xref: /openbmc/linux/drivers/net/wireless/ralink/rt2x00/rt2500pci.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500pci
21 	Abstract: rt2500pci device specific routines.
22 	Supported chipsets: RT2560.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
37 
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2x00mmio_register_read and rt2x00mmio_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55 
56 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 				const unsigned int word, const u8 value)
58 {
59 	u32 reg;
60 
61 	mutex_lock(&rt2x00dev->csr_mutex);
62 
63 	/*
64 	 * Wait until the BBP becomes available, afterwards we
65 	 * can safely write the new data into the register.
66 	 */
67 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 		reg = 0;
69 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73 
74 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 	}
76 
77 	mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79 
80 static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 			     const unsigned int word)
82 {
83 	u32 reg;
84 	u8 value;
85 
86 	mutex_lock(&rt2x00dev->csr_mutex);
87 
88 	/*
89 	 * Wait until the BBP becomes available, afterwards we
90 	 * can safely write the read request into the register.
91 	 * After the data has been written, we wait until hardware
92 	 * returns the correct value, if at any time the register
93 	 * doesn't become available in time, reg will be 0xffffffff
94 	 * which means we return 0xff to the caller.
95 	 */
96 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 		reg = 0;
98 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101 
102 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
103 
104 		WAIT_FOR_BBP(rt2x00dev, &reg);
105 	}
106 
107 	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108 
109 	mutex_unlock(&rt2x00dev->csr_mutex);
110 
111 	return value;
112 }
113 
114 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
115 			       const unsigned int word, const u32 value)
116 {
117 	u32 reg;
118 
119 	mutex_lock(&rt2x00dev->csr_mutex);
120 
121 	/*
122 	 * Wait until the RF becomes available, afterwards we
123 	 * can safely write the new data into the register.
124 	 */
125 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
126 		reg = 0;
127 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
128 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
129 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
130 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
131 
132 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
133 		rt2x00_rf_write(rt2x00dev, word, value);
134 	}
135 
136 	mutex_unlock(&rt2x00dev->csr_mutex);
137 }
138 
139 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
140 {
141 	struct rt2x00_dev *rt2x00dev = eeprom->data;
142 	u32 reg;
143 
144 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
145 
146 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
147 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
148 	eeprom->reg_data_clock =
149 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
150 	eeprom->reg_chip_select =
151 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 }
153 
154 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
155 {
156 	struct rt2x00_dev *rt2x00dev = eeprom->data;
157 	u32 reg = 0;
158 
159 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
161 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
162 			   !!eeprom->reg_data_clock);
163 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
164 			   !!eeprom->reg_chip_select);
165 
166 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
167 }
168 
169 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
170 static const struct rt2x00debug rt2500pci_rt2x00debug = {
171 	.owner	= THIS_MODULE,
172 	.csr	= {
173 		.read		= rt2x00mmio_register_read,
174 		.write		= rt2x00mmio_register_write,
175 		.flags		= RT2X00DEBUGFS_OFFSET,
176 		.word_base	= CSR_REG_BASE,
177 		.word_size	= sizeof(u32),
178 		.word_count	= CSR_REG_SIZE / sizeof(u32),
179 	},
180 	.eeprom	= {
181 		.read		= rt2x00_eeprom_read,
182 		.write		= rt2x00_eeprom_write,
183 		.word_base	= EEPROM_BASE,
184 		.word_size	= sizeof(u16),
185 		.word_count	= EEPROM_SIZE / sizeof(u16),
186 	},
187 	.bbp	= {
188 		.read		= rt2500pci_bbp_read,
189 		.write		= rt2500pci_bbp_write,
190 		.word_base	= BBP_BASE,
191 		.word_size	= sizeof(u8),
192 		.word_count	= BBP_SIZE / sizeof(u8),
193 	},
194 	.rf	= {
195 		.read		= rt2x00_rf_read,
196 		.write		= rt2500pci_rf_write,
197 		.word_base	= RF_BASE,
198 		.word_size	= sizeof(u32),
199 		.word_count	= RF_SIZE / sizeof(u32),
200 	},
201 };
202 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203 
204 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 {
206 	u32 reg;
207 
208 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
209 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
210 }
211 
212 #ifdef CONFIG_RT2X00_LIB_LEDS
213 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
214 				     enum led_brightness brightness)
215 {
216 	struct rt2x00_led *led =
217 	    container_of(led_cdev, struct rt2x00_led, led_dev);
218 	unsigned int enabled = brightness != LED_OFF;
219 	u32 reg;
220 
221 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
222 
223 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
224 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
225 	else if (led->type == LED_TYPE_ACTIVITY)
226 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
227 
228 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
229 }
230 
231 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
232 			       unsigned long *delay_on,
233 			       unsigned long *delay_off)
234 {
235 	struct rt2x00_led *led =
236 	    container_of(led_cdev, struct rt2x00_led, led_dev);
237 	u32 reg;
238 
239 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
240 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
241 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
242 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
243 
244 	return 0;
245 }
246 
247 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
248 			       struct rt2x00_led *led,
249 			       enum led_type type)
250 {
251 	led->rt2x00dev = rt2x00dev;
252 	led->type = type;
253 	led->led_dev.brightness_set = rt2500pci_brightness_set;
254 	led->led_dev.blink_set = rt2500pci_blink_set;
255 	led->flags = LED_INITIALIZED;
256 }
257 #endif /* CONFIG_RT2X00_LIB_LEDS */
258 
259 /*
260  * Configuration handlers.
261  */
262 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
263 				    const unsigned int filter_flags)
264 {
265 	u32 reg;
266 
267 	/*
268 	 * Start configuration steps.
269 	 * Note that the version error will always be dropped
270 	 * and broadcast frames will always be accepted since
271 	 * there is no filter for it at this time.
