1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6  */
7 
8 /*
9 	Module: rt2500pci
10 	Abstract: rt2500pci device specific routines.
11 	Supported chipsets: RT2560.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 #include <linux/eeprom_93cx6.h>
20 #include <linux/slab.h>
21 
22 #include "rt2x00.h"
23 #include "rt2x00mmio.h"
24 #include "rt2x00pci.h"
25 #include "rt2500pci.h"
26 
27 /*
28  * Register access.
29  * All access to the CSR registers will go through the methods
30  * rt2x00mmio_register_read and rt2x00mmio_register_write.
31  * BBP and RF register require indirect register access,
32  * and use the CSR registers BBPCSR and RFCSR to achieve this.
33  * These indirect registers work with busy bits,
34  * and we will try maximal REGISTER_BUSY_COUNT times to access
35  * the register while taking a REGISTER_BUSY_DELAY us delay
36  * between each attampt. When the busy bit is still set at that time,
37  * the access attempt is considered to have failed,
38  * and we will print an error.
39  */
40 #define WAIT_FOR_BBP(__dev, __reg) \
41 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42 #define WAIT_FOR_RF(__dev, __reg) \
43 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
44 
45 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
46 				const unsigned int word, const u8 value)
47 {
48 	u32 reg;
49 
50 	mutex_lock(&rt2x00dev->csr_mutex);
51 
52 	/*
53 	 * Wait until the BBP becomes available, afterwards we
54 	 * can safely write the new data into the register.
55 	 */
56 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
57 		reg = 0;
58 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
59 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
60 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
61 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
62 
63 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
64 	}
65 
66 	mutex_unlock(&rt2x00dev->csr_mutex);
67 }
68 
69 static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
70 			     const unsigned int word)
71 {
72 	u32 reg;
73 	u8 value;
74 
75 	mutex_lock(&rt2x00dev->csr_mutex);
76 
77 	/*
78 	 * Wait until the BBP becomes available, afterwards we
79 	 * can safely write the read request into the register.
80 	 * After the data has been written, we wait until hardware
81 	 * returns the correct value, if at any time the register
82 	 * doesn't become available in time, reg will be 0xffffffff
83 	 * which means we return 0xff to the caller.
84 	 */
85 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
86 		reg = 0;
87 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
88 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
89 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
90 
91 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
92 
93 		WAIT_FOR_BBP(rt2x00dev, &reg);
94 	}
95 
96 	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
97 
98 	mutex_unlock(&rt2x00dev->csr_mutex);
99 
100 	return value;
101 }
102 
103 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
104 			       const unsigned int word, const u32 value)
105 {
106 	u32 reg;
107 
108 	mutex_lock(&rt2x00dev->csr_mutex);
109 
110 	/*
111 	 * Wait until the RF becomes available, afterwards we
112 	 * can safely write the new data into the register.
113 	 */
114 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
115 		reg = 0;
116 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
117 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
118 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
119 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
120 
121 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
122 		rt2x00_rf_write(rt2x00dev, word, value);
123 	}
124 
125 	mutex_unlock(&rt2x00dev->csr_mutex);
126 }
127 
128 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
129 {
130 	struct rt2x00_dev *rt2x00dev = eeprom->data;
131 	u32 reg;
132 
133 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
134 
135 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
136 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
137 	eeprom->reg_data_clock =
138 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
139 	eeprom->reg_chip_select =
140 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
141 }
142 
143 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
144 {
145 	struct rt2x00_dev *rt2x00dev = eeprom->data;
146 	u32 reg = 0;
147 
148 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
149 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
150 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
151 			   !!eeprom->reg_data_clock);
152 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
153 			   !!eeprom->reg_chip_select);
154 
155 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
156 }
157 
158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
159 static const struct rt2x00debug rt2500pci_rt2x00debug = {
160 	.owner	= THIS_MODULE,
161 	.csr	= {
162 		.read		= rt2x00mmio_register_read,
163 		.write		= rt2x00mmio_register_write,
164 		.flags		= RT2X00DEBUGFS_OFFSET,
165 		.word_base	= CSR_REG_BASE,
166 		.word_size	= sizeof(u32),
167 		.word_count	= CSR_REG_SIZE / sizeof(u32),
168 	},
169 	.eeprom	= {
170 		.read		= rt2x00_eeprom_read,
171 		.write		= rt2x00_eeprom_write,
172 		.word_base	= EEPROM_BASE,
173 		.word_size	= sizeof(u16),
174 		.word_count	= EEPROM_SIZE / sizeof(u16),
175 	},
176 	.bbp	= {
177 		.read		= rt2500pci_bbp_read,
178 		.write		= rt2500pci_bbp_write,
179 		.word_base	= BBP_BASE,
180 		.word_size	= sizeof(u8),
181 		.word_count	= BBP_SIZE / sizeof(u8),
182 	},
183 	.rf	= {
184 		.read		= rt2x00_rf_read,
185 		.write		= rt2500pci_rf_write,
186 		.word_base	= RF_BASE,
187 		.word_size	= sizeof(u32),
188 		.word_count	= RF_SIZE / sizeof(u32),
189 	},
190 };
191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
192 
193 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
194 {
195 	u32 reg;
196 
197 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
198 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
199 }
200 
201 #ifdef CONFIG_RT2X00_LIB_LEDS
202 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
203 				     enum led_brightness brightness)
204 {
205 	struct rt2x00_led *led =
206 	    container_of(led_cdev, struct rt2x00_led, led_dev);
207 	unsigned int enabled = brightness != LED_OFF;
208 	u32 reg;
209 
210 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
211 
212 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
213 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
214 	else if (led->type == LED_TYPE_ACTIVITY)
215 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
216 
217 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
218 }
219 
220 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
221 			       unsigned long *delay_on,
222 			       unsigned long *delay_off)
223 {
224 	struct rt2x00_led *led =
225 	    container_of(led_cdev, struct rt2x00_led, led_dev);
226 	u32 reg;
227 
228 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
229 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
230 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
231 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
232 
233 	return 0;
234 }
235 
236 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
237 			       struct rt2x00_led *led,
238 			       enum led_type type)
239 {
240 	led->rt2x00dev = rt2x00dev;
241 	led->type = type;
242 	led->led_dev.brightness_set = rt2500pci_brightness_set;
243 	led->led_dev.blink_set = rt2500pci_blink_set;
244 	led->flags = LED_INITIALIZED;
245 }
246 #endif /* CONFIG_RT2X00_LIB_LEDS */
247 
248 /*
249  * Configuration handlers.
