1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500pci
21 	Abstract: rt2500pci device specific routines.
22 	Supported chipsets: RT2560.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
37 
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2x00mmio_register_read and rt2x00mmio_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55 
56 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 				const unsigned int word, const u8 value)
58 {
59 	u32 reg;
60 
61 	mutex_lock(&rt2x00dev->csr_mutex);
62 
63 	/*
64 	 * Wait until the BBP becomes available, afterwards we
65 	 * can safely write the new data into the register.
66 	 */
67 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 		reg = 0;
69 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73 
74 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 	}
76 
77 	mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79 
80 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 			       const unsigned int word, u8 *value)
82 {
83 	u32 reg;
84 
85 	mutex_lock(&rt2x00dev->csr_mutex);
86 
87 	/*
88 	 * Wait until the BBP becomes available, afterwards we
89 	 * can safely write the read request into the register.
90 	 * After the data has been written, we wait until hardware
91 	 * returns the correct value, if at any time the register
92 	 * doesn't become available in time, reg will be 0xffffffff
93 	 * which means we return 0xff to the caller.
94 	 */
95 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96 		reg = 0;
97 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100 
101 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102 
103 		WAIT_FOR_BBP(rt2x00dev, &reg);
104 	}
105 
106 	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107 
108 	mutex_unlock(&rt2x00dev->csr_mutex);
109 }
110 
111 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
112 			       const unsigned int word, const u32 value)
113 {
114 	u32 reg;
115 
116 	mutex_lock(&rt2x00dev->csr_mutex);
117 
118 	/*
119 	 * Wait until the RF becomes available, afterwards we
120 	 * can safely write the new data into the register.
121 	 */
122 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123 		reg = 0;
124 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128 
129 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130 		rt2x00_rf_write(rt2x00dev, word, value);
131 	}
132 
133 	mutex_unlock(&rt2x00dev->csr_mutex);
134 }
135 
136 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137 {
138 	struct rt2x00_dev *rt2x00dev = eeprom->data;
139 	u32 reg;
140 
141 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142 
143 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145 	eeprom->reg_data_clock =
146 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147 	eeprom->reg_chip_select =
148 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149 }
150 
151 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152 {
153 	struct rt2x00_dev *rt2x00dev = eeprom->data;
154 	u32 reg = 0;
155 
156 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159 			   !!eeprom->reg_data_clock);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161 			   !!eeprom->reg_chip_select);
162 
163 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 }
165 
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static u8 _rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
168 			      const unsigned int word)
169 {
170 	u8 value;
171 
172 	rt2500pci_bbp_read(rt2x00dev, word, &value);
173 
174 	return value;
175 }
176 
177 static const struct rt2x00debug rt2500pci_rt2x00debug = {
178 	.owner	= THIS_MODULE,
179 	.csr	= {
180 		.read		= _rt2x00mmio_register_read,
181 		.write		= rt2x00mmio_register_write,
182 		.flags		= RT2X00DEBUGFS_OFFSET,
183 		.word_base	= CSR_REG_BASE,
184 		.word_size	= sizeof(u32),
185 		.word_count	= CSR_REG_SIZE / sizeof(u32),
186 	},
187 	.eeprom	= {
188 		.read		= _rt2x00_eeprom_read,
189 		.write		= rt2x00_eeprom_write,
190 		.word_base	= EEPROM_BASE,
191 		.word_size	= sizeof(u16),
192 		.word_count	= EEPROM_SIZE / sizeof(u16),
193 	},
194 	.bbp	= {
195 		.read		= _rt2500pci_bbp_read,
196 		.write		= rt2500pci_bbp_write,
197 		.word_base	= BBP_BASE,
198 		.word_size	= sizeof(u8),
199 		.word_count	= BBP_SIZE / sizeof(u8),
200 	},
201 	.rf	= {
202 		.read		= _rt2x00_rf_read,
203 		.write		= rt2500pci_rf_write,
204 		.word_base	= RF_BASE,
205 		.word_size	= sizeof(u32),
206 		.word_count	= RF_SIZE / sizeof(u32),
207 	},
208 };
209 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
210 
211 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
212 {
213 	u32 reg;
214 
215 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
216 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
217 }
218 
219 #ifdef CONFIG_RT2X00_LIB_LEDS
220 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
221 				     enum led_brightness brightness)
222 {
223 	struct rt2x00_led *led =
224 	    container_of(led_cdev, struct rt2x00_led, led_dev);
225 	unsigned int enabled = brightness != LED_OFF;
226 	u32 reg;
227 
228 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
229 
230 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
231 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
232 	else if (led->type == LED_TYPE_ACTIVITY)
233 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
234 
235 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
236 }
237 
238 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
239 			       unsigned long *delay_on,
240 			       unsigned long *delay_off)
241 {
242 	struct rt2x00_led *led =
243 	    container_of(led_cdev, struct rt2x00_led, led_dev);
244 	u32 reg;
245 
246 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
247 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
248 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
249 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
250 
251 	return 0;
252 }
253 
254 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
255 			       struct rt2x00_led *led,
256 			       enum led_type type)
257 {
258 	led->rt2x00dev = rt2x00dev;
259 	led->type = type;
260 	led->led_dev.brightness_set = rt2500pci_brightness_set;
261 	led->led_dev.blink_set = rt2500pci_blink_set;
262 	led->flags = LED_INITIALIZED;
263 }
264 #endif /* CONFIG_RT2X00_LIB_LEDS */
265 
266 /*
267  * Configuration handlers.
268  */
269 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
270 				    const unsigned int filter_flags)
271 {
272 	u32 reg;
273 
274 	/*
275 	 * Start configuration steps.
276 	 * Note that the version error will always be dropped
277 	 * and broadcast frames will always be accepted since
278 	 * there is no filter for it at this time.