272 	 */
273 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
274 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
275 			   !(filter_flags & FIF_FCSFAIL));
276 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
277 			   !(filter_flags & FIF_PLCPFAIL));
278 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
279 			   !(filter_flags & FIF_CONTROL));
280 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
281 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
282 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
283 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
284 			   !rt2x00dev->intf_ap_count);
285 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
286 	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
287 			   !(filter_flags & FIF_ALLMULTI));
288 	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
289 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
290 }
291 
292 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
293 				  struct rt2x00_intf *intf,
294 				  struct rt2x00intf_conf *conf,
295 				  const unsigned int flags)
296 {
297 	struct data_queue *queue = rt2x00dev->bcn;
298 	unsigned int bcn_preload;
299 	u32 reg;
300 
301 	if (flags & CONFIG_UPDATE_TYPE) {
302 		/*
303 		 * Enable beacon config
304 		 */
305 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
306 		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
307 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
308 		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
309 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
310 
311 		/*
312 		 * Enable synchronisation.
313 		 */
314 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
315 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
317 	}
318 
319 	if (flags & CONFIG_UPDATE_MAC)
320 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
321 					      conf->mac, sizeof(conf->mac));
322 
323 	if (flags & CONFIG_UPDATE_BSSID)
324 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
325 					      conf->bssid, sizeof(conf->bssid));
326 }
327 
328 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
329 				 struct rt2x00lib_erp *erp,
330 				 u32 changed)
331 {
332 	int preamble_mask;
333 	u32 reg;
334 
335 	/*
336 	 * When short preamble is enabled, we should set bit 0x08
337 	 */
338 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
339 		preamble_mask = erp->short_preamble << 3;
340 
341 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
342 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
343 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
344 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
345 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
346 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
347 
348 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
349 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
350 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
351 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
352 				   GET_DURATION(ACK_SIZE, 10));
353 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
354 
355 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
356 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
357 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
358 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
359 				   GET_DURATION(ACK_SIZE, 20));
360 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
361 
362 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
363 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
364 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
365 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
366 				   GET_DURATION(ACK_SIZE, 55));
367 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
368 
369 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
370 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
371 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
372 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
373 				   GET_DURATION(ACK_SIZE, 110));
374 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
375 	}
376 
377 	if (changed & BSS_CHANGED_BASIC_RATES)
378 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
379 
380 	if (changed & BSS_CHANGED_ERP_SLOT) {
381 		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
382 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
383 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
384 
385 		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
386 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
387 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
388 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
389 
390 		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
391 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
392 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
393 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
394 	}
395 
396 	if (changed & BSS_CHANGED_BEACON_INT) {
397 		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
398 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
399 				   erp->beacon_int * 16);
400 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
401 				   erp->beacon_int * 16);
402 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
403 	}
404 
405 }
406 
407 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
408 				 struct antenna_setup *ant)
409 {
410 	u32 reg;
411 	u8 r14;
412 	u8 r2;
413 
414 	/*
415 	 * We should never come here because rt2x00lib is supposed
416 	 * to catch this and send us the correct antenna explicitely.
417 	 */
418 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
419 	       ant->tx == ANTENNA_SW_DIVERSITY);
420 
421 	reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
422 	r14 = rt2500pci_bbp_read(rt2x00dev, 14);
423 	r2 = rt2500pci_bbp_read(rt2x00dev, 2);
424 
425 	/*
426 	 * Configure the TX antenna.
427 	 */
428 	switch (ant->tx) {
429 	case ANTENNA_A:
430 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
431 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
432 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
433 		break;
434 	case ANTENNA_B:
435 	default:
436 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
437 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
438 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
439 		break;
440 	}
441 
442 	/*
443 	 * Configure the RX antenna.
444 	 */
445 	switch (ant->rx) {
446 	case ANTENNA_A:
447 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
448 		break;
449 	case ANTENNA_B:
450 	default:
451 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
452 		break;
453 	}
454 
455 	/*
456 	 * RT2525E and RT5222 need to flip TX I/Q
457 	 */
458 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
459 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
460 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
461 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
462 
463 		/*
464 		 * RT2525E does not need RX I/Q Flip.
465 		 */
466 		if (rt2x00_rf(rt2x00dev, RF2525E))
467 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
468 	} else {
469 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
470 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
471 	}
472 
473 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
474 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
475 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
476 }
477 
478 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
479 				     struct rf_channel *rf, const int txpower)
480 {
481 	u8 r70;
482 
483 	/*
484 	 * Set TXpower.
485 	 */
486 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
487 
488 	/*
489 	 * Switch on tuning bits.
490 	 * For RT2523 devices we do not need to update the R1 register.
491 	 */
492 	if (!rt2x00_rf(rt2x00dev, RF2523))
493 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
494 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
495 
496 	/*
497 	 * For RT2525 we should first set the channel to half band higher.
498 	 */
499 	if (rt2x00_rf(rt2x00dev, RF2525)) {
500 		static const u32 vals[] = {
501 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
502 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
503 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
504 			0x00080d2e, 0x00080d3a
505 		};
506 
507 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
508 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
509 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
510 		if (rf->rf4)
511 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
512 	}
513 
514 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
515 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
516 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
517 	if (rf->rf4)
518 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
519 
520 	/*
521 	 * Channel 14 requires the Japan filter bit to be set.
522 	 */
523 	r70 = 0x46;
524 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
525 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
526 
527 	msleep(1);
528 
529 	/*
530 	 * Switch off tuning bits.
531 	 * For RT2523 devices we do not need to update the R1 register.
532 	 */
533 	if (!rt2x00_rf(rt2x00dev, RF2523)) {
534 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
535 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
536 	}
537 
538 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
539 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
540 
541 	/*
542 	 * Clear false CRC during channel switch.