250  */
251 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
252 				    const unsigned int filter_flags)
253 {
254 	u32 reg;
255 
256 	/*
257 	 * Start configuration steps.
258 	 * Note that the version error will always be dropped
259 	 * and broadcast frames will always be accepted since
260 	 * there is no filter for it at this time.
261 	 */
262 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
263 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
264 			   !(filter_flags & FIF_FCSFAIL));
265 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
266 			   !(filter_flags & FIF_PLCPFAIL));
267 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
268 			   !(filter_flags & FIF_CONTROL));
269 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
270 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
271 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
272 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
273 			   !rt2x00dev->intf_ap_count);
274 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
275 	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
276 			   !(filter_flags & FIF_ALLMULTI));
277 	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
278 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
279 }
280 
281 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
282 				  struct rt2x00_intf *intf,
283 				  struct rt2x00intf_conf *conf,
284 				  const unsigned int flags)
285 {
286 	struct data_queue *queue = rt2x00dev->bcn;
287 	unsigned int bcn_preload;
288 	u32 reg;
289 
290 	if (flags & CONFIG_UPDATE_TYPE) {
291 		/*
292 		 * Enable beacon config
293 		 */
294 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
295 		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
296 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
297 		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
298 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
299 
300 		/*
301 		 * Enable synchronisation.
302 		 */
303 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
304 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
305 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
306 	}
307 
308 	if (flags & CONFIG_UPDATE_MAC)
309 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
310 					      conf->mac, sizeof(conf->mac));
311 
312 	if (flags & CONFIG_UPDATE_BSSID)
313 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
314 					      conf->bssid, sizeof(conf->bssid));
315 }
316 
317 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
318 				 struct rt2x00lib_erp *erp,
319 				 u32 changed)
320 {
321 	int preamble_mask;
322 	u32 reg;
323 
324 	/*
325 	 * When short preamble is enabled, we should set bit 0x08
326 	 */
327 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
328 		preamble_mask = erp->short_preamble << 3;
329 
330 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
331 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
332 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
333 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
334 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
335 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
336 
337 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
338 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
339 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
340 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
341 				   GET_DURATION(ACK_SIZE, 10));
342 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
343 
344 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
345 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
346 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
347 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
348 				   GET_DURATION(ACK_SIZE, 20));
349 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
350 
351 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
352 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
353 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
354 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
355 				   GET_DURATION(ACK_SIZE, 55));
356 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
357 
358 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
359 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
362 				   GET_DURATION(ACK_SIZE, 110));
363 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
364 	}
365 
366 	if (changed & BSS_CHANGED_BASIC_RATES)
367 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
368 
369 	if (changed & BSS_CHANGED_ERP_SLOT) {
370 		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
371 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
372 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
373 
374 		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
375 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
376 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
377 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
378 
379 		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
380 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
381 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
382 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
383 	}
384 
385 	if (changed & BSS_CHANGED_BEACON_INT) {
386 		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
387 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
388 				   erp->beacon_int * 16);
389 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
390 				   erp->beacon_int * 16);
391 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
392 	}
393 
394 }
395 
396 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
397 				 struct antenna_setup *ant)
398 {
399 	u32 reg;
400 	u8 r14;
401 	u8 r2;
402 
403 	/*
404 	 * We should never come here because rt2x00lib is supposed
405 	 * to catch this and send us the correct antenna explicitely.
406 	 */
407 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
408 	       ant->tx == ANTENNA_SW_DIVERSITY);
409 
410 	reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
411 	r14 = rt2500pci_bbp_read(rt2x00dev, 14);
412 	r2 = rt2500pci_bbp_read(rt2x00dev, 2);
413 
414 	/*
415 	 * Configure the TX antenna.
416 	 */
417 	switch (ant->tx) {
418 	case ANTENNA_A:
419 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
420 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
421 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
422 		break;
423 	case ANTENNA_B:
424 	default:
425 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
426 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
427 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
428 		break;
429 	}
430 
431 	/*
432 	 * Configure the RX antenna.
433 	 */
434 	switch (ant->rx) {
435 	case ANTENNA_A:
436 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
437 		break;
438 	case ANTENNA_B:
439 	default:
440 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
441 		break;
442 	}
443 
444 	/*
445 	 * RT2525E and RT5222 need to flip TX I/Q
446 	 */
447 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
448 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
449 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
450 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
451 
452 		/*
453 		 * RT2525E does not need RX I/Q Flip.
454 		 */
455 		if (rt2x00_rf(rt2x00dev, RF2525E))
456 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
457 	} else {
458 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
459 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
460 	}
461 
462 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
463 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
464 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
465 }
466 
467 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
468 				     struct rf_channel *rf, const int txpower)
469 {
470 	u8 r70;
471 
472 	/*
473 	 * Set TXpower.
474 	 */
475 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
476 
477 	/*
478 	 * Switch on tuning bits.
479 	 * For RT2523 devices we do not need to update the R1 register.
480 	 */
481 	if (!rt2x00_rf(rt2x00dev, RF2523))
482 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
483 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
484 
485 	/*
486 	 * For RT2525 we should first set the channel to half band higher.
487 	 */
488 	if (rt2x00_rf(rt2x00dev, RF2525)) {
489 		static const u32 vals[] = {
490 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
491 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
492 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
493 			0x00080d2e, 0x00080d3a
494 		};
495 
496 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
497 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
498 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
499 		if (rf->rf4)
500 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
501 	}
502 
503 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
504 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
505 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
506 	if (rf->rf4)
507 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
508 
509 	/*
510 	 * Channel 14 requires the Japan filter bit to be set.