279 	 */
280 	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
281 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
282 			   !(filter_flags & FIF_FCSFAIL));
283 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
284 			   !(filter_flags & FIF_PLCPFAIL));
285 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
286 			   !(filter_flags & FIF_CONTROL));
287 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
288 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
289 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
290 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
291 			   !rt2x00dev->intf_ap_count);
292 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
293 	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
294 			   !(filter_flags & FIF_ALLMULTI));
295 	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
296 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
297 }
298 
299 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
300 				  struct rt2x00_intf *intf,
301 				  struct rt2x00intf_conf *conf,
302 				  const unsigned int flags)
303 {
304 	struct data_queue *queue = rt2x00dev->bcn;
305 	unsigned int bcn_preload;
306 	u32 reg;
307 
308 	if (flags & CONFIG_UPDATE_TYPE) {
309 		/*
310 		 * Enable beacon config
311 		 */
312 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
313 		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
314 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
315 		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
316 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
317 
318 		/*
319 		 * Enable synchronisation.
320 		 */
321 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
322 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
323 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
324 	}
325 
326 	if (flags & CONFIG_UPDATE_MAC)
327 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
328 					      conf->mac, sizeof(conf->mac));
329 
330 	if (flags & CONFIG_UPDATE_BSSID)
331 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
332 					      conf->bssid, sizeof(conf->bssid));
333 }
334 
335 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
336 				 struct rt2x00lib_erp *erp,
337 				 u32 changed)
338 {
339 	int preamble_mask;
340 	u32 reg;
341 
342 	/*
343 	 * When short preamble is enabled, we should set bit 0x08
344 	 */
345 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
346 		preamble_mask = erp->short_preamble << 3;
347 
348 		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
349 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
350 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
351 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
352 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
353 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
354 
355 		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
356 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
357 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
358 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
359 				   GET_DURATION(ACK_SIZE, 10));
360 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
361 
362 		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
363 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
364 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
365 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
366 				   GET_DURATION(ACK_SIZE, 20));
367 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
368 
369 		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
370 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
371 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
372 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
373 				   GET_DURATION(ACK_SIZE, 55));
374 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
375 
376 		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
377 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
378 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
379 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
380 				   GET_DURATION(ACK_SIZE, 110));
381 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
382 	}
383 
384 	if (changed & BSS_CHANGED_BASIC_RATES)
385 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
386 
387 	if (changed & BSS_CHANGED_ERP_SLOT) {
388 		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
389 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
390 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
391 
392 		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
393 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
394 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
395 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
396 
397 		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
398 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
399 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
400 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
401 	}
402 
403 	if (changed & BSS_CHANGED_BEACON_INT) {
404 		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
405 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
406 				   erp->beacon_int * 16);
407 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
408 				   erp->beacon_int * 16);
409 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
410 	}
411 
412 }
413 
414 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
415 				 struct antenna_setup *ant)
416 {
417 	u32 reg;
418 	u8 r14;
419 	u8 r2;
420 
421 	/*
422 	 * We should never come here because rt2x00lib is supposed
423 	 * to catch this and send us the correct antenna explicitely.
424 	 */
425 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
426 	       ant->tx == ANTENNA_SW_DIVERSITY);
427 
428 	rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
429 	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
430 	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
431 
432 	/*
433 	 * Configure the TX antenna.
434 	 */
435 	switch (ant->tx) {
436 	case ANTENNA_A:
437 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
438 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
439 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
440 		break;
441 	case ANTENNA_B:
442 	default:
443 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
444 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
445 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
446 		break;
447 	}
448 
449 	/*
450 	 * Configure the RX antenna.
451 	 */
452 	switch (ant->rx) {
453 	case ANTENNA_A:
454 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
455 		break;
456 	case ANTENNA_B:
457 	default:
458 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
459 		break;
460 	}
461 
462 	/*
463 	 * RT2525E and RT5222 need to flip TX I/Q
464 	 */
465 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
466 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
467 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
468 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
469 
470 		/*
471 		 * RT2525E does not need RX I/Q Flip.
472 		 */
473 		if (rt2x00_rf(rt2x00dev, RF2525E))
474 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
475 	} else {
476 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
477 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
478 	}
479 
480 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
481 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
482 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
483 }
484 
485 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
486 				     struct rf_channel *rf, const int txpower)
487 {
488 	u8 r70;
489 
490 	/*
491 	 * Set TXpower.
492 	 */
493 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
494 
495 	/*
496 	 * Switch on tuning bits.
497 	 * For RT2523 devices we do not need to update the R1 register.
498 	 */
499 	if (!rt2x00_rf(rt2x00dev, RF2523))
500 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
501 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
502 
503 	/*
504 	 * For RT2525 we should first set the channel to half band higher.
505 	 */
506 	if (rt2x00_rf(rt2x00dev, RF2525)) {
507 		static const u32 vals[] = {
508 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
509 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
510 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
511 			0x00080d2e, 0x00080d3a
512 		};
513 
514 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
515 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
516 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
517 		if (rf->rf4)
518 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
519 	}
520 
521 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
522 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
523 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
524 	if (rf->rf4)
525 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
526 
527 	/*
528 	 * Channel 14 requires the Japan filter bit to be set.
529 	 */
530 	r70 = 0x46;
531 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
532 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
533 
534 	msleep(1);
535 
536 	/*
537 	 * Switch off tuning bits.
538 	 * For RT2523 devices we do not need to update the R1 register.
539 	 */
540 	if (!rt2x00_rf(rt2x00dev, RF2523)) {
541 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
542 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
543 	}
544 
545 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
546 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
547 
548 	/*
549 	 * Clear false CRC during channel switch.