543 	 */
544 	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
545 }
546 
547 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
548 				     const int txpower)
549 {
550 	u32 rf3;
551 
552 	rf3 = rt2x00_rf_read(rt2x00dev, 3);
553 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
554 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
555 }
556 
557 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
558 					 struct rt2x00lib_conf *libconf)
559 {
560 	u32 reg;
561 
562 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
563 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
564 			   libconf->conf->long_frame_max_tx_count);
565 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
566 			   libconf->conf->short_frame_max_tx_count);
567 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
568 }
569 
570 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
571 				struct rt2x00lib_conf *libconf)
572 {
573 	enum dev_state state =
574 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
575 		STATE_SLEEP : STATE_AWAKE;
576 	u32 reg;
577 
578 	if (state == STATE_SLEEP) {
579 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
580 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
581 				   (rt2x00dev->beacon_int - 20) * 16);
582 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
583 				   libconf->conf->listen_interval - 1);
584 
585 		/* We must first disable autowake before it can be enabled */
586 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
587 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
588 
589 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
590 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
591 	} else {
592 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
593 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
594 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
595 	}
596 
597 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
598 }
599 
600 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
601 			     struct rt2x00lib_conf *libconf,
602 			     const unsigned int flags)
603 {
604 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
605 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
606 					 libconf->conf->power_level);
607 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
608 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
609 		rt2500pci_config_txpower(rt2x00dev,
610 					 libconf->conf->power_level);
611 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
612 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
613 	if (flags & IEEE80211_CONF_CHANGE_PS)
614 		rt2500pci_config_ps(rt2x00dev, libconf);
615 }
616 
617 /*
618  * Link tuning
619  */
620 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
621 				 struct link_qual *qual)
622 {
623 	u32 reg;
624 
625 	/*
626 	 * Update FCS error count from register.
627 	 */
628 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
629 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
630 
631 	/*
632 	 * Update False CCA count from register.
633 	 */
634 	reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
635 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
636 }
637 
638 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
639 				     struct link_qual *qual, u8 vgc_level)
640 {
641 	if (qual->vgc_level_reg != vgc_level) {
642 		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
643 		qual->vgc_level = vgc_level;
644 		qual->vgc_level_reg = vgc_level;
645 	}
646 }
647 
648 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
649 				  struct link_qual *qual)
650 {
651 	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
652 }
653 
654 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
655 				 struct link_qual *qual, const u32 count)
656 {
657 	/*
658 	 * To prevent collisions with MAC ASIC on chipsets
659 	 * up to version C the link tuning should halt after 20
660 	 * seconds while being associated.
661 	 */
662 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
663 	    rt2x00dev->intf_associated && count > 20)
664 		return;
665 
666 	/*
667 	 * Chipset versions C and lower should directly continue
668 	 * to the dynamic CCA tuning. Chipset version D and higher
669 	 * should go straight to dynamic CCA tuning when they
670 	 * are not associated.
671 	 */
672 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
673 	    !rt2x00dev->intf_associated)
674 		goto dynamic_cca_tune;
675 
676 	/*
677 	 * A too low RSSI will cause too much false CCA which will
678 	 * then corrupt the R17 tuning. To remidy this the tuning should
679 	 * be stopped (While making sure the R17 value will not exceed limits)
680 	 */
681 	if (qual->rssi < -80 && count > 20) {
682 		if (qual->vgc_level_reg >= 0x41)
683 			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
684 		return;
685 	}
686 
687 	/*
688 	 * Special big-R17 for short distance
689 	 */
690 	if (qual->rssi >= -58) {
691 		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
692 		return;
693 	}
694 
695 	/*
696 	 * Special mid-R17 for middle distance
697 	 */
698 	if (qual->rssi >= -74) {
699 		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
700 		return;
701 	}
702 
703 	/*
704 	 * Leave short or middle distance condition, restore r17
705 	 * to the dynamic tuning range.
706 	 */
707 	if (qual->vgc_level_reg >= 0x41) {
708 		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
709 		return;
710 	}
711 
712 dynamic_cca_tune:
713 
714 	/*
715 	 * R17 is inside the dynamic tuning range,
716 	 * start tuning the link based on the false cca counter.
717 	 */
718 	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
719 		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
720 	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
721 		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
722 }
723 
724 /*
725  * Queue handlers.
726  */
727 static void rt2500pci_start_queue(struct data_queue *queue)
728 {
729 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
730 	u32 reg;
731 
732 	switch (queue->qid) {
733 	case QID_RX:
734 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
735 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
736 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
737 		break;
738 	case QID_BEACON:
739 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
740 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
741 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
742 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
743 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
744 		break;
745 	default:
746 		break;
747 	}
748 }
749 
750 static void rt2500pci_kick_queue(struct data_queue *queue)
751 {
752 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
753 	u32 reg;
754 
755 	switch (queue->qid) {
756 	case QID_AC_VO:
757 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
758 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
759 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
760 		break;
761 	case QID_AC_VI:
762 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
763 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
764 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
765 		break;
766 	case QID_ATIM:
767 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
768 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
769 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
770 		break;
771 	default:
772 		break;
773 	}
774 }
775 
776 static void rt2500pci_stop_queue(struct data_queue *queue)
777 {
778 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
779 	u32 reg;
780 
781 	switch (queue->qid) {
782 	case QID_AC_VO:
783 	case QID_AC_VI:
784 	case QID_ATIM:
785 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
786 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
787 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
788 		break;
789 	case QID_RX:
790 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
791 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
792 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
793 		break;
794 	case QID_BEACON:
795 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
796 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
797 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
798 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
799 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
800 
801 		/*
802 		 * Wait for possibly running tbtt tasklets.
803 		 */
804 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
805 		break;
806 	default:
807 		break;
808 	}
809 }
810 
811 /*
812  * Initialization functions.