511 	 */
512 	r70 = 0x46;
513 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
514 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
515 
516 	msleep(1);
517 
518 	/*
519 	 * Switch off tuning bits.
520 	 * For RT2523 devices we do not need to update the R1 register.
521 	 */
522 	if (!rt2x00_rf(rt2x00dev, RF2523)) {
523 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
524 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
525 	}
526 
527 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
528 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
529 
530 	/*
531 	 * Clear false CRC during channel switch.
532 	 */
533 	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
534 }
535 
536 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
537 				     const int txpower)
538 {
539 	u32 rf3;
540 
541 	rf3 = rt2x00_rf_read(rt2x00dev, 3);
542 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
543 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
544 }
545 
546 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
547 					 struct rt2x00lib_conf *libconf)
548 {
549 	u32 reg;
550 
551 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
552 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
553 			   libconf->conf->long_frame_max_tx_count);
554 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
555 			   libconf->conf->short_frame_max_tx_count);
556 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
557 }
558 
559 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
560 				struct rt2x00lib_conf *libconf)
561 {
562 	enum dev_state state =
563 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
564 		STATE_SLEEP : STATE_AWAKE;
565 	u32 reg;
566 
567 	if (state == STATE_SLEEP) {
568 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
569 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
570 				   (rt2x00dev->beacon_int - 20) * 16);
571 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
572 				   libconf->conf->listen_interval - 1);
573 
574 		/* We must first disable autowake before it can be enabled */
575 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
576 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
577 
578 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
579 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
580 	} else {
581 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
582 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
583 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
584 	}
585 
586 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
587 }
588 
589 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
590 			     struct rt2x00lib_conf *libconf,
591 			     const unsigned int flags)
592 {
593 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
594 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
595 					 libconf->conf->power_level);
596 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
597 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
598 		rt2500pci_config_txpower(rt2x00dev,
599 					 libconf->conf->power_level);
600 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
601 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
602 	if (flags & IEEE80211_CONF_CHANGE_PS)
603 		rt2500pci_config_ps(rt2x00dev, libconf);
604 }
605 
606 /*
607  * Link tuning
608  */
609 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
610 				 struct link_qual *qual)
611 {
612 	u32 reg;
613 
614 	/*
615 	 * Update FCS error count from register.
616 	 */
617 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
618 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
619 
620 	/*
621 	 * Update False CCA count from register.
622 	 */
623 	reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
624 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
625 }
626 
627 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
628 				     struct link_qual *qual, u8 vgc_level)
629 {
630 	if (qual->vgc_level_reg != vgc_level) {
631 		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
632 		qual->vgc_level = vgc_level;
633 		qual->vgc_level_reg = vgc_level;
634 	}
635 }
636 
637 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
638 				  struct link_qual *qual)
639 {
640 	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
641 }
642 
643 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
644 				 struct link_qual *qual, const u32 count)
645 {
646 	/*
647 	 * To prevent collisions with MAC ASIC on chipsets
648 	 * up to version C the link tuning should halt after 20
649 	 * seconds while being associated.
650 	 */
651 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
652 	    rt2x00dev->intf_associated && count > 20)
653 		return;
654 
655 	/*
656 	 * Chipset versions C and lower should directly continue
657 	 * to the dynamic CCA tuning. Chipset version D and higher
658 	 * should go straight to dynamic CCA tuning when they
659 	 * are not associated.
660 	 */
661 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
662 	    !rt2x00dev->intf_associated)
663 		goto dynamic_cca_tune;
664 
665 	/*
666 	 * A too low RSSI will cause too much false CCA which will
667 	 * then corrupt the R17 tuning. To remidy this the tuning should
668 	 * be stopped (While making sure the R17 value will not exceed limits)
669 	 */
670 	if (qual->rssi < -80 && count > 20) {
671 		if (qual->vgc_level_reg >= 0x41)
672 			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
673 		return;
674 	}
675 
676 	/*
677 	 * Special big-R17 for short distance
678 	 */
679 	if (qual->rssi >= -58) {
680 		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
681 		return;
682 	}
683 
684 	/*
685 	 * Special mid-R17 for middle distance
686 	 */
687 	if (qual->rssi >= -74) {
688 		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
689 		return;
690 	}
691 
692 	/*
693 	 * Leave short or middle distance condition, restore r17
694 	 * to the dynamic tuning range.
695 	 */
696 	if (qual->vgc_level_reg >= 0x41) {
697 		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
698 		return;
699 	}
700 
701 dynamic_cca_tune:
702 
703 	/*
704 	 * R17 is inside the dynamic tuning range,
705 	 * start tuning the link based on the false cca counter.
706 	 */
707 	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
708 		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
709 	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
710 		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
711 }
712 
713 /*
714  * Queue handlers.
715  */
716 static void rt2500pci_start_queue(struct data_queue *queue)
717 {
718 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
719 	u32 reg;
720 
721 	switch (queue->qid) {
722 	case QID_RX:
723 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
724 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
725 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
726 		break;
727 	case QID_BEACON:
728 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
729 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
730 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
731 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
732 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
733 		break;
734 	default:
735 		break;
736 	}
737 }
738 
739 static void rt2500pci_kick_queue(struct data_queue *queue)
740 {
741 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
742 	u32 reg;
743 
744 	switch (queue->qid) {
745 	case QID_AC_VO:
746 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
747 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
748 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
749 		break;
750 	case QID_AC_VI:
751 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
752 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
753 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
754 		break;
755 	case QID_ATIM:
756 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
757 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
758 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
759 		break;
760 	default:
761 		break;
762 	}
763 }
764 
765 static void rt2500pci_stop_queue(struct data_queue *queue)
766 {
767 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768 	u32 reg;
769 
770 	switch (queue->qid) {
771 	case QID_AC_VO:
772 	case QID_AC_VI:
773 	case QID_ATIM:
774 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
775 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
776 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
777 		break;
778 	case QID_RX:
779 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
780 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
781 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
782 		break;
783 	case QID_BEACON:
784 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
785 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
786 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
787 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
788 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
789 
790 		/*
791 		 * Wait for possibly running tbtt tasklets.