550 	 */
551 	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
552 }
553 
554 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
555 				     const int txpower)
556 {
557 	u32 rf3;
558 
559 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
560 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
561 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
562 }
563 
564 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
565 					 struct rt2x00lib_conf *libconf)
566 {
567 	u32 reg;
568 
569 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
570 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
571 			   libconf->conf->long_frame_max_tx_count);
572 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
573 			   libconf->conf->short_frame_max_tx_count);
574 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
575 }
576 
577 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
578 				struct rt2x00lib_conf *libconf)
579 {
580 	enum dev_state state =
581 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
582 		STATE_SLEEP : STATE_AWAKE;
583 	u32 reg;
584 
585 	if (state == STATE_SLEEP) {
586 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
587 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
588 				   (rt2x00dev->beacon_int - 20) * 16);
589 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
590 				   libconf->conf->listen_interval - 1);
591 
592 		/* We must first disable autowake before it can be enabled */
593 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
594 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
595 
596 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
597 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
598 	} else {
599 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
600 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
601 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
602 	}
603 
604 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
605 }
606 
607 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
608 			     struct rt2x00lib_conf *libconf,
609 			     const unsigned int flags)
610 {
611 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
612 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
613 					 libconf->conf->power_level);
614 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
615 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
616 		rt2500pci_config_txpower(rt2x00dev,
617 					 libconf->conf->power_level);
618 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
619 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
620 	if (flags & IEEE80211_CONF_CHANGE_PS)
621 		rt2500pci_config_ps(rt2x00dev, libconf);
622 }
623 
624 /*
625  * Link tuning
626  */
627 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
628 				 struct link_qual *qual)
629 {
630 	u32 reg;
631 
632 	/*
633 	 * Update FCS error count from register.
634 	 */
635 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
636 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
637 
638 	/*
639 	 * Update False CCA count from register.
640 	 */
641 	rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
642 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
643 }
644 
645 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
646 				     struct link_qual *qual, u8 vgc_level)
647 {
648 	if (qual->vgc_level_reg != vgc_level) {
649 		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
650 		qual->vgc_level = vgc_level;
651 		qual->vgc_level_reg = vgc_level;
652 	}
653 }
654 
655 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
656 				  struct link_qual *qual)
657 {
658 	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
659 }
660 
661 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
662 				 struct link_qual *qual, const u32 count)
663 {
664 	/*
665 	 * To prevent collisions with MAC ASIC on chipsets
666 	 * up to version C the link tuning should halt after 20
667 	 * seconds while being associated.
668 	 */
669 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
670 	    rt2x00dev->intf_associated && count > 20)
671 		return;
672 
673 	/*
674 	 * Chipset versions C and lower should directly continue
675 	 * to the dynamic CCA tuning. Chipset version D and higher
676 	 * should go straight to dynamic CCA tuning when they
677 	 * are not associated.
678 	 */
679 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
680 	    !rt2x00dev->intf_associated)
681 		goto dynamic_cca_tune;
682 
683 	/*
684 	 * A too low RSSI will cause too much false CCA which will
685 	 * then corrupt the R17 tuning. To remidy this the tuning should
686 	 * be stopped (While making sure the R17 value will not exceed limits)
687 	 */
688 	if (qual->rssi < -80 && count > 20) {
689 		if (qual->vgc_level_reg >= 0x41)
690 			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
691 		return;
692 	}
693 
694 	/*
695 	 * Special big-R17 for short distance
696 	 */
697 	if (qual->rssi >= -58) {
698 		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
699 		return;
700 	}
701 
702 	/*
703 	 * Special mid-R17 for middle distance
704 	 */
705 	if (qual->rssi >= -74) {
706 		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
707 		return;
708 	}
709 
710 	/*
711 	 * Leave short or middle distance condition, restore r17
712 	 * to the dynamic tuning range.
713 	 */
714 	if (qual->vgc_level_reg >= 0x41) {
715 		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
716 		return;
717 	}
718 
719 dynamic_cca_tune:
720 
721 	/*
722 	 * R17 is inside the dynamic tuning range,
723 	 * start tuning the link based on the false cca counter.
724 	 */
725 	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
726 		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
727 	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
728 		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
729 }
730 
731 /*
732  * Queue handlers.
733  */
734 static void rt2500pci_start_queue(struct data_queue *queue)
735 {
736 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
737 	u32 reg;
738 
739 	switch (queue->qid) {
740 	case QID_RX:
741 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
742 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
743 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
744 		break;
745 	case QID_BEACON:
746 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
747 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
748 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
749 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
750 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
751 		break;
752 	default:
753 		break;
754 	}
755 }
756 
757 static void rt2500pci_kick_queue(struct data_queue *queue)
758 {
759 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
760 	u32 reg;
761 
762 	switch (queue->qid) {
763 	case QID_AC_VO:
764 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
765 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
766 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
767 		break;
768 	case QID_AC_VI:
769 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
770 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
771 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
772 		break;
773 	case QID_ATIM:
774 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
775 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
776 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
777 		break;
778 	default:
779 		break;
780 	}
781 }
782 
783 static void rt2500pci_stop_queue(struct data_queue *queue)
784 {
785 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
786 	u32 reg;
787 
788 	switch (queue->qid) {
789 	case QID_AC_VO:
790 	case QID_AC_VI:
791 	case QID_ATIM:
792 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
793 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
794 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
795 		break;
796 	case QID_RX:
797 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
798 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
799 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
800 		break;
801 	case QID_BEACON:
802 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
803 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
804 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
805 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
806 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
807 
808 		/*
809 		 * Wait for possibly running tbtt tasklets.
810 		 */
811 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
812 		break;
813 	default:
814 		break;
815 	}
816 }
817 
818 /*
819  * Initialization functions.