813  */
814 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
815 {
816 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
817 	u32 word;
818 
819 	if (entry->queue->qid == QID_RX) {
820 		word = rt2x00_desc_read(entry_priv->desc, 0);
821 
822 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
823 	} else {
824 		word = rt2x00_desc_read(entry_priv->desc, 0);
825 
826 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
827 		        rt2x00_get_field32(word, TXD_W0_VALID));
828 	}
829 }
830 
831 static void rt2500pci_clear_entry(struct queue_entry *entry)
832 {
833 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
834 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
835 	u32 word;
836 
837 	if (entry->queue->qid == QID_RX) {
838 		word = rt2x00_desc_read(entry_priv->desc, 1);
839 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
840 		rt2x00_desc_write(entry_priv->desc, 1, word);
841 
842 		word = rt2x00_desc_read(entry_priv->desc, 0);
843 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
844 		rt2x00_desc_write(entry_priv->desc, 0, word);
845 	} else {
846 		word = rt2x00_desc_read(entry_priv->desc, 0);
847 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
848 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
849 		rt2x00_desc_write(entry_priv->desc, 0, word);
850 	}
851 }
852 
853 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
854 {
855 	struct queue_entry_priv_mmio *entry_priv;
856 	u32 reg;
857 
858 	/*
859 	 * Initialize registers.
860 	 */
861 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
862 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
863 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
864 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
865 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
866 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
867 
868 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
869 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
870 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
871 			   entry_priv->desc_dma);
872 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
873 
874 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
875 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
876 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
877 			   entry_priv->desc_dma);
878 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
879 
880 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
881 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
882 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
883 			   entry_priv->desc_dma);
884 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
885 
886 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
887 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
888 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
889 			   entry_priv->desc_dma);
890 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
891 
892 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
893 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
894 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
895 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
896 
897 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
898 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
899 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
900 			   entry_priv->desc_dma);
901 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
902 
903 	return 0;
904 }
905 
906 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
907 {
908 	u32 reg;
909 
910 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
911 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
912 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
913 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
914 
915 	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
916 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
917 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
918 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
919 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
920 
921 	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
922 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
923 			   rt2x00dev->rx->data_size / 128);
924 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
925 
926 	/*
927 	 * Always use CWmin and CWmax set in descriptor.
928 	 */
929 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
930 	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
931 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
932 
933 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
934 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
935 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
936 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
937 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
938 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
939 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
940 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
941 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
942 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
943 
944 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
945 
946 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
947 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
948 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
949 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
950 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
951 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
952 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
953 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
954 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
955 	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
956 
957 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
958 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
959 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
960 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
961 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
962 	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
963 
964 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
965 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
966 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
967 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
968 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
969 	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
970 
971 	reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
972 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
973 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
974 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
975 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
976 	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
977 
978 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
979 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
980 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
981 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
982 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
983 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
984 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
985 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
986 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
987 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
988 
989 	reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
990 	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
991 	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
992 	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
993 	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
994 	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
995 	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
996 	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
997 	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
998 
999 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
1000 
1001 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1002 	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1003 
1004 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1005 		return -EBUSY;
1006 
1007 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1008 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1009 
1010 	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1011 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1012 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1013 
1014 	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1015 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1016 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1017 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1018 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1019 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1020 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1021 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1022 
1023 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1024 
1025 	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1026 
1027 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1028 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1029 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1030 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1031 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1032 
1033 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1034 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1035 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1036 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1037 
1038 	/*
1039 	 * We must clear the FCS and FIFO error count.
1040 	 * These registers are cleared on read,
1041 	 * so we may pass a useless variable to store the value.
1042 	 */
1043 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1044 	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1045 
1046 	return 0;
1047 }
1048 
1049 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1050 {
1051 	unsigned int i;
1052 	u8 value;
1053 
1054 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1055 		value = rt2500pci_bbp_read(rt2x00dev, 0);
1056 		if ((value != 0xff) && (value != 0x00))
1057 			return 0;
1058 		udelay(REGISTER_BUSY_DELAY);
1059 	}
1060 
1061 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1062 	return -EACCES;
1063 }
1064 
1065 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1066 {
1067 	unsigned int i;
1068 	u16 eeprom;
1069 	u8 reg_id;
1070 	u8 value;
1071 
1072 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1073 		return -EACCES;
1074 
1075 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1076 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1077 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1078 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1079 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1080 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1081 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1082 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1083 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1084 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1085 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1086 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1087 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1088 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1089 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1090 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1091 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1092 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1093 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1094 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1095 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1096 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1097 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1098 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1099 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1100 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1101 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1102 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1103 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1104 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1105 
1106 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1107 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1108 
1109 		if (eeprom != 0xffff && eeprom != 0x0000) {
1110 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1111 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1112 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1113 		}
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * Device state switch handlers.
1121  */
1122 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1123 				 enum dev_state state)
1124 {
1125 	int mask = (state == STATE_RADIO_IRQ_OFF);
1126 	u32 reg;
1127 	unsigned long flags;
1128 
1129 	/*
1130 	 * When interrupts are being enabled, the interrupt registers
1131 	 * should clear the register to assure a clean state.
1132 	 */
1133 	if (state == STATE_RADIO_IRQ_ON) {
1134 		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1135 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1136 	}
1137 
1138 	/*
1139 	 * Only toggle the interrupts bits we are going to use.
1140 	 * Non-checked interrupt bits are disabled by default.
1141 	 */
1142 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1143 
1144 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1145 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1146 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1147 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1148 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1149 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1150 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1151 
1152 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1153 
1154 	if (state == STATE_RADIO_IRQ_OFF) {
1155 		/*
1156 		 * Ensure that all tasklets are finished.
1157 		 */
1158 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1159 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1160 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1161 	}
1162 }
1163 
1164 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1165 {
1166 	/*
1167 	 * Initialize all registers.
1168 	 */
1169 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1170 		     rt2500pci_init_registers(rt2x00dev) ||
1171 		     rt2500pci_init_bbp(rt2x00dev)))
1172 		return -EIO;
1173 
1174 	return 0;
1175 }
1176 
1177 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1178 {
1179 	/*
1180 	 * Disable power
1181 	 */
1182 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1183 }
1184 
1185 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1186 			       enum dev_state state)
1187 {
1188 	u32 reg, reg2;
1189 	unsigned int i;
1190 	char put_to_sleep;
1191 	char bbp_state;
1192 	char rf_state;
1193 
1194 	put_to_sleep = (state != STATE_AWAKE);
1195 
1196 	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1197 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1198 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1199 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1200 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1201 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1202 
1203 	/*
1204 	 * Device is not guaranteed to be in the requested state yet.