792 		 */
793 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
794 		break;
795 	default:
796 		break;
797 	}
798 }
799 
800 /*
801  * Initialization functions.
802  */
803 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
804 {
805 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
806 	u32 word;
807 
808 	if (entry->queue->qid == QID_RX) {
809 		word = rt2x00_desc_read(entry_priv->desc, 0);
810 
811 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
812 	} else {
813 		word = rt2x00_desc_read(entry_priv->desc, 0);
814 
815 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
816 		        rt2x00_get_field32(word, TXD_W0_VALID));
817 	}
818 }
819 
820 static void rt2500pci_clear_entry(struct queue_entry *entry)
821 {
822 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
823 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
824 	u32 word;
825 
826 	if (entry->queue->qid == QID_RX) {
827 		word = rt2x00_desc_read(entry_priv->desc, 1);
828 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
829 		rt2x00_desc_write(entry_priv->desc, 1, word);
830 
831 		word = rt2x00_desc_read(entry_priv->desc, 0);
832 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
833 		rt2x00_desc_write(entry_priv->desc, 0, word);
834 	} else {
835 		word = rt2x00_desc_read(entry_priv->desc, 0);
836 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
837 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
838 		rt2x00_desc_write(entry_priv->desc, 0, word);
839 	}
840 }
841 
842 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
843 {
844 	struct queue_entry_priv_mmio *entry_priv;
845 	u32 reg;
846 
847 	/*
848 	 * Initialize registers.
849 	 */
850 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
851 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
852 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
853 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
854 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
855 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
856 
857 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
858 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
859 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
860 			   entry_priv->desc_dma);
861 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
862 
863 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
864 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
865 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
866 			   entry_priv->desc_dma);
867 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
868 
869 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
870 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
871 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
872 			   entry_priv->desc_dma);
873 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
874 
875 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
876 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
877 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
878 			   entry_priv->desc_dma);
879 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
880 
881 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
882 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
883 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
884 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
885 
886 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
887 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
888 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
889 			   entry_priv->desc_dma);
890 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
891 
892 	return 0;
893 }
894 
895 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
896 {
897 	u32 reg;
898 
899 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
900 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
901 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
902 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
903 
904 	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
905 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
906 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
907 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
908 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
909 
910 	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
911 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
912 			   rt2x00dev->rx->data_size / 128);
913 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
914 
915 	/*
916 	 * Always use CWmin and CWmax set in descriptor.
917 	 */
918 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
919 	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
920 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
921 
922 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
923 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
924 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
925 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
926 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
927 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
928 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
929 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
930 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
931 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
932 
933 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
934 
935 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
936 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
937 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
938 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
939 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
940 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
941 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
942 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
943 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
944 	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
945 
946 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
947 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
948 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
949 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
950 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
951 	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
952 
953 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
954 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
955 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
956 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
957 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
958 	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
959 
960 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
961 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
962 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
963 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
964 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
965 	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
966 
967 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
968 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
969 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
970 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
971 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
972 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
973 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
974 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
975 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
976 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
977 
978 	reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
979 	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
980 	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
981 	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
982 	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
983 	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
984 	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
985 	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
986 	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
987 
988 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
989 
990 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
991 	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
992 
993 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
994 		return -EBUSY;
995 
996 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
997 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
998 
999 	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1000 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1001 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1002 
1003 	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1004 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1005 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1006 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1007 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1008 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1009 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1010 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1011 
1012 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1013 
1014 	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1015 
1016 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1017 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1018 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1019 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1020 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1021 
1022 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1023 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1024 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1025 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1026 
1027 	/*
1028 	 * We must clear the FCS and FIFO error count.
1029 	 * These registers are cleared on read,
1030 	 * so we may pass a useless variable to store the value.
1031 	 */
1032 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1033 	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1034 
1035 	return 0;
1036 }
1037 
1038 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1039 {
1040 	unsigned int i;
1041 	u8 value;
1042 
1043 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1044 		value = rt2500pci_bbp_read(rt2x00dev, 0);
1045 		if ((value != 0xff) && (value != 0x00))
1046 			return 0;
1047 		udelay(REGISTER_BUSY_DELAY);
1048 	}
1049 
1050 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1051 	return -EACCES;
1052 }
1053 
1054 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1055 {
1056 	unsigned int i;
1057 	u16 eeprom;
1058 	u8 reg_id;
1059 	u8 value;
1060 
1061 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1062 		return -EACCES;
1063 
1064 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1065 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1066 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1067 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1068 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1069 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1070 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1071 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1072 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1073 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1074 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1075 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1076 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1077 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1078 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1079 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1080 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1081 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1082 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1083 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1084 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1085 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1086 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1087 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1088 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1089 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1090 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1091 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1092 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1093 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1094 
1095 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1096 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1097 
1098 		if (eeprom != 0xffff && eeprom != 0x0000) {
1099 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1100 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1101 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1102 		}
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Device state switch handlers.
1110  */
1111 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1112 				 enum dev_state state)
1113 {
1114 	int mask = (state == STATE_RADIO_IRQ_OFF);
1115 	u32 reg;
1116 	unsigned long flags;
1117 
1118 	/*
1119 	 * When interrupts are being enabled, the interrupt registers
1120 	 * should clear the register to assure a clean state.
1121 	 */
1122 	if (state == STATE_RADIO_IRQ_ON) {
1123 		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1124 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1125 	}
1126 
1127 	/*
1128 	 * Only toggle the interrupts bits we are going to use.
1129 	 * Non-checked interrupt bits are disabled by default.
1130 	 */
1131 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1132 
1133 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1134 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1135 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1136 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1137 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1138 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1139 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1140 
1141 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1142 
1143 	if (state == STATE_RADIO_IRQ_OFF) {
1144 		/*
1145 		 * Ensure that all tasklets are finished.
1146 		 */
1147 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1148 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1149 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1150 	}
1151 }
1152 
1153 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1154 {
1155 	/*
1156 	 * Initialize all registers.