820  */
821 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
822 {
823 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
824 	u32 word;
825 
826 	if (entry->queue->qid == QID_RX) {
827 		rt2x00_desc_read(entry_priv->desc, 0, &word);
828 
829 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
830 	} else {
831 		rt2x00_desc_read(entry_priv->desc, 0, &word);
832 
833 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
834 		        rt2x00_get_field32(word, TXD_W0_VALID));
835 	}
836 }
837 
838 static void rt2500pci_clear_entry(struct queue_entry *entry)
839 {
840 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
841 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
842 	u32 word;
843 
844 	if (entry->queue->qid == QID_RX) {
845 		rt2x00_desc_read(entry_priv->desc, 1, &word);
846 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
847 		rt2x00_desc_write(entry_priv->desc, 1, word);
848 
849 		rt2x00_desc_read(entry_priv->desc, 0, &word);
850 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
851 		rt2x00_desc_write(entry_priv->desc, 0, word);
852 	} else {
853 		rt2x00_desc_read(entry_priv->desc, 0, &word);
854 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
855 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
856 		rt2x00_desc_write(entry_priv->desc, 0, word);
857 	}
858 }
859 
860 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
861 {
862 	struct queue_entry_priv_mmio *entry_priv;
863 	u32 reg;
864 
865 	/*
866 	 * Initialize registers.
867 	 */
868 	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
869 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
870 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
871 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
872 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
873 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
874 
875 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
876 	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
877 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
878 			   entry_priv->desc_dma);
879 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
880 
881 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
882 	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
883 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
884 			   entry_priv->desc_dma);
885 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
886 
887 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
888 	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
889 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
890 			   entry_priv->desc_dma);
891 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
892 
893 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
894 	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
895 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
896 			   entry_priv->desc_dma);
897 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
898 
899 	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
900 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
901 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
902 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
903 
904 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
905 	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
906 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
907 			   entry_priv->desc_dma);
908 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
909 
910 	return 0;
911 }
912 
913 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
914 {
915 	u32 reg;
916 
917 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
918 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
919 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
920 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
921 
922 	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
923 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
924 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
925 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
926 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
927 
928 	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
929 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
930 			   rt2x00dev->rx->data_size / 128);
931 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
932 
933 	/*
934 	 * Always use CWmin and CWmax set in descriptor.
935 	 */
936 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
937 	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
938 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
939 
940 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
941 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
942 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
943 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
944 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
945 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
946 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
947 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
948 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
949 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
950 
951 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
952 
953 	rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
954 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
955 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
956 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
957 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
958 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
959 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
960 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
961 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
962 	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
963 
964 	rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
965 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
966 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
967 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
968 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
969 	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
970 
971 	rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
972 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
973 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
974 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
975 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
976 	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
977 
978 	rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
979 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
980 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
981 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
982 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
983 	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
984 
985 	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
986 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
987 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
988 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
989 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
990 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
991 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
992 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
993 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
994 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
995 
996 	rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
997 	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
998 	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
999 	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
1000 	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
1001 	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
1002 	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
1003 	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
1004 	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
1005 
1006 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
1007 
1008 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1009 	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1010 
1011 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1012 		return -EBUSY;
1013 
1014 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1015 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1016 
1017 	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1018 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1019 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1020 
1021 	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1022 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1023 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1024 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1025 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1026 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1027 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1028 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1029 
1030 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1031 
1032 	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1033 
1034 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1035 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1036 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1037 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1038 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1039 
1040 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1041 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1042 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1043 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1044 
1045 	/*
1046 	 * We must clear the FCS and FIFO error count.
1047 	 * These registers are cleared on read,
1048 	 * so we may pass a useless variable to store the value.
1049 	 */
1050 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
1051 	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1052 
1053 	return 0;
1054 }
1055 
1056 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1057 {
1058 	unsigned int i;
1059 	u8 value;
1060 
1061 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1062 		rt2500pci_bbp_read(rt2x00dev, 0, &value);
1063 		if ((value != 0xff) && (value != 0x00))
1064 			return 0;
1065 		udelay(REGISTER_BUSY_DELAY);
1066 	}
1067 
1068 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1069 	return -EACCES;
1070 }
1071 
1072 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1073 {
1074 	unsigned int i;
1075 	u16 eeprom;
1076 	u8 reg_id;
1077 	u8 value;
1078 
1079 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1080 		return -EACCES;
1081 
1082 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1083 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1084 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1085 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1086 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1087 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1088 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1089 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1090 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1091 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1092 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1093 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1094 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1095 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1096 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1097 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1098 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1099 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1100 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1101 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1102 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1103 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1104 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1105 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1106 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1107 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1108 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1109 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1110 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1111 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1112 
1113 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1114 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1115 
1116 		if (eeprom != 0xffff && eeprom != 0x0000) {
1117 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1118 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1119 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1120 		}
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Device state switch handlers.
1128  */
1129 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1130 				 enum dev_state state)
1131 {
1132 	int mask = (state == STATE_RADIO_IRQ_OFF);
1133 	u32 reg;
1134 	unsigned long flags;
1135 
1136 	/*
1137 	 * When interrupts are being enabled, the interrupt registers
1138 	 * should clear the register to assure a clean state.
1139 	 */
1140 	if (state == STATE_RADIO_IRQ_ON) {
1141 		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1142 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1143 	}
1144 
1145 	/*
1146 	 * Only toggle the interrupts bits we are going to use.
1147 	 * Non-checked interrupt bits are disabled by default.
1148 	 */
1149 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1150 
1151 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1152 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1153 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1154 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1155 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1156 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1157 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1158 
1159 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1160 
1161 	if (state == STATE_RADIO_IRQ_OFF) {
1162 		/*
1163 		 * Ensure that all tasklets are finished.
1164 		 */
1165 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1166 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1167 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1168 	}
1169 }
1170 
1171 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1172 {
1173 	/*
1174 	 * Initialize all registers.
1175 	 */
1176 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1177 		     rt2500pci_init_registers(rt2x00dev) ||
1178 		     rt2500pci_init_bbp(rt2x00dev)))
1179 		return -EIO;
1180 
1181 	return 0;
1182 }
1183 
1184 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1185 {
1186 	/*
1187 	 * Disable power
1188 	 */
1189 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1190 }
1191 
1192 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1193 			       enum dev_state state)
1194 {
1195 	u32 reg, reg2;
1196 	unsigned int i;
1197 	char put_to_sleep;
1198 	char bbp_state;
1199 	char rf_state;
1200 
1201 	put_to_sleep = (state != STATE_AWAKE);
1202 
1203 	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1204 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1205 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1206 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1207 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1208 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1209 
1210 	/*
1211 	 * Device is not guaranteed to be in the requested state yet.
