1710  */
1711 static const struct rf_channel rf_vals_bg_2522[] = {
1712 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1713 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1714 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1715 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1716 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1717 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1718 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1719 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1720 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1721 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1722 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1723 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1724 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1725 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1726 };
1727 
1728 /*
1729  * RF value list for RF2523
1730  * Supports: 2.4 GHz
1731  */
1732 static const struct rf_channel rf_vals_bg_2523[] = {
1733 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1734 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1735 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1736 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1737 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1738 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1739 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1740 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1741 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1742 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1743 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1744 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1745 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1746 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1747 };
1748 
1749 /*
1750  * RF value list for RF2524
1751  * Supports: 2.4 GHz
1752  */
1753 static const struct rf_channel rf_vals_bg_2524[] = {
1754 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1755 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1756 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1757 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1758 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1759 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1760 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1761 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1762 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1763 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1764 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1765 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1766 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1767 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1768 };
1769 
1770 /*
1771  * RF value list for RF2525
1772  * Supports: 2.4 GHz
1773  */
1774 static const struct rf_channel rf_vals_bg_2525[] = {
1775 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1776 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1777 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1778 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1779 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1780 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1781 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1782 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1783 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1784 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1785 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1786 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1787 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1788 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1789 };
1790 
1791 /*
1792  * RF value list for RF2525e
1793  * Supports: 2.4 GHz
1794  */
1795 static const struct rf_channel rf_vals_bg_2525e[] = {
1796 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1797 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1798 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1799 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1800 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1801 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1802 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1803 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1804 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1805 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1806 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1807 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1808 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1809 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1810 };
1811 
1812 /*
1813  * RF value list for RF5222
1814  * Supports: 2.4 GHz & 5.2 GHz
1815  */
1816 static const struct rf_channel rf_vals_5222[] = {
1817 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1818 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1819 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1820 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1821 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1822 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1823 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1824 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1825 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1826 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1827 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1828 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1829 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1830 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1831 
1832 	/* 802.11 UNI / HyperLan 2 */
1833 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1834 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1835 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1836 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1837 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1838 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1839 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1840 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1841 
1842 	/* 802.11 HyperLan 2 */
1843 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1844 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1845 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1846 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1847 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1848 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1849 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1850 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1851 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1852 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1853 
1854 	/* 802.11 UNII */
1855 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1856 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1857 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1858 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1859 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1860 };
1861 
1862 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1863 {
1864 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1865 	struct channel_info *info;
1866 	char *tx_power;
1867 	unsigned int i;
1868 
1869 	/*
1870 	 * Initialize all hw fields.
1871 	 */
1872 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1873 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1874 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1875 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1876 
1877 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1878 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1879 				rt2x00_eeprom_addr(rt2x00dev,
1880 						   EEPROM_MAC_ADDR_0));
1881 
1882 	/*
1883 	 * Disable powersaving as default.
1884 	 */
1885 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1886 
1887 	/*
1888 	 * Initialize hw_mode information.
1889 	 */
1890 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1891 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1892 
1893 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1894 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1895 		spec->channels = rf_vals_bg_2522;
1896 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1897 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1898 		spec->channels = rf_vals_bg_2523;
1899 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1900 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1901 		spec->channels = rf_vals_bg_2524;
1902 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1903 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1904 		spec->channels = rf_vals_bg_2525;
1905 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1906 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1907 		spec->channels = rf_vals_bg_2525e;
1908 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1909 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1910 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1911 		spec->channels = rf_vals_5222;
1912 	}
1913 
1914 	/*
1915 	 * Create channel information array
1916 	 */
1917 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1918 	if (!info)
1919 		return -ENOMEM;
1920 
1921 	spec->channels_info = info;
1922 
1923 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1924 	for (i = 0; i < 14; i++) {
1925 		info[i].max_power = MAX_TXPOWER;
1926 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1927 	}
1928 
1929 	if (spec->num_channels > 14) {
1930 		for (i = 14; i < spec->num_channels; i++) {
1931 			info[i].max_power = MAX_TXPOWER;
1932 			info[i].default_power1 = DEFAULT_TXPOWER;
1933 		}
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1940 {
1941 	int retval;
1942 	u32 reg;
1943 
1944 	/*
1945 	 * Allocate eeprom data.
1946 	 */
1947 	retval = rt2500pci_validate_eeprom(rt2x00dev);
1948 	if (retval)
1949 		return retval;
1950 
1951 	retval = rt2500pci_init_eeprom(rt2x00dev);
1952 	if (retval)
1953 		return retval;
1954 
1955 	/*
1956 	 * Enable rfkill polling by setting GPIO direction of the
1957 	 * rfkill switch GPIO pin correctly.
1958 	 */
1959 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1960 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1961 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1962 
1963 	/*
1964 	 * Initialize hw specifications.
1965 	 */
1966 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1967 	if (retval)
1968 		return retval;
1969 
1970 	/*
1971 	 * This device requires the atim queue and DMA-mapped skbs.
1972 	 */
1973 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1974 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1975 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1976 
1977 	/*
1978 	 * Set the rssi offset.
1979 	 */
1980 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1981 
1982 	return 0;
1983 }
1984 
1985 /*
1986  * IEEE80211 stack callback functions.