1157 	 */
1158 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1159 		     rt2500pci_init_registers(rt2x00dev) ||
1160 		     rt2500pci_init_bbp(rt2x00dev)))
1161 		return -EIO;
1162 
1163 	return 0;
1164 }
1165 
1166 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1167 {
1168 	/*
1169 	 * Disable power
1170 	 */
1171 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1172 }
1173 
1174 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1175 			       enum dev_state state)
1176 {
1177 	u32 reg, reg2;
1178 	unsigned int i;
1179 	char put_to_sleep;
1180 	char bbp_state;
1181 	char rf_state;
1182 
1183 	put_to_sleep = (state != STATE_AWAKE);
1184 
1185 	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1186 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1187 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1188 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1189 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1190 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1191 
1192 	/*
1193 	 * Device is not guaranteed to be in the requested state yet.
1194 	 * We must wait until the register indicates that the
1195 	 * device has entered the correct state.
1196 	 */
1197 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1198 		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1199 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1200 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1201 		if (bbp_state == state && rf_state == state)
1202 			return 0;
1203 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1204 		msleep(10);
1205 	}
1206 
1207 	return -EBUSY;
1208 }
1209 
1210 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1211 				      enum dev_state state)
1212 {
1213 	int retval = 0;
1214 
1215 	switch (state) {
1216 	case STATE_RADIO_ON:
1217 		retval = rt2500pci_enable_radio(rt2x00dev);
1218 		break;
1219 	case STATE_RADIO_OFF:
1220 		rt2500pci_disable_radio(rt2x00dev);
1221 		break;
1222 	case STATE_RADIO_IRQ_ON:
1223 	case STATE_RADIO_IRQ_OFF:
1224 		rt2500pci_toggle_irq(rt2x00dev, state);
1225 		break;
1226 	case STATE_DEEP_SLEEP:
1227 	case STATE_SLEEP:
1228 	case STATE_STANDBY:
1229 	case STATE_AWAKE:
1230 		retval = rt2500pci_set_state(rt2x00dev, state);
1231 		break;
1232 	default:
1233 		retval = -ENOTSUPP;
1234 		break;
1235 	}
1236 
1237 	if (unlikely(retval))
1238 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1239 			   state, retval);
1240 
1241 	return retval;
1242 }
1243 
1244 /*
1245  * TX descriptor initialization
1246  */
1247 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1248 				    struct txentry_desc *txdesc)
1249 {
1250 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1251 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1252 	__le32 *txd = entry_priv->desc;
1253 	u32 word;
1254 
1255 	/*
1256 	 * Start writing the descriptor words.
1257 	 */
1258 	word = rt2x00_desc_read(txd, 1);
1259 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1260 	rt2x00_desc_write(txd, 1, word);
1261 
1262 	word = rt2x00_desc_read(txd, 2);
1263 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1264 	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1265 	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1266 	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1267 	rt2x00_desc_write(txd, 2, word);
1268 
1269 	word = rt2x00_desc_read(txd, 3);
1270 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1271 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1272 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1273 			   txdesc->u.plcp.length_low);
1274 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1275 			   txdesc->u.plcp.length_high);
1276 	rt2x00_desc_write(txd, 3, word);
1277 
1278 	word = rt2x00_desc_read(txd, 10);
1279 	rt2x00_set_field32(&word, TXD_W10_RTS,
1280 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1281 	rt2x00_desc_write(txd, 10, word);
1282 
1283 	/*
1284 	 * Writing TXD word 0 must the last to prevent a race condition with
1285 	 * the device, whereby the device may take hold of the TXD before we
1286 	 * finished updating it.
1287 	 */
1288 	word = rt2x00_desc_read(txd, 0);
1289 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1290 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1291 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1292 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1293 	rt2x00_set_field32(&word, TXD_W0_ACK,
1294 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1295 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1296 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1297 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1298 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1299 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1300 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1301 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1302 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1303 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1304 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1305 	rt2x00_desc_write(txd, 0, word);
1306 
1307 	/*
1308 	 * Register descriptor details in skb frame descriptor.
1309 	 */
1310 	skbdesc->desc = txd;
1311 	skbdesc->desc_len = TXD_DESC_SIZE;
1312 }
1313 
1314 /*
1315  * TX data initialization
1316  */
1317 static void rt2500pci_write_beacon(struct queue_entry *entry,
1318 				   struct txentry_desc *txdesc)
1319 {
1320 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1321 	u32 reg;
1322 
1323 	/*
1324 	 * Disable beaconing while we are reloading the beacon data,
1325 	 * otherwise we might be sending out invalid data.
1326 	 */
1327 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1328 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1329 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1330 
1331 	if (rt2x00queue_map_txskb(entry)) {
1332 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1333 		goto out;
1334 	}
1335 
1336 	/*
1337 	 * Write the TX descriptor for the beacon.
1338 	 */
1339 	rt2500pci_write_tx_desc(entry, txdesc);
1340 
1341 	/*
1342 	 * Dump beacon to userspace through debugfs.
1343 	 */
1344 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1345 out:
1346 	/*
1347 	 * Enable beaconing again.
1348 	 */
1349 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1350 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1351 }
1352 
1353 /*
1354  * RX control handlers
1355  */
1356 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1357 				  struct rxdone_entry_desc *rxdesc)
1358 {
1359 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1360 	u32 word0;
1361 	u32 word2;
1362 
1363 	word0 = rt2x00_desc_read(entry_priv->desc, 0);
1364 	word2 = rt2x00_desc_read(entry_priv->desc, 2);
1365 
1366 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1367 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1368 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1369 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1370 
1371 	/*
1372 	 * Obtain the status about this packet.
1373 	 * When frame was received with an OFDM bitrate,
1374 	 * the signal is the PLCP value. If it was received with
1375 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1376 	 */
1377 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1378 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1379 	    entry->queue->rt2x00dev->rssi_offset;
1380 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1381 
1382 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1383 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1384 	else
1385 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1386 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1387 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1388 }
1389 
1390 /*
1391  * Interrupt functions.