1212 	 * We must wait until the register indicates that the
1213 	 * device has entered the correct state.
1214 	 */
1215 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1216 		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1217 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1218 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1219 		if (bbp_state == state && rf_state == state)
1220 			return 0;
1221 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1222 		msleep(10);
1223 	}
1224 
1225 	return -EBUSY;
1226 }
1227 
1228 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1229 				      enum dev_state state)
1230 {
1231 	int retval = 0;
1232 
1233 	switch (state) {
1234 	case STATE_RADIO_ON:
1235 		retval = rt2500pci_enable_radio(rt2x00dev);
1236 		break;
1237 	case STATE_RADIO_OFF:
1238 		rt2500pci_disable_radio(rt2x00dev);
1239 		break;
1240 	case STATE_RADIO_IRQ_ON:
1241 	case STATE_RADIO_IRQ_OFF:
1242 		rt2500pci_toggle_irq(rt2x00dev, state);
1243 		break;
1244 	case STATE_DEEP_SLEEP:
1245 	case STATE_SLEEP:
1246 	case STATE_STANDBY:
1247 	case STATE_AWAKE:
1248 		retval = rt2500pci_set_state(rt2x00dev, state);
1249 		break;
1250 	default:
1251 		retval = -ENOTSUPP;
1252 		break;
1253 	}
1254 
1255 	if (unlikely(retval))
1256 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1257 			   state, retval);
1258 
1259 	return retval;
1260 }
1261 
1262 /*
1263  * TX descriptor initialization
1264  */
1265 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1266 				    struct txentry_desc *txdesc)
1267 {
1268 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1269 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1270 	__le32 *txd = entry_priv->desc;
1271 	u32 word;
1272 
1273 	/*
1274 	 * Start writing the descriptor words.
1275 	 */
1276 	rt2x00_desc_read(txd, 1, &word);
1277 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1278 	rt2x00_desc_write(txd, 1, word);
1279 
1280 	rt2x00_desc_read(txd, 2, &word);
1281 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1282 	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1283 	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1284 	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1285 	rt2x00_desc_write(txd, 2, word);
1286 
1287 	rt2x00_desc_read(txd, 3, &word);
1288 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1289 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1290 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1291 			   txdesc->u.plcp.length_low);
1292 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1293 			   txdesc->u.plcp.length_high);
1294 	rt2x00_desc_write(txd, 3, word);
1295 
1296 	rt2x00_desc_read(txd, 10, &word);
1297 	rt2x00_set_field32(&word, TXD_W10_RTS,
1298 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1299 	rt2x00_desc_write(txd, 10, word);
1300 
1301 	/*
1302 	 * Writing TXD word 0 must the last to prevent a race condition with
1303 	 * the device, whereby the device may take hold of the TXD before we
1304 	 * finished updating it.
1305 	 */
1306 	rt2x00_desc_read(txd, 0, &word);
1307 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1308 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1309 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1310 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1311 	rt2x00_set_field32(&word, TXD_W0_ACK,
1312 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1313 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1314 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1315 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1316 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1317 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1318 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1319 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1320 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1321 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1322 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1323 	rt2x00_desc_write(txd, 0, word);
1324 
1325 	/*
1326 	 * Register descriptor details in skb frame descriptor.
1327 	 */
1328 	skbdesc->desc = txd;
1329 	skbdesc->desc_len = TXD_DESC_SIZE;
1330 }
1331 
1332 /*
1333  * TX data initialization
1334  */
1335 static void rt2500pci_write_beacon(struct queue_entry *entry,
1336 				   struct txentry_desc *txdesc)
1337 {
1338 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1339 	u32 reg;
1340 
1341 	/*
1342 	 * Disable beaconing while we are reloading the beacon data,
1343 	 * otherwise we might be sending out invalid data.
1344 	 */
1345 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1346 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1347 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1348 
1349 	if (rt2x00queue_map_txskb(entry)) {
1350 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1351 		goto out;
1352 	}
1353 
1354 	/*
1355 	 * Write the TX descriptor for the beacon.
1356 	 */
1357 	rt2500pci_write_tx_desc(entry, txdesc);
1358 
1359 	/*
1360 	 * Dump beacon to userspace through debugfs.
1361 	 */
1362 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1363 out:
1364 	/*
1365 	 * Enable beaconing again.
1366 	 */
1367 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1368 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1369 }
1370 
1371 /*
1372  * RX control handlers
1373  */
1374 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1375 				  struct rxdone_entry_desc *rxdesc)
1376 {
1377 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1378 	u32 word0;
1379 	u32 word2;
1380 
1381 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1382 	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1383 
1384 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1385 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1386 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1387 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1388 
1389 	/*
1390 	 * Obtain the status about this packet.
1391 	 * When frame was received with an OFDM bitrate,
1392 	 * the signal is the PLCP value. If it was received with
1393 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1394 	 */
1395 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1396 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1397 	    entry->queue->rt2x00dev->rssi_offset;
1398 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1399 
1400 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1401 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1402 	else
1403 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1404 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1405 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1406 }
1407 
1408 /*
1409  * Interrupt functions.
1410  */
1411 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1412 			     const enum data_queue_qid queue_idx)
1413 {
1414 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1415 	struct queue_entry_priv_mmio *entry_priv;
1416 	struct queue_entry *entry;
1417 	struct txdone_entry_desc txdesc;
1418 	u32 word;
1419 
1420 	while (!rt2x00queue_empty(queue)) {
1421 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1422 		entry_priv = entry->priv_data;
1423 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1424 
1425 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1426 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1427 			break;
1428 
1429 		/*
1430 		 * Obtain the status about this packet.