1205 	 * We must wait until the register indicates that the
1206 	 * device has entered the correct state.
1207 	 */
1208 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1209 		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1210 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1211 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1212 		if (bbp_state == state && rf_state == state)
1213 			return 0;
1214 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1215 		msleep(10);
1216 	}
1217 
1218 	return -EBUSY;
1219 }
1220 
1221 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1222 				      enum dev_state state)
1223 {
1224 	int retval = 0;
1225 
1226 	switch (state) {
1227 	case STATE_RADIO_ON:
1228 		retval = rt2500pci_enable_radio(rt2x00dev);
1229 		break;
1230 	case STATE_RADIO_OFF:
1231 		rt2500pci_disable_radio(rt2x00dev);
1232 		break;
1233 	case STATE_RADIO_IRQ_ON:
1234 	case STATE_RADIO_IRQ_OFF:
1235 		rt2500pci_toggle_irq(rt2x00dev, state);
1236 		break;
1237 	case STATE_DEEP_SLEEP:
1238 	case STATE_SLEEP:
1239 	case STATE_STANDBY:
1240 	case STATE_AWAKE:
1241 		retval = rt2500pci_set_state(rt2x00dev, state);
1242 		break;
1243 	default:
1244 		retval = -ENOTSUPP;
1245 		break;
1246 	}
1247 
1248 	if (unlikely(retval))
1249 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1250 			   state, retval);
1251 
1252 	return retval;
1253 }
1254 
1255 /*
1256  * TX descriptor initialization
1257  */
1258 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1259 				    struct txentry_desc *txdesc)
1260 {
1261 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1262 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1263 	__le32 *txd = entry_priv->desc;
1264 	u32 word;
1265 
1266 	/*
1267 	 * Start writing the descriptor words.
1268 	 */
1269 	word = rt2x00_desc_read(txd, 1);
1270 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1271 	rt2x00_desc_write(txd, 1, word);
1272 
1273 	word = rt2x00_desc_read(txd, 2);
1274 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1275 	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1276 	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1277 	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1278 	rt2x00_desc_write(txd, 2, word);
1279 
1280 	word = rt2x00_desc_read(txd, 3);
1281 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1282 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1283 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1284 			   txdesc->u.plcp.length_low);
1285 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1286 			   txdesc->u.plcp.length_high);
1287 	rt2x00_desc_write(txd, 3, word);
1288 
1289 	word = rt2x00_desc_read(txd, 10);
1290 	rt2x00_set_field32(&word, TXD_W10_RTS,
1291 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1292 	rt2x00_desc_write(txd, 10, word);
1293 
1294 	/*
1295 	 * Writing TXD word 0 must the last to prevent a race condition with
1296 	 * the device, whereby the device may take hold of the TXD before we
1297 	 * finished updating it.
1298 	 */
1299 	word = rt2x00_desc_read(txd, 0);
1300 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1301 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1302 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1303 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1304 	rt2x00_set_field32(&word, TXD_W0_ACK,
1305 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1306 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1307 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1308 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1309 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1310 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1311 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1312 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1313 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1314 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1315 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1316 	rt2x00_desc_write(txd, 0, word);
1317 
1318 	/*
1319 	 * Register descriptor details in skb frame descriptor.
1320 	 */
1321 	skbdesc->desc = txd;
1322 	skbdesc->desc_len = TXD_DESC_SIZE;
1323 }
1324 
1325 /*
1326  * TX data initialization
1327  */
1328 static void rt2500pci_write_beacon(struct queue_entry *entry,
1329 				   struct txentry_desc *txdesc)
1330 {
1331 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1332 	u32 reg;
1333 
1334 	/*
1335 	 * Disable beaconing while we are reloading the beacon data,
1336 	 * otherwise we might be sending out invalid data.
1337 	 */
1338 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1339 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1340 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1341 
1342 	if (rt2x00queue_map_txskb(entry)) {
1343 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1344 		goto out;
1345 	}
1346 
1347 	/*
1348 	 * Write the TX descriptor for the beacon.
1349 	 */
1350 	rt2500pci_write_tx_desc(entry, txdesc);
1351 
1352 	/*
1353 	 * Dump beacon to userspace through debugfs.
1354 	 */
1355 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1356 out:
1357 	/*
1358 	 * Enable beaconing again.
1359 	 */
1360 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1361 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1362 }
1363 
1364 /*
1365  * RX control handlers
1366  */
1367 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1368 				  struct rxdone_entry_desc *rxdesc)
1369 {
1370 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1371 	u32 word0;
1372 	u32 word2;
1373 
1374 	word0 = rt2x00_desc_read(entry_priv->desc, 0);
1375 	word2 = rt2x00_desc_read(entry_priv->desc, 2);
1376 
1377 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1378 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1379 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1380 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1381 
1382 	/*
1383 	 * Obtain the status about this packet.
1384 	 * When frame was received with an OFDM bitrate,
1385 	 * the signal is the PLCP value. If it was received with
1386 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1387 	 */
1388 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1389 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1390 	    entry->queue->rt2x00dev->rssi_offset;
1391 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1392 
1393 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1394 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1395 	else
1396 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1397 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1398 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1399 }
1400 
1401 /*
1402  * Interrupt functions.
1403  */
1404 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1405 			     const enum data_queue_qid queue_idx)
1406 {
1407 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1408 	struct queue_entry_priv_mmio *entry_priv;
1409 	struct queue_entry *entry;
1410 	struct txdone_entry_desc txdesc;
1411 	u32 word;
1412 
1413 	while (!rt2x00queue_empty(queue)) {
1414 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1415 		entry_priv = entry->priv_data;
1416 		word = rt2x00_desc_read(entry_priv->desc, 0);
1417 
1418 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1419 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1420 			break;
1421 
1422 		/*
1423 		 * Obtain the status about this packet.