1392  */
1393 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1394 			     const enum data_queue_qid queue_idx)
1395 {
1396 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1397 	struct queue_entry_priv_mmio *entry_priv;
1398 	struct queue_entry *entry;
1399 	struct txdone_entry_desc txdesc;
1400 	u32 word;
1401 
1402 	while (!rt2x00queue_empty(queue)) {
1403 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1404 		entry_priv = entry->priv_data;
1405 		word = rt2x00_desc_read(entry_priv->desc, 0);
1406 
1407 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1408 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1409 			break;
1410 
1411 		/*
1412 		 * Obtain the status about this packet.
1413 		 */
1414 		txdesc.flags = 0;
1415 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1416 		case 0: /* Success */
1417 		case 1: /* Success with retry */
1418 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1419 			break;
1420 		case 2: /* Failure, excessive retries */
1421 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1422 			/* Fall through - this is a failed frame! */
1423 		default: /* Failure */
1424 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1425 		}
1426 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1427 
1428 		rt2x00lib_txdone(entry, &txdesc);
1429 	}
1430 }
1431 
1432 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1433 					      struct rt2x00_field32 irq_field)
1434 {
1435 	u32 reg;
1436 
1437 	/*
1438 	 * Enable a single interrupt. The interrupt mask register
1439 	 * access needs locking.
1440 	 */
1441 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1442 
1443 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1444 	rt2x00_set_field32(&reg, irq_field, 0);
1445 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1446 
1447 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1448 }
1449 
1450 static void rt2500pci_txstatus_tasklet(unsigned long data)
1451 {
1452 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1453 	u32 reg;
1454 
1455 	/*
1456 	 * Handle all tx queues.
1457 	 */
1458 	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1459 	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1460 	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1461 
1462 	/*
1463 	 * Enable all TXDONE interrupts again.
1464 	 */
1465 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1466 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1467 
1468 		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1469 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1470 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1471 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1472 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1473 
1474 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1475 	}
1476 }
1477 
1478 static void rt2500pci_tbtt_tasklet(unsigned long data)
1479 {
1480 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1481 	rt2x00lib_beacondone(rt2x00dev);
1482 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1483 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1484 }
1485 
1486 static void rt2500pci_rxdone_tasklet(unsigned long data)
1487 {
1488 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1489 	if (rt2x00mmio_rxdone(rt2x00dev))
1490 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1491 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1492 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1493 }
1494 
1495 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1496 {
1497 	struct rt2x00_dev *rt2x00dev = dev_instance;
1498 	u32 reg, mask;
1499 
1500 	/*
1501 	 * Get the interrupt sources & saved to local variable.
1502 	 * Write register value back to clear pending interrupts.
1503 	 */
1504 	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1505 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1506 
1507 	if (!reg)
1508 		return IRQ_NONE;
1509 
1510 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1511 		return IRQ_HANDLED;
1512 
1513 	mask = reg;
1514 
1515 	/*
1516 	 * Schedule tasklets for interrupt handling.
1517 	 */
1518 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1519 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1520 
1521 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1522 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1523 
1524 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1525 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1526 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1527 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1528 		/*
1529 		 * Mask out all txdone interrupts.
1530 		 */
1531 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1532 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1533 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1534 	}
1535 
1536 	/*
1537 	 * Disable all interrupts for which a tasklet was scheduled right now,
1538 	 * the tasklet will reenable the appropriate interrupts.
1539 	 */
1540 	spin_lock(&rt2x00dev->irqmask_lock);
1541 
1542 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1543 	reg |= mask;
1544 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1545 
1546 	spin_unlock(&rt2x00dev->irqmask_lock);
1547 
1548 	return IRQ_HANDLED;
1549 }
1550 
1551 /*
1552  * Device probe functions.
1553  */
1554 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1555 {
1556 	struct eeprom_93cx6 eeprom;
1557 	u32 reg;
1558 	u16 word;
1559 	u8 *mac;
1560 
1561 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1562 
1563 	eeprom.data = rt2x00dev;
1564 	eeprom.register_read = rt2500pci_eepromregister_read;
1565 	eeprom.register_write = rt2500pci_eepromregister_write;
1566 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1567 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1568 	eeprom.reg_data_in = 0;
1569 	eeprom.reg_data_out = 0;
1570 	eeprom.reg_data_clock = 0;
1571 	eeprom.reg_chip_select = 0;
1572 
1573 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1574 			       EEPROM_SIZE / sizeof(u16));
1575 
1576 	/*
1577 	 * Start validation of the data that has been read.
1578 	 */
1579 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1580 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1581 
1582 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1583 	if (word == 0xffff) {
1584 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1585 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1586 				   ANTENNA_SW_DIVERSITY);
1587 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1588 				   ANTENNA_SW_DIVERSITY);
1589 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1590 				   LED_MODE_DEFAULT);
1591 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1592 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1593 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1594 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1595 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1596 	}
1597 
1598 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1599 	if (word == 0xffff) {
1600 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1601 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1602 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1603 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1604 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1605 	}
1606 
1607 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1608 	if (word == 0xffff) {
1609 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1610 				   DEFAULT_RSSI_OFFSET);
1611 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1612 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1613 				  word);
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1620 {
1621 	u32 reg;
1622 	u16 value;
1623 	u16 eeprom;
1624 
1625 	/*
1626 	 * Read EEPROM word for configuration.
1627 	 */
1628 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1629 
1630 	/*
1631 	 * Identify RF chipset.
1632 	 */
1633 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1634 	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1635 	rt2x00_set_chip(rt2x00dev, RT2560, value,
1636 			rt2x00_get_field32(reg, CSR0_REVISION));
1637 
1638 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1639 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1640 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1641 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1642 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1643 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1644 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1645 		return -ENODEV;
1646 	}
1647 
1648 	/*
1649 	 * Identify default antenna configuration.
1650 	 */
1651 	rt2x00dev->default_ant.tx =
1652 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1653 	rt2x00dev->default_ant.rx =
1654 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1655 
1656 	/*
1657 	 * Store led mode, for correct led behaviour.