1987  */
1988 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1989 			     struct ieee80211_vif *vif)
1990 {
1991 	struct rt2x00_dev *rt2x00dev = hw->priv;
1992 	u64 tsf;
1993 	u32 reg;
1994 
1995 	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1996 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1997 	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1998 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1999 
2000 	return tsf;
2001 }
2002 
2003 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2004 {
2005 	struct rt2x00_dev *rt2x00dev = hw->priv;
2006 	u32 reg;
2007 
2008 	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2009 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2010 }
2011 
2012 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2013 	.tx			= rt2x00mac_tx,
2014 	.start			= rt2x00mac_start,
2015 	.stop			= rt2x00mac_stop,
2016 	.add_interface		= rt2x00mac_add_interface,
2017 	.remove_interface	= rt2x00mac_remove_interface,
2018 	.config			= rt2x00mac_config,
2019 	.configure_filter	= rt2x00mac_configure_filter,
2020 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2021 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2022 	.get_stats		= rt2x00mac_get_stats,
2023 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2024 	.conf_tx		= rt2x00mac_conf_tx,
2025 	.get_tsf		= rt2500pci_get_tsf,
2026 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2027 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2028 	.flush			= rt2x00mac_flush,
2029 	.set_antenna		= rt2x00mac_set_antenna,
2030 	.get_antenna		= rt2x00mac_get_antenna,
2031 	.get_ringparam		= rt2x00mac_get_ringparam,
2032 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2033 };
2034 
2035 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2036 	.irq_handler		= rt2500pci_interrupt,
2037 	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2038 	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2039 	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2040 	.probe_hw		= rt2500pci_probe_hw,
2041 	.initialize		= rt2x00mmio_initialize,
2042 	.uninitialize		= rt2x00mmio_uninitialize,
2043 	.get_entry_state	= rt2500pci_get_entry_state,
2044 	.clear_entry		= rt2500pci_clear_entry,
2045 	.set_device_state	= rt2500pci_set_device_state,
2046 	.rfkill_poll		= rt2500pci_rfkill_poll,
2047 	.link_stats		= rt2500pci_link_stats,
2048 	.reset_tuner		= rt2500pci_reset_tuner,
2049 	.link_tuner		= rt2500pci_link_tuner,
2050 	.start_queue		= rt2500pci_start_queue,
2051 	.kick_queue		= rt2500pci_kick_queue,
2052 	.stop_queue		= rt2500pci_stop_queue,
2053 	.flush_queue		= rt2x00mmio_flush_queue,
2054 	.write_tx_desc		= rt2500pci_write_tx_desc,
2055 	.write_beacon		= rt2500pci_write_beacon,
2056 	.fill_rxdone		= rt2500pci_fill_rxdone,
2057 	.config_filter		= rt2500pci_config_filter,
2058 	.config_intf		= rt2500pci_config_intf,
2059 	.config_erp		= rt2500pci_config_erp,
2060 	.config_ant		= rt2500pci_config_ant,
2061 	.config			= rt2500pci_config,
2062 };
2063 
2064 static void rt2500pci_queue_init(struct data_queue *queue)
2065 {
2066 	switch (queue->qid) {
2067 	case QID_RX:
2068 		queue->limit = 32;
2069 		queue->data_size = DATA_FRAME_SIZE;
2070 		queue->desc_size = RXD_DESC_SIZE;
2071 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2072 		break;
2073 
2074 	case QID_AC_VO:
2075 	case QID_AC_VI:
2076 	case QID_AC_BE:
2077 	case QID_AC_BK:
2078 		queue->limit = 32;
2079 		queue->data_size = DATA_FRAME_SIZE;
2080 		queue->desc_size = TXD_DESC_SIZE;
2081 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2082 		break;
2083 
2084 	case QID_BEACON:
2085 		queue->limit = 1;
2086 		queue->data_size = MGMT_FRAME_SIZE;
2087 		queue->desc_size = TXD_DESC_SIZE;
2088 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2089 		break;
2090 
2091 	case QID_ATIM:
2092 		queue->limit = 8;
2093 		queue->data_size = DATA_FRAME_SIZE;
2094 		queue->desc_size = TXD_DESC_SIZE;
2095 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2096 		break;
2097 
2098 	default:
2099 		BUG();
2100 		break;
2101 	}
2102 }
2103 
2104 static const struct rt2x00_ops rt2500pci_ops = {
2105 	.name			= KBUILD_MODNAME,
2106 	.max_ap_intf		= 1,
2107 	.eeprom_size		= EEPROM_SIZE,
2108 	.rf_size		= RF_SIZE,
2109 	.tx_queues		= NUM_TX_QUEUES,
2110 	.queue_init		= rt2500pci_queue_init,
2111 	.lib			= &rt2500pci_rt2x00_ops,
2112 	.hw			= &rt2500pci_mac80211_ops,
2113 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2114 	.debugfs		= &rt2500pci_rt2x00debug,
2115 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2116 };
2117 
2118 /*
2119  * RT2500pci module information.
2120  */
2121 static const struct pci_device_id rt2500pci_device_table[] = {
2122 	{ PCI_DEVICE(0x1814, 0x0201) },
2123 	{ 0, }
2124 };
2125 
2126 MODULE_AUTHOR(DRV_PROJECT);
2127 MODULE_VERSION(DRV_VERSION);
2128 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2129 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2130 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2131 MODULE_LICENSE("GPL");
2132 
2133 static int rt2500pci_probe(struct pci_dev *pci_dev,
2134 			   const struct pci_device_id *id)
2135 {
2136 	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2137 }
2138 
2139 static struct pci_driver rt2500pci_driver = {
2140 	.name		= KBUILD_MODNAME,
2141 	.id_table	= rt2500pci_device_table,
2142 	.probe		= rt2500pci_probe,
2143 	.remove		= rt2x00pci_remove,
2144 	.suspend	= rt2x00pci_suspend,
2145 	.resume		= rt2x00pci_resume,
2146 };
2147 
2148 module_pci_driver(rt2500pci_driver);
2149