1424 		 */
1425 		txdesc.flags = 0;
1426 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1427 		case 0: /* Success */
1428 		case 1: /* Success with retry */
1429 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1430 			break;
1431 		case 2: /* Failure, excessive retries */
1432 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1433 			/* Fall through - this is a failed frame! */
1434 		default: /* Failure */
1435 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1436 		}
1437 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1438 
1439 		rt2x00lib_txdone(entry, &txdesc);
1440 	}
1441 }
1442 
1443 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1444 					      struct rt2x00_field32 irq_field)
1445 {
1446 	u32 reg;
1447 
1448 	/*
1449 	 * Enable a single interrupt. The interrupt mask register
1450 	 * access needs locking.
1451 	 */
1452 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1453 
1454 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1455 	rt2x00_set_field32(&reg, irq_field, 0);
1456 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1457 
1458 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1459 }
1460 
1461 static void rt2500pci_txstatus_tasklet(unsigned long data)
1462 {
1463 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1464 	u32 reg;
1465 
1466 	/*
1467 	 * Handle all tx queues.
1468 	 */
1469 	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1470 	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1471 	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1472 
1473 	/*
1474 	 * Enable all TXDONE interrupts again.
1475 	 */
1476 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1477 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1478 
1479 		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1480 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1481 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1482 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1483 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1484 
1485 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1486 	}
1487 }
1488 
1489 static void rt2500pci_tbtt_tasklet(unsigned long data)
1490 {
1491 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1492 	rt2x00lib_beacondone(rt2x00dev);
1493 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1494 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1495 }
1496 
1497 static void rt2500pci_rxdone_tasklet(unsigned long data)
1498 {
1499 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1500 	if (rt2x00mmio_rxdone(rt2x00dev))
1501 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1502 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1503 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1504 }
1505 
1506 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1507 {
1508 	struct rt2x00_dev *rt2x00dev = dev_instance;
1509 	u32 reg, mask;
1510 
1511 	/*
1512 	 * Get the interrupt sources & saved to local variable.
1513 	 * Write register value back to clear pending interrupts.
1514 	 */
1515 	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1516 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1517 
1518 	if (!reg)
1519 		return IRQ_NONE;
1520 
1521 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1522 		return IRQ_HANDLED;
1523 
1524 	mask = reg;
1525 
1526 	/*
1527 	 * Schedule tasklets for interrupt handling.
1528 	 */
1529 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1530 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1531 
1532 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1533 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1534 
1535 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1536 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1537 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1538 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1539 		/*
1540 		 * Mask out all txdone interrupts.
1541 		 */
1542 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1543 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1544 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1545 	}
1546 
1547 	/*
1548 	 * Disable all interrupts for which a tasklet was scheduled right now,
1549 	 * the tasklet will reenable the appropriate interrupts.
1550 	 */
1551 	spin_lock(&rt2x00dev->irqmask_lock);
1552 
1553 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1554 	reg |= mask;
1555 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1556 
1557 	spin_unlock(&rt2x00dev->irqmask_lock);
1558 
1559 	return IRQ_HANDLED;
1560 }
1561 
1562 /*
1563  * Device probe functions.
1564  */
1565 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1566 {
1567 	struct eeprom_93cx6 eeprom;
1568 	u32 reg;
1569 	u16 word;
1570 	u8 *mac;
1571 
1572 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1573 
1574 	eeprom.data = rt2x00dev;
1575 	eeprom.register_read = rt2500pci_eepromregister_read;
1576 	eeprom.register_write = rt2500pci_eepromregister_write;
1577 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1578 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1579 	eeprom.reg_data_in = 0;
1580 	eeprom.reg_data_out = 0;
1581 	eeprom.reg_data_clock = 0;
1582 	eeprom.reg_chip_select = 0;
1583 
1584 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1585 			       EEPROM_SIZE / sizeof(u16));
1586 
1587 	/*
1588 	 * Start validation of the data that has been read.
1589 	 */
1590 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1591 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1592 
1593 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1594 	if (word == 0xffff) {
1595 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1596 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1597 				   ANTENNA_SW_DIVERSITY);
1598 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1599 				   ANTENNA_SW_DIVERSITY);
1600 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1601 				   LED_MODE_DEFAULT);
1602 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1603 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1604 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1605 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1606 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1607 	}
1608 
1609 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1610 	if (word == 0xffff) {
1611 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1612 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1613 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1614 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1615 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1616 	}
1617 
1618 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1619 	if (word == 0xffff) {
1620 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1621 				   DEFAULT_RSSI_OFFSET);
1622 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1623 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1624 				  word);
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1631 {
1632 	u32 reg;
1633 	u16 value;
1634 	u16 eeprom;
1635 
1636 	/*
1637 	 * Read EEPROM word for configuration.
1638 	 */
1639 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1640 
1641 	/*
1642 	 * Identify RF chipset.
1643 	 */
1644 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1645 	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1646 	rt2x00_set_chip(rt2x00dev, RT2560, value,
1647 			rt2x00_get_field32(reg, CSR0_REVISION));
1648 
1649 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1650 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1651 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1652 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1653 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1654 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1655 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1656 		return -ENODEV;
1657 	}
1658 
1659 	/*
1660 	 * Identify default antenna configuration.
1661 	 */
1662 	rt2x00dev->default_ant.tx =
1663 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1664 	rt2x00dev->default_ant.rx =
1665 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1666 
1667 	/*
1668 	 * Store led mode, for correct led behaviour.
1669 	 */
1670 #ifdef CONFIG_RT2X00_LIB_LEDS
1671 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1672 
1673 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1674 	if (value == LED_MODE_TXRX_ACTIVITY ||
1675 	    value == LED_MODE_DEFAULT ||
1676 	    value == LED_MODE_ASUS)
1677 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1678 				   LED_TYPE_ACTIVITY);
1679 #endif /* CONFIG_RT2X00_LIB_LEDS */
1680 
1681 	/*
1682 	 * Detect if this device has an hardware controlled radio.