1658 	 */
1659 #ifdef CONFIG_RT2X00_LIB_LEDS
1660 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1661 
1662 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1663 	if (value == LED_MODE_TXRX_ACTIVITY ||
1664 	    value == LED_MODE_DEFAULT ||
1665 	    value == LED_MODE_ASUS)
1666 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1667 				   LED_TYPE_ACTIVITY);
1668 #endif /* CONFIG_RT2X00_LIB_LEDS */
1669 
1670 	/*
1671 	 * Detect if this device has an hardware controlled radio.
1672 	 */
1673 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1674 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1675 		/*
1676 		 * On this device RFKILL initialized during probe does not work.
1677 		 */
1678 		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1679 	}
1680 
1681 	/*
1682 	 * Check if the BBP tuning should be enabled.
1683 	 */
1684 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1685 	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1686 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1687 
1688 	/*
1689 	 * Read the RSSI <-> dBm offset information.
1690 	 */
1691 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1692 	rt2x00dev->rssi_offset =
1693 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1694 
1695 	return 0;
1696 }
1697 
1698 /*
1699  * RF value list for RF2522
1700  * Supports: 2.4 GHz
1701  */
1702 static const struct rf_channel rf_vals_bg_2522[] = {
1703 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1704 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1705 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1706 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1707 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1708 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1709 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1710 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1711 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1712 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1713 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1714 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1715 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1716 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1717 };
1718 
1719 /*
1720  * RF value list for RF2523
1721  * Supports: 2.4 GHz
1722  */
1723 static const struct rf_channel rf_vals_bg_2523[] = {
1724 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1725 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1726 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1727 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1728 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1729 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1730 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1731 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1732 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1733 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1734 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1735 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1736 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1737 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1738 };
1739 
1740 /*
1741  * RF value list for RF2524
1742  * Supports: 2.4 GHz
1743  */
1744 static const struct rf_channel rf_vals_bg_2524[] = {
1745 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1746 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1747 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1748 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1749 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1750 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1751 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1752 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1753 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1754 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1755 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1756 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1757 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1758 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1759 };
1760 
1761 /*
1762  * RF value list for RF2525
1763  * Supports: 2.4 GHz
1764  */
1765 static const struct rf_channel rf_vals_bg_2525[] = {
1766 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1767 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1768 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1769 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1770 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1771 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1772 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1773 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1774 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1775 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1776 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1777 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1778 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1779 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1780 };
1781 
1782 /*
1783  * RF value list for RF2525e
1784  * Supports: 2.4 GHz
1785  */
1786 static const struct rf_channel rf_vals_bg_2525e[] = {
1787 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1788 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1789 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1790 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1791 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1792 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1793 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1794 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1795 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1796 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1797 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1798 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1799 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1800 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1801 };
1802 
1803 /*
1804  * RF value list for RF5222
1805  * Supports: 2.4 GHz & 5.2 GHz
1806  */
1807 static const struct rf_channel rf_vals_5222[] = {
1808 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1809 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1810 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1811 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1812 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1813 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1814 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1815 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1816 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1817 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1818 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1819 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1820 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1821 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1822 
1823 	/* 802.11 UNI / HyperLan 2 */
1824 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1825 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1826 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1827 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1828 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1829 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1830 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1831 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1832 
1833 	/* 802.11 HyperLan 2 */
1834 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1835 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1836 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1837 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1838 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1839 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1840 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1841 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1842 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1843 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1844 
1845 	/* 802.11 UNII */
1846 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1847 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1848 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1849 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1850 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1851 };
1852 
1853 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1854 {
1855 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1856 	struct channel_info *info;
1857 	char *tx_power;
1858 	unsigned int i;
1859 
1860 	/*
1861 	 * Initialize all hw fields.
1862 	 */
1863 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1864 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1865 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1866 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1867 
1868 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1869 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1870 				rt2x00_eeprom_addr(rt2x00dev,
1871 						   EEPROM_MAC_ADDR_0));
1872 
1873 	/*
1874 	 * Disable powersaving as default.
1875 	 */
1876 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1877 
1878 	/*
1879 	 * Initialize hw_mode information.
1880 	 */
1881 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1882 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1883 
1884 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1885 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1886 		spec->channels = rf_vals_bg_2522;
1887 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1888 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1889 		spec->channels = rf_vals_bg_2523;
1890 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1891 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1892 		spec->channels = rf_vals_bg_2524;
1893 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1894 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1895 		spec->channels = rf_vals_bg_2525;
1896 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1897 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1898 		spec->channels = rf_vals_bg_2525e;
1899 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1900 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1901 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1902 		spec->channels = rf_vals_5222;
1903 	}
1904 
1905 	/*
1906 	 * Create channel information array
1907 	 */
1908 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1909 	if (!info)
1910 		return -ENOMEM;
1911 
1912 	spec->channels_info = info;
1913 
1914 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1915 	for (i = 0; i < 14; i++) {
1916 		info[i].max_power = MAX_TXPOWER;
1917 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1918 	}
1919 
1920 	if (spec->num_channels > 14) {
1921 		for (i = 14; i < spec->num_channels; i++) {
1922 			info[i].max_power = MAX_TXPOWER;
1923 			info[i].default_power1 = DEFAULT_TXPOWER;
1924 		}
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1931 {
1932 	int retval;
1933 	u32 reg;
1934 
1935 	/*
1936 	 * Allocate eeprom data.
1937 	 */
1938 	retval = rt2500pci_validate_eeprom(rt2x00dev);
1939 	if (retval)
1940 		return retval;
1941 
1942 	retval = rt2500pci_init_eeprom(rt2x00dev);
1943 	if (retval)
1944 		return retval;
1945 
1946 	/*
1947 	 * Enable rfkill polling by setting GPIO direction of the
1948 	 * rfkill switch GPIO pin correctly.
1949 	 */
1950 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1951 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1952 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1953 
1954 	/*
1955 	 * Initialize hw specifications.
1956 	 */
1957 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1958 	if (retval)
1959 		return retval;
1960 
1961 	/*
1962 	 * This device requires the atim queue and DMA-mapped skbs.
1963 	 */
1964 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1965 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1966 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1967 
1968 	/*
1969 	 * Set the rssi offset.
1970 	 */
1971 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1972 
1973 	return 0;
1974 }
1975 
1976 /*
1977  * IEEE80211 stack callback functions.