1431 		 */
1432 		txdesc.flags = 0;
1433 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1434 		case 0: /* Success */
1435 		case 1: /* Success with retry */
1436 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1437 			break;
1438 		case 2: /* Failure, excessive retries */
1439 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1440 			/* Don't break, this is a failed frame! */
1441 		default: /* Failure */
1442 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1443 		}
1444 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1445 
1446 		rt2x00lib_txdone(entry, &txdesc);
1447 	}
1448 }
1449 
1450 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1451 					      struct rt2x00_field32 irq_field)
1452 {
1453 	u32 reg;
1454 
1455 	/*
1456 	 * Enable a single interrupt. The interrupt mask register
1457 	 * access needs locking.
1458 	 */
1459 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1460 
1461 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1462 	rt2x00_set_field32(&reg, irq_field, 0);
1463 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1464 
1465 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1466 }
1467 
1468 static void rt2500pci_txstatus_tasklet(unsigned long data)
1469 {
1470 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1471 	u32 reg;
1472 
1473 	/*
1474 	 * Handle all tx queues.
1475 	 */
1476 	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1477 	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1478 	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1479 
1480 	/*
1481 	 * Enable all TXDONE interrupts again.
1482 	 */
1483 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1484 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1485 
1486 		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1487 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1488 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1489 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1490 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1491 
1492 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1493 	}
1494 }
1495 
1496 static void rt2500pci_tbtt_tasklet(unsigned long data)
1497 {
1498 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1499 	rt2x00lib_beacondone(rt2x00dev);
1500 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1501 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1502 }
1503 
1504 static void rt2500pci_rxdone_tasklet(unsigned long data)
1505 {
1506 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1507 	if (rt2x00mmio_rxdone(rt2x00dev))
1508 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1509 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1510 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1511 }
1512 
1513 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1514 {
1515 	struct rt2x00_dev *rt2x00dev = dev_instance;
1516 	u32 reg, mask;
1517 
1518 	/*
1519 	 * Get the interrupt sources & saved to local variable.
1520 	 * Write register value back to clear pending interrupts.
1521 	 */
1522 	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1523 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1524 
1525 	if (!reg)
1526 		return IRQ_NONE;
1527 
1528 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1529 		return IRQ_HANDLED;
1530 
1531 	mask = reg;
1532 
1533 	/*
1534 	 * Schedule tasklets for interrupt handling.
1535 	 */
1536 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1537 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1538 
1539 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1540 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1541 
1542 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1543 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1544 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1545 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1546 		/*
1547 		 * Mask out all txdone interrupts.
1548 		 */
1549 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1550 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1551 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1552 	}
1553 
1554 	/*
1555 	 * Disable all interrupts for which a tasklet was scheduled right now,
1556 	 * the tasklet will reenable the appropriate interrupts.
1557 	 */
1558 	spin_lock(&rt2x00dev->irqmask_lock);
1559 
1560 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1561 	reg |= mask;
1562 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1563 
1564 	spin_unlock(&rt2x00dev->irqmask_lock);
1565 
1566 	return IRQ_HANDLED;
1567 }
1568 
1569 /*
1570  * Device probe functions.
1571  */
1572 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1573 {
1574 	struct eeprom_93cx6 eeprom;
1575 	u32 reg;
1576 	u16 word;
1577 	u8 *mac;
1578 
1579 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1580 
1581 	eeprom.data = rt2x00dev;
1582 	eeprom.register_read = rt2500pci_eepromregister_read;
1583 	eeprom.register_write = rt2500pci_eepromregister_write;
1584 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1585 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1586 	eeprom.reg_data_in = 0;
1587 	eeprom.reg_data_out = 0;
1588 	eeprom.reg_data_clock = 0;
1589 	eeprom.reg_chip_select = 0;
1590 
1591 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1592 			       EEPROM_SIZE / sizeof(u16));
1593 
1594 	/*
1595 	 * Start validation of the data that has been read.
1596 	 */
1597 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1598 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1599 
1600 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1601 	if (word == 0xffff) {
1602 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1603 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1604 				   ANTENNA_SW_DIVERSITY);
1605 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1606 				   ANTENNA_SW_DIVERSITY);
1607 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1608 				   LED_MODE_DEFAULT);
1609 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1610 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1611 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1612 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1613 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1614 	}
1615 
1616 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1617 	if (word == 0xffff) {
1618 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1619 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1620 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1621 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1622 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1623 	}
1624 
1625 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1626 	if (word == 0xffff) {
1627 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1628 				   DEFAULT_RSSI_OFFSET);
1629 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1630 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1631 				  word);
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1638 {
1639 	u32 reg;
1640 	u16 value;
1641 	u16 eeprom;
1642 
1643 	/*
1644 	 * Read EEPROM word for configuration.
1645 	 */
1646 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1647 
1648 	/*
1649 	 * Identify RF chipset.
1650 	 */
1651 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1652 	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1653 	rt2x00_set_chip(rt2x00dev, RT2560, value,
1654 			rt2x00_get_field32(reg, CSR0_REVISION));
1655 
1656 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1657 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1658 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1659 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1660 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1661 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1662 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1663 		return -ENODEV;
1664 	}
1665 
1666 	/*
1667 	 * Identify default antenna configuration.
1668 	 */
1669 	rt2x00dev->default_ant.tx =
1670 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1671 	rt2x00dev->default_ant.rx =
1672 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1673 
1674 	/*
1675 	 * Store led mode, for correct led behaviour.
1676 	 */
1677 #ifdef CONFIG_RT2X00_LIB_LEDS
1678 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1679 
1680 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1681 	if (value == LED_MODE_TXRX_ACTIVITY ||
1682 	    value == LED_MODE_DEFAULT ||
1683 	    value == LED_MODE_ASUS)
1684 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1685 				   LED_TYPE_ACTIVITY);
1686 #endif /* CONFIG_RT2X00_LIB_LEDS */
1687 
1688 	/*
1689 	 * Detect if this device has an hardware controlled radio.