1683 	 */
1684 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1685 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1686 		/*
1687 		 * On this device RFKILL initialized during probe does not work.
1688 		 */
1689 		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1690 	}
1691 
1692 	/*
1693 	 * Check if the BBP tuning should be enabled.
1694 	 */
1695 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1696 	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1697 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1698 
1699 	/*
1700 	 * Read the RSSI <-> dBm offset information.
1701 	 */
1702 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1703 	rt2x00dev->rssi_offset =
1704 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1705 
1706 	return 0;
1707 }
1708 
1709 /*
1710  * RF value list for RF2522
1711  * Supports: 2.4 GHz
1712  */
1713 static const struct rf_channel rf_vals_bg_2522[] = {
1714 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1715 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1716 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1717 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1718 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1719 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1720 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1721 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1722 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1723 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1724 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1725 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1726 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1727 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1728 };
1729 
1730 /*
1731  * RF value list for RF2523
1732  * Supports: 2.4 GHz
1733  */
1734 static const struct rf_channel rf_vals_bg_2523[] = {
1735 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1736 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1737 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1738 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1739 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1740 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1741 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1742 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1743 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1744 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1745 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1746 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1747 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1748 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1749 };
1750 
1751 /*
1752  * RF value list for RF2524
1753  * Supports: 2.4 GHz
1754  */
1755 static const struct rf_channel rf_vals_bg_2524[] = {
1756 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1757 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1758 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1759 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1760 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1761 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1762 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1763 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1764 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1765 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1766 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1767 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1768 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1769 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1770 };
1771 
1772 /*
1773  * RF value list for RF2525
1774  * Supports: 2.4 GHz
1775  */
1776 static const struct rf_channel rf_vals_bg_2525[] = {
1777 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1778 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1779 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1780 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1781 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1782 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1783 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1784 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1785 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1786 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1787 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1788 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1789 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1790 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1791 };
1792 
1793 /*
1794  * RF value list for RF2525e
1795  * Supports: 2.4 GHz
1796  */
1797 static const struct rf_channel rf_vals_bg_2525e[] = {
1798 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1799 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1800 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1801 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1802 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1803 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1804 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1805 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1806 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1807 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1808 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1809 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1810 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1811 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1812 };
1813 
1814 /*
1815  * RF value list for RF5222
1816  * Supports: 2.4 GHz & 5.2 GHz
1817  */
1818 static const struct rf_channel rf_vals_5222[] = {
1819 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1820 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1821 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1822 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1823 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1824 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1825 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1826 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1827 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1828 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1829 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1830 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1831 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1832 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1833 
1834 	/* 802.11 UNI / HyperLan 2 */
1835 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1836 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1837 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1838 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1839 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1840 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1841 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1842 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1843 
1844 	/* 802.11 HyperLan 2 */
1845 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1846 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1847 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1848 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1849 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1850 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1851 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1852 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1853 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1854 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1855 
1856 	/* 802.11 UNII */
1857 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1858 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1859 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1860 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1861 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1862 };
1863 
1864 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1865 {
1866 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1867 	struct channel_info *info;
1868 	char *tx_power;
1869 	unsigned int i;
1870 
1871 	/*
1872 	 * Initialize all hw fields.
1873 	 */
1874 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1875 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1876 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1877 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1878 
1879 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1880 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1881 				rt2x00_eeprom_addr(rt2x00dev,
1882 						   EEPROM_MAC_ADDR_0));
1883 
1884 	/*
1885 	 * Disable powersaving as default.
1886 	 */
1887 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1888 
1889 	/*
1890 	 * Initialize hw_mode information.
1891 	 */
1892 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1893 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1894 
1895 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1896 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1897 		spec->channels = rf_vals_bg_2522;
1898 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1899 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1900 		spec->channels = rf_vals_bg_2523;
1901 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1902 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1903 		spec->channels = rf_vals_bg_2524;
1904 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1905 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1906 		spec->channels = rf_vals_bg_2525;
1907 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1908 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1909 		spec->channels = rf_vals_bg_2525e;
1910 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1911 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1912 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1913 		spec->channels = rf_vals_5222;
1914 	}
1915 
1916 	/*
1917 	 * Create channel information array
1918 	 */
1919 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1920 	if (!info)
1921 		return -ENOMEM;
1922 
1923 	spec->channels_info = info;
1924 
1925 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1926 	for (i = 0; i < 14; i++) {
1927 		info[i].max_power = MAX_TXPOWER;
1928 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1929 	}
1930 
1931 	if (spec->num_channels > 14) {
1932 		for (i = 14; i < spec->num_channels; i++) {
1933 			info[i].max_power = MAX_TXPOWER;
1934 			info[i].default_power1 = DEFAULT_TXPOWER;
1935 		}
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1942 {
1943 	int retval;
1944 	u32 reg;
1945 
1946 	/*
1947 	 * Allocate eeprom data.
1948 	 */
1949 	retval = rt2500pci_validate_eeprom(rt2x00dev);
1950 	if (retval)
1951 		return retval;
1952 
1953 	retval = rt2500pci_init_eeprom(rt2x00dev);
1954 	if (retval)
1955 		return retval;
1956 
1957 	/*
1958 	 * Enable rfkill polling by setting GPIO direction of the
1959 	 * rfkill switch GPIO pin correctly.
1960 	 */
1961 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1962 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1963 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1964 
1965 	/*
1966 	 * Initialize hw specifications.
1967 	 */
1968 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1969 	if (retval)
1970 		return retval;
1971 
1972 	/*
1973 	 * This device requires the atim queue and DMA-mapped skbs.
1974 	 */
1975 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1976 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1977 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1978 
1979 	/*
1980 	 * Set the rssi offset.
1981 	 */
1982 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1983 
1984 	return 0;
1985 }
1986 
1987 /*
1988  * IEEE80211 stack callback functions.