1978  */
1979 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1980 			     struct ieee80211_vif *vif)
1981 {
1982 	struct rt2x00_dev *rt2x00dev = hw->priv;
1983 	u64 tsf;
1984 	u32 reg;
1985 
1986 	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1987 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1988 	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1989 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1990 
1991 	return tsf;
1992 }
1993 
1994 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1995 {
1996 	struct rt2x00_dev *rt2x00dev = hw->priv;
1997 	u32 reg;
1998 
1999 	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2000 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2001 }
2002 
2003 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2004 	.tx			= rt2x00mac_tx,
2005 	.start			= rt2x00mac_start,
2006 	.stop			= rt2x00mac_stop,
2007 	.add_interface		= rt2x00mac_add_interface,
2008 	.remove_interface	= rt2x00mac_remove_interface,
2009 	.config			= rt2x00mac_config,
2010 	.configure_filter	= rt2x00mac_configure_filter,
2011 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2012 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2013 	.get_stats		= rt2x00mac_get_stats,
2014 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2015 	.conf_tx		= rt2x00mac_conf_tx,
2016 	.get_tsf		= rt2500pci_get_tsf,
2017 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2018 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2019 	.flush			= rt2x00mac_flush,
2020 	.set_antenna		= rt2x00mac_set_antenna,
2021 	.get_antenna		= rt2x00mac_get_antenna,
2022 	.get_ringparam		= rt2x00mac_get_ringparam,
2023 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2024 };
2025 
2026 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2027 	.irq_handler		= rt2500pci_interrupt,
2028 	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2029 	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2030 	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2031 	.probe_hw		= rt2500pci_probe_hw,
2032 	.initialize		= rt2x00mmio_initialize,
2033 	.uninitialize		= rt2x00mmio_uninitialize,
2034 	.get_entry_state	= rt2500pci_get_entry_state,
2035 	.clear_entry		= rt2500pci_clear_entry,
2036 	.set_device_state	= rt2500pci_set_device_state,
2037 	.rfkill_poll		= rt2500pci_rfkill_poll,
2038 	.link_stats		= rt2500pci_link_stats,
2039 	.reset_tuner		= rt2500pci_reset_tuner,
2040 	.link_tuner		= rt2500pci_link_tuner,
2041 	.start_queue		= rt2500pci_start_queue,
2042 	.kick_queue		= rt2500pci_kick_queue,
2043 	.stop_queue		= rt2500pci_stop_queue,
2044 	.flush_queue		= rt2x00mmio_flush_queue,
2045 	.write_tx_desc		= rt2500pci_write_tx_desc,
2046 	.write_beacon		= rt2500pci_write_beacon,
2047 	.fill_rxdone		= rt2500pci_fill_rxdone,
2048 	.config_filter		= rt2500pci_config_filter,
2049 	.config_intf		= rt2500pci_config_intf,
2050 	.config_erp		= rt2500pci_config_erp,
2051 	.config_ant		= rt2500pci_config_ant,
2052 	.config			= rt2500pci_config,
2053 };
2054 
2055 static void rt2500pci_queue_init(struct data_queue *queue)
2056 {
2057 	switch (queue->qid) {
2058 	case QID_RX:
2059 		queue->limit = 32;
2060 		queue->data_size = DATA_FRAME_SIZE;
2061 		queue->desc_size = RXD_DESC_SIZE;
2062 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2063 		break;
2064 
2065 	case QID_AC_VO:
2066 	case QID_AC_VI:
2067 	case QID_AC_BE:
2068 	case QID_AC_BK:
2069 		queue->limit = 32;
2070 		queue->data_size = DATA_FRAME_SIZE;
2071 		queue->desc_size = TXD_DESC_SIZE;
2072 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2073 		break;
2074 
2075 	case QID_BEACON:
2076 		queue->limit = 1;
2077 		queue->data_size = MGMT_FRAME_SIZE;
2078 		queue->desc_size = TXD_DESC_SIZE;
2079 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2080 		break;
2081 
2082 	case QID_ATIM:
2083 		queue->limit = 8;
2084 		queue->data_size = DATA_FRAME_SIZE;
2085 		queue->desc_size = TXD_DESC_SIZE;
2086 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2087 		break;
2088 
2089 	default:
2090 		BUG();
2091 		break;
2092 	}
2093 }
2094 
2095 static const struct rt2x00_ops rt2500pci_ops = {
2096 	.name			= KBUILD_MODNAME,
2097 	.max_ap_intf		= 1,
2098 	.eeprom_size		= EEPROM_SIZE,
2099 	.rf_size		= RF_SIZE,
2100 	.tx_queues		= NUM_TX_QUEUES,
2101 	.queue_init		= rt2500pci_queue_init,
2102 	.lib			= &rt2500pci_rt2x00_ops,
2103 	.hw			= &rt2500pci_mac80211_ops,
2104 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2105 	.debugfs		= &rt2500pci_rt2x00debug,
2106 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2107 };
2108 
2109 /*
2110  * RT2500pci module information.
2111  */
2112 static const struct pci_device_id rt2500pci_device_table[] = {
2113 	{ PCI_DEVICE(0x1814, 0x0201) },
2114 	{ 0, }
2115 };
2116 
2117 MODULE_AUTHOR(DRV_PROJECT);
2118 MODULE_VERSION(DRV_VERSION);
2119 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2120 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2121 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2122 MODULE_LICENSE("GPL");
2123 
2124 static int rt2500pci_probe(struct pci_dev *pci_dev,
2125 			   const struct pci_device_id *id)
2126 {
2127 	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2128 }
2129 
2130 static struct pci_driver rt2500pci_driver = {
2131 	.name		= KBUILD_MODNAME,
2132 	.id_table	= rt2500pci_device_table,
2133 	.probe		= rt2500pci_probe,
2134 	.remove		= rt2x00pci_remove,
2135 	.suspend	= rt2x00pci_suspend,
2136 	.resume		= rt2x00pci_resume,
2137 };
2138 
2139 module_pci_driver(rt2500pci_driver);
2140