1690 	 */
1691 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1692 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1693 		/*
1694 		 * On this device RFKILL initialized during probe does not work.
1695 		 */
1696 		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1697 	}
1698 
1699 	/*
1700 	 * Check if the BBP tuning should be enabled.
1701 	 */
1702 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1703 	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1704 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1705 
1706 	/*
1707 	 * Read the RSSI <-> dBm offset information.
1708 	 */
1709 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1710 	rt2x00dev->rssi_offset =
1711 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1712 
1713 	return 0;
1714 }
1715 
1716 /*
1717  * RF value list for RF2522
1718  * Supports: 2.4 GHz
1719  */
1720 static const struct rf_channel rf_vals_bg_2522[] = {
1721 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1722 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1723 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1724 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1725 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1726 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1727 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1728 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1729 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1730 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1731 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1732 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1733 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1734 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1735 };
1736 
1737 /*
1738  * RF value list for RF2523
1739  * Supports: 2.4 GHz
1740  */
1741 static const struct rf_channel rf_vals_bg_2523[] = {
1742 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1743 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1744 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1745 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1746 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1747 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1748 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1749 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1750 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1751 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1752 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1753 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1754 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1755 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1756 };
1757 
1758 /*
1759  * RF value list for RF2524
1760  * Supports: 2.4 GHz
1761  */
1762 static const struct rf_channel rf_vals_bg_2524[] = {
1763 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1764 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1765 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1766 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1767 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1768 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1769 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1770 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1771 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1772 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1773 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1774 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1775 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1776 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1777 };
1778 
1779 /*
1780  * RF value list for RF2525
1781  * Supports: 2.4 GHz
1782  */
1783 static const struct rf_channel rf_vals_bg_2525[] = {
1784 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1785 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1786 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1787 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1788 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1789 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1790 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1791 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1792 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1793 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1794 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1795 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1796 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1797 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1798 };
1799 
1800 /*
1801  * RF value list for RF2525e
1802  * Supports: 2.4 GHz
1803  */
1804 static const struct rf_channel rf_vals_bg_2525e[] = {
1805 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1806 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1807 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1808 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1809 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1810 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1811 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1812 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1813 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1814 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1815 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1816 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1817 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1818 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1819 };
1820 
1821 /*
1822  * RF value list for RF5222
1823  * Supports: 2.4 GHz & 5.2 GHz
1824  */
1825 static const struct rf_channel rf_vals_5222[] = {
1826 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1827 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1828 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1829 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1830 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1831 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1832 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1833 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1834 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1835 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1836 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1837 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1838 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1839 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1840 
1841 	/* 802.11 UNI / HyperLan 2 */
1842 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1843 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1844 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1845 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1846 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1847 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1848 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1849 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1850 
1851 	/* 802.11 HyperLan 2 */
1852 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1853 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1854 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1855 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1856 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1857 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1858 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1859 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1860 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1861 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1862 
1863 	/* 802.11 UNII */
1864 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1865 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1866 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1867 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1868 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1869 };
1870 
1871 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1872 {
1873 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1874 	struct channel_info *info;
1875 	char *tx_power;
1876 	unsigned int i;
1877 
1878 	/*
1879 	 * Initialize all hw fields.
1880 	 */
1881 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1882 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1883 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1884 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1885 
1886 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1887 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1888 				rt2x00_eeprom_addr(rt2x00dev,
1889 						   EEPROM_MAC_ADDR_0));
1890 
1891 	/*
1892 	 * Disable powersaving as default.
1893 	 */
1894 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1895 
1896 	/*
1897 	 * Initialize hw_mode information.
1898 	 */
1899 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1900 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1901 
1902 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1903 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1904 		spec->channels = rf_vals_bg_2522;
1905 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1906 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1907 		spec->channels = rf_vals_bg_2523;
1908 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1909 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1910 		spec->channels = rf_vals_bg_2524;
1911 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1912 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1913 		spec->channels = rf_vals_bg_2525;
1914 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1915 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1916 		spec->channels = rf_vals_bg_2525e;
1917 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1918 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1919 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1920 		spec->channels = rf_vals_5222;
1921 	}
1922 
1923 	/*
1924 	 * Create channel information array
1925 	 */
1926 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1927 	if (!info)
1928 		return -ENOMEM;
1929 
1930 	spec->channels_info = info;
1931 
1932 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1933 	for (i = 0; i < 14; i++) {
1934 		info[i].max_power = MAX_TXPOWER;
1935 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1936 	}
1937 
1938 	if (spec->num_channels > 14) {
1939 		for (i = 14; i < spec->num_channels; i++) {
1940 			info[i].max_power = MAX_TXPOWER;
1941 			info[i].default_power1 = DEFAULT_TXPOWER;
1942 		}
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1949 {
1950 	int retval;
1951 	u32 reg;
1952 
1953 	/*
1954 	 * Allocate eeprom data.
1955 	 */
1956 	retval = rt2500pci_validate_eeprom(rt2x00dev);
1957 	if (retval)
1958 		return retval;
1959 
1960 	retval = rt2500pci_init_eeprom(rt2x00dev);
1961 	if (retval)
1962 		return retval;
1963 
1964 	/*
1965 	 * Enable rfkill polling by setting GPIO direction of the
1966 	 * rfkill switch GPIO pin correctly.
1967 	 */
1968 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1969 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1970 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1971 
1972 	/*
1973 	 * Initialize hw specifications.
1974 	 */
1975 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1976 	if (retval)
1977 		return retval;
1978 
1979 	/*
1980 	 * This device requires the atim queue and DMA-mapped skbs.
1981 	 */
1982 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1983 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1984 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1985 
1986 	/*
1987 	 * Set the rssi offset.
1988 	 */
1989 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1990 
1991 	return 0;
1992 }
1993 
1994 /*
1995  * IEEE80211 stack callback functions.