1989  */
1990 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1991 			     struct ieee80211_vif *vif)
1992 {
1993 	struct rt2x00_dev *rt2x00dev = hw->priv;
1994 	u64 tsf;
1995 	u32 reg;
1996 
1997 	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1998 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1999 	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
2000 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
2001 
2002 	return tsf;
2003 }
2004 
2005 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2006 {
2007 	struct rt2x00_dev *rt2x00dev = hw->priv;
2008 	u32 reg;
2009 
2010 	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2011 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2012 }
2013 
2014 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2015 	.tx			= rt2x00mac_tx,
2016 	.start			= rt2x00mac_start,
2017 	.stop			= rt2x00mac_stop,
2018 	.add_interface		= rt2x00mac_add_interface,
2019 	.remove_interface	= rt2x00mac_remove_interface,
2020 	.config			= rt2x00mac_config,
2021 	.configure_filter	= rt2x00mac_configure_filter,
2022 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2023 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2024 	.get_stats		= rt2x00mac_get_stats,
2025 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2026 	.conf_tx		= rt2x00mac_conf_tx,
2027 	.get_tsf		= rt2500pci_get_tsf,
2028 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2029 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2030 	.flush			= rt2x00mac_flush,
2031 	.set_antenna		= rt2x00mac_set_antenna,
2032 	.get_antenna		= rt2x00mac_get_antenna,
2033 	.get_ringparam		= rt2x00mac_get_ringparam,
2034 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2035 };
2036 
2037 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2038 	.irq_handler		= rt2500pci_interrupt,
2039 	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2040 	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2041 	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2042 	.probe_hw		= rt2500pci_probe_hw,
2043 	.initialize		= rt2x00mmio_initialize,
2044 	.uninitialize		= rt2x00mmio_uninitialize,
2045 	.get_entry_state	= rt2500pci_get_entry_state,
2046 	.clear_entry		= rt2500pci_clear_entry,
2047 	.set_device_state	= rt2500pci_set_device_state,
2048 	.rfkill_poll		= rt2500pci_rfkill_poll,
2049 	.link_stats		= rt2500pci_link_stats,
2050 	.reset_tuner		= rt2500pci_reset_tuner,
2051 	.link_tuner		= rt2500pci_link_tuner,
2052 	.start_queue		= rt2500pci_start_queue,
2053 	.kick_queue		= rt2500pci_kick_queue,
2054 	.stop_queue		= rt2500pci_stop_queue,
2055 	.flush_queue		= rt2x00mmio_flush_queue,
2056 	.write_tx_desc		= rt2500pci_write_tx_desc,
2057 	.write_beacon		= rt2500pci_write_beacon,
2058 	.fill_rxdone		= rt2500pci_fill_rxdone,
2059 	.config_filter		= rt2500pci_config_filter,
2060 	.config_intf		= rt2500pci_config_intf,
2061 	.config_erp		= rt2500pci_config_erp,
2062 	.config_ant		= rt2500pci_config_ant,
2063 	.config			= rt2500pci_config,
2064 };
2065 
2066 static void rt2500pci_queue_init(struct data_queue *queue)
2067 {
2068 	switch (queue->qid) {
2069 	case QID_RX:
2070 		queue->limit = 32;
2071 		queue->data_size = DATA_FRAME_SIZE;
2072 		queue->desc_size = RXD_DESC_SIZE;
2073 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2074 		break;
2075 
2076 	case QID_AC_VO:
2077 	case QID_AC_VI:
2078 	case QID_AC_BE:
2079 	case QID_AC_BK:
2080 		queue->limit = 32;
2081 		queue->data_size = DATA_FRAME_SIZE;
2082 		queue->desc_size = TXD_DESC_SIZE;
2083 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2084 		break;
2085 
2086 	case QID_BEACON:
2087 		queue->limit = 1;
2088 		queue->data_size = MGMT_FRAME_SIZE;
2089 		queue->desc_size = TXD_DESC_SIZE;
2090 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2091 		break;
2092 
2093 	case QID_ATIM:
2094 		queue->limit = 8;
2095 		queue->data_size = DATA_FRAME_SIZE;
2096 		queue->desc_size = TXD_DESC_SIZE;
2097 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2098 		break;
2099 
2100 	default:
2101 		BUG();
2102 		break;
2103 	}
2104 }
2105 
2106 static const struct rt2x00_ops rt2500pci_ops = {
2107 	.name			= KBUILD_MODNAME,
2108 	.max_ap_intf		= 1,
2109 	.eeprom_size		= EEPROM_SIZE,
2110 	.rf_size		= RF_SIZE,
2111 	.tx_queues		= NUM_TX_QUEUES,
2112 	.queue_init		= rt2500pci_queue_init,
2113 	.lib			= &rt2500pci_rt2x00_ops,
2114 	.hw			= &rt2500pci_mac80211_ops,
2115 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2116 	.debugfs		= &rt2500pci_rt2x00debug,
2117 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2118 };
2119 
2120 /*
2121  * RT2500pci module information.
2122  */
2123 static const struct pci_device_id rt2500pci_device_table[] = {
2124 	{ PCI_DEVICE(0x1814, 0x0201) },
2125 	{ 0, }
2126 };
2127 
2128 MODULE_AUTHOR(DRV_PROJECT);
2129 MODULE_VERSION(DRV_VERSION);
2130 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2131 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2132 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2133 MODULE_LICENSE("GPL");
2134 
2135 static int rt2500pci_probe(struct pci_dev *pci_dev,
2136 			   const struct pci_device_id *id)
2137 {
2138 	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2139 }
2140 
2141 static struct pci_driver rt2500pci_driver = {
2142 	.name		= KBUILD_MODNAME,
2143 	.id_table	= rt2500pci_device_table,
2144 	.probe		= rt2500pci_probe,
2145 	.remove		= rt2x00pci_remove,
2146 	.suspend	= rt2x00pci_suspend,
2147 	.resume		= rt2x00pci_resume,
2148 };
2149 
2150 module_pci_driver(rt2500pci_driver);
2151