1996  */
1997 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1998 			     struct ieee80211_vif *vif)
1999 {
2000 	struct rt2x00_dev *rt2x00dev = hw->priv;
2001 	u64 tsf;
2002 	u32 reg;
2003 
2004 	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
2005 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
2006 	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
2007 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
2008 
2009 	return tsf;
2010 }
2011 
2012 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2013 {
2014 	struct rt2x00_dev *rt2x00dev = hw->priv;
2015 	u32 reg;
2016 
2017 	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2018 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2019 }
2020 
2021 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2022 	.tx			= rt2x00mac_tx,
2023 	.start			= rt2x00mac_start,
2024 	.stop			= rt2x00mac_stop,
2025 	.add_interface		= rt2x00mac_add_interface,
2026 	.remove_interface	= rt2x00mac_remove_interface,
2027 	.config			= rt2x00mac_config,
2028 	.configure_filter	= rt2x00mac_configure_filter,
2029 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2030 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2031 	.get_stats		= rt2x00mac_get_stats,
2032 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2033 	.conf_tx		= rt2x00mac_conf_tx,
2034 	.get_tsf		= rt2500pci_get_tsf,
2035 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2036 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2037 	.flush			= rt2x00mac_flush,
2038 	.set_antenna		= rt2x00mac_set_antenna,
2039 	.get_antenna		= rt2x00mac_get_antenna,
2040 	.get_ringparam		= rt2x00mac_get_ringparam,
2041 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2042 };
2043 
2044 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2045 	.irq_handler		= rt2500pci_interrupt,
2046 	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2047 	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2048 	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2049 	.probe_hw		= rt2500pci_probe_hw,
2050 	.initialize		= rt2x00mmio_initialize,
2051 	.uninitialize		= rt2x00mmio_uninitialize,
2052 	.get_entry_state	= rt2500pci_get_entry_state,
2053 	.clear_entry		= rt2500pci_clear_entry,
2054 	.set_device_state	= rt2500pci_set_device_state,
2055 	.rfkill_poll		= rt2500pci_rfkill_poll,
2056 	.link_stats		= rt2500pci_link_stats,
2057 	.reset_tuner		= rt2500pci_reset_tuner,
2058 	.link_tuner		= rt2500pci_link_tuner,
2059 	.start_queue		= rt2500pci_start_queue,
2060 	.kick_queue		= rt2500pci_kick_queue,
2061 	.stop_queue		= rt2500pci_stop_queue,
2062 	.flush_queue		= rt2x00mmio_flush_queue,
2063 	.write_tx_desc		= rt2500pci_write_tx_desc,
2064 	.write_beacon		= rt2500pci_write_beacon,
2065 	.fill_rxdone		= rt2500pci_fill_rxdone,
2066 	.config_filter		= rt2500pci_config_filter,
2067 	.config_intf		= rt2500pci_config_intf,
2068 	.config_erp		= rt2500pci_config_erp,
2069 	.config_ant		= rt2500pci_config_ant,
2070 	.config			= rt2500pci_config,
2071 };
2072 
2073 static void rt2500pci_queue_init(struct data_queue *queue)
2074 {
2075 	switch (queue->qid) {
2076 	case QID_RX:
2077 		queue->limit = 32;
2078 		queue->data_size = DATA_FRAME_SIZE;
2079 		queue->desc_size = RXD_DESC_SIZE;
2080 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2081 		break;
2082 
2083 	case QID_AC_VO:
2084 	case QID_AC_VI:
2085 	case QID_AC_BE:
2086 	case QID_AC_BK:
2087 		queue->limit = 32;
2088 		queue->data_size = DATA_FRAME_SIZE;
2089 		queue->desc_size = TXD_DESC_SIZE;
2090 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2091 		break;
2092 
2093 	case QID_BEACON:
2094 		queue->limit = 1;
2095 		queue->data_size = MGMT_FRAME_SIZE;
2096 		queue->desc_size = TXD_DESC_SIZE;
2097 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2098 		break;
2099 
2100 	case QID_ATIM:
2101 		queue->limit = 8;
2102 		queue->data_size = DATA_FRAME_SIZE;
2103 		queue->desc_size = TXD_DESC_SIZE;
2104 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2105 		break;
2106 
2107 	default:
2108 		BUG();
2109 		break;
2110 	}
2111 }
2112 
2113 static const struct rt2x00_ops rt2500pci_ops = {
2114 	.name			= KBUILD_MODNAME,
2115 	.max_ap_intf		= 1,
2116 	.eeprom_size		= EEPROM_SIZE,
2117 	.rf_size		= RF_SIZE,
2118 	.tx_queues		= NUM_TX_QUEUES,
2119 	.queue_init		= rt2500pci_queue_init,
2120 	.lib			= &rt2500pci_rt2x00_ops,
2121 	.hw			= &rt2500pci_mac80211_ops,
2122 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2123 	.debugfs		= &rt2500pci_rt2x00debug,
2124 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2125 };
2126 
2127 /*
2128  * RT2500pci module information.
2129  */
2130 static const struct pci_device_id rt2500pci_device_table[] = {
2131 	{ PCI_DEVICE(0x1814, 0x0201) },
2132 	{ 0, }
2133 };
2134 
2135 MODULE_AUTHOR(DRV_PROJECT);
2136 MODULE_VERSION(DRV_VERSION);
2137 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2138 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2139 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2140 MODULE_LICENSE("GPL");
2141 
2142 static int rt2500pci_probe(struct pci_dev *pci_dev,
2143 			   const struct pci_device_id *id)
2144 {
2145 	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2146 }
2147 
2148 static struct pci_driver rt2500pci_driver = {
2149 	.name		= KBUILD_MODNAME,
2150 	.id_table	= rt2500pci_device_table,
2151 	.probe		= rt2500pci_probe,
2152 	.remove		= rt2x00pci_remove,
2153 	.suspend	= rt2x00pci_suspend,
2154 	.resume		= rt2x00pci_resume,
2155 };
2156 
2157 module_pci_driver(rt2500pci_driver);